Remove remaining CustomModel references
This commit is contained in:
parent
62f7606d2c
commit
8a3cffcd1b
@ -166,7 +166,7 @@ config setup includes:
|
||||
Features are added by the user inside the `populate_any_indicators()` method of the strategy
|
||||
by prepending indicators with `%` and labels are added by prepending `&`.
|
||||
There are some important components/structures that the user *must* include when building their feature set.
|
||||
As shown below, `with self.model.bridge.lock:` must be used to ensure thread safety - especially when using third
|
||||
As shown below, `with self.freqai.lock:` must be used to ensure thread safety - especially when using third
|
||||
party libraries for indicator construction such as TA-lib.
|
||||
Another structure to consider is the location of the labels at the bottom of the example function (below `if set_generalized_indicators:`).
|
||||
This is where the user will add single features and labels to their feature set to avoid duplication from
|
||||
@ -191,7 +191,7 @@ various configuration parameters which multiply the feature set such as `include
|
||||
:coin: the name of the coin which will modify the feature names.
|
||||
"""
|
||||
|
||||
with self.model.bridge.lock:
|
||||
with self.freqai.lock:
|
||||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
|
||||
@ -370,7 +370,6 @@ for each pair, for each backtesting window within the bigger `--timerange`.
|
||||
The Freqai strategy requires the user to include the following lines of code in the strategy:
|
||||
|
||||
```python
|
||||
from freqtrade.freqai.strategy_bridge import CustomModel
|
||||
|
||||
def informative_pairs(self):
|
||||
whitelist_pairs = self.dp.current_whitelist()
|
||||
@ -385,9 +384,6 @@ The Freqai strategy requires the user to include the following lines of code in
|
||||
informative_pairs.append((pair, tf))
|
||||
return informative_pairs
|
||||
|
||||
def bot_start(self):
|
||||
self.model = CustomModel(self.config)
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
self.freqai_info = self.config["freqai"]
|
||||
@ -400,7 +396,7 @@ The Freqai strategy requires the user to include the following lines of code in
|
||||
# the target mean/std values for each of the labels created by user in
|
||||
# `populate_any_indicators()` for each training period.
|
||||
|
||||
dataframe = self.model.bridge.start(dataframe, metadata, self)
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
return dataframe
|
||||
```
|
||||
@ -648,7 +644,7 @@ below this value. An example usage in the strategy may look something like:
|
||||
dataframe["do_predict"],
|
||||
dataframe["target_upper_quantile"],
|
||||
dataframe["target_lower_quantile"],
|
||||
) = self.model.bridge.start(dataframe, metadata, self)
|
||||
) = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
return dataframe
|
||||
|
||||
|
@ -19,7 +19,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
"""
|
||||
Example strategy showing how the user connects their own
|
||||
IFreqaiModel to the strategy. Namely, the user uses:
|
||||
self.model = CustomModel(self.config)
|
||||
self.freqai.start(dataframe, metadata)
|
||||
|
||||
to make predictions on their data. populate_any_indicators() automatically
|
||||
|
@ -76,7 +76,7 @@ def get_freqai_live_analyzed_dataframe(mocker, freqaiconf):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
|
||||
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||
strategy.dp = DataProvider(freqaiconf, exchange)
|
||||
freqai = strategy.model.bridge
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180114")
|
||||
@ -91,7 +91,7 @@ def get_freqai_analyzed_dataframe(mocker, freqaiconf):
|
||||
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||
strategy.dp = DataProvider(freqaiconf, exchange)
|
||||
strategy.freqai_info = freqaiconf.get("freqai", {})
|
||||
freqai = strategy.model.bridge
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180114")
|
||||
@ -107,7 +107,7 @@ def get_ready_to_train(mocker, freqaiconf):
|
||||
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||
strategy.dp = DataProvider(freqaiconf, exchange)
|
||||
strategy.freqai_info = freqaiconf.get("freqai", {})
|
||||
freqai = strategy.model.bridge
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180114")
|
||||
|
@ -16,7 +16,6 @@ class freqai_test_strat(IStrategy):
|
||||
"""
|
||||
Example strategy showing how the user connects their own
|
||||
IFreqaiModel to the strategy. Namely, the user uses:
|
||||
self.model = CustomModel(self.config)
|
||||
self.freqai.start(dataframe, metadata)
|
||||
|
||||
to make predictions on their data. populate_any_indicators() automatically
|
||||
|
Loading…
Reference in New Issue
Block a user