Clarify that stoploss is required

closes #6740
This commit is contained in:
Matthias 2022-04-29 09:53:05 +00:00
parent d1a61f9c61
commit 48ff788e82
2 changed files with 20 additions and 18 deletions

View File

@ -122,11 +122,11 @@ See [Dataframe access](strategy-advanced.md#dataframe-access) for more informati
## Custom stoploss
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
Called for open trade every iteration (roughly every 5 seconds) until a trade is closed.
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade).
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
The method must return a stoploss value (float / number) as a percentage of the current price.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
@ -365,13 +365,13 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1]
return new_entryprice
def custom_exit_price(self, pair: str, trade: Trade,
@ -381,14 +381,14 @@ class AwesomeStrategy(IStrategy):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
new_exitprice = dataframe['bollinger_10_upperband'].iat[-1]
return new_exitprice
```
!!! Warning
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
**Example**:
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
**Example**:
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98, which is 2% below the current (proposed) rate.
!!! Warning "Backtesting"
@ -430,7 +430,7 @@ class AwesomeStrategy(IStrategy):
'exit': 60 * 25
}
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date_utc < current_time - timedelta(minutes=5):
return True
@ -508,7 +508,7 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
side: str, **kwargs) -> bool:
"""
Called right before placing a entry order.
@ -616,35 +616,35 @@ from freqtrade.persistence import Trade
class DigDeeperStrategy(IStrategy):
position_adjustment_enable = True
# Attempts to handle large drops with DCA. High stoploss is required.
stoploss = -0.30
# ... populate_* methods
# Example specific variables
max_entry_position_adjustment = 3
# This number is explained a bit further down
max_dca_multiplier = 5.5
# This is called when placing the initial order (opening trade)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
# We need to leave most of the funds for possible further DCA orders
# This also applies to fixed stakes
return proposed_stake / self.max_dca_multiplier
def adjust_trade_position(self, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float, min_stake: float,
max_stake: float, **kwargs):
"""
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
This means extra buy orders with additional fees.
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Current buy rate.
@ -654,7 +654,7 @@ class DigDeeperStrategy(IStrategy):
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: Stake amount to adjust your trade
"""
if current_profit > -0.05:
return None

View File

@ -459,6 +459,8 @@ SCHEMA_BACKTEST_REQUIRED = [
'stake_currency',
'stake_amount',
'dry_run_wallet',
'stoploss',
'minimal_roi',
'dataformat_ohlcv',
'dataformat_trades',
]