enhance migration documentation

This commit is contained in:
Matthias 2022-03-05 15:05:03 +01:00
parent 23b98fbb73
commit 36287a84cb
5 changed files with 149 additions and 7 deletions

View File

@ -713,3 +713,4 @@ class AwesomeStrategy(IStrategy):
:return: A leverage amount, which is between 1.0 and max_leverage.
"""
return 1.0
```

View File

@ -908,7 +908,7 @@ In some situations it may be confusing to deal with stops relative to current ra
current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
candle = dataframe.iloc[-1].squeeze()
return stoploss_from_absolute(current_rate - (candle['atr'] * 2, is_short=trade.is_short), current_rate)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate, is_short=trade.is_short)
```

View File

@ -73,7 +73,7 @@ df.tail()
```python
# Report results
print(f"Generated {df['buy'].sum()} buy signals")
print(f"Generated {df['enter_long'].sum()} entry signals")
data = df.set_index('date', drop=False)
data.tail()
```
@ -244,7 +244,7 @@ import plotly.figure_factory as ff
hist_data = [trades.profit_ratio]
group_labels = ['profit_ratio'] # name of the dataset
fig = ff.create_distplot(hist_data, group_labels,bin_size=0.01)
fig = ff.create_distplot(hist_data, group_labels, bin_size=0.01)
fig.show()
```

View File

@ -5,7 +5,7 @@ We have put a great effort into keeping compatibility with existing strategies,
To support new markets and trade-types (namely short trades / trades with leverage), some things had to change in the interface.
If you intend on using markets other than spot markets, please migrate your strategy to the new format.
## Quick summary / checklist
## Quick summary / migration checklist
* Dataframe columns:
* `buy` -> `enter_long`
@ -17,11 +17,152 @@ If you intend on using markets other than spot markets, please migrate your stra
* `custom_stake_amount`
* `confirm_trade_entry`
* Renamed `trade.nr_of_successful_buys` to `trade.nr_of_successful_entries`.
* Introduced new `leverage` callback
* Introduced new [`leverage` callback](strategy-callbacks.md#leverage-callback)
* Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
* `@informative` decorator now takes an optional `candle_type` argument
* helper methods `stoploss_from_open` and `stoploss_from_absolute` now take `is_short` as additional argument.
* `INTERFACE_VERSION` should be set to 3.
## Extensive explanation
### `populate_buy_trend`
In `populate_buy_trend()` - you will want to change the columns you assign from `'buy`' to `'enter_long`
```python hl_lines="9"
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['buy', 'buy_tag']] = (1, 'rsi_cross')
return dataframe
```
After:
```python hl_lines="9"
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'rsi_cross')
return dataframe
```
### `populate_sell_trend`
``` python hl_lines="9"
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['sell', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
```
After
``` python hl_lines="9"
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
```
### Custom-stake-amount
New string argument `side` - which can be either `"long"` or `"short"`.
``` python hl_lines="4"
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], **kwargs) -> float:
# ...
return proposed_stake
```
``` python hl_lines="4"
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
# ...
return proposed_stake
```
### `confirm_trade_entry`
New string argument `side` - which can be either `"long"` or `"short"`.
``` python hl_lines="5"
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
**kwargs) -> bool:
return True
```
After:
``` python hl_lines="5"
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
side: str, **kwargs) -> bool:
return True
```
### Adjust trade position changes
While adjust-trade-position itself did not change, you should no longer use `trade.nr_of_successful_buys` - and instead use `trade.nr_of_successful_entries`, which will also include short entries.
### Helper methods
Added argument "is_short" to `stoploss_from_open` and `stoploss_from_absolute`.
This should be given the value of `trade.is_short`.
``` python hl_lines="5 7"
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
return 1
```
``` python hl_lines="5 7"
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate, is_short=trade.is_short)
```

View File

@ -110,7 +110,7 @@
"outputs": [],
"source": [
"# Report results\n",
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
"print(f\"Generated {df['enter_long'].sum()} entry signals\")\n",
"data = df.set_index('date', drop=False)\n",
"data.tail()"
]
@ -348,7 +348,7 @@
"hist_data = [trades.profit_ratio]\n",
"group_labels = ['profit_ratio'] # name of the dataset\n",
"\n",
"fig = ff.create_distplot(hist_data, group_labels,bin_size=0.01)\n",
"fig = ff.create_distplot(hist_data, group_labels, bin_size=0.01)\n",
"fig.show()\n"
]
},