fix bug in DBSCAN, update doc
This commit is contained in:
parent
29225e4baf
commit
fe1b8515a8
@ -539,11 +539,19 @@ The user can tell FreqAI to use DBSCAN to cluster training data and remove outli
|
||||
parameter `DBSCAN_outlier_pct` allows the user to indicate the percent of expected outliers to be removed during each training
|
||||
(typically set below 0.05). Higher value increases confidence in the model predictions but reduces the entry frequency.
|
||||
|
||||
The FreqAI DBSCAN wrapper performs an interative solution to solving the `eps` hyper parameter. `eps` controls the fraction of
|
||||
The FreqAI DBSCAN wrapper performs an iterative solution to solving the `eps` hyper parameter. `eps` controls the fraction of
|
||||
training data considered to be an outlier - thus the iterative solution finds the exact value associated with the user designated
|
||||
`DBSCAN_outlier_pct`. This iterative solution is performed once per training. FreqAI stores the `eps` to be used when DBSCAN
|
||||
is again called to determine if incoming prediction candles are outliers.
|
||||
|
||||
```json
|
||||
"freqai": {
|
||||
"feature_parameters" : {
|
||||
"DBSCAN_outlier_pct": 0.05
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Stratifying the data
|
||||
|
||||
The user can stratify the training/testing data using:
|
||||
|
@ -11,6 +11,7 @@ import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from sklearn import linear_model
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
@ -19,7 +20,7 @@ from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
|
||||
SECONDS_IN_DAY = 86400
|
||||
SECONDS_IN_HOUR = 3600
|
||||
@ -499,7 +500,8 @@ class FreqaiDataKitchen:
|
||||
for prediction confidence in the Dissimilarity Index
|
||||
"""
|
||||
logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
pairwise = pairwise_distances(
|
||||
self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
|
||||
return avg_mean_dist
|
||||
@ -613,21 +615,33 @@ class FreqaiDataKitchen:
|
||||
|
||||
else:
|
||||
outlier_target = self.freqai_config['feature_parameters'].get('DBSCAN_outlier_pct')
|
||||
eps = 1.8
|
||||
if 'DBSCAN_eps' in self.data:
|
||||
eps = self.data['DBSCAN_eps']
|
||||
else:
|
||||
eps = 10
|
||||
logger.info('DBSCAN starting from high value. This should be faster next train.')
|
||||
|
||||
error = 1.
|
||||
MinPts = len(train_ft_df.columns) * 2
|
||||
MinPts = len(self.data_dictionary['train_features'].columns)
|
||||
logger.info(
|
||||
f'DBSCAN finding best clustering for {outlier_target}% outliers.')
|
||||
|
||||
# find optimal value for epsilon using an iterative approach:
|
||||
while abs(error) > 0.01:
|
||||
clustering = DBSCAN(eps=eps, min_samples=MinPts, n_jobs=-1).fit(
|
||||
train_ft_df
|
||||
)
|
||||
while abs(np.sqrt(error)) > 0.1:
|
||||
clustering = DBSCAN(eps=eps, min_samples=MinPts,
|
||||
n_jobs=int(self.thread_count / 2)).fit(
|
||||
self.data_dictionary['train_features']
|
||||
)
|
||||
outlier_pct = np.count_nonzero(clustering.labels_ == -1) / len(clustering.labels_)
|
||||
error = (outlier_pct - outlier_target) / outlier_target
|
||||
multiplier = 1 + error * (1.01 - 1.)
|
||||
error = (outlier_pct - outlier_target) ** 2 / outlier_target
|
||||
multiplier = (outlier_pct - outlier_target) if outlier_pct > 0 else 1 * \
|
||||
np.sign(outlier_pct - outlier_target)
|
||||
multiplier = 1 + error * multiplier
|
||||
eps = multiplier * eps
|
||||
logger.info(
|
||||
f'DBSCAN error {error:.2f} for eps {eps:.2f} and outliet pct {outlier_pct:.2f}')
|
||||
|
||||
logger.info(f'DBSCAN found eps of {eps}.')
|
||||
|
||||
self.data['DBSCAN_eps'] = eps
|
||||
self.data['DBSCAN_min_samples'] = MinPts
|
||||
|
Loading…
Reference in New Issue
Block a user