Add ProfitDrawdownHyperoptLoss method

This commit is contained in:
zx 2022-02-06 15:40:54 +01:00
parent 6ed237a72a
commit 0b01fcf047
4 changed files with 34 additions and 3 deletions

View File

@ -116,7 +116,7 @@ optional arguments:
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily,
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss, ProfitDrawDownHyperOptLoss
--disable-param-export
Disable automatic hyperopt parameter export.
--ignore-missing-spaces, --ignore-unparameterized-spaces
@ -525,6 +525,7 @@ Currently, the following loss functions are builtin:
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
* `ProfitDrawDownHyperOptLoss` - Optimizes by max Profit & min Drawdown objective. `DRAWDOWN_MULT` variable within the hyperoptloss file can be adjusted to be stricter or more flexible on drawdown purposes.
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.

View File

@ -26,7 +26,7 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss']
'MaxDrawDownHyperOptLoss', 'ProfitDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',

View File

@ -0,0 +1,29 @@
"""
ProfitDrawDownHyperOptLoss
This module defines the alternative HyperOptLoss class based on Profit &
Drawdown objective which can be used for Hyperoptimization.
Possible to change `DRAWDOWN_MULT` to penalize drawdown objective for
individual needs.
"""
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
from freqtrade.data.btanalysis import calculate_max_drawdown
# higher numbers penalize drawdowns more severely
DRAWDOWN_MULT = 0.075
class ProfitDrawDownHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int, *args, **kwargs) -> float:
total_profit = results["profit_abs"].sum()
# from freqtrade.optimize.optimize_reports.generate_strategy_stats()
try:
_, _, _, _, max_drawdown_per = calculate_max_drawdown(results, value_col="profit_ratio")
except ValueError:
max_drawdown_per = 0
return -1 * (total_profit * (1 - max_drawdown_per * DRAWDOWN_MULT))

View File

@ -86,6 +86,7 @@ def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) ->
"SharpeHyperOptLossDaily",
"MaxDrawDownHyperOptLoss",
"CalmarHyperOptLoss",
"ProfitDrawDownHyperOptLoss",
])
def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunction) -> None:
@ -106,7 +107,7 @@ def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunct
config=default_conf,
processed=None,
backtest_stats={'profit_total': hyperopt_results['profit_abs'].sum()}
)
)
over = hl.hyperopt_loss_function(
results_over,
trade_count=len(results_over),