Update missing typehints
This commit is contained in:
parent
3273881282
commit
a2a0d35a24
@ -8,10 +8,10 @@ from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from joblib import dump, load
|
||||
from joblib.externals import cloudpickle
|
||||
from numpy.typing import ArrayLike
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
@ -219,7 +219,7 @@ class FreqaiDataDrawer:
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
def set_initial_return_values(self, pair: str, dk: FreqaiDataKitchen,
|
||||
pred_df: DataFrame, do_preds: npt.ArrayLike) -> None:
|
||||
pred_df: DataFrame, do_preds: ArrayLike) -> None:
|
||||
"""
|
||||
Set the initial return values to a persistent dataframe. This avoids needing to repredict on
|
||||
historical candles, and also stores historical predictions despite retrainings (so stored
|
||||
@ -238,7 +238,8 @@ class FreqaiDataDrawer:
|
||||
|
||||
mrv_df["do_predict"] = do_preds
|
||||
|
||||
def append_model_predictions(self, pair: str, predictions, do_preds, dk, len_df) -> None:
|
||||
def append_model_predictions(self, pair: str, predictions: DataFrame, do_preds: ArrayLike,
|
||||
dk: FreqaiDataKitchen, len_df: int) -> None:
|
||||
|
||||
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
||||
# own return array in the same shape, we need to figure out how the size has changed
|
||||
@ -293,7 +294,7 @@ class FreqaiDataDrawer:
|
||||
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
|
||||
return dataframe
|
||||
|
||||
def return_null_values_to_strategy(self, dataframe: DataFrame, dk) -> None:
|
||||
def return_null_values_to_strategy(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Build 0 filled dataframe to return to strategy
|
||||
"""
|
||||
|
@ -11,8 +11,8 @@ from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from numpy.typing import ArrayLike
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
@ -548,7 +548,7 @@ class IFreqaiModel(ABC):
|
||||
@abstractmethod
|
||||
def predict(
|
||||
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
|
||||
) -> Tuple[DataFrame, npt.ArrayLike]:
|
||||
) -> Tuple[DataFrame, ArrayLike]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
|
Loading…
Reference in New Issue
Block a user