Apparently, cachetools is (intentionally) not threadsafe
when using the Caches directly.
It's therefore recommended to wrap these with an explicit lock to avoid
problems.
source: https://github.com/tkem/cachetools/issues/245closes#7215
Added two optional arguments for whitelist - `sorted` for alphabetical order and `nobase` for displaying the whitelist without base currency e.g. /USDT.
Updated help with optional commands.
Added a space in an unrelated help message.
plotting.py was missing a call to strategy.bot_loop_start() resulting in strategies using this callback to not work.
Made changes and confirmed plotting now works for strategies using bot_loop_start() callback.
LMK if anything else needed for PR.
1. Try to get points using `self.opt.ask` first
2. Discard the points that have already been evaluated
3. Retry using `self.opt.ask` up to 3 times
4. If still some points are missing in respect to `n_points`, random sample some points
5. Repeat until at least `n_points` points in the `asked_non_tried` list
6. Return a list with legth truncated at `n_points`
makes import of datetime columns more robust by first checking
if value is null because strftime can't handle NaT values
use `isnull()` because it handles all NaN/None/NaT cases
Ordering of Pairs without history should remain identical, so pairs with
positive performance move to the front, and negative pairs move to the back.
closes#4893
* updated new-config to add trading_mode and margin_mode
* added trading_mode and margin_mode to config examples
* added okex config example
* new file: config_examples/config_binance_futures.example.json
* removed trading_mode and margin_mode from base_config and binance and okex example
* deleted okex and futures config files
* updated full config file
* updated new-config command to add trading_mode and margin_mode to config
* new file: config_examples/config_okex_futures.example.json
* removed config_okex_futures.example.json
* added trading_mode to test_start_new_config
* new-config asks exchange before asking futures
* Simplify trading_mode selection
* margin_mode is empty string for spot new configs
* build_config_commands sorted exchanges
* isort
Co-authored-by: Matthias <xmatthias@outlook.com>
When specifying multiple pairs to download, the json filenames were
inconsistent due to the reassignment of candle_type. Also adds the
candle_type being downloaded to a log message.
Only KuCoin messages for 429000 error code are logged once.
Logs functions are also simplified and optimized.
test_remove_logs_for_pairs_already_in_blacklist is simplified as well.
New functions log_contains, num_log_contains, num_log_has and num_log_has_re
are introduced in the conftest module to help and simplify checking:
- if logs contain a string;
- count how many messages contain a string;
- count how many messages are the given string;
- count how many messages matchs a regex.
A couple of existing tests are changed using the new functions.
More logs are reduced, for KuCoin, on the retrier_async decorator:
_async_get_candle_history() returned exception
retrying _async_get_candle_history() still for
Giving up retrying: _async_get_candle_history()
Applying DDosProtection backoff delay
KuCoin APIs generate A LOT of error messages.
Consequently, logs are flooded with lines like:
2021-12-25 22:30:23 freqtrade.exchange.common: WARNING -
_async_get_candle_history() returned exception:
"kucoin GET https://openapi-v2.kucoin.com/api/v1/market/candles?
symbol=PDEX-USDT&type=5min&startAt=1640317818&endAt=1640467818
429 Too Many Requests {"code":"429000","msg":"Too Many Requests"}"
2021-12-25 22:30:23 freqtrade.exchange.common: WARNING -
retrying _async_get_candle_history() still for 3 times
2021-12-25 22:30:23 freqtrade.exchange.common: WARNING -
Kucoin 429 error, avoid triggering DDosProtection backoff delay.
2 tries left before giving up
2021-12-25 22:30:24 freqtrade.exchange.common: WARNING -
_async_get_candle_history() returned exception:
"kucoin GET https://openapi-v2.kucoin.com/api/v1/market/candles?
symbol=UBX-USDT&type=5min&startAt=1640317821&endAt=1640467821
429 Too Many Requests {"code":"429000","msg":"Too Many Requests"}"
Messages like:
Kucoin 429 error, avoid triggering DDosProtection backoff delay.
are logged only once for a certain period of time (default is 3600 seconds).
Freqtrade is a free and open source crypto trading bot written in Python. It is designed to support all major exchanges and be controlled via Telegram. It contains backtesting, plotting and money management tools as well as strategy optimization by machine learning.
Freqtrade is a free and open source crypto trading bot written in Python. It is designed to support all major exchanges and be controlled via Telegram or webUI. It contains backtesting, plotting and money management tools as well as strategy optimization by machine learning.
@@ -26,14 +26,23 @@ hesitate to read the source code and understand the mechanism of this bot.
Please read the [exchange specific notes](docs/exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKEX](https://www.okex.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Supported Futures Exchanges (experimental)
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
### Community tested
Exchanges confirmed working by the community:
@@ -49,30 +58,25 @@ Please find the complete documentation on the [freqtrade website](https://www.fr
## Features
- [x]**Based on Python 3.7+**: For botting on any operating system - Windows, macOS and Linux.
- [x]**Based on Python 3.8+**: For botting on any operating system - Windows, macOS and Linux.
- [x]**Persistence**: Persistence is achieved through sqlite.
- [x]**Dry-run**: Run the bot without paying money.
- [x]**Backtesting**: Run a simulation of your buy/sell strategy.
- [x]**Strategy Optimization by machine learning**: Use machine learning to optimize your buy/sell strategy parameters with real exchange data.
- [X]**Adaptive prediction modeling**: Build a smart strategy with FreqAI that self-trains to the market via adaptive machine learning methods. [Learn more](https://www.freqtrade.io/en/stable/freqai/)
- [x]**Edge position sizing** Calculate your win rate, risk reward ratio, the best stoploss and adjust your position size before taking a position for each specific market. [Learn more](https://www.freqtrade.io/en/stable/edge/).
- [x]**Whitelist crypto-currencies**: Select which crypto-currency you want to trade or use dynamic whitelists.
- [x]**Blacklist crypto-currencies**: Select which crypto-currency you want to avoid.
- [x]**Builtin WebUI**: Builtin web UI to manage your bot.
- [x]**Manageable via Telegram**: Manage the bot with Telegram.
- [x]**Display profit/loss in fiat**: Display your profit/loss in 33 fiat.
- [x]**Daily summary of profit/loss**: Provide a daily summary of your profit/loss.
- [x]**Display profit/loss in fiat**: Display your profit/loss in fiat currency.
- [x]**Performance status report**: Provide a performance status of your current trades.
## Quick start
Freqtrade provides a Linux/macOS script to install all dependencies and help you to configure the bot.
Please refer to the [Docker Quickstart documentation](https://www.freqtrade.io/en/stable/docker_quickstart/) on how to get started quickly.
* `trade_count`: Amount of trades (identical to `len(results)`)
* `min_date`: Start date of the timerange used
* `min_date`: End date of the timerange used
@@ -98,6 +98,23 @@ class MyAwesomeStrategy(IStrategy):
!!! Note
All overrides are optional and can be mixed/matched as necessary.
### Dynamic parameters
Parameters can also be defined dynamically, but must be available to the instance once the * [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
# Corresponds to "ET" - but allows additional parameters.
return ExtraTreesRegressor(n_estimators=100)
```
The `dimensions` parameter is the list of `skopt.space.Dimension` objects corresponding to the parameters to be optimized. It can be used to create isotropic kernels for the `skopt.learning.GaussianProcessRegressor` estimator. Here's an example:
While custom estimators can be provided, it's up to you as User to do research on possible parameters and analyze / understand which ones should be used.
If you're unsure about this, best use one of the Defaults (`"ET"` has proven to be the most versatile) without further parameters.
@@ -176,12 +176,15 @@ Log messages are send to `syslog` with the `user` facility. So you can see them
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
For `rsyslog` the messages from the bot can be redirected into a separate dedicated log file. To achieve this, add
```
if $programname startswith "freqtrade" then -/var/log/freqtrade.log
```
to one of the rsyslog configuration files, for example at the end of the `/etc/rsyslog.d/50-default.conf`.
For `syslog` (`rsyslog`), the reduction mode can be switched on. This will reduce the number of repeating messages. For instance, multiple bot Heartbeat messages will be reduced to a single message when nothing else happens with the bot. To achieve this, set in `/etc/rsyslog.conf`:
@@ -340,9 +356,9 @@ The column `Avg Profit %` shows the average profit for all trades made while the
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
Your strategy performance is influenced by your buy strategy, your sell strategy, and also by the `minimal_roi` and `stop_loss` you have set.
Your strategy performance is influenced by your buy strategy, your exit strategy, and also by the `minimal_roi` and `stop_loss` you have set.
For example, if your `minimal_roi` is only `"0": 0.01` you cannot expect the bot to make more profit than 1% (because it will sell every time a trade reaches 1%).
For example, if your `minimal_roi` is only `"0": 0.01` you cannot expect the bot to make more profit than 1% (because it will exit every time a trade reaches 1%).
```json
"minimal_roi":{
@@ -354,14 +370,14 @@ On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
(55%), there is almost no chance that the bot will ever reach this profit.
Hence, keep in mind that your performance is an integral mix of all different elements of the strategy, your configuration, and the crypto-currency pairs you have set up.
### Sell reasons table
### Exit reasons table
The 2nd table contains a recap of sell reasons.
This table can tell you which area needs some additional work (e.g. all or many of the `sell_signal` trades are losses, so you should work on improving the sell signal, or consider disabling it).
The 2nd table contains a recap of exit reasons.
This table can tell you which area needs some additional work (e.g. all or many of the `exit_signal` trades are losses, so you should work on improving the exit signal, or consider disabling it).
### Left open trades table
The 3rd table contains all trades the bot had to `forcesell` at the end of the backtesting period to present you the full picture.
The 3rd table contains all trades the bot had to `force_exit` at the end of the backtesting period to present you the full picture.
This is necessary to simulate realistic behavior, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
These trades are also included in the first table, but are also shown separately in this table for clarity.
@@ -371,42 +387,55 @@ The last element of the backtest report is the summary metrics table.
It contains some useful key metrics about performance of your strategy on backtesting data.
@@ -417,6 +446,8 @@ It contains some useful key metrics about performance of your strategy on backte
-`Final balance`: Final balance - starting balance + absolute profit.
-`Absolute profit`: Profit made in stake currency.
-`Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital − Starting capital) / Starting capital`.
-`CAGR %`: Compound annual growth rate.
-`Profit factor`: profit / loss.
-`Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
-`Total trade volume`: Volume generated on the exchange to reach the above profit.
-`Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Cum Profit %`.
@@ -424,12 +455,22 @@ It contains some useful key metrics about performance of your strategy on backte
-`Best day` / `Worst day`: Best and worst day based on daily profit.
-`Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
-`Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
-`Rejected Buy signals`: Buy signals that could not be acted upon due to max_open_trades being reached.
-`Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
-`Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
-`Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
-`Canceled Entry Orders`: Number of entry orders that have been canceled by user request via `adjust_entry_price`.
-`Replaced Entry Orders`: Number of entry orders that have been replaced by user request via `adjust_entry_price`.
-`Min balance` / `Max balance`: Lowest and Highest Wallet balance during the backtest period.
-`Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced).
-`Max % of account underwater`: Maximum percentage your account has decreased from the top since the simulation started.
Calculated as the maximum of `(Max Balance - Current Balance) / (Max Balance)`.
-`Absolute Drawdown (Account)`: Maximum Account Drawdown experienced. Calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
-`Drawdown`: Maximum, absolute drawdown experienced. Difference between Drawdown High and Subsequent Low point.
-`Drawdown high` / `Drawdown low`: Profit at the beginning and end of the largest drawdown period. A negative low value means initial capital lost.
-`Drawdown Start` / `Drawdown End`: Start and end datetime for this largest drawdown (can also be visualized via the `plot-dataframe` sub-command).
-`Market change`: Change of the market during the backtest period. Calculated as average of all pairs changes from the first to the last candle using the "close" column.
-`Long / Short`: Split long/short values (Only shown when short trades were made).
-`Total profit Long %` / `Absolute profit Long`: Profit long trades only (Only shown when short trades were made).
-`Total profit Short %` / `Absolute profit Short`: Profit short trades only (Only shown when short trades were made).
### Daily / Weekly / Monthly breakdown
@@ -438,7 +479,7 @@ You can get an overview over daily / weekly or monthly results by using the `--b
To visualize daily and weekly breakdowns, you can use the following:
``` bash
freqtrade backtesting --strategy MyAwesomeStrategy --breakdown day month
freqtrade backtesting --strategy MyAwesomeStrategy --breakdown day week
The output will show a table containing the realized absolute Profit (in stake currency) for the given timeperiod, as well as wins, draws and losses that materialized (closed) on this day.
The output will show a table containing the realized absolute Profit (in stake currency) for the given timeperiod, as well as wins, draws and losses that materialized (closed) on this day. Below that there will be a second table for the summarized values of weeks indicated by the date of the closing Sunday. The same would apply to a monthly breakdown indicated by the last day of the month.
### Backtest result caching
To save time, by default backtest will reuse a cached result from within the last day when the backtested strategy and config match that of a previous backtest. To force a new backtest despite existing result for an identical run specify `--cache none` parameter.
!!! Warning
Caching is automatically disabled for open-ended timeranges (`--timerange 20210101-`), as freqtrade cannot ensure reliably that the underlying data didn't change. It can also use cached results where it shouldn't if the original backtest had missing data at the end, which was fixed by downloading more data.
In this instance, please use `--cache none` once to force a fresh backtest.
### Further backtest-result analysis
@@ -465,35 +514,54 @@ You can then load the trades to perform further analysis as shown in the [data a
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:
- Exchange [trading limits](#trading-limits-in-backtesting) are respected
- Buys happen at open-price
- All orders are filled at the requested price (no slippage, no unfilled orders)
- Sell-signal sells happen at open-price of the consecutive candle
- Sell-signal is favored over Stoploss, because sell-signals are assumed to trigger on candle's open
- Exit-signal exits happen at open-price of the consecutive candle
- Exit-signal is favored over Stoploss, because exit-signals are assumed to trigger on candle's open
- ROI
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
- Forcesells caused by `<N>=-1` ROI entries use low as sell value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss sells happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` sell reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- Forceexits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so sells with large high-low difference are backtested correctly)
- Low uses the adjusted stoploss (so exits with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
- Sell-reason does not explain if a trade was positive or negative, just what triggered the sell (this can look odd if negative ROI values are used)
- Exit-reason does not explain if a trade was positive or negative, just what triggered the exit (this can look odd if negative ROI values are used)
- Evaluation sequence (if multiple signals happen on the same candle)
- ROI (if not stoploss)
- Sell-signal
- Exit-signal
- Stoploss
- ROI
- Trailing stoploss
Taking these assumptions, backtesting tries to mirror real trading as closely as possible. However, backtesting will **never** replace running a strategy in dry-run mode.
Also, keep in mind that past results don't guarantee future success.
In addition to the above assumptions, strategy authors should carefully read the [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies) section, to avoid using data in backtesting which is not available in real market conditions.
### Improved backtest accuracy
### Trading limits in backtesting
Exchanges have certain trading limits, like minimum base currency, or minimum stake (quote) currency.
These limits are usually listed in the exchange documentation as "trading rules" or similar.
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
Freqtrade has however no information about historic limits.
This can lead to situations where trading-limits are inflated by using a historic price, resulting in minimum amounts > 50$.
For example:
BTC minimum tradable amount is 0.001.
BTC trades at 22.000\$ today (0.001 BTC is related to this) - but the backtesting period includes prices as high as 50.000\$.
Today's minimum would be `0.001 * 22_000` - or 22\$.
However the limit could also be 50$ - based on `0.001 * 50_000` in some historic setting.
## Improved backtest accuracy
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or viceversa?).
So assuming you run backtesting with a 1h timeframe, there will be 4 prices for that candle (Open, High, Low, Close).
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe - and for every "open trade candle" (candles where a trade is open) the 5m data will be used to simulate intra-candle movements.
All callback functions (`custom_sell()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.
@@ -20,29 +20,34 @@ All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt /
## Bot execution logic
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
By default, loop runs every few seconds (`internals.process_throttle_secs`) and does roughly the following in the following sequence:
This will also run the `bot_start()` callback.
By default, the bot loop runs every few seconds (`internals.process_throttle_secs`) and performs the following actions:
* Fetch open trades from persistence.
* Calculate current list of tradable pairs.
* Download ohlcv data for the pairlist including all [informative pairs](strategy-customization.md#get-data-for-non-tradeable-pairs)
* Download OHLCV data for the pairlist including all [informative pairs](strategy-customization.md#get-data-for-non-tradeable-pairs)
This step is only executed once per Candle to avoid unnecessary network traffic.
* Call `bot_loop_start()` strategy callback.
* Analyze strategy per pair.
* Call `populate_indicators()`
* Call `populate_buy_trend()`
* Call `populate_sell_trend()`
* Call `populate_entry_trend()`
* Call `populate_exit_trend()`
* Check timeouts for open orders.
* Calls `check_buy_timeout()` strategy callback for open buy orders.
* Calls `check_sell_timeout()` strategy callback for open sell orders.
*Verifies existing positions and eventually places sell orders.
*Considers stoploss, ROI and sell-signal, `custom_sell()` and `custom_stoploss()`.
*Determine sell-price based on `ask_strategy` configuration setting or by using the `custom_exit_price()` callback.
*Before a sell order is placed, `confirm_trade_exit()` strategy callback is called.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
*Calls `adjust_entry_price()` strategy callback for open entry orders.
*Verifies existing positions and eventually places exit orders.
*Considers stoploss, ROI and exit-signal, `custom_exit()` and `custom_stoploss()`.
*Determine exit-price based on `exit_pricing` configuration setting or by using the `custom_exit_price()` callback.
* Before a exit order is placed, `confirm_trade_exit()` strategy callback is called.
* Check position adjustments for open trades if enabled by calling `adjust_trade_position()` and place additional order if required.
* Check if trade-slots are still available (if `max_open_trades` is reached).
* Verifies buy signal trying to enter new positions.
* Determine buy-price based on `bid_strategy` configuration setting, or by using the `custom_entry_price()` callback.
* Verifies entry signal trying to enter new positions.
* Determine entry-price based on `entry_pricing` configuration setting, or by using the `custom_entry_price()` callback.
* In Margin and Futures mode, `leverage()` strategy callback is called to determine the desired leverage.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Before a buy order is placed, `confirm_trade_entry()` strategy callback is called.
* Before an entry order is placed, `confirm_trade_entry()` strategy callback is called.
This loop will be repeated again and again until the bot is stopped.
@@ -51,16 +56,21 @@ This loop will be repeated again and again until the bot is stopped.
[backtesting](backtesting.md) or [hyperopt](hyperopt.md) do only part of the above logic, since most of the trading operations are fully simulated.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate buy / sell signals (calls `populate_buy_trend()` and `populate_sell_trend()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Confirm trade buy / sell (calls `confirm_trade_entry()`and`confirm_trade_exit()` if implemented in the strategy).
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()`/`check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).
* Confirm trade entry / exits (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy).
* Call `custom_entry_price()` (if implemented in the strategy) to determine entry price (Prices are moved to be within the opening candle).
* In Margin and Futures mode, `leverage()` strategy callback is called to determine the desired leverage.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Call `custom_stoploss()` and `custom_sell()` to find custom exit points.
*For sells based on sell-signal and custom-sell: Call`custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
* Check position adjustments for open trades if enabled and call `adjust_trade_position()` to determine if an additional order is requested.
*Call `custom_stoploss()` and`custom_exit()` to find custom exit points.
* For exits based on exit-signal and custom-exit: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
@@ -11,7 +11,7 @@ Per default, the bot loads the configuration from the `config.json` file, locate
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
If you used the [Quick start](installation.md/#quick-start) method for installing
If you used the [Quick start](installation.md/#quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
You can specify additional configuration files in `add_config_files`. Files specified in this parameter will be loaded and merged with the initial config file. The files are resolved relative to the initial configuration file.
This is similar to using multiple `--config` parameters, but simpler in usage as you don't have to specify all files for all commands.
!!! Tip "Use multiple configuration files to keep secrets secret"
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
The 2nd file should only specify what you intend to override.
If a key is in more than one of the configurations, then the "last specified configuration" wins (in the above example, `config-private.json`).
This is equivalent to the example above - but `config-private.json` is specified as cli argument.
??? Note "config collision handling"
If the same configuration setting takes place in both `config.json` and `config-import.json`, then the parent configuration wins.
In the below case, `max_open_trades` would be 3 after the merging - as the reusable "import" configuration has this key overwritten.
``` json title="user_data/config.json"
{
"max_open_trades": 3,
"stake_currency": "USDT",
"add_config_files": [
"config-import.json"
]
}
```
``` json title="user_data/config-import.json"
{
"max_open_trades": 10,
"stake_amount": "unlimited",
}
```
Resulting combined configuration:
``` json title="Result"
{
"max_open_trades": 3,
"stake_currency": "USDT",
"stake_amount": "unlimited"
}
```
## Configuration parameters
The table below will list all configuration parameters available.
Freqtrade can also load many options via command line (CLI) arguments (check out the commands `--help` output for details).
### Configuration option prevalence
The prevalence for all Options is as follows:
- CLI arguments override any other option
@@ -74,6 +126,8 @@ The prevalence for all Options is as follows:
- Configuration files are used in sequence (the last file wins) and override Strategy configurations.
- Strategy configurations are only used if they are not set via configuration or command-line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
### Parameters table
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Parameter | Description |
@@ -86,41 +140,51 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `timeframe` | The timeframe (former ticker interval) to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `timeframe` | The timeframe to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). Usually missing in configuration, and specified in the strategy. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
| `cancel_open_orders_on_exit` | Cancel open orders when the `/stop` RPC command is issued, `Ctrl+C` is pressed or the bot dies unexpectedly. When set to `true`, this allows you to use `/stop` to cancel unfilled and partially filled orders in the event of a market crash. It does not impact open positions. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to exit a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `stoploss` | **Required.** Value as ratio of the stoploss used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md#trailing-stop-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-custom-positive-loss). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `unfilledtimeout.buy` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to None.*<br> **Datatype:** Float
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
| | **Unfilled timeout**
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency sell is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| `bid_strategy.price_side` | Select the side of the spread the bot should look at to get the buy rate. [More information below](#buy-price-side).<br> *Defaults to `bid`.* <br> **Datatype:** String (either `ask` or `bid`).
| `bid_strategy.ask_last_balance` | **Required.** Interpolate the bidding price. More information [below](#buy-price-without-orderbook-enabled).
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book "price_side" to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.*<br> **Datatype:** Positive Integer
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br>*Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `ask_strategy.price_side` | Select the side of the spread the bot should look at to get the sell rate. [More information below](#sell-price-side).<br> *Defaults to `ask`.* <br> **Datatype:** String (either `ask` or `bid`).
| `ask_strategy.bid_last_balance` | Interpolate the selling price. More information [below](#sell-price-without-orderbook-enabled).
| `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `ask_strategy.order_book_top` | Bot will use the top N rate in Order Book "price_side" to sell. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Asks](#sell-price-with-orderbook-enabled)<br>*Defaults to `1`.*<br> **Datatype:** Positive Integer
| `use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `sell_profit_only` | Wait until the bot reaches `sell_profit_offset` before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `sell_profit_offset` | Sell-signal is only active above this value. Only active in combination with `sell_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used. <br> **Datatype:** Integer
| `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| | **Pricing**
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#buy-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br>*Defaults to `True`.*<br> **Datatype:** Boolean
| `entry_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to enter a trade. I.e. a value of 2 will allow the bot to pick the 2nd entry in [Order Book Entry](#entry-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `entry_pricing. check_depth_of_market.enabled` | Do not enter if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `entry_pricing. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br>*Defaults to `True`.*<br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| | **TODO**
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_entry_signal` | Do not exit if the entry signal is still active. This setting takes preference over `minimal_roi` and `use_exit_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used. <br> **Datatype:** Integer
| `order_types` | Configure order-types depending on the action (`"entry"`, `"exit"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for entry and exit orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `position_adjustment_enable` | Enables the strategy to use position adjustments (additional buys or sells). [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.*<br> **Datatype:** Boolean
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| | **Exchange**
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -137,21 +201,29 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| | **Plugins**
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
| `pairlists` | Define one or more pairlists to be used. [More information](plugins.md#pairlists-and-pairlist-handlers). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `protections` | Define one or more protections to be used. [More information](plugins.md#protections). <br> **Datatype:** List of Dicts
| | **Telegram**
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuycancel` | Payload to send on buy order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksellcancel` | Payload to send on sell order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentrycancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentryfill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| | **Rest API / FreqUI**
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>**Datatype:** Integer between 1024 and 65535
@@ -159,17 +231,20 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `bot_name` | Name of the bot. Passed via API to a client - can be shown to distinguish / name bots.<br> *Defaults to `freqtrade`*<br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| | **Other**
| `initial_state` | Defines the initial application state. If set to stopped, then the bot has to be explicitly started via `/start` RPC command. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> **Datatype:** Boolean
| `force_entry_enable` | Enables the RPC Commands to force a Trade entry. More information below. <br> **Datatype:** Boolean
| `disable_dataframe_checks` | Disable checking the OHLCV dataframe returned from the strategy methods for correctness. Only use when intentionally changing the dataframe and understand what you are doing. [Strategy Override](#parameters-in-the-strategy).<br> *Defaults to `False`*. <br> **Datatype:** Boolean
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `internals.process_throttle_secs` | Set the process throttle, or minimum loop duration for one bot iteration loop. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Integer
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
@@ -191,11 +266,13 @@ Values set in the configuration file always overwrite values set in the strategy
* `order_time_in_force`
* `unfilledtimeout`
* `disable_dataframe_checks`
* `use_sell_signal`
* `sell_profit_only`
* `sell_profit_offset`
* `ignore_roi_if_buy_signal`
- `use_exit_signal`
* `exit_profit_only`
- `exit_profit_offset`
- `ignore_roi_if_entry_signal`
* `ignore_buying_expired_candle_after`
* `position_adjustment_enable`
* `max_entry_position_adjustment`
### Configuring amount per trade
@@ -302,6 +379,15 @@ To allow the bot to trade all the available `stake_currency` in your account (mi
When using `"stake_amount" : "unlimited",` in combination with Dry-Run, Backtesting or Hyperopt, the balance will be simulated starting with a stake of `dry_run_wallet` which will evolve.
It is therefore important to set `dry_run_wallet` to a sensible value (like 0.05 or 0.01 for BTC and 1000 or 100 for USDT, for example), otherwise, it may simulate trades with 100 BTC (or more) or 0.05 USDT (or less) at once - which may not correspond to your real available balance or is less than the exchange minimal limit for the order amount for the stake currency.
#### Dynamic stake amount with position adjustment
When you want to use position adjustment with unlimited stakes, you must also implement `custom_stake_amount` to a return a value depending on your strategy.
Typical value would be in the range of 25% - 50% of the proposed stakes, but depends highly on your strategy and how much you wish to leave into the wallet as position adjustment buffer.
For example if your position adjustment assumes it can do 2 additional buys with the same stake amounts then your buffer should be 66.6667% of the initially proposed unlimited stake amount.
Or another example if your position adjustment assumes it can do 1 additional buy with 3x the original stake amount then `custom_stake_amount` should return 25% of proposed stake amount and leave 75% for possible later position adjustments.
--8<-- "includes/pricing.md"
### Understand minimal_roi
@@ -312,10 +398,10 @@ See the example below:
```json
"minimal_roi": {
"40": 0.0, # Sell after 40 minutes if the profit is not negative
"30": 0.01, # Sell after 30 minutes if there is at least 1% profit
"20": 0.02, # Sell after 20 minutes if there is at least 2% profit
"0": 0.04 # Sell immediately if there is at least 4% profit
"40": 0.0, # Exit after 40 minutes if the profit is not negative
"30": 0.01, # Exit after 30 minutes if there is at least 1% profit
"20": 0.02, # Exit after 20 minutes if there is at least 2% profit
"0": 0.04 # Exit immediately if there is at least 4% profit
},
```
@@ -324,14 +410,14 @@ This parameter can be set in either Strategy or Configuration file. If you use i
`minimal_roi` value from the strategy file.
If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal ROI is disabled unless your trade generates 1000% profit.
!!! Note "Special case to forcesell after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to sell a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-sell.
!!! Note "Special case to forceexit after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to exit a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-exit.
### Understand forcebuy_enable
### Understand force_entry_enable
The `forcebuy_enable` configuration parameter enables the usage of forcebuy commands via Telegram and REST API.
The `force_entry_enable` configuration parameter enables the usage of force-enter (`/forcelong`, `/forceshort`) commands via Telegram and REST API.
For security reasons, it's disabled by default, and freqtrade will show a warning message on startup if enabled.
For example, you can send `/forcebuy ETH/BTC` to the bot, which will result in freqtrade buying the pair and holds it until a regular sell-signal (ROI, stoploss, /forcesell) appears.
For example, you can send `/forceenter ETH/BTC` to the bot, which will result in freqtrade buying the pair and holds it until a regular exit-signal (ROI, stoploss, /forceexit) appears.
This can be dangerous with some strategies, so use with care.
@@ -358,29 +444,27 @@ For example, if your strategy is using a 1h timeframe, and you only want to buy
### Understand order_types
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`, `emergencysell`, `forcesell`, `forcebuy`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
The `order_types` configuration parameter maps actions (`entry`, `exit`, `stoploss`, `emergency_exit`, `force_exit`, `force_entry`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
This allows to enter using limit orders, exit using limit-orders, and create stoplosses using market orders.
It also allows to set the
stoploss "on exchange" which means stoploss order would be placed immediately once the buy order is fulfilled.
This allows to buy using limit orders, sell using
limit-orders, and create stoplosses using market orders. It also allows to set the
stoploss "on exchange" which means stoploss order would be placed immediately once
the buy order is fulfilled.
`order_types` set in the configuration file overwrites values set in the strategy as a whole, so you need to configure the whole `order_types` dictionary in one place.
If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
`stoploss_on_exchange`) need to be present, otherwise, the bot will fail to start.
If this is configured, the following 4 values (`entry`, `exit`, `stoploss` and `stoploss_on_exchange`) need to be present, otherwise, the bot will fail to start.
For information on (`emergencysell`,`forcesell`, `forcebuy`, `stoploss_on_exchange`,`stoploss_on_exchange_interval`,`stoploss_on_exchange_limit_ratio`) please see stop loss documentation [stop loss on exchange](stoploss.md)
For information on (`emergency_exit`,`force_exit`, `force_entry`, `stoploss_on_exchange`,`stoploss_on_exchange_interval`,`stoploss_on_exchange_limit_ratio`) please see stop loss documentation [stop loss on exchange](stoploss.md)
Syntax for Strategy:
```python
order_types = {
"buy": "limit",
"sell": "limit",
"emergencysell": "market",
"forcebuy": "market",
"forcesell": "market",
"entry": "limit",
"exit": "limit",
"emergency_exit": "market",
"force_entry": "market",
"force_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": False,
"stoploss_on_exchange_interval": 60,
@@ -392,11 +476,11 @@ Configuration:
```json
"order_types": {
"buy": "limit",
"sell": "limit",
"emergencysell": "market",
"forcebuy": "market",
"forcesell": "market",
"entry": "limit",
"exit": "limit",
"emergency_exit": "market",
"force_entry": "market",
"force_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
@@ -419,7 +503,7 @@ Configuration:
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
If stoploss on exchange creation fails for some reason, then an "emergency sell" is initiated. By default, this will sell the asset using a market order. The order-type for the emergency-sell can be changed by setting the `emergencysell` value in the `order_types` dictionary - however, this is not advised.
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will exit the trade using a market order. The order-type for the emergency-exit can be changed by setting the `emergency_exit` value in the `order_types` dictionary - however, this is not advised.
### Understand order_time_in_force
@@ -449,8 +533,8 @@ The possible values are: `gtc` (default), `fok` or `ioc`.
``` python
"order_time_in_force": {
"buy": "gtc",
"sell": "gtc"
"entry": "gtc",
"exit": "gtc"
},
```
@@ -496,10 +580,10 @@ creating trades on the exchange.
```json
"exchange": {
"name": "bittrex",
"key": "key",
"secret": "secret",
...
"name": "bittrex",
"key": "key",
"secret": "secret",
...
}
```
@@ -516,7 +600,7 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
* Market orders fill based on orderbook volume the moment the order is placed.
* Limit orders fill once the price reaches the defined level - or time out based on `unfilledtimeout` settings.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are reset on bot restart.
* Open orders (not trades, which are stored in the database) are kept open after bot restarts, with the assumption that they were not filled while being offline.
You can analyze the results of backtests and trading history easily using Jupyter notebooks. Sample notebooks are located at `user_data/notebooks/` after initializing the user directory with `freqtrade create-userdir --userdir user_data`.
You can analyze the results of backtests and trading history easily using Jupyter notebooks. Sample notebooks are located at `user_data/notebooks/` after initializing the user directory with `freqtrade create-userdir --userdir user_data`.
Some tasks don't work especially well in notebooks. For example, anything using asynchronous execution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required objects and parameters to helper functions. You may need to set those values or create expected objects manually.
## Recommended workflow
## Recommended workflow
| Task | Tool |
--- | ---
Bot operations | CLI
| Task | Tool |
--- | ---
Bot operations | CLI
Repetitive tasks | Shell scripts
Data analysis & visualization | Notebook
Data analysis & visualization | Notebook
1. Use the CLI to
* download historical data
* run a backtest
* run with real-time data
* export results
* export results
1. Collect these actions in shell scripts
* save complicated commands with arguments
* execute multi-step operations
* execute multi-step operations
* automate testing strategies and preparing data for analysis
1. Use a notebook to
* visualize data
* munge and plot to generate insights
* mangle and plot to generate insights
## Example utility snippets
## Example utility snippets
### Change directory to root
### Change directory to root
Jupyter notebooks execute from the notebook directory. The following snippet searches for the project root, so relative paths remain consistent.
@@ -119,5 +122,6 @@ Best avoid relative paths, since this starts at the storage location of the jupy
* [Strategy debugging](strategy_analysis_example.md) - also available as Jupyter notebook (`user_data/notebooks/strategy_analysis_example.ipynb`)
* [Plotting](plotting.md)
* [Tag Analysis](advanced-backtesting.md)
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020. Eventually set end dates are ignored.
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
#### Download additional data before the current timerange
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
@@ -15,8 +15,8 @@ This command line option was deprecated in 2019.7-dev (develop branch) and remov
### The **--dynamic-whitelist** command line option
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch)
and in freqtrade 2019.7.
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch) and in freqtrade 2019.7.
Please refer to [pairlists](plugins.md#pairlists-and-pairlist-handlers) instead.
### the `--live` command line option
@@ -24,6 +24,10 @@ and in freqtrade 2019.7.
Did only download the latest 500 candles, so was ineffective in getting good backtest data.
Removed in 2019-7-dev (develop branch) and in freqtrade 2019.8.
### `ticker_interval` (now `timeframe`)
Support for `ticker_interval` terminology was deprecated in 2020.6 in favor of `timeframe` - and compatibility code was removed in 2022.3.
### Allow running multiple pairlists in sequence
The former `"pairlist"` section in the configuration has been removed, and is replaced by `"pairlists"` - being a list to specify a sequence of pairlists.
@@ -34,7 +38,7 @@ The old section of configuration parameters (`"pairlist"`) has been deprecated i
Since only quoteVolume can be compared between assets, the other options (bidVolume, askVolume) have been deprecated in 2020.4, and have been removed in 2020.9.
### Using order book steps for sell price
### Using order book steps for exit price
Using `order_book_min` and `order_book_max` used to allow stepping the orderbook and trying to find the next ROI slot - trying to place sell-orders early.
As this does however increase risk and provides no benefit, it's been removed for maintainability purposes in 2021.7.
@@ -43,3 +47,30 @@ As this does however increase risk and provides no benefit, it's been removed fo
Using separate hyperopt files was deprecated in 2021.4 and was removed in 2021.9.
Please switch to the new [Parametrized Strategies](hyperopt.md) to benefit from the new hyperopt interface.
## Strategy changes between V2 and V3
Isolated Futures / short trading was introduced in 2022.4. This required major changes to configuration settings, strategy interfaces, ...
We have put a great effort into keeping compatibility with existing strategies, so if you just want to continue using freqtrade in spot markets, there are no changes necessary.
While we may drop support for the current interface sometime in the future, we will announce this separately and have an appropriate transition period.
Please follow the [Strategy migration](strategy_migration.md) guide to migrate your strategy to the new format to start using the new functionalities.
### webhooks - changes with 2022.4
#### `buy_tag` has been renamed to `enter_tag`
This should apply only to your strategy and potentially to webhooks.
We will keep a compatibility layer for 1-2 versions (so both `buy_tag` and `enter_tag` will still work), but support for this in webhooks will disappear after that.
#### Naming changes
Webhook terminology changed from "sell" to "exit", and from "buy" to "entry".
@@ -26,6 +26,9 @@ Alternatively (e.g. if your system is not supported by the setup.sh script), fol
This will install all required tools for development, including `pytest`, `flake8`, `mypy`, and `coveralls`.
Then install the git hook scripts by running `pre-commit install`, so your changes will be verified locally before committing.
This avoids a lot of waiting for CI already, as some basic formatting checks are done locally on your machine.
Before opening a pull request, please familiarize yourself with our [Contributing Guidelines](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md).
To debug freqtrade, we recommend VSCode with the following launch configuration (located in `.vscode/launch.json`).
Details will obviously vary between setups - but this should work to get you started.
``` json
{
"name": "freqtrade trade",
"type": "python",
"request": "launch",
"module": "freqtrade",
"console": "integratedTerminal",
"args": [
"trade",
// Optional:
// "--userdir", "user_data",
"--strategy",
"MyAwesomeStrategy",
]
},
```
Command line arguments can be added in the `"args"` array.
This method can also be used to debug a strategy, by setting the breakpoints within the strategy.
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
!!! Note "Startup directory"
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
## ErrorHandling
Freqtrade Exceptions all inherit from `FreqtradeException`.
@@ -197,11 +230,12 @@ For that reason, they must implement the following methods:
* `global_stop()`
* `stop_per_pair()`.
`global_stop()` and `stop_per_pair()` must return a ProtectionReturn tuple, which consists of:
`global_stop()` and `stop_per_pair()` must return a ProtectionReturn object, which consists of:
* lock pair - boolean
* lock until - datetime - until when should the pair be locked (will be rounded up to the next new candle)
* reason - string, used for logging and storage in the database
* lock_side - long, short or '*'.
The `until` portion should be calculated using the provided `calculate_lock_end()` method.
@@ -220,13 +254,13 @@ Protections can have 2 different ways to stop trading for a limited :
##### Protections - per pair
Protections that implement the per pair approach must set `has_local_stop=True`.
The method `stop_per_pair()` will be called whenever a trade closed (sell order completed).
The method `stop_per_pair()` will be called whenever a trade closed (exit order completed).
##### Protections - global protection
These Protections should do their evaluation across all pairs, and consequently will also lock all pairs from trading (called a global PairLock).
Global protection must set `has_global_stop=True` to be evaluated for global stops.
The method `global_stop()` will be called whenever a trade closed (sell order completed).
The method `global_stop()` will be called whenever a trade closed (exit order completed).
##### Protections - calculating lock end time
@@ -264,7 +298,7 @@ Additional tests / steps to complete:
* Check if balance shows correctly (*)
* Create market order (*)
* Create limit order (*)
* Complete trade (buy + sell) (*)
* Complete trade (enter + exit) (*)
* Compare result calculation between exchange and bot
* Ensure fees are applied correctly (check the database against the exchange)
@@ -310,6 +344,32 @@ The output will show the last entry from the Exchange as well as the current UTC
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
Another way is to run this command multiple times in a row and observe if the volume is changing (while the date remains the same).
### Update binance cached leverage tiers
Updating leveraged tiers should be done regularly - and requires an authenticated account with futures enabled.
``` python
import ccxt
import json
from pathlib import Path
exchange = ccxt.binance({
'apiKey': '<apikey>',
'secret': '<secret>'
'options': {'defaultType': 'future'}
})
_ = exchange.load_markets()
lev_tiers = exchange.fetch_leverage_tiers()
# Assumes this is running in the root of the repository.
@@ -126,6 +126,12 @@ All freqtrade arguments will be available by running `docker-compose run --rm fr
!!! Note "`docker-compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose"
"`docker-compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
Binance supports `stoploss_on_exchange` and uses stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
Binance supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange..
### Binance Blacklist
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
### Binance Futures
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
Violating these rules will result in a trading restriction.
When trading on Binance Futures market, orderbook must be used because there is no price ticker data for futures.
``` jsonc
"entry_pricing": {
"use_order_book": true,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"exit_pricing": {
"use_order_book": true,
"order_book_top": 1
},
```
### Binance sites
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
@@ -177,18 +199,27 @@ Kucoin requires a passphrase for each api key, you will therefore need to add th
Kucoin supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type of stoploss shall be used.
### Kucoin Blacklists
For Kucoin, please add `"KCS/<STAKE>"` to your blacklist to avoid issues.
Accounts having KCS accounts use this to pay for fees - if your first trade happens to be on `KCS`, further trades will consume this position and make the initial KCS trade unsellable as the expected amount is not there anymore.
## OKEX
## Huobi
OKEX requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
!!! Tip "Stoploss on Exchange"
Huobi supports `stoploss_on_exchange` and uses `stop-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
## OKX (former OKEX)
OKX requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
```json
"exchange": {
"name": "okex",
"name": "okx",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "your_exchange_api_key_password",
@@ -197,10 +228,18 @@ OKEX requires a passphrase for each api key, you will therefore need to add this
```
!!! Warning
OKEX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
!!! Warning "Futures"
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
Freqtrade supports both modes - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
## Gate.io
!!! Tip "Stoploss on Exchange"
Gate.io supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange..
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
No, Freqtrade does not support trading with margin / leverage, and cannot open short positions.
Freqtrade can open short positions in futures markets.
This requires the strategy to be made for this - and `"trading_mode": "futures"` in the configuration.
Please make sure to read the [relevant documentation page](leverage.md) first.
In some cases, your exchange may provide leveraged spot tokens which can be traded with Freqtrade eg. BTCUP/USD, BTCDOWN/USD, ETHBULL/USD, ETHBEAR/USD, etc...
In spot markets, you can in some cases use leveraged spot tokens, which reflect an inverted pair (eg. BTCUP/USD, BTCDOWN/USD, ETHBULL/USD, ETHBEAR/USD,...) which can be traded with Freqtrade.
### Can I trade options or futures?
No, options and futures trading are not supported.
Futures trading is supported for selected exchanges.
## Beginner Tips & Tricks
@@ -77,7 +79,7 @@ You can use "current" market data by using the [dataprovider](strategy-customiza
### Is there a setting to only SELL the coins being held and not perform anymore BUYS?
You can use the `/stopbuy` command in Telegram to prevent future buys, followed by `/forcesell all` (sell all open trades).
You can use the `/stopbuy` command in Telegram to prevent future buys, followed by `/forceexit all` (sell all open trades).
### I want to run multiple bots on the same machine
@@ -117,10 +119,10 @@ As the message says, your exchange does not support market orders and you have o
To fix this, redefine order types in the strategy to use "limit" instead of "market":
```
``` python
order_types = {
...
'stoploss': 'limit',
"stoploss": "limit",
...
}
```
@@ -188,12 +190,12 @@ There is however nothing preventing you from using GPU-enabled indicators within
Per default Hyperopt called without the `-e`/`--epochs` command line option will only
run 100 epochs, means 100 evaluations of your triggers, guards, ... Too few
to find a great result (unless if you are very lucky), so you probably
have to run it for 10.000 or more. But it will take an eternity to
have to run it for 10000 or more. But it will take an eternity to
compute.
Since hyperopt uses Bayesian search, running for too many epochs may not produce greater results.
It's therefore recommended to run between 500-1000 epochs over and over until you hit at least 10.000 epochs in total (or are satisfied with the result). You can best judge by looking at the results - if the bot keeps discovering better strategies, it's best to keep on going.
It's therefore recommended to run between 500-1000 epochs over and over until you hit at least 10000 epochs in total (or are satisfied with the result). You can best judge by looking at the results - if the bot keeps discovering better strategies, it's best to keep on going.
@@ -217,9 +219,9 @@ already 8\*10^9\*10 evaluations. A roughly total of 80 billion evaluations.
Did you run 100 000 evaluations? Congrats, you've done roughly 1 / 100 000 th
of the search space, assuming that the bot never tests the same parameters more than once.
* The time it takes to run 1000 hyperopt epochs depends on things like: The available cpu, hard-disk, ram, timeframe, timerange, indicator settings, indicator count, amount of coins that hyperopt test strategies on and the resulting trade count - which can be 650 trades in a year or 10.0000 trades depending if the strategy aims for big profits by trading rarely or for many low profit trades.
* The time it takes to run 1000 hyperopt epochs depends on things like: The available cpu, hard-disk, ram, timeframe, timerange, indicator settings, indicator count, amount of coins that hyperopt test strategies on and the resulting trade count - which can be 650 trades in a year or 100000 trades depending if the strategy aims for big profits by trading rarely or for many low profit trades.
Example: 4% profit 650 times vs 0,3% profit a trade 10.000 times in a year. If we assume you set the --timerange to 365 days.
Example: 4% profit 650 times vs 0,3% profit a trade 10000 times in a year. If we assume you set the --timerange to 365 days.
FreqAI is a module designed to automate a variety of tasks associated with training a predictive model to generate market forecasts given a set of input features.
Among the the features included:
* **Self-adaptive retraining**: retrain models during live deployments to self-adapt to the market in an unsupervised manner.
* **Rapid feature engineering**: create large rich feature sets (10k+ features) based on simple user created strategies.
* **High performance**: adaptive retraining occurs on separate thread (or on GPU if available) from inferencing and bot trade operations. Keep newest models and data in memory for rapid inferencing.
* **Realistic backtesting**: emulate self-adaptive retraining with backtesting module that automates past retraining.
* **Modifiable**: use the generalized and robust architecture for incorporating any machine learning library/method available in Python. Seven examples available.
* **Smart outlier removal**: remove outliers from training and prediction sets using a variety of outlier detection techniques.
* **Crash resilience**: model storage to disk to make reloading from a crash fast and easy (and purge obsolete files for sustained dry/live runs).
* **Automated data normalization**: normalize the data in a smart and statistically safe way.
* **Automatic data download**: compute the data download timerange and update historic data (in live deployments).
* **Clean incoming data** safe NaN handling before training and prediction.
* **Dimensionality reduction**: reduce the size of the training data via Principal Component Analysis.
* **Deploy bot fleets**: set one bot to train models while a fleet of other bots inference into the models and handle trades.
## Quick start
The easiest way to quickly test FreqAI is to run it in dry run with the following command
The user provides FreqAI with a set of custom *base* indicators (created inside the strategy the same way
a typical Freqtrade strategy is created) as well as target values which look into the future.
FreqAI trains a model to predict the target value based on the input of custom indicators for each pair in the whitelist. These models are consistently retrained to adapt to market conditions. FreqAI offers the ability to both backtest strategies (emulating reality with periodic retraining) and deploy dry/live. In dry/live conditions, FreqAI can be set to constant retraining in a background thread in an effort to keep models as young as possible.
An overview of the algorithm is shown here to help users understand the data processing pipeline and the model usage.

## Background and vocabulary
**Features** are the quantities with which a model is trained. $X_i$ represents the
vector of all features for a single candle. In FreqAI, the user
builds the features from anything they can construct in the strategy.
**Labels** are the target values with which the weights inside a model are trained
toward. Each set of features is associated with a single label, which is also
defined within the strategy by the user. These labels intentionally look into the
future, and are not available to the model during dryrun/live/backtesting.
**Training** refers to the process of feeding individual feature sets into the
model with associated labels with the goal of matching input feature sets to associated labels.
**Train data** is a subset of the historic data which is fed to the model during
training to adjust weights. This data directly influences weight connections in the model.
**Test data** is a subset of the historic data which is used to evaluate the
intermediate performance of the model during training. This data does not
directly influence nodal weights within the model.
## Install prerequisites
The normal Freqtrade install process will ask the user if they wish to install FreqAI dependencies. The user should reply "yes" to this question if they wish to use FreqAI. If the user did not reply yes, they can manually install these dependencies after the install with:
``` bash
pip install -r requirements-freqai.txt
```
!!! Note
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since Catboost does not provide wheels for this platform.
### Usage with docker
For docker users, a dedicated tag with freqAI dependencies is available as `:freqai`.
As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`.
This image contains the regular freqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
## Configuring FreqAI
### Parameter table
The table below will list all configuration parameters available for FreqAI.
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Parameter | Description |
|------------|-------------|
| `freqai` | **Required.** The parent dictionary containing all the parameters below for controlling FreqAI. <br> **Datatype:** dictionary.
| `identifier` | **Required.** A unique name for the current model. This can be reused to reload pre-trained models/data. <br> **Datatype:** string.
| `train_period_days` | **Required.** Number of days to use for the training data (width of the sliding window). <br> **Datatype:** positive integer.
| `backtest_period_days` | **Required.** Number of days to inference into the trained model before sliding the window and retraining. This can be fractional days, but beware that the user provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br> **Datatype:** Float.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. Default set to 0, which means it will retrain as often as possible. <br> **Datatype:** Float > 0.
| `follow_mode` | If true, this instance of FreqAI will look for models associated with `identifier` and load those for inferencing. A `follower` will **not** train new models. `False` by default. <br> **Datatype:** boolean.
| `startup_candles` | Number of candles needed for *backtesting only* to ensure all indicators are non NaNs at the start of the first train period. <br> **Datatype:** positive integer.
| `fit_live_predictions_candles` | Computes target (label) statistics from prediction data, instead of from the training data set. Number of candles is the number of historical candles it uses to generate the statistics. <br> **Datatype:** positive integer.
| `purge_old_models` | Tell FreqAI to delete obsolete models. Otherwise, all historic models will remain on disk. Defaults to `False`. <br> **Datatype:** boolean.
| `expiration_hours` | Ask FreqAI to avoid making predictions if a model is more than `expiration_hours` old. Defaults to 0 which means models never expire. <br> **Datatype:** positive integer.
| | **Feature Parameters**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples shown [here](#feature-engineering) <br> **Datatype:** dictionary.
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` will be created for each coin in this list, and that set of features is added to the base asset feature set. <br> **Datatype:** list of assets (strings).
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for and added as features to the base asset feature set. <br> **Datatype:** list of timeframes (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators`, refer to `templates/FreqaiExampleStrategy.py` for detailed usage. The user can create custom labels, making use of this parameter not. <br> **Datatype:** positive integer.
| `include_shifted_candles` | Parameter used to add a sense of temporal recency to flattened regression type input data. `include_shifted_candles` takes all features, duplicates and shifts them by the number indicated by user. <br> **Datatype:** positive integer.
| `DI_threshold` | Activates the Dissimilarity Index for outlier detection when above 0, explained in detail [here](#removing-outliers-with-the-dissimilarity-index). <br> **Datatype:** positive float (typically below 1).
| `weight_factor` | Used to set weights for training data points according to their recency, see details and a figure of how it works [here](#controlling-the-model-learning-process). <br> **Datatype:** positive float (typically below 1).
| `principal_component_analysis` | Ask FreqAI to automatically reduce the dimensionality of the data set using PCA. <br> **Datatype:** boolean.
| `use_SVM_to_remove_outliers` | Ask FreqAI to train a support vector machine to detect and remove outliers from the training data set as well as from incoming data points. <br> **Datatype:** boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. E.g. `nu` *Very* broadly, is the percentage of data points that should be considered outliers. `shuffle` is by default false to maintain reproducibility. But these and all others can be added/changed in this dictionary. <br> **Datatype:** dictionary.
| `stratify_training_data` | This value is used to indicate the stratification of the data. e.g. 2 would set every 2nd data point into a separate dataset to be pulled from during training/testing. <br> **Datatype:** positive integer.
| `indicator_max_period_candles` | The maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this information in combination with the maximum timeframe to calculate how many data points it should download so that the first data point does not have a NaN <br> **Datatype:** positive integer.
| `indicator_periods_candles` | A list of integers used to duplicate all indicators according to a set of periods and add them to the feature set. <br> **Datatype:** list of positive integers.
| `use_DBSCAN_to_remove_outliers` | Inactive by default. If true, FreqAI clusters data using DBSCAN to identify and remove outliers from training and prediction data. <br> **Datatype:** float (fraction of 1).
| | **Data split parameters**
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) <br> **Datatype:** dictionary.
| `test_size` | Fraction of data that should be used for testing instead of training. <br> **Datatype:** positive float below 1.
| `shuffle` | Shuffle the training data points during training. Typically for time-series forecasting, this is set to False. <br> **Datatype:** boolean.
| | **Model training parameters**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the user selected library. For example, if the user uses `LightGBMRegressor`, then this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html). If the user selects a different model, then this dictionary can contain any parameter from that different model. <br> **Datatype:** dictionary.
| `n_estimators` | A common parameter among regressors which sets the number of boosted trees to fit <br> **Datatype:** integer.
| `learning_rate` | A common parameter among regressors which sets the boosting learning rate. <br> **Datatype:** float.
| `n_jobs`, `thread_count`, `task_type` | Different libraries use different parameter names to control the number of threads used for parallel processing or whether or not it is a `task_type` of `gpu` or `cpu`. <br> **Datatype:** float.
| | **Extraneous parameters**
| `keras` | If your model makes use of keras (typical of Tensorflow based prediction models), activate this flag so that the model save/loading follows keras standards. Default value `false` <br> **Datatype:** boolean.
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for `shift` by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. Default value, 2 <br> **Datatype:** integer.
### Important FreqAI dataframe key patterns
Here are the values the user can expect to include/use inside the typical strategy dataframe (`df[]`):
| DataFrame Key | Description |
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target inside FreqAI (typically following the naming convention `&-s*`). These same dataframe columns names are fed back to the user as the predictions. For example, the user wishes to predict the price change in the next 40 candles (similar to `templates/FreqaiExampleStrategy.py`) by setting `df['&-s_close']`. FreqAI makes the predictions and gives them back to the user under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** depends on the output of the model.
| `df['&*_std/mean']` | The standard deviation and mean values of the user defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand rarity of prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` to evaluate how often a particular prediction was observed during training (or historically with `fit_live_predictions_candles`)<br> **Datatype:** float.
| `df['do_predict']` | An indication of an outlier, this return value is integer between -1 and 2 which lets the user understand if the prediction is trustworthy or not. `do_predict==1` means the prediction is trustworthy. If the [Dissimilarity Index](#removing-outliers-with-the-dissimilarity-index) is above the user defined threshold, it will subtract 1 from `do_predict`. If `use_SVM_to_remove_outliers()` is active, then the Support Vector Machine (SVM) may also detect outliers in training and prediction data. In this case, the SVM will also subtract one from `do_predict`. A particular case is when `do_predict == 2`, it means that the model has expired due to `expired_hours`. <br> **Datatype:** integer between -1 and 2.
| `df['DI_values']` | The raw Dissimilarity Index values to give the user a sense of confidence in the prediction. Lower DI means the data point is closer to the trained parameter space. <br> **Datatype:** float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature inside FreqAI. For example, the user can include the rsi in the training feature set (similar to `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](#building-the-feature-set). <br>**Note**: since the number of features prepended with `%` can multiply very quickly (10s of thousands of features is easily engineered using the multiplictative functionality described in the `feature_parameters` table.) these features are removed from the dataframe upon return from FreqAI. If the user wishes to keep a particular type of feature for plotting purposes, you can prepend it with `%%`. <br> **Datatype:** depends on the output of the model.
### Example config file
The user interface is isolated to the typical config file. A typical FreqAI config setup could include:
```json
"freqai": {
"startup_candles": 10000,
"purge_old_models": true,
"train_period_days": 30,
"backtest_period_days": 7,
"identifier" : "unique-id",
"feature_parameters" : {
"include_timeframes": ["5m","15m","4h"],
"include_corr_pairlist": [
"ETH/USD",
"LINK/USD",
"BNB/USD"
],
"label_period_candles": 24,
"include_shifted_candles": 2,
"weight_factor": 0,
"indicator_max_period_candles": 20,
"indicator_periods_candles": [10, 20]
},
"data_split_parameters" : {
"test_size": 0.25,
"random_state": 42
},
"model_training_parameters" : {
"n_estimators": 100,
"random_state": 42,
"learning_rate": 0.02,
"task_type": "CPU",
},
}
```
### Feature engineering
Features are added by the user inside the `populate_any_indicators()` method of the strategy
by prepending indicators with `%` and labels are added by prepending `&`.
There are some important components/structures that the user *must* include when building their feature set.
Another structure to consider is the location of the labels at the bottom of the example function (below `if set_generalized_indicators:`).
This is where the user will add single features and labels to their feature set to avoid duplication from
various configuration parameters which multiply the feature set such as `include_timeframes`.
The user of the present example does not wish to pass the `bb_lowerband` as a feature to the model,
and has therefore not prepended it with `%`. The user does, however, wish to pass `bb_width` to the
model for training/prediction and has therefore prepended it with `%`.
The `include_timeframes` from the example config above are the timeframes (`tf`) of each call to `populate_any_indicators()`
included metric for inclusion in the feature set. In the present case, the user is asking for the
`5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
In addition, the user can ask for each of these features to be included from
informative pairs using the `include_corr_pairlist`. This means that the present feature
set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of
`ETH/USD`, `LINK/USD`, and `BNB/USD`.
`include_shifted_candles` is another user controlled parameter which indicates the number of previous
candles to include in the present feature set. In other words, `include_shifted_candles: 2`, tells
FreqAI to include the the past 2 candles for each of the features included in the dataset.
In total, the number of features the present user has created is:
length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$3 * 3 * 3 * 2 * 2 = 108$.
!!! Note
Features **must** be defined in `populate_any_indicators()`. Making features in `populate_indicators()`
will fail in live/dry mode. If the user wishes to add generalized features that are not associated with
a specific pair or timeframe, they should use the following structure inside `populate_any_indicators()`
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`:
(Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`)
### Deciding the sliding training window and backtesting duration
Users define the backtesting timerange with the typical `--timerange` parameter in the user
configuration file. `train_period_days` is the duration of the sliding training window, while
`backtest_period_days` is the sliding backtesting window, both in number of days (`backtest_period_days` can be
a float to indicate sub daily retraining in live/dry mode). In the present example,
the user is asking FreqAI to use a training period of 30 days and backtest the subsequent 7 days.
This means that if the user sets `--timerange 20210501-20210701`,
FreqAI will train 8 separate models (because the full range comprises 8 weeks),
and then backtest the subsequent week associated with each of the 8 training
data set timerange months. Users can think of this as a "sliding window" which
emulates FreqAI retraining itself once per week in live using the previous
month of data.
In live, the required training data is automatically computed and downloaded. However, in backtesting
the user must manually enter the required number of `startup_candles` in the config. This value
is used to increase the available data to FreqAI and should be sufficient to enable all indicators
to be NaN free at the beginning of the first training timerange. This boils down to identifying the
highest timeframe (`4h` in present example) and the longest indicator period (25 in present example)
and adding this to the `train_period_days`. The units need to be in the base candle time frame:
`startup_candles` = ( 4 hours * 25 max period * 60 minutes/hour + 30 day train_period_days * 1440 minutes per day ) / 5 min (base time frame) = 1488.
!!! Note
In dry/live, this is all precomputed and handled automatically. Thus, `startup_candle` has no influence on dry/live.
!!! Note
Although fractional `backtest_period_days` is allowed, the user should be ware that the `--timerange` is divided by this value to determine the number of models that FreqAI will need to train in order to backtest the full range. For example, if the user wants to set a `--timerange` of 10 days, and asks for a `backtest_period_days` of 0.1, FreqAI will need to train 100 models per pair to complete the full backtest. This is why it is physically impossible to truly backtest FreqAI adaptive training. The best way to fully test a model is to run it dry and let it constantly train. In this case, backtesting would take the exact same amount of time as a dry run.
## Running FreqAI
### Backtesting
The FreqAI backtesting module can be executed with the following command:
Backtesting mode requires the user to have the data pre-downloaded (unlike dry/live, where FreqAI automatically downloads the necessary data). The user should be careful to consider that the range of the downloaded data is more than the backtesting range. This is because FreqAI needs data prior to the desired backtesting range in order to train a model to be ready to make predictions on the first candle of the user set backtesting range. More details on how to calculate the data download timerange can be found [here](#deciding-the-sliding-training-window-and-backtesting-duration).
If this command has never been executed with the existing config file, then it will train a new model
for each pair, for each backtesting window within the bigger `--timerange`.
!!! Note "Model reuse"
Once the training is completed, the user can execute this again with the same config file and
FreqAI will find the trained models and load them instead of spending time training. This is useful
if the user wants to tweak (or even hyperopt) buy and sell criteria inside the strategy. IF the user
*wants* to retrain a new model with the same config file, then he/she should simply change the `identifier`.
This way, the user can return to using any model they wish by simply changing the `identifier`.
---
### Building a freqai strategy
The FreqAI strategy requires the user to include the following lines of code in the strategy:
Notice how the `populate_any_indicators()` is where the user adds their own features and labels ([more information](#feature-engineering)). See a full example at `templates/FreqaiExampleStrategy.py`.
### Setting classifier targets
FreqAI includes a the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. Typically, the user would set the targets using strings:
By default, FreqAI will not find any existing models and will start by training a new one
given the user configuration settings. Following training, it will use that model to make predictions on incoming candles until a new model is available. New models are typically generated as often as possible, with FreqAI managing an internal queue of the pairs to try and keep all models equally "young." FreqAI will always use the newest trained model to make predictions on incoming live data. If users do not want FreqAI to retrain new models as often as possible, they can set `live_retrain_hours` to tell FreqAI to wait at least that number of hours before retraining a new model. Additionally, users can set `expired_hours` to tell FreqAI to avoid making predictions on models aged over this number of hours.
If the user wishes to start dry/live from a backtested saved model, the user only needs to reuse
the same `identifier` parameter
```json
"freqai": {
"identifier": "example",
"live_retrain_hours": 1
}
```
In this case, although FreqAI will initiate with a
pre-trained model, it will still check to see how much time has elapsed since the model was trained,
and if a full `live_retrain_hours` has elapsed since the end of the loaded model, FreqAI will self retrain.
## Data analysis techniques
### Controlling the model learning process
Model training parameters are unique to the ML library used by the user. FreqAI allows users to set any parameter for any library using the `model_training_parameters` dictionary in the user configuration file. The example configuration files show some of the example parameters associated with `Catboost` and `LightGBM`, but users can add any parameters available in those libraries.
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with `Sklearn`'s `train_test_split()` function. FreqAI includes some additional parameters such `weight_factor` which allows the user to weight more recent data more strongly
than past data via an exponential function:
$$ W_i = \exp(\frac{-i}{\alpha*n}) $$
where $W_i$ is the weight of data point $i$ in a total set of $n$ data points.

`train_test_split()` has a parameters called `shuffle`, which users also have access to in FreqAI, that allows them to keep the data unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data.
Finally, `label_period_candles` defines the offset used for the `labels`. In the present example,
the user is asking for `labels` that are 24 candles in the future.
### Removing outliers with the Dissimilarity Index
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each
prediction by the model. To do so, FreqAI measures the distance between each training
$\overline{d}$ quantifies the spread of the training data, which is compared to
the distance between the new prediction feature vectors, $X_k$ and all the training
data:
$$ d_k = \arg \min d_{k,i} $$
which enables the estimation of a Dissimilarity Index:
$$ DI_k = d_k/\overline{d} $$
Equity and crypto markets suffer from a high level of non-patterned noise in the
form of outlier data points. The dissimilarity index allows predictions which
are outliers and not existent in the model feature space, to be thrown out due
to low levels of certainty. Activating the Dissimilarity Index can be achieved with:
```json
"freqai": {
"feature_parameters" : {
"DI_threshold": 1
}
}
```
The user can tweak the DI with `DI_threshold` to increase or decrease the extrapolation of the trained model.
### Reducing data dimensionality with Principal Component Analysis
Users can reduce the dimensionality of their features by activating the `principal_component_analysis`:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
Which will perform PCA on the features and reduce the dimensionality of the data so that the explained
variance of the data set is >= 0.999.
### Removing outliers using a Support Vector Machine (SVM)
The user can tell FreqAI to remove outlier data points from the training/test data sets by setting:
```json
"freqai": {
"feature_parameters" : {
"use_SVM_to_remove_outliers": true
}
}
```
FreqAI will train an SVM on the training data (or components if the user activated
`principal_component_analysis`) and remove any data point that it deems to be sitting beyond the feature space.
### Clustering the training data and removing outliers with DBSCAN
The user can configure FreqAI to use DBSCAN to cluster training data and remove outliers from the training data set. The user activates `use_DBSCAN_to_remove_outliers` to cluster training data for identification of outliers. Also used to detect incoming outliers for prediction data points.
```json
"freqai": {
"feature_parameters" : {
"use_DBSCAN_to_remove_outliers": true
}
}
```
### Stratifying the data
The user can stratify the training/testing data using:
```json
"freqai": {
"feature_parameters" : {
"stratify_training_data": 3
}
}
```
which will split the data chronologically so that every Xth data points is a testing data point. In the
present example, the user is asking for every third data point in the dataframe to be used for
testing, the other points are used for training.
## Setting up a follower
The user can define:
```json
"freqai": {
"follow_mode": true,
"identifier": "example"
}
```
to indicate to the bot that it should not train models, but instead should look for models trained
by a leader with the same `identifier`. In this example, the user has a leader bot with the
`identifier: "example"` already running or launching simultaneously as the present follower.
The follower will load models created by the leader and inference them to obtain predictions.
## Purging old model data
FreqAI stores new model files each time it retrains. These files become obsolete as new models
are trained and FreqAI adapts to the new market conditions. Users planning to leave FreqAI running
for extended periods of time with high frequency retraining should set `purge_old_models` in their
config:
```json
"freqai": {
"purge_old_models": true,
}
```
which will automatically purge all models older than the two most recently trained ones.
## Defining model expirations
During dry/live, FreqAI trains each pair sequentially (on separate threads/GPU from the main
Freqtrade bot). This means there is always an age discrepancy between models. If a user is training
on 50 pairs, and each pair requires 5 minutes to train, the oldest model will be over 4 hours old.
This may be undesirable if the characteristic time scale (read trade duration target) for a strategy
is much less than 4 hours. The user can decide to only make trade entries if the model is less than
a certain number of hours in age by setting the `expiration_hours` in the config file:
```json
"freqai": {
"expiration_hours": 0.5,
}
```
In the present example, the user will only allow predictions on models that are less than 1/2 hours
old.
## Choosing the calculation of the `target_roi`
As shown in `templates/FreqaiExampleStrategy.py`, the `target_roi` is based on two metrics computed
by FreqAI: `label_mean` and `label_std`. These are the statistics associated with the labels used
*during the most recent training*.
This allows the model to know what magnitude of a target to be expecting since it is directly stemming from the training data.
By default, FreqAI computes this based on training data and it assumes the labels are Gaussian distributed.
These are big assumptions that the user should consider when creating their labels. If the user wants to consider the population
of *historical predictions* for creating the dynamic target instead of the trained labels, the user
can do so by setting `fit_live_prediction_candles` to the number of historical prediction candles
the user wishes to use to generate target statistics.
```json
"freqai": {
"fit_live_prediction_candles": 300,
}
```
If the user sets this value, FreqAI will initially use the predictions from the training data set
and then subsequently begin introducing real prediction data as it is generated. FreqAI will save
this historical data to be reloaded if the user stops and restarts with the same `identifier`.
## Extra returns per train
Users may find that there are some important metrics that they'd like to return to the strategy at the end of each retrain.
Users can include these metrics by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside their custom prediction
model class. FreqAI takes the `my_new_value` assigned in this dictionary and expands it to fit the return dataframe to the strategy.
The user can then use the value in the strategy with `dataframe['my_new_value']`. An example of how this is already used in FreqAI is
the `&*_mean` and `&*_std` values, which indicate the mean and standard deviation of that particular label during the most recent training.
Another example is shown below if the user wants to use live metrics from the trade database.
The user needs to set the standard dictionary in the config so FreqAI can return proper dataframe shapes:
```json
"freqai": {
"extra_returns_per_train": {"total_profit": 4}
}
```
These values will likely be overridden by the user prediction model, but in the case where the user model has yet to set them, or needs
a default initial value - this is the value that will be returned.
## Building an IFreqaiModel
FreqAI has multiple example prediction model based libraries such as `Catboost` regression (`freqai/prediction_models/CatboostRegressor.py`) and `LightGBM` regression.
However, users can customize and create their own prediction models using the `IFreqaiModel` class.
Users are encouraged to inherit `train()` and `predict()` to let them customize various aspects of their training procedures.
## Additional information
### Common pitfalls
FreqAI cannot be combined with `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
This is for performance reasons - FreqAI relies on making quick predictions/retrains. To do this effectively,
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. But this means that if new pairs arrive later in the dry run due
to a volume pairlist, it will not have the data ready. FreqAI does work, however, with the `ShufflePairlist`.
### Feature normalization
The feature set created by the user is automatically normalized to the training data only.
This includes all test data and unseen prediction data (dry/live/backtest).
### File structure
`user_data_dir/models/` contains all the data associated with the trainings and backtests.
This file structure is heavily controlled and read by the `FreqaiDataKitchen()`
and should therefore not be modified.
## Credits
FreqAI was developed by a group of individuals who all contributed specific skillsets to the project.
Conception and software development:
Robert Caulk @robcaulk
Theoretical brainstorming:
Elin Törnquist @thorntwig
Code review, software architecture brainstorming:
@xmatthias
Beta testing and bug reporting:
@bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm
Recursively search for a strategy in the strategies
folder.
```
### Hyperopt checklist
@@ -153,8 +162,8 @@ Checklist on all tasks / possibilities in hyperopt
Depending on the space you want to optimize, only some of the below are required:
* define parameters with `space='buy'` - for buy signal optimization
* define parameters with `space='sell'` - for sell signal optimization
* define parameters with `space='buy'` - for entry signal optimization
* define parameters with `space='sell'` - for exit signal optimization
!!! Note
`populate_indicators` needs to create all indicators any of the spaces may use, otherwise hyperopt will not work.
@@ -180,7 +189,7 @@ Hyperopt will first load your data into memory and will then run `populate_indic
Hyperopt will then spawn into different processes (number of processors, or `-j <n>`), and run backtesting over and over again, changing the parameters that are part of the `--spaces` defined.
For every new set of parameters, freqtrade will run first `populate_buy_trend()` followed by `populate_sell_trend()`, and then run the regular backtesting process to simulate trades.
For every new set of parameters, freqtrade will run first `populate_entry_trend()` followed by `populate_exit_trend()`, and then run the regular backtesting process to simulate trades.
After backtesting, the results are passed into the [loss function](#loss-functions), which will evaluate if this result was better or worse than previous results.
Based on the loss function result, hyperopt will determine the next set of parameters to try in the next round of backtesting.
@@ -190,7 +199,7 @@ Based on the loss function result, hyperopt will determine the next set of param
There are two places you need to change in your strategy file to add a new buy hyperopt for testing:
* Define the parameters at the class level hyperopt shall be optimizing.
* Within `populate_buy_trend()` - use defined parameter values instead of raw constants.
* Within `populate_entry_trend()` - use defined parameter values instead of raw constants.
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
@@ -200,25 +209,25 @@ There you have two different types of indicators: 1. `guards` and 2. `triggers`.
!!! Hint "Guards and Triggers"
Technically, there is no difference between Guards and Triggers.
However, this guide will make this distinction to make it clear that signals should not be "sticking".
Sticking signals are signals that are active for multiple candles. This can lead into buying a signal late (right before the signal disappears - which means that the chance of success is a lot lower than right at the beginning).
Sticking signals are signals that are active for multiple candles. This can lead into entering a signal late (right before the signal disappears - which means that the chance of success is a lot lower than right at the beginning).
Hyper-optimization will, for each epoch round, pick one trigger and possibly multiple guards.
#### Sell optimization
#### Exit signal optimization
Similar to the buy-signal above, sell-signals can also be optimized.
Similar to the entry-signal above, exit-signals can also be optimized.
Place the corresponding settings into the following methods
* Define the parameters at the class level hyperopt shall be optimizing, either naming them `sell_*`, or by explicitly defining `space='sell'`.
* Within `populate_sell_trend()` - use defined parameter values instead of raw constants.
* Within `populate_exit_trend()` - use defined parameter values instead of raw constants.
The configuration and rules are the same than for buy signals.
## Solving a Mystery
Let's say you are curious: should you use MACD crossings or lower Bollinger Bands to trigger your buys.
And you also wonder should you use RSI or ADX to help with those buy decisions.
If you decide to use RSI or ADX, which values should I use for them?
Let's say you are curious: should you use MACD crossings or lower Bollinger Bands to trigger your long entries.
And you also wonder should you use RSI or ADX to help with those decisions.
If you decide to use RSI or ADX, which values should I use for them?
So let's use hyperparameter optimization to solve this mystery.
@@ -269,12 +278,13 @@ The last one we call `trigger` and use it to decide which buy trigger we want to
!!! Note "Parameter space assignment"
Parameters must either be assigned to a variable named `buy_*` or `sell_*` - or contain `space='buy'` | `space='sell'` to be assigned to a space correctly.
If no parameter is available for a space, you'll receive the error that no space was found when running hyperopt.
If no parameter is available for a space, you'll receive the error that no space was found when running hyperopt.
Parameters with unclear space (e.g. `adx_period = IntParameter(4, 24, default=14)` - no explicit nor implicit space) will not be detected and will therefore be ignored.
So let's write the buy strategy using these values:
@@ -296,12 +306,12 @@ So let's write the buy strategy using these values:
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
'enter_long'] = 1
return dataframe
```
Hyperopt will now call `populate_buy_trend()` many times (`epochs`) with different value combinations.
Hyperopt will now call `populate_entry_trend()` many times (`epochs`) with different value combinations.
It will use the given historical data and simulate buys based on the buy signals generated with the above function.
Based on the results, hyperopt will tell you which parameter combination produced the best results (based on the configured [loss function](#loss-functions)).
@@ -332,6 +342,7 @@ There are four parameter types each suited for different purposes.
## Optimizing an indicator parameter
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
By default, we assume a stoploss of 5% - and a take-profit (`minimal_roi`) of 10% - which means freqtrade will sell the trade once 10% profit has been reached.
``` python
from pandas import DataFrame
@@ -346,6 +357,9 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyAwesomeStrategy(IStrategy):
stoploss = -0.05
timeframe = '15m'
minimal_roi = {
"0": 0.10
},
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
@@ -364,7 +378,7 @@ class MyAwesomeStrategy(IStrategy):
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
@@ -523,8 +577,10 @@ Currently, the following loss functions are builtin:
* `SharpeHyperOptLossDaily` - optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum absolute drawdown.
* `MaxDrawDownRelativeHyperOptLoss` - Optimizes both maximum absolute drawdown while also adjusting for maximum relative drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
* `ProfitDrawDownHyperOptLoss` - Optimizes by max Profit & min Drawdown objective. `DRAWDOWN_MULT` variable within the hyperoptloss file can be adjusted to be stricter or more flexible on drawdown purposes.
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
@@ -636,7 +692,7 @@ class MyAwesomeStrategy(IStrategy):
!!! Note
Values in the configuration file will overwrite Parameter-file level parameters - and both will overwrite parameters within the strategy.
The prevalence is therefore: config > parameter file > strategy
The prevalence is therefore: config > parameter file > strategy `*_params` > parameter default
### Understand Hyperopt ROI results
@@ -818,10 +874,28 @@ You can also enable position stacking in the configuration file by explicitly se
As hyperopt consumes a lot of memory (the complete data needs to be in memory once per parallel backtesting process), it's likely that you run into "out of memory" errors.
To combat these, you have multiple options:
* reduce the amount of pairs
* reduce the timerange used (`--timerange <timerange>`)
* reduce the number of parallel processes (`-j <n>`)
* Increase the memory of your machine
* Reduce the amount of pairs.
* Reduce the timerange used (`--timerange <timerange>`).
* Avoid using `--timeframe-detail` (this loads a lot of additional data into memory).
* Reduce the number of parallel processes (`-j <n>`).
* Increase the memory of your machine.
## The objective has been evaluated at this point before.
If you see `The objective has been evaluated at this point before.` - then this is a sign that your space has been exhausted, or is close to that.
Basically all points in your space have been hit (or a local minima has been hit) - and hyperopt does no longer find points in the multi-dimensional space it did not try yet.
Freqtrade tries to counter the "local minima" problem by using new, randomized points in this case.
The `buy_ema_short` space has 15 possible values (`5, 6, ... 19, 20`). If you now run hyperopt for the buy space, hyperopt will only have 15 values to try before running out of options.
Your epochs should therefore be aligned to the possible values - or you should be ready to interrupt a run if you norice a lot of `The objective has been evaluated at this point before.` warnings.
Prices for regular orders can be controlled via the parameter structures `bid_strategy` for buying and `ask_strategy` for selling.
Prices for regular orders can be controlled via the parameter structures `entry_pricing` for trade entries and `exit_pricing` for trade exits.
Prices are always retrieved right before an order is placed, either by querying the exchange tickers or by using the orderbook data.
!!! Note
@@ -9,20 +9,11 @@ Prices are always retrieved right before an order is placed, either by querying
!!! Warning "Using market orders"
Please read the section [Market order pricing](#market-order-pricing) section when using market orders.
### Buy price
### Entry price
#### Check depth of market
#### Enter price side
When check depth of market is enabled (`bid_strategy.check_depth_of_market.enabled=True`), the buy signals are filtered based on the orderbook depth (sum of all amounts) for each orderbook side.
Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) side depth and the resulting delta is compared to the value of the `bid_strategy.check_depth_of_market.bids_to_ask_delta` parameter. The buy order is only executed if the orderbook delta is greater than or equal to the configured delta value.
!!! Note
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
#### Buy price side
The configuration setting `bid_strategy.price_side` defines the side of the spread the bot looks for when buying.
The configuration setting `entry_pricing.price_side` defines the side of the orderbook the bot looks for when buying.
The following displays an orderbook.
@@ -38,30 +29,53 @@ The following displays an orderbook.
...
```
If `bid_strategy.price_side` is set to `"bid"`, then the bot will use 99 as buying price.
In line with that, if `bid_strategy.price_side` is set to `"ask"`, then the bot will use 101 as buying price.
If `entry_pricing.price_side` is set to `"bid"`, then the bot will use 99 as entry price.
In line with that, if `entry_pricing.price_side` is set to `"ask"`, then the bot will use 101 as entry price.
Using `ask` price often guarantees quicker filled orders, but the bot can also end up paying more than what would have been necessary.
Depending on the order direction (_long_/_short_), this will lead to different results. Therefore we recommend to use `"same"` or `"other"` for this configuration instead.
This would result in the following pricing matrix:
| direction | Order | setting | price | crosses spread |
|------ |--------|-----|-----|-----|
| long | buy | ask | 101 | yes |
| long | buy | bid | 99 | no |
| long | buy | same | 99 | no |
| long | buy | other | 101 | yes |
| short | sell | ask | 101 | no |
| short | sell | bid | 99 | yes |
| short | sell | same | 101 | no |
| short | sell | other | 99 | yes |
Using the other side of the orderbook often guarantees quicker filled orders, but the bot can also end up paying more than what would have been necessary.
Taker fees instead of maker fees will most likely apply even when using limit buy orders.
Also, prices at the "ask" side of the spread are higher than prices at the "bid" side in the orderbook, so the order behaves similar to a market order (however with a maximum price).
Also, prices at the "other" side of the spread are higher than prices at the "bid" side in the orderbook, so the order behaves similar to a market order (however with a maximum price).
#### Buy price with Orderbook enabled
#### Entry price with Orderbook enabled
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and uses the entry specified as `bid_strategy.order_book_top` on the configured side (`bid_strategy.price_side`) of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
When entering a trade with the orderbook enabled (`entry_pricing.use_order_book=True`), Freqtrade fetches the `entry_pricing.order_book_top` entries from the orderbook and uses the entry specified as `entry_pricing.order_book_top` on the configured side (`entry_pricing.price_side`) of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
#### Buy price without Orderbook enabled
#### Entry price without Orderbook enabled
The following section uses `side` as the configured `bid_strategy.price_side`.
The following section uses `side` as the configured `entry_pricing.price_side` (defaults to `"same"`).
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `side` price is above the `last` price), it calculates a rate between `side` and `last` price.
When not using orderbook (`entry_pricing.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `side` price is above the `last` price), it calculates a rate between `side` and `last` price based on `entry_pricing.price_last_balance`.
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
The `entry_pricing.price_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
### Sell price
#### Check depth of market
#### Sell price side
When check depth of market is enabled (`entry_pricing.check_depth_of_market.enabled=True`), the entry signals are filtered based on the orderbook depth (sum of all amounts) for each orderbook side.
The configuration setting `ask_strategy.price_side` defines the side of the spread the bot looks for when selling.
Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) side depth and the resulting delta is compared to the value of the `entry_pricing.check_depth_of_market.bids_to_ask_delta` parameter. The entry order is only executed if the orderbook delta is greater than or equal to the configured delta value.
!!! Note
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
### Exit price
#### Exit price side
The configuration setting `exit_pricing.price_side` defines the side of the spread the bot looks for when exiting a trade.
The following displays an orderbook:
@@ -77,40 +91,54 @@ The following displays an orderbook:
...
```
If `ask_strategy.price_side` is set to `"ask"`, then the bot will use 101 as selling price.
In line with that, if `ask_strategy.price_side` is set to `"bid"`, then the bot will use 99 as selling price.
If `exit_pricing.price_side` is set to `"ask"`, then the bot will use 101 as exiting price.
In line with that, if `exit_pricing.price_side` is set to `"bid"`, then the bot will use 99 as exiting price.
#### Sell price with Orderbook enabled
Depending on the order direction (_long_/_short_), this will lead to different results. Therefore we recommend to use `"same"` or `"other"` for this configuration instead.
This would result in the following pricing matrix:
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_top` entries in the orderbook and uses the entry specified as `ask_strategy.order_book_top` from the configured side (`ask_strategy.price_side`) as selling price.
| Direction | Order | setting | price | crosses spread |
|------ |--------|-----|-----|-----|
| long | sell | ask | 101 | no |
| long | sell | bid | 99 | yes |
| long | sell | same | 101 | no |
| long | sell | other | 99 | yes |
| short | buy | ask | 101 | yes |
| short | buy | bid | 99 | no |
| short | buy | same | 99 | no |
| short | buy | other | 101 | yes |
#### Exit price with Orderbook enabled
When exiting with the orderbook enabled (`exit_pricing.use_order_book=True`), Freqtrade fetches the `exit_pricing.order_book_top` entries in the orderbook and uses the entry specified as `exit_pricing.order_book_top` from the configured side (`exit_pricing.price_side`) as trade exit price.
1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
#### Sell price without Orderbook enabled
#### Exit price without Orderbook enabled
When not using orderbook (`ask_strategy.use_order_book=False`), the price at the `ask_strategy.price_side` side (defaults to `"ask"`) from the ticker will be used as the sell price.
The following section uses `side` as the configured `exit_pricing.price_side` (defaults to `"ask"`).
When not using orderbook (`ask_strategy.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `side` price is above the `last` price), it calculates a rate between `side` and `last` price.
When not using orderbook (`exit_pricing.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's above the `last` traded price from the ticker. Otherwise (when the `side` price is below the `last` price), it calculates a rate between `side` and `last` price based on `exit_pricing.price_last_balance`.
The `ask_strategy.bid_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the last price and values between those interpolate between `side` and last price.
The `exit_pricing.price_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the last price and values between those interpolate between `side` and last price.
### Market order pricing
When using market orders, prices should be configured to use the "correct" side of the orderbook to allow realistic pricing detection.
Assuming both buy and sell are using market orders, a configuration similar to the following might be used
Assuming both entry and exits are using market orders, a configuration similar to the following must be used
@@ -48,6 +48,10 @@ If `trade_limit` or more trades resulted in stoploss, trading will stop for `sto
This applies across all pairs, unless `only_per_pair` is set to true, which will then only look at one pair at a time.
Similarly, this protection will by default look at all trades (long and short). For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long stoplosses.
`required_profit` will determine the required relative profit (or loss) for stoplosses to consider. This should normally not be set and defaults to 0.0 - which means all losing stoplosses will be triggering a block.
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
``` python
@@ -59,7 +63,9 @@ def protections(self):
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 4,
"only_per_pair": False
"required_profit": 0.0,
"only_per_pair": False,
"only_per_side": False
}
]
```
@@ -93,6 +99,8 @@ def protections(self):
`LowProfitPairs` uses all trades for a pair within `lookback_period` in minutes (or in candles when using `lookback_period_candles`) to determine the overall profit ratio.
If that ratio is below `required_profit`, that pair will be locked for `stop_duration` in minutes (or in candles when using `stop_duration_candles`).
For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long losses.
The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles.
Freqtrade is a crypto-currency algorithmic trading software developed in python (3.7+) and supported on Windows, macOS and Linux.
Freqtrade is a free and open source crypto trading bot written in Python. It is designed to support all major exchanges and be controlled via Telegram or webUI. It contains backtesting, plotting and money management tools as well as strategy optimization by machine learning.
!!! Danger "DISCLAIMER"
This software is for educational purposes only. Do not risk money which you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
@@ -20,6 +20,8 @@ Freqtrade is a crypto-currency algorithmic trading software developed in python
We strongly recommend you to have basic coding skills and Python knowledge. Do not hesitate to read the source code and understand the mechanisms of this bot, algorithms and techniques implemented in it.
- Develop your Strategy: Write your strategy in python, using [pandas](https://pandas.pydata.org/). Example strategies to inspire you are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
@@ -29,21 +31,30 @@ Freqtrade is a crypto-currency algorithmic trading software developed in python
- Select markets: Create your static list or use an automatic one based on top traded volumes and/or prices (not available during backtesting). You can also explicitly blacklist markets you don't want to trade.
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Control/Monitor: Use Telegram or a REST API (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Control/Monitor: Use Telegram or a WebUI (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
## Supported exchange marketplaces
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](exchanges.md#binance-blacklist))
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKEX](https://www.okex.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
### Supported Futures Exchanges (experimental)
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
### Community tested
Exchanges confirmed working by the community:
@@ -67,7 +78,7 @@ To run this bot we recommend you a linux cloud instance with a minimum of:
@@ -24,7 +24,7 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
The `stable` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
!!! Note
Python3.7 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Python3.8 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Also, python headers (`python<yourversion>-dev` / `python<yourversion>-devel`) must be available for the installation to complete successfully.
!!! Warning "Up-to-date clock"
@@ -42,7 +42,7 @@ These requirements apply to both [Script Installation](#script-installation) and
@@ -424,16 +430,3 @@ open /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10
```
If this file is inexistent, then you're probably on a different version of MacOS, so you may need to consult the internet for specific resolution details.
### MacOS installation error with python 3.9
When using python 3.9 on macOS, it's currently necessary to install some os-level modules to allow dependencies to compile.
The errors you'll see happen during installation and are related to the installation of `tables` or `blosc`.
You can install the necessary libraries with the following command:
```bash
brew install hdf5 c-blosc
```
After this, please run the installation (script) again.
This feature is still in it's testing phase. Should you notice something you think is wrong please let us know via Discord or via Github Issue.
!!! Note "Multiple bots on one account"
You can't run 2 bots on the same account with leverage. For leveraged / margin trading, freqtrade assumes it's the only user of the account, and all liquidation levels are calculated based on this assumption.
!!! Danger "Trading with leverage is very risky"
Do not trade with a leverage > 1 using a strategy that hasn't shown positive results in a live run using the spot market. Check the stoploss of your strategy. With a leverage of 2, a stoploss of 0.5 (50%) would be too low, and these trades would be liquidated before reaching that stoploss.
We do not assume any responsibility for eventual losses that occur from using this software or this mode.
Please only use advanced trading modes when you know how freqtrade (and your strategy) works.
Also, never risk more than what you can afford to lose.
Please read the [strategy migration guide](strategy_migration.md#strategy-migration-between-v2-and-v3) to migrate your strategy from a freqtrade v2 strategy, to v3 strategy that can short and trade futures.
## Shorting
Shorting is not possible when trading with [`trading_mode`](#understand-tradingmode) set to `spot`. To short trade, `trading_mode` must be set to `margin`(currently unavailable) or [`futures`](#futures), with [`margin_mode`](#margin-mode) set to `cross`(currently unavailable) or [`isolated`](#isolated-margin-mode)
For a strategy to short, the strategy class must set the class variable `can_short = True`
Please read [strategy customization](strategy-customization.md#entry-signal-rules) for instructions on how to set signals to enter and exit short trades.
## Understand `trading_mode`
The possible values are: `spot` (default), `margin`(*Currently unavailable*) or `futures`.
### Spot
Regular trading mode (low risk)
- Long trades only (No short trades).
- No leverage.
- No Liquidation.
- Profits gained/lost are equal to the change in value of the assets (minus trading fees).
### Leverage trading modes
With leverage, a trader borrows capital from the exchange. The capital must be re-payed fully to the exchange (potentially with interest), and the trader keeps any profits, or pays any losses, from any trades made using the borrowed capital.
Because the capital must always be re-payed, exchanges will **liquidate** (forcefully sell the traders assets) a trade made using borrowed capital when the total value of assets in the leverage account drops to a certain point (a point where the total value of losses is less than the value of the collateral that the trader actually owns in the leverage account), in order to ensure that the trader has enough capital to pay the borrowed assets back to the exchange. The exchange will also charge a **liquidation fee**, adding to the traders losses.
For this reason, **DO NOT TRADE WITH LEVERAGE IF YOU DON'T KNOW EXACTLY WHAT YOUR DOING. LEVERAGE TRADING IS HIGH RISK, AND CAN RESULT IN THE VALUE OF YOUR ASSETS DROPPING TO 0 VERY QUICKLY, WITH NO CHANCE OF INCREASING IN VALUE AGAIN.**
#### Margin (currently unavailable)
Trading occurs on the spot market, but the exchange lends currency to you in an amount equal to the chosen leverage. You pay the amount lent to you back to the exchange with interest, and your profits/losses are multiplied by the leverage specified.
#### Futures
Perpetual swaps (also known as Perpetual Futures) are contracts traded at a price that is closely tied to the underlying asset they are based off of (ex.). You are not trading the actual asset but instead are trading a derivative contract. Perpetual swap contracts can last indefinitely, in contrast to futures or option contracts.
In addition to the gains/losses from the change in price of the futures contract, traders also exchange _funding fees_, which are gains/losses worth an amount that is derived from the difference in price between the futures contract and the underlying asset. The difference in price between a futures contract and the underlying asset varies between exchanges.
To trade in futures markets, you'll have to set `trading_mode` to "futures".
You will also have to pick a "margin mode" (explanation below) - with freqtrade currently only supporting isolated margin.
``` json
"trading_mode": "futures",
"margin_mode": "isolated"
```
### Margin mode
On top of `trading_mode` - you will also have to configure your `margin_mode`.
While freqtrade currently only supports one margin mode, this will change, and by configuring it now you're all set for future updates.
The possible values are: `isolated`, or `cross`(*currently unavailable*).
#### Isolated margin mode
Each market(trading pair), keeps collateral in a separate account
``` json
"margin_mode": "isolated"
```
#### Cross margin mode (currently unavailable)
One account is used to share collateral between markets (trading pairs). Margin is taken from total account balance to avoid liquidation when needed.
``` json
"margin_mode": "cross"
```
## Set leverage to use
Different strategies and risk profiles will require different levels of leverage.
While you could configure one static leverage value - freqtrade offers you the flexibility to adjust this via [strategy leverage callback](strategy-callbacks.md#leverage-callback) - which allows you to use different leverages by pair, or based on some other factor benefitting your strategy result.
If not implemented, leverage defaults to 1x (no leverage).
!!! Warning
Higher leverage also equals higher risk - be sure you fully understand the implications of using leverage!
## Understand `liquidation_buffer`
*Defaults to `0.05`*
A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price.
This artificial liquidation price is calculated as:
Possible values are any floats between 0.0 and 0.99
**ex:** If a trade is entered at a price of 10 coin/USDT, and the liquidation price of this trade is 8 coin/USDT, then with `liquidation_buffer` set to `0.05` the minimum stoploss for this trade would be $8 + ((10 - 8) * 0.05) = 8 + 0.1 = 8.1$
!!! Danger "A `liquidation_buffer` of 0.0, or a low `liquidation_buffer` is likely to result in liquidations, and liquidation fees"
Currently Freqtrade is able to calculate liquidation prices, but does not calculate liquidation fees. Setting your `liquidation_buffer` to 0.0, or using a low `liquidation_buffer` could result in your positions being liquidated. Freqtrade does not track liquidation fees, so liquidations will result in inaccurate profit/loss results for your bot. If you use a low `liquidation_buffer`, it is recommended to use `stoploss_on_exchange` if your exchange supports this.
## Unavailable funding rates
For futures data, exchanges commonly provide the futures candles, the marks, and the funding rates. However, it is common that whilst candles and marks might be available, the funding rates are not. This can affect backtesting timeranges, i.e. you may only be able to test recent timeranges and not earlier, experiencing the `No data found. Terminating.` error. To get around this, add the `futures_funding_rate` config option as listed in [configuration.md](configuration.md), and it is recommended that you set this to `0`, unless you know a given specific funding rate for your pair, exchange and timerange. Setting this to anything other than `0` can have drastic effects on your profit calculations within strategy, e.g. within the `custom_exit`, `custom_stoploss`, etc functions.
!!! Warning "This will mean your backtests are inaccurate."
This will not overwrite funding rates that are available from the exchange, but bear in mind that setting a false funding rate will mean backtesting results will be inaccurate for historical timeranges where funding rates are not available.
### Developer
#### Margin mode
For shorts, the currency which pays the interest fee for the `borrowed` currency is purchased at the same time of the closing trade (This means that the amount purchased in short closing trades is greater than the amount sold in short opening trades).
For longs, the currency which pays the interest fee for the `borrowed` will already be owned by the user and does not need to be purchased. The interest is subtracted from the `close_value` of the trade.
All Fees are included in `current_profit` calculations during the trade.
#### Futures mode
Funding fees are either added or subtracted from the total amount of a trade
The `-p/--pairs` argument can be used to specify pairs you would like to plot.
@@ -107,9 +107,6 @@ The `-p/--pairs` argument can be used to specify pairs you would like to plot.
Specify custom indicators.
Use `--indicators1` for the main plot and `--indicators2` for the subplot below (if values are in a different range than prices).
!!! Tip
You will almost certainly want to specify a custom strategy! This can be done by adding `-s Classname` / `--strategy ClassName` to the command.
``` bash
freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --indicators1 sma ema --indicators2 macd
```
@@ -273,6 +270,9 @@ def plot_config(self):
!!! Warning
`plotly` arguments are only supported with plotly library and will not work with freq-ui.
!!! Note "Trade position adjustments"
If `position_adjustment_enable` / `adjust_trade_position()` is used, the trade initial buy price is averaged over multiple orders and the trade start price will most likely appear outside the candle range.
## Plot profit

@@ -283,6 +283,8 @@ The `plot-profit` subcommand shows an interactive graph with three plots:
* The summarized profit made by backtesting.
Note that this is not the real-world profit, but more of an estimate.
* Profit for each individual pair.
* Parallelism of trades.
* Underwater (Periods of drawdown).
The first graph is good to get a grip of how the overall market progresses.
@@ -292,6 +294,8 @@ This graph will also highlight the start (and end) of the Max drawdown period.
The third graph can be useful to spot outliers, events in pairs that cause profit spikes.
The forth graph can help you analyze trade parallelism, showing how often max_open_trades have been maxed out.
Possible options for the `freqtrade plot-profit` subcommand:
## Fix trade still open after a manual sell on the exchange
## Fix trade still open after a manual exit on the exchange
!!! Warning
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, forcesell <tradeid> should be used to accomplish the same thing.
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, /forceexit <tradeid> should be used to accomplish the same thing.
It is strongly advised to backup your database file before making any manual changes.
!!! Note
This should not be necessary after /forcesell, as forcesell orders are closed automatically by the bot on the next iteration.
This should not be necessary after /forceexit, as force_exit orders are closed automatically by the bot on the next iteration.
If you'd still like to remove a trade from the database directly, you can use the below query.
```sql
DELETE FROM trades WHERE id = <tradeid>;
```
!!! Danger
Some systems (Ubuntu) disable foreign keys in their sqlite3 packaging. When using sqlite - please ensure that foreign keys are on by running `PRAGMA foreign_keys = ON` before the above query.
```sql
DELETE FROM trades WHERE id = <tradeid>;
DELETE FROM trades WHERE id = 31;
```
@@ -102,13 +103,20 @@ DELETE FROM trades WHERE id = 31;
## Use a different database system
Freqtrade is using SQLAlchemy, which supports multiple different database systems. As such, a multitude of database systems should be supported.
Freqtrade does not depend or install any additional database driver. Please refer to the [SQLAlchemy docs](https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls) on installation instructions for the respective database systems.
The following systems have been tested and are known to work with freqtrade:
* sqlite (default)
* PostgreSQL)
* MariaDB
!!! Warning
By using one of the below database systems, you acknowledge that you know how to manage such a system. Freqtrade will not provide any support with setup or maintenance (or backups) of the below database systems.
By using one of the below database systems, you acknowledge that you know how to manage such a system. The freqtrade team will not provide any support with setup or maintenance (or backups) of the below database systems.
### PostgreSQL
Freqtrade supports PostgreSQL by using SQLAlchemy, which supports multiple different database systems.
The `stoploss` configuration parameter is loss as ratio that should trigger a sale.
For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional.
Stoploss calculations do include fees, so a stoploss of -10% is placed exactly 10% below the entry point.
Most of the strategy files already include the optimal `stoploss` value.
@@ -16,21 +17,21 @@ Those stoploss modes can be *on exchange* or *off exchange*.
These modes can be configured with these values:
``` python
'emergencysell': 'market',
'emergency_exit': 'market',
'stoploss_on_exchange': False
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
```
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Kraken (stop-loss-market, stop-loss-limit) and FTX (stop limit and stop-market) as of now.
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), FTX (stop limit and stop-market) Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio
Enable or Disable stop loss on exchange.
If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfully. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order fills. This will protect you against sudden crashes in market, as the order execution happens purely within the exchange, and has no potential network overhead.
If `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price where the limit order is placed - and limit should be slightly below this.
@@ -51,30 +52,30 @@ The bot cannot do these every 5 seconds (at each iteration), otherwise it would
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
### forcesell
### force_exit
`forcesell` is an optional value, which defaults to the same value as `sell` and is used when sending a `/forcesell` command from Telegram or from the Rest API.
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
### forcebuy
### force_entry
`forcebuy` is an optional value, which defaults to the same value as `buy` and is used when sending a `/forcebuy` command from Telegram or from the Rest API.
`force_entry` is an optional value, which defaults to the same value as `entry` and is used when sending a `/forceentry` command from Telegram or from the Rest API.
### emergencysell
### emergency_exit
`emergencysell` is an optional value, which defaults to `market` and is used when creating stop loss on exchange orders fails.
`emergency_exit` is an optional value, which defaults to `market` and is used when creating stop loss on exchange orders fails.
The below is the default which is used if not changed in strategy or configuration file.
Example from strategy file:
``` python
order_types = {
'buy': 'limit',
'sell': 'limit',
'emergencysell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': True,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
"entry": "limit",
"exit": "limit",
"emergency_exit": "market",
"stoploss": "market",
"stoploss_on_exchange": True,
"stoploss_on_exchange_interval": 60,
"stoploss_on_exchange_limit_ratio": 0.99
}
```
@@ -129,7 +130,7 @@ In summary: The stoploss will be adjusted to be always be -10% of the highest ob
### Trailing stop loss, custom positive loss
It is also possible to have a default stop loss, when you are in the red with your buy (buy - fee), but once you hit positive result the system will utilize a new stop loss, which can have a different value.
You could also have a default stop loss when you are in the red with your buy (buy - fee), but once you hit a positive result (or an offset you define) the system will utilize a new stop loss, which can have a different value.
For example, your default stop loss is -10%, but once you have more than 0% profit (example 0.1%) a different trailing stoploss will be used.
!!! Note
@@ -141,6 +142,8 @@ Both values require `trailing_stop` to be set to true and `trailing_stop_positiv
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
trailing_stop_positive_offset = 0.0
trailing_only_offset_is_reached = False # Default - not necessary for this example
```
For example, simplified math:
@@ -155,11 +158,31 @@ For example, simplified math:
The 0.02 would translate to a -2% stop loss.
Before this, `stoploss` is used for the trailing stoploss.
!!! Tip "Use an offset to change your stoploss"
Use `trailing_stop_positive_offset` to ensure that your new trailing stoploss will be in profit by setting `trailing_stop_positive_offset` higher than `trailing_stop_positive`. Your first new stoploss value will then already have locked in profits.
Example with simplified math:
``` python
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
trailing_stop_positive_offset = 0.03
```
* the bot buys an asset at a price of 100$
* the stop loss is defined at -10%, so the stop loss would get triggered once the asset drops below 90$
* assuming the asset now increases to 102$
* the stoploss will now be at 91.8$ - 10% below the highest observed rate
* assuming the asset now increases to 103.5$ (above the offset configured)
* the stop loss will now be -2% of 103.5$ = 101.43$
* now the asset drops in value to 102\$, the stop loss will still be 101.43$ and would trigger once price breaks below 101.43$
### Trailing stop loss only once the trade has reached a certain offset
It is also possible to use a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
You can also keep a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
If `trailing_only_offset_is_reached = True` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
``` python
@@ -190,6 +213,18 @@ For example, simplified math:
!!! Tip
Make sure to have this value (`trailing_stop_positive_offset`) lower than minimal ROI, otherwise minimal ROI will apply first and sell the trade.
## Stoploss and Leverage
Stoploss should be thought of as "risk on this trade" - so a stoploss of 10% on a 100$ trade means you are willing to lose 10$ (10%) on this trade - which would trigger if the price moves 10% to the downside.
When using leverage, the same principle is applied - with stoploss defining the risk on the trade (the amount you are willing to lose).
Therefore, a stoploss of 10% on a 10x trade would trigger on a 1% price move.
If your stake amount (own capital) was 100$ - this trade would be 1000$ at 10x (after leverage).
If price moves 1% - you've lost 10$ of your own capital - therfore stoploss will trigger in this case.
Make sure to be aware of this, and avoid using too tight stoploss (at 10x leverage, 10% risk may be too little to allow the trade to "breath" a little).
## Changing stoploss on open trades
A stoploss on an open trade can be changed by changing the value in the configuration or strategy and use the `/reload_config` command (alternatively, completely stopping and restarting the bot also works).
The provided exit-tag is then used as sell-reason - and shown as such in backtest results.
!!! Note
`sell_reason` is limited to 100 characters, remaining data will be truncated.
`exit_reason` is limited to 100 characters, remaining data will be truncated.
## Strategy version
@@ -146,7 +146,7 @@ def version(self) -> str:
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
@@ -163,16 +167,7 @@ class MyAwesomeStrategy2(MyAwesomeStrategy):
Both attributes and methods may be overridden, altering behavior of the original strategy in a way you need.
!!! Note "Parent-strategy in different files"
If you have the parent-strategy in a different file, you'll need to add the following to the top of your "child"-file to ensure proper loading, otherwise freqtrade may not be able to load the parent strategy correctly.
``` python
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent))
from myawesomestrategy import MyAwesomeStrategy
```
While keeping the subclass in the same file is technically possible, it can lead to some problems with hyperopt parameter files, we therefore recommend to use separate strategy files, and import the parent strategy as shown above.
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.
While the main strategy functions (`populate_indicators()`, `populate_buy_trend()`, `populate_sell_trend()`) should be used in a vectorized way, and are only called [once during backtesting](bot-basics.md#backtesting-hyperopt-execution-logic), callbacks are called "whenever needed".
While the main strategy functions (`populate_indicators()`, `populate_entry_trend()`, `populate_exit_trend()`) should be used in a vectorized way, and are only called [once during backtesting](bot-basics.md#backtesting-hyperopt-execution-logic), callbacks are called "whenever needed".
As such, you should avoid doing heavy calculations in callbacks to avoid delays during operations.
Depending on the callback used, they may be called when entering / exiting a trade, or throughout the duration of a trade.
@@ -73,29 +104,30 @@ class AwesomeStrategy(IStrategy):
Freqtrade will fall back to the `proposed_stake` value should your code raise an exception. The exception itself will be logged.
!!! Tip
You do not _have_ to ensure that `min_stake <= returned_value <= max_stake`. Trades will succeed as the returned value will be clamped to supported range and this acton will be logged.
You do not _have_ to ensure that `min_stake <= returned_value <= max_stake`. Trades will succeed as the returned value will be clamped to supported range and this action will be logged.
!!! Tip
Returning `0` or `None` will prevent trades from being placed.
## Custom sell signal
## Custom exit signal
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
Allows to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need trade data to make an exit decision.
Allows to define custom exit signals, indicating that specified position should be sold. This is very useful when we need to customize exit conditions for each individual trade, or if you need trade data to make an exit decision.
For example you could implement a 1:2 risk-reward ROI with `custom_sell()`.
For example you could implement a 1:2 risk-reward ROI with `custom_exit()`.
Using custom_sell() signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
Using `custom_exit()` signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
!!! Note
Returning a (none-empty) `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
Returning a (none-empty) `string` or `True` from this method is equal to setting exit signal on a candle at specified time. This method is not called when exit signal is set already, or if exit signals are disabled (`use_exit_signal=False`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
`custom_exit()` will ignore `exit_profit_only`, and will always be called unless `use_exit_signal=False`, even if there is a new enter signal.
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
An example of how we can use different indicators depending on the current profit and also exit trades that were open longer than one day:
@@ -119,10 +151,11 @@ See [Dataframe access](strategy-advanced.md#dataframe-access) for more informati
## Custom stoploss
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
Called for open trade every iteration (roughly every 5 seconds) until a trade is closed.
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade).
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
The method must return a stoploss value (float / number) as a percentage of the current price.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
@@ -157,7 +190,7 @@ class AwesomeStrategy(IStrategy):
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the current rate
@@ -282,11 +315,11 @@ class AwesomeStrategy(IStrategy):
# evaluate highest to lowest, so that highest possible stop is used
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
**Example**:
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
**Example**:
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98, which is 2% below the current (proposed) rate.
!!! Warning "Backtesting"
While Custom prices are supported in backtesting (starting with 2021.12), prices will be moved to within the candle's high/low prices.
This behavior is currently being tested, and might be changed at a later point.
`custom_exit_price()` is only called for sells of type Sell_signal and Custom sell. All other sell-types will use regular backtesting prices.
Custom prices are supported in backtesting (starting with 2021.12), and orders will fill if the price falls within the candle's low/high range.
Orders that don't fill immediately are subject to regular timeout handling, which happens once per (detail) candle.
`custom_exit_price()` is only called for sells of type exit_signal and Custom exit. All other exit-types will use regular backtesting prices.
## Custom order timeout rules
@@ -399,12 +432,13 @@ Simple, time-based order-timeouts can be configured either via strategy or in th
However, freqtrade also offers a custom callback for both order types, which allows you to decide based on custom criteria if an order did time out or not.
!!! Note
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
Backtesting fills orders if their price falls within the candle's low/high range.
The below callbacks will be called once per (detail) candle for orders that don't fill immediately (which use custom pricing).
### Custom order timeout example
Called for every open order until that order is either filled or cancelled.
`check_buy_timeout()` is called for trade entries, while `check_sell_timeout()` is called for trade exit orders.
`check_entry_timeout()` is called for trade entries, while `check_exit_timeout()` is called for trade exit orders.
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
@@ -412,8 +446,8 @@ It applies a tight timeout for higher priced assets, while allowing more time to
The function must return either `True` (cancel order) or `False` (keep order alive).
``` python
from datetime import datetime, timedelta, timezone
from freqtrade.persistence import Trade
from datetime import datetime, timedelta
from freqtrade.persistence import Trade, Order
class AwesomeStrategy(IStrategy):
@@ -421,26 +455,28 @@ class AwesomeStrategy(IStrategy):
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -547,20 +597,22 @@ class AwesomeStrategy(IStrategy):
When not implemented by a strategy, returns True (always confirming).
:param pair: Pair that's about to be sold.
:param pair: Pair for trade that's about to be exited.
:param trade: trade object.
:param order_type: Order type (as configured in order_types). usually limit or market.
:param amount: Amount in quote currency.
:param amount: Amount in base currency.
:param rate: Rate that's going to be used when using limit orders
or current rate for market orders.
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param sell_reason: Sell reason.
:param exit_reason: Exit reason.
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
'sell_signal', 'force_sell', 'emergency_sell']
'exit_signal', 'force_exit', 'emergency_exit']
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is placed on the exchange.
:return bool: When True, then the exit-order is placed on the exchange.
False aborts the process
"""
if sell_reason == 'force_sell' and trade.calc_profit_ratio(rate) < 0:
if exit_reason == 'force_exit' and trade.calc_profit_ratio(rate) < 0:
# Reject force-sells with negative profit
# This is just a sample, please adjust to your needs
# (this does not necessarily make sense, assuming you know when you're force-selling)
@@ -568,3 +620,253 @@ class AwesomeStrategy(IStrategy):
return True
```
!!! Warning
`confirm_trade_exit()` can prevent stoploss exits, causing significant losses as this would ignore stoploss exits.
`confirm_trade_exit()` will not be called for Liquidations - as liquidations are forced by the exchange, and therefore cannot be rejected.
## Adjust trade position
The `position_adjustment_enable` strategy property enables the usage of `adjust_trade_position()` callback in the strategy.
For performance reasons, it's disabled by default and freqtrade will show a warning message on startup if enabled.
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging) or to increase or decrease positions.
`max_entry_position_adjustment` property is used to limit the number of additional buys per trade (on top of the first buy) that the bot can execute. By default, the value is -1 which means the bot have no limit on number of adjustment buys.
The strategy is expected to return a stake_amount (in stake currency) between `min_stake` and `max_stake` if and when an additional buy order should be made (position is increased).
If there are not enough funds in the wallet (the return value is above `max_stake`) then the signal will be ignored.
Additional orders also result in additional fees and those orders don't count towards `max_open_trades`.
This callback is **not** called when there is an open order (either buy or sell) waiting for execution.
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
Additional Buys are ignored once you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible.
!!! Note "About stake size"
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
If you wish to buy additional orders with DCA, then make sure to leave enough funds in the wallet for that.
Using 'unlimited' stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
!!! Warning
Stoploss is still calculated from the initial opening price, not averaged price.
Regular stoploss rules still apply (cannot move down).
While `/stopbuy` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
!!! Warning "Backtesting"
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
``` python
from freqtrade.persistence import Trade
class DigDeeperStrategy(IStrategy):
position_adjustment_enable = True
# Attempts to handle large drops with DCA. High stoploss is required.
stoploss = -0.30
# ... populate_* methods
# Example specific variables
max_entry_position_adjustment = 3
# This number is explained a bit further down
max_dca_multiplier = 5.5
# This is called when placing the initial order (opening trade)
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).
## Adjust Entry Price
The `adjust_entry_price()` callback may be used by strategy developer to refresh/replace limit orders upon arrival of new candles.
Be aware that `custom_entry_price()` is still the one dictating initial entry limit order price target at the time of entry trigger.
Orders can be cancelled out of this callback by returning `None`.
Returning `current_order_rate` will keep the order on the exchange "as is".
Returning any other price will cancel the existing order, and replace it with a new order.
The trade open-date (`trade.open_date_utc`) will remain at the time of the very first order placed.
Please make sure to be aware of this - and eventually adjust your logic in other callbacks to account for this, and use the date of the first filled order instead.
!!! Warning "Regular timeout"
Entry `unfilledtimeout` mechanism (as well as `check_entry_timeout()`) takes precedence over this.
Entry Orders that are cancelled via the above methods will not have this callback called. Be sure to update timeout values to match your expectations.
@@ -26,8 +26,8 @@ This will create a new strategy file from a template, which will be located unde
A strategy file contains all the information needed to build a good strategy:
- Indicators
-Buy strategy rules
-Sell strategy rules
-Entry strategy rules
-Exit strategy rules
- Minimal ROI recommended
- Stoploss strongly recommended
@@ -35,7 +35,7 @@ The bot also include a sample strategy called `SampleStrategy` you can update: `
You can test it with the parameter: `--strategy SampleStrategy`
Additionally, there is an attribute called `INTERFACE_VERSION`, which defines the version of the strategy interface the bot should use.
The current version is 2 - which is also the default when it's not set explicitly in the strategy.
The current version is 3 - which is also the default when it's not set explicitly in the strategy.
Future versions will require this to be set.
@@ -82,7 +82,7 @@ As a dataframe is a table, simple python comparisons like the following will not
``` python
if dataframe['rsi'] > 30:
dataframe['buy'] = 1
dataframe['enter_long'] = 1
```
The above section will fail with `The truth value of a Series is ambiguous. [...]`.
@@ -92,16 +92,16 @@ This must instead be written in a pandas-compatible way, so the operation is per
``` python
dataframe.loc[
(dataframe['rsi'] > 30)
, 'buy'] = 1
, 'enter_long'] = 1
```
With this section, you have a new column in your dataframe, which has `1` assigned whenever RSI is above 30.
### Customize Indicators
Buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
Buy and sell signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
You should only add the indicators used in either `populate_buy_trend()`, `populate_sell_trend()`, or to populate another indicator, otherwise performance may suffer.
You should only add the indicators used in either `populate_entry_trend()`, `populate_exit_trend()`, or to populate another indicator, otherwise performance may suffer.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
@@ -199,18 +199,18 @@ If this data is available, indicators will be calculated with this extended time
!!! Note
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-01 08:30:00.
### Buy signal rules
### Entry signal rules
Edit the method `populate_buy_trend()` in your strategy file to update your buy strategy.
Edit the method `populate_entry_trend()` in your strategy file to update your entry strategy.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This method will also define a new column, `"buy"`, which needs to contain 1 for buys, and 0 for "no action".
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain 1 for entries, and 0 for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
Sample from `user_data/strategies/sample_strategy.py`:
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['enter_short', 'enter_tag']] = (1, 'rsi_cross')
return dataframe
```
!!! Note
Buying requires sellers to buy from - therefore volume needs to be > 0 (`dataframe['volume'] > 0`) to make sure that the bot does not buy/sell in no-activity periods.
### Sell signal rules
### Exit signal rules
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
Please note that the exit-signal is only used if `use_exit_signal` is set to true in the configuration.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This method will also define a new column, `"sell"`, which needs to contain 1 for sells, and 0 for "no action".
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain 1 for exits, and 0 for "no action".
Sample from `user_data/strategies/sample_strategy.py`:
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['exit_short', 'exit_tag']] = (1, 'rsi_too_low')
return dataframe
```
### Minimal ROI
This dict defines the minimal Return On Investment (ROI) a trade should reach before selling, independent from the sell signal.
This dict defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
It is of the following format, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
@@ -279,10 +334,10 @@ minimal_roi = {
The above configuration would therefore mean:
- Sell whenever 4% profit was reached
- Sell when 2% profit was reached (in effect after 20 minutes)
- Sell when 1% profit was reached (in effect after 30 minutes)
- Sell when trade is non-loosing (in effect after 40 minutes)
- Exit whenever 4% profit was reached
- Exit when 2% profit was reached (in effect after 20 minutes)
- Exit when 1% profit was reached (in effect after 30 minutes)
- Exit when trade is non-loosing (in effect after 40 minutes)
The calculation does include fees.
@@ -294,7 +349,7 @@ minimal_roi = {
}
```
While technically not completely disabled, this would sell once the trade reaches 10000% Profit.
While technically not completely disabled, this would exit once the trade reaches 10000% Profit.
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
@@ -325,18 +380,24 @@ stoploss = -0.10
For the full documentation on stoploss features, look at the dedicated [stoploss page](stoploss.md).
### Timeframe (formerly ticker interval)
### Timeframe
This is the set of candles the bot should download and use for the analysis.
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
Please note that the same buy/sell signals may work well with one timeframe, but not with the others.
Please note that the same entry/exit signals may work well with one timeframe, but not with the others.
This setting is accessible within the strategy methods as the `self.timeframe` attribute.
### Can short
To use short signals in futures markets, you will have to let us know to do so by setting `can_short=True`.
Strategies which enable this will fail to load on spot markets.
Disabling of this will have short signals ignored (also in futures markets).
### Metadata dict
The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `populate_indicators`) contains additional information.
The metadata-dict (available for `populate_entry_trend`, `populate_exit_trend`, `populate_indicators`) contains additional information.
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
The Metadata-dict should not be modified and does not persist information across multiple calls.
@@ -382,6 +443,19 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
It is however better to use resampling to longer timeframes whenever possible
to avoid hammering the exchange with too many requests and risk being blocked.
??? Note "Alternative candle types"
Informative_pairs can also provide a 3rd tuple element defining the candle type explicitly.
Availability of alternative candle-types will depend on the trading-mode and the exchange. Details about this can be found in the exchange documentation.
``` python
def informative_pairs(self):
return [
("ETH/USDT", "5m", ""), # Uses default candletype, depends on trading_mode
("ETH/USDT", "5m", "spot"), # Forces usage of spot candles
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
## Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
@@ -541,9 +617,8 @@ Please always check the mode of operation to select the correct method to get da
### *available_pairs*
``` python
if self.dp:
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
```
### *current_whitelist()*
@@ -554,7 +629,7 @@ The strategy might look something like this:
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Since we can't resample the data we will have to use an informative pair; and since the whitelist will be dynamic we don't know which pair(s) to use.
@@ -570,14 +645,16 @@ This is where calling `self.dp.current_whitelist()` comes in handy.
return informative_pairs
```
??? Note "Plotting with current_whitelist"
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist - and would therefore make the return values of this method misleading.
### *get_pair_dataframe(pair, timeframe)*
``` python
# fetch live / historical candle (OHLCV) data for the first informative pair
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will look as follows:
@@ -638,12 +713,11 @@ Therefore, using `ob['bids'][0][0]` as demonstrated above will result in using t
### *ticker(pair)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
```
!!! Warning
@@ -653,7 +727,24 @@ if self.dp:
data returned from the exchange and add appropriate error handling / defaults.
!!! Warning "Warning about backtesting"
This method will always return up-to-date values - so usage during backtesting / hyperopt will lead to wrong results.
This method will always return up-to-date values - so usage during backtesting / hyperopt without runmode checks will lead to wrong results.
### Send Notification
The dataprovider `.send_msg()` function allows you to send custom notifications from your strategy.
Identical notifications will only be sent once per candle, unless the 2nd argument (`always_send`) is set to True.
``` python
self.dp.send_msg(f"{metadata['pair']} just got hot!")
# Force send this notification, avoid caching (Please read warning below!)
self.dp.send_msg(f"{metadata['pair']} just got hot!", always_send=True)
```
Notifications will only be sent in trading modes (Live/Dry-run) - so this method can be called without conditions for backtesting.
!!! Warning "Spamming"
You can spam yourself pretty good by setting `always_send=True` in this method. Use this with great care and only in conditions you know will not happen throughout a candle to avoid a message every 5 seconds.
### Complete Data-provider sample
@@ -706,7 +797,7 @@ class SampleStrategy(IStrategy):
(dataframe['volume'] > 0) # Ensure this candle had volume (important for backtesting)
),
'buy'] = 1
['enter_long', 'enter_tag']] = (1, 'rsi_cross')
```
@@ -791,7 +882,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
Say the open price was $100, and `current_price` is $121 (`current_profit` will be `0.21`).
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit, False)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
``` python
@@ -811,7 +902,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
@@ -822,7 +913,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `sell_reason` in
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `exit_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit <open_relative_stop`.
@@ -832,13 +923,13 @@ In some situations it may be confusing to deal with stops relative to current ra
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current proce we can call `stoploss_from_absolute(current_rate-(candle['atr']*2),current_rate)`.
If we want to trail a stop price at 2xATR below current price we can call `stoploss_from_absolute(current_rate-(candle['atr']*2),current_rate,is_short=trade.is_short)`.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_open
from freqtrade.strategy import IStrategy, stoploss_from_absolute
class AwesomeStrategy(IStrategy):
@@ -852,7 +943,7 @@ In some situations it may be confusing to deal with stops relative to current ra
@@ -1012,7 +1103,12 @@ The following lists some common patterns which should be avoided to prevent frus
### Colliding signals
When buy and sell signals collide (both `'buy'` and `'sell'` are 1), freqtrade will do nothing and ignore the entry (buy) signal. This will avoid trades that buy, and sell immediately. Obviously, this can potentially lead to missed entries.
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
The following rules apply, and entry signals will be ignored if more than one of the 3 signals is set:
To support new markets and trade-types (namely short trades / trades with leverage), some things had to change in the interface.
If you intend on using markets other than spot markets, please migrate your strategy to the new format.
We have put a great effort into keeping compatibility with existing strategies, so if you just want to continue using freqtrade in __spot markets__, there should be no changes necessary for now.
You can use the quick summary as checklist. Please refer to the detailed sections below for full migration details.
## Quick summary / migration checklist
Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `force_enter`, `emergency_exit` respectively.
* New `side` argument to callbacks without trade object
* [`custom_stake_amount`](#custom_stake_amount)
* [`confirm_trade_entry`](#confirm_trade_entry)
* [`custom_entry_price`](#custom_entry_price)
* [Changed argument name in `confirm_trade_exit`](#confirm_trade_exit)
* Dataframe columns:
* [`buy` -> `enter_long`](#populate_buy_trend)
* [`sell` -> `exit_long`](#populate_sell_trend)
* [`buy_tag` -> `enter_tag` (used for both long and short trades)](#populate_buy_trend)
* [New column `enter_short` and corresponding new column `exit_short`](#populate_sell_trend)
* trade-object now has the following new properties:
*`is_short`
*`entry_side`
*`exit_side`
*`trade_direction`
* renamed: `sell_reason` -> `exit_reason`
* [Renamed `trade.nr_of_successful_buys` to `trade.nr_of_successful_entries` (mostly relevant for `adjust_trade_position()`)](#adjust-trade-position-changes)
* Introduced new [`leverage` callback](strategy-callbacks.md#leverage-callback).
* Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
*`@informative` decorator now takes an optional `candle_type` argument.
* [helper methods](#helper-methods) `stoploss_from_open` and `stoploss_from_absolute` now take `is_short` as additional argument.
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
*`sell_signal` -> `exit_signal`
*`custom_sell` -> `custom_exit`
*`force_sell` -> `force_exit`
*`emergency_sell` -> `emergency_exit`
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
In `populate_buy_trend()` - you will want to change the columns you assign from `'buy`' to `'enter_long'`, as well as the method name from `populate_buy_trend` to `populate_entry_trend`.
While adjust-trade-position itself did not change, you should no longer use `trade.nr_of_successful_buys` - and instead use `trade.nr_of_successful_entries`, which will also include short entries.
### Helper methods
Added argument "is_short" to `stoploss_from_open` and `stoploss_from_absolute`.
This should be given the value of `trade.is_short`.
@@ -81,34 +81,37 @@ Example configuration showing the different settings:
"status": "silent",
"warning": "on",
"startup": "off",
"buy": "silent",
"sell": {
"entry": "silent",
"exit": {
"roi": "silent",
"emergency_sell": "on",
"force_sell": "on",
"sell_signal": "silent",
"emergency_exit": "on",
"force_exit": "on",
"exit_signal": "silent",
"trailing_stop_loss": "on",
"stop_loss": "on",
"stoploss_on_exchange": "on",
"custom_sell": "silent"
"custom_exit": "silent"
},
"buy_cancel": "silent",
"sell_cancel": "on",
"buy_fill": "off",
"sell_fill": "off",
"entry_cancel": "silent",
"exit_cancel": "on",
"entry_fill": "off",
"exit_fill": "off",
"protection_trigger": "off",
"protection_trigger_global": "on"
"protection_trigger_global": "on",
"strategy_msg": "off",
"show_candle": "off"
},
"reload": true,
"balance_dust_level": 0.01
},
```
`buy` notifications are sent when the order is placed, while `buy_fill` notifications are sent when the order is filled on the exchange.
`sell` notifications are sent when the order is placed, while `sell_fill` notifications are sent when the order is filled on the exchange.
`entry` notifications are sent when the order is placed, while `entry_fill` notifications are sent when the order is filled on the exchange.
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
`*_fill` notifications are off by default and must be explicitly enabled.
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
`strategy_msg` - Receive notifications from the strategy, sent via `self.dp.send_msg()` from the strategy [more details](strategy-customization.md#send-notification).
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`reload` allows you to disable reload-buttons on selected messages.
@@ -171,16 +174,20 @@ official commands. You can ask at any moment for help with `/help`.
| `/locks` | Show currently locked pairs.
| `/unlock <pairorlock_id>` | Remove the lock for this pair (or for this lock id).
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/forcesell<trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`forcebuy_enable` must be set to True)
| `/forceexit<trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `/fx` | alias for `/forceexit`
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
| `/weekly <n>` | Shows profit or loss per week, over the last n weeks (n defaults to 8)
| `/monthly <n>` | Shows profit or loss per month, over the last n months (n defaults to 6)
| `/stats` | Shows Wins / losses by Sell reason as well as Avg. holding durations for buys and sells
| `/whitelist` | Show the current whitelist
| `/stats` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/exits` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/entries` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/whitelist [sorted] [baseonly]` | Show the current whitelist. Optionally display in alphabetical order and/or with just the base currency of each pairing.
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
| `/help` | Show help message
@@ -216,11 +223,14 @@ Once all positions are sold, run `/stop` to completely stop the bot.
### /status
For each open trade, the bot will send you the following message.
Enter Tag is configurable via Strategy.
> **Trade ID:** `123` `(since 1 days ago)`
> **Current Pair:** CVC/BTC
> **Open Since:** `1 days ago`
> **Direction:** Long
> **Leverage:** 1.0
> **Amount:** `26.64180098`
> **Enter Tag:** Awesome Long Signal
> **Open Rate:** `0.00007489`
> **Current Rate:** `0.00007489`
> **Current Profit:** `12.95%`
@@ -231,10 +241,10 @@ For each open trade, the bot will send you the following message.
Return the status of all open trades in a table format.
```
ID Pair Since Profit
---- -------- ------- --------
67 SC/BTC 1 d 13.33%
123 CVC/BTC 1 h 12.95%
ID L/S Pair Since Profit
---- -------- ------- --------
67 L SC/BTC 1 d 13.33%
123 S CVC/BTC 1 h 12.95%
```
### /count
@@ -263,26 +273,38 @@ Return a summary of your profit/loss and performance.
> **Latest Trade opened:** `2 minutes ago`
> **Avg. Duration:** `2:33:45`
> **Best Performing:** `PAY/BTC: 50.23%`
> **Trading volume:** `0.5 BTC`
> **Profit factor:** `1.04`
> **Max Drawdown:** `9.23% (0.01255 BTC)`
The relative profit of `1.2%` is the average profit per trade.
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
### /forcesell <trade_id>
### /forceexit <trade_id>
> **BITTREX:** Selling BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
> **BINANCE:** Exiting BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
### /forcebuy <pair> [rate]
!!! Tip
You can get a list of all open trades by calling `/forceexit` without parameter, which will show a list of buttons to simply exit a trade.
This command has an alias in `/fx` - which has the same capabilities, but is faster to type in "emergency" situations.
`freqtrade convert-db` can be used to convert your database from one system to another (sqlite -> postgres, postgres -> other postgres), migrating all trades, orders and Pairlocks.
Please refer to the [SQL cheatsheet](sql_cheatsheet.md#use-a-different-database-system) to learn about requirements for different database systems.
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--db-url-from PATH Source db url to use when migrating a database.
```
!!! Warning
Please ensure to only use this on an empty target database. Freqtrade will perform a regular migration, but may fail if entries already existed.
## Webserver mode
!!! Warning "Experimental"
@@ -577,6 +611,26 @@ Common arguments:
```
### Webserver mode - docker
You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated:
``` yml
command: >
webserver
--config /freqtrade/user_data/config.json
```
You can now use `docker-compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip
Don't forget to reset the command back to the trade command if you want to start a live or dry-run bot.
## Show previous Backtest results
Allows you to show previous backtest results.
@@ -617,6 +671,61 @@ Common arguments:
```
## Detailed backtest analysis
Advanced backtest result analysis.
More details in the [Backtesting analysis](advanced-backtesting.md#analyze-the-buyentry-and-sellexit-tags) Section.
@@ -96,14 +96,16 @@ Optional parameters are available to enable automatic retries for webhook messag
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
### Webhookbuy
### Webhookentry
The fields in `webhook.webhookbuy` are filled when the bot executes a buy. Parameters are filled using string.format.
The fields in `webhook.webhookentry` are filled when the bot executes a long/short. Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
* ~~`limit` # Deprecated - should no longer be used.~~
*`open_rate`
*`amount`
@@ -114,16 +116,18 @@ Possible parameters are:
*`fiat_currency`
*`order_type`
*`current_rate`
*`buy_tag`
*`enter_tag`
### Webhookbuycancel
### Webhookentrycancel
The fields in `webhook.webhookbuycancel` are filled when the bot cancels a buy order. Parameters are filled using string.format.
The fields in `webhook.webhookentrycancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
*`limit`
*`amount`
*`open_date`
@@ -133,16 +137,18 @@ Possible parameters are:
*`fiat_currency`
*`order_type`
*`current_rate`
*`buy_tag`
*`enter_tag`
### Webhookbuyfill
### Webhookentryfill
The fields in `webhook.webhookbuyfill` are filled when the bot filled a buy order. Parameters are filled using string.format.
The fields in `webhook.webhookentryfill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
*`open_rate`
*`amount`
*`open_date`
@@ -152,16 +158,18 @@ Possible parameters are:
*`fiat_currency`
*`order_type`
*`current_rate`
*`buy_tag`
*`enter_tag`
### Webhooksell
### Webhookexit
The fields in `webhook.webhooksell` are filled when the bot sells a trade. Parameters are filled using string.format.
The fields in `webhook.webhookexit` are filled when the bot exits a trade. Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
*`gain`
*`limit`
*`amount`
@@ -171,19 +179,21 @@ Possible parameters are:
*`stake_currency`
*`base_currency`
*`fiat_currency`
*`sell_reason`
*`exit_reason`
*`order_type`
*`open_date`
*`close_date`
### Webhooksellfill
### Webhookexitfill
The fields in `webhook.webhooksellfill` are filled when the bot fills a sell order (closes a Trae). Parameters are filled using string.format.
The fields in `webhook.webhookexitfill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
*`gain`
*`close_rate`
*`amount`
@@ -194,19 +204,21 @@ Possible parameters are:
*`stake_currency`
*`base_currency`
*`fiat_currency`
*`sell_reason`
*`exit_reason`
*`order_type`
*`open_date`
*`close_date`
### Webhooksellcancel
### Webhookexitcancel
The fields in `webhook.webhooksellcancel` are filled when the bot cancels a sell order. Parameters are filled using string.format.
The fields in `webhook.webhookexitcancel` are filled when the bot cancels a exit order. Parameters are filled using string.format.
Possible parameters are:
*`trade_id`
*`exchange`
*`pair`
*`direction`
*`leverage`
*`gain`
*`limit`
*`amount`
@@ -217,7 +229,7 @@ Possible parameters are:
*`stake_currency`
*`base_currency`
*`fiat_currency`
*`sell_reason`
*`exit_reason`
*`order_type`
*`open_date`
*`close_date`
@@ -227,3 +239,52 @@ Possible parameters are:
The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.
The only possible value here is `{status}`.
## Discord
A special form of webhooks is available for discord.
The above represents the default (`exit_fill` and `entry_fill` are optional and will default to the above configuration) - modifications are obviously possible.
Available fields correspond to the fields for webhooks and are documented in the corresponding webhook sections.
The notifications will look as follows by default.
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib‑0.4.22‑cp38‑cp38‑win_amd64.whl` (make sure to use the version matching your python version).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib-0.4.24-cp38-cp38-win_amd64.whl` (make sure to use the version matching your python version).
Freqtrade provides these dependencies for the latest 3 Python versions (3.7, 3.8 and 3.9) and for 64bit Windows.
Freqtrade provides these dependencies for the latest 3 Python versions (3.8, 3.9 and 3.10) and for 64bit Windows.
Other versions must be downloaded from the above link.
``` powershell
@@ -54,6 +54,8 @@ error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++
Unfortunately, many packages requiring compilation don't provide a pre-built wheel. It is therefore mandatory to have a C/C++ compiler installed and available for your python environment to use.
The easiest way is to download install Microsoft Visual Studio Community [here](https://visualstudio.microsoft.com/downloads/) and make sure to install "Common Tools for Visual C++" to enable building C code on Windows. Unfortunately, this is a heavy download / dependency (~4Gb) so you might want to consider WSL or [docker compose](docker_quickstart.md) first.
You can download the Visual C++ build tools from [here](https://visualstudio.microsoft.com/visual-cpp-build-tools/) and install "Desktop development with C++" in it's default configuration. Unfortunately, this is a heavy download / dependency so you might want to consider WSL2 or [docker compose](docker_quickstart.md) first.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.