Merge branch 'develop' into feat/short
This commit is contained in:
commit
97ff7d1223
@ -346,5 +346,5 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
|
||||
"refresh_period": 86400
|
||||
},
|
||||
{"method": "ShuffleFilter", "seed": 42}
|
||||
],
|
||||
],
|
||||
```
|
||||
|
@ -77,43 +77,6 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
***
|
||||
|
||||
## Custom sell signal
|
||||
|
||||
It is possible to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need the trade profit to take the sell decision.
|
||||
|
||||
For example you could implement a 1:2 risk-reward ROI with `custom_sell()`.
|
||||
|
||||
Using custom_sell() signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
|
||||
|
||||
!!! Note
|
||||
Returning a `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
|
||||
|
||||
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
|
||||
current_profit: float, **kwargs):
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
# Above 20% profit, sell when rsi < 80
|
||||
if current_profit > 0.2:
|
||||
if last_candle['rsi'] < 80:
|
||||
return 'rsi_below_80'
|
||||
|
||||
# Between 2% and 10%, sell if EMA-long above EMA-short
|
||||
if 0.02 < current_profit < 0.1:
|
||||
if last_candle['emalong'] > last_candle['emashort']:
|
||||
return 'ema_long_below_80'
|
||||
|
||||
# Sell any positions at a loss if they are held for more than one day.
|
||||
if current_profit < 0.0 and (current_time - trade.open_date_utc).days >= 1:
|
||||
return 'unclog'
|
||||
```
|
||||
|
||||
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
## Buy Tag
|
||||
|
||||
When your strategy has multiple buy signals, you can name the signal that triggered.
|
||||
@ -164,536 +127,6 @@ The provided exit-tag is then used as sell-reason - and shown as such in backtes
|
||||
!!! Note
|
||||
`sell_reason` is limited to 100 characters, remaining data will be truncated.
|
||||
|
||||
## Bot loop start callback
|
||||
|
||||
A simple callback which is called once at the start of every bot throttling iteration.
|
||||
This can be used to perform calculations which are pair independent (apply to all pairs), loading of external data, etc.
|
||||
|
||||
``` python
|
||||
import requests
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def bot_loop_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called at the start of the bot iteration (one loop).
|
||||
Might be used to perform pair-independent tasks
|
||||
(e.g. gather some remote resource for comparison)
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
# Assign this to the class by using self.*
|
||||
# can then be used by populate_* methods
|
||||
self.remote_data = requests.get('https://some_remote_source.example.com')
|
||||
|
||||
```
|
||||
|
||||
## Custom stoploss
|
||||
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
|
||||
|
||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||
|
||||
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
|
||||
|
||||
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
|
||||
|
||||
``` python
|
||||
# additional imports required
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
"""
|
||||
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
|
||||
e.g. returning -0.05 would create a stoploss 5% below current_rate.
|
||||
The custom stoploss can never be below self.stoploss, which serves as a hard maximum loss.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns the initial stoploss value
|
||||
Only called when use_custom_stoploss is set to True.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: New stoploss value, relative to the current rate
|
||||
"""
|
||||
return -0.04
|
||||
```
|
||||
|
||||
Stoploss on exchange works similar to `trailing_stop`, and the stoploss on exchange is updated as configured in `stoploss_on_exchange_interval` ([More details about stoploss on exchange](stoploss.md#stop-loss-on-exchange-freqtrade)).
|
||||
|
||||
!!! Note "Use of dates"
|
||||
All time-based calculations should be done based on `current_time` - using `datetime.now()` or `datetime.utcnow()` is discouraged, as this will break backtesting support.
|
||||
|
||||
!!! Tip "Trailing stoploss"
|
||||
It's recommended to disable `trailing_stop` when using custom stoploss values. Both can work in tandem, but you might encounter the trailing stop to move the price higher while your custom function would not want this, causing conflicting behavior.
|
||||
|
||||
### Custom stoploss examples
|
||||
|
||||
The next section will show some examples on what's possible with the custom stoploss function.
|
||||
Of course, many more things are possible, and all examples can be combined at will.
|
||||
|
||||
#### Time based trailing stop
|
||||
|
||||
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# Make sure you have the longest interval first - these conditions are evaluated from top to bottom.
|
||||
if current_time - timedelta(minutes=120) > trade.open_date_utc:
|
||||
return -0.05
|
||||
elif current_time - timedelta(minutes=60) > trade.open_date_utc:
|
||||
return -0.10
|
||||
return 1
|
||||
```
|
||||
|
||||
#### Different stoploss per pair
|
||||
|
||||
Use a different stoploss depending on the pair.
|
||||
In this example, we'll trail the highest price with 10% trailing stoploss for `ETH/BTC` and `XRP/BTC`, with 5% trailing stoploss for `LTC/BTC` and with 15% for all other pairs.
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
if pair in ('ETH/BTC', 'XRP/BTC'):
|
||||
return -0.10
|
||||
elif pair in ('LTC/BTC'):
|
||||
return -0.05
|
||||
return -0.15
|
||||
```
|
||||
|
||||
#### Trailing stoploss with positive offset
|
||||
|
||||
Use the initial stoploss until the profit is above 4%, then use a trailing stoploss of 50% of the current profit with a minimum of 2.5% and a maximum of 5%.
|
||||
|
||||
Please note that the stoploss can only increase, values lower than the current stoploss are ignored.
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
if current_profit < 0.04:
|
||||
return -1 # return a value bigger than the initial stoploss to keep using the initial stoploss
|
||||
|
||||
# After reaching the desired offset, allow the stoploss to trail by half the profit
|
||||
desired_stoploss = current_profit / 2
|
||||
|
||||
# Use a minimum of 2.5% and a maximum of 5%
|
||||
return max(min(desired_stoploss, 0.05), 0.025)
|
||||
```
|
||||
|
||||
#### Calculating stoploss relative to open price
|
||||
|
||||
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss relative to the *open* price, we need to use `current_profit` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||
|
||||
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||
|
||||
### Calculating stoploss percentage from absolute price
|
||||
|
||||
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||
|
||||
The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||
|
||||
#### Stepped stoploss
|
||||
|
||||
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.
|
||||
|
||||
* Use the regular stoploss until 20% profit is reached
|
||||
* Once profit is > 20% - set stoploss to 7% above open price.
|
||||
* Once profit is > 25% - set stoploss to 15% above open price.
|
||||
* Once profit is > 40% - set stoploss to 25% above open price.
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import stoploss_from_open
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# evaluate highest to lowest, so that highest possible stop is used
|
||||
if current_profit > 0.40:
|
||||
return stoploss_from_open(0.25, current_profit)
|
||||
elif current_profit > 0.25:
|
||||
return stoploss_from_open(0.15, current_profit)
|
||||
elif current_profit > 0.20:
|
||||
return stoploss_from_open(0.07, current_profit)
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
#### Custom stoploss using an indicator from dataframe example
|
||||
|
||||
Absolute stoploss value may be derived from indicators stored in dataframe. Example uses parabolic SAR below the price as stoploss.
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# <...>
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
# Use parabolic sar as absolute stoploss price
|
||||
stoploss_price = last_candle['sar']
|
||||
|
||||
# Convert absolute price to percentage relative to current_rate
|
||||
if stoploss_price < current_rate:
|
||||
return (stoploss_price / current_rate) - 1
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
---
|
||||
|
||||
## Custom order price rules
|
||||
|
||||
By default, freqtrade use the orderbook to automatically set an order price([Relevant documentation](configuration.md#prices-used-for-orders)), you also have the option to create custom order prices based on your strategy.
|
||||
|
||||
You can use this feature by creating a `custom_entry_price()` function in your strategy file to customize entry prices and `custom_exit_price()` for exits.
|
||||
|
||||
!!! Note
|
||||
If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration.
|
||||
|
||||
### Custom order entry and exit price example
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def custom_entry_price(self, pair: str, current_time: datetime,
|
||||
proposed_rate, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1]
|
||||
|
||||
return new_entryprice
|
||||
|
||||
def custom_exit_price(self, pair: str, trade: Trade,
|
||||
current_time: datetime, proposed_rate: float,
|
||||
current_profit: float, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_exitprice = dataframe['bollinger_10_upperband'].iat[-1]
|
||||
|
||||
return new_exitprice
|
||||
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
|
||||
|
||||
!!! Example
|
||||
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98.
|
||||
|
||||
!!! Warning "No backtesting support"
|
||||
Custom entry-prices are currently not supported during backtesting.
|
||||
|
||||
## Custom order timeout rules
|
||||
|
||||
Simple, time-based order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
|
||||
|
||||
However, freqtrade also offers a custom callback for both order types, which allows you to decide based on custom criteria if an order did time out or not.
|
||||
|
||||
!!! Note
|
||||
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
|
||||
|
||||
### Custom order timeout example
|
||||
|
||||
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
|
||||
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
|
||||
|
||||
The function must return either `True` (cancel order) or `False` (keep order alive).
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
!!! Note
|
||||
For the above example, `unfilledtimeout` must be set to something bigger than 24h, otherwise that type of timeout will apply first.
|
||||
|
||||
### Custom order timeout example (using additional data)
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['bids'][0][0]
|
||||
# Cancel buy order if price is more than 2% above the order.
|
||||
if current_price > order['price'] * 1.02:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['asks'][0][0]
|
||||
# Cancel sell order if price is more than 2% below the order.
|
||||
if current_price < order['price'] * 0.98:
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Bot order confirmation
|
||||
|
||||
### Trade entry (buy order) confirmation
|
||||
|
||||
`confirm_trade_entry()` can be used to abort a trade entry at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime,
|
||||
side: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a entry order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought/shorted.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param side: 'long' or 'short' - indicating the direction of the proposed trade
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
```
|
||||
|
||||
### Trade exit (sell order) confirmation
|
||||
|
||||
`confirm_trade_exit()` can be used to abort a trade exit (sell) at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str,
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
if sell_reason == 'force_sell' and trade.calc_profit_ratio(rate) < 0:
|
||||
# Reject force-sells with negative profit
|
||||
# This is just a sample, please adjust to your needs
|
||||
# (this does not necessarily make sense, assuming you know when you're force-selling)
|
||||
return False
|
||||
return True
|
||||
|
||||
```
|
||||
|
||||
### Stake size management
|
||||
|
||||
It is possible to manage your risk by reducing or increasing stake amount when placing a new trade.
|
||||
|
||||
```python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: float, max_stake: float,
|
||||
side: str, **kwargs) -> float:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
|
||||
current_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
if current_candle['fastk_rsi_1h'] > current_candle['fastd_rsi_1h']:
|
||||
if self.config['stake_amount'] == 'unlimited':
|
||||
# Use entire available wallet during favorable conditions when in compounding mode.
|
||||
return max_stake
|
||||
else:
|
||||
# Compound profits during favorable conditions instead of using a static stake.
|
||||
return self.wallets.get_total_stake_amount() / self.config['max_open_trades']
|
||||
|
||||
# Use default stake amount.
|
||||
return proposed_stake
|
||||
```
|
||||
|
||||
Freqtrade will fall back to the `proposed_stake` value should your code raise an exception. The exception itself will be logged.
|
||||
|
||||
!!! Tip
|
||||
You do not _have_ to ensure that `min_stake <= returned_value <= max_stake`. Trades will succeed as the returned value will be clamped to supported range and this acton will be logged.
|
||||
|
||||
!!! Tip
|
||||
Returning `0` or `None` will prevent trades from being placed.
|
||||
|
||||
## Leverage Callback
|
||||
|
||||
When trading in markets that allow leverage, this method must return the desired Leverage (Defaults to 1 -> No leverage).
|
||||
|
||||
Assuming a capital of 500USDT, a trade with leverage=3 would result in a position with 500 x 3 = 1500 USDT.
|
||||
|
||||
Values that are above `max_leverage` will be adjusted to `max_leverage`.
|
||||
For markets / exchanges that don't support leverage, this method is ignored.
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def leverage(self, pair: str, current_time: 'datetime', current_rate: float,
|
||||
proposed_leverage: float, max_leverage: float, side: str,
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
Customize leverage for each new trade.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param proposed_leverage: A leverage proposed by the bot.
|
||||
:param max_leverage: Max leverage allowed on this pair
|
||||
:param side: 'long' or 'short' - indicating the direction of the proposed trade
|
||||
:return: A leverage amount, which is between 1.0 and max_leverage.
|
||||
"""
|
||||
return 1.0
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Derived strategies
|
||||
|
||||
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
|
||||
|
599
docs/strategy-callbacks.md
Normal file
599
docs/strategy-callbacks.md
Normal file
@ -0,0 +1,599 @@
|
||||
# Strategy Callbacks
|
||||
|
||||
While the main strategy functions (`populate_indicators()`, `populate_buy_trend()`, `populate_sell_trend()`) should be used in a vectorized way, and are only called [once during backtesting](bot-basics.md#backtesting-hyperopt-execution-logic), callbacks are called "whenever needed".
|
||||
|
||||
As such, you should avoid doing heavy calculations in callbacks to avoid delays during operations.
|
||||
Depending on the callback used, they may be called when entering / exiting a trade, or throughout the duration of a trade.
|
||||
|
||||
Currently available callbacks:
|
||||
|
||||
* [`bot_loop_start()`](#bot-loop-start)
|
||||
* [`custom_stake_amount()`](#custom-stake-size)
|
||||
* [`custom_sell()`](#custom-sell-signal)
|
||||
* [`custom_stoploss()`](#custom-stoploss)
|
||||
* [`custom_entry_price()` and `custom_exit_price()`](#custom-order-price-rules)
|
||||
* [`check_buy_timeout()` and `check_sell_timeout()](#custom-order-timeout-rules)
|
||||
* [`confirm_trade_entry()`](#trade-entry-buy-order-confirmation)
|
||||
* [`confirm_trade_exit()`](#trade-exit-sell-order-confirmation)
|
||||
|
||||
!!! Tip "Callback calling sequence"
|
||||
You can find the callback calling sequence in [bot-basics](bot-basics.md#bot-execution-logic)
|
||||
|
||||
## Bot loop start
|
||||
|
||||
A simple callback which is called once at the start of every bot throttling iteration (roughly every 5 seconds, unless configured differently).
|
||||
This can be used to perform calculations which are pair independent (apply to all pairs), loading of external data, etc.
|
||||
|
||||
``` python
|
||||
import requests
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def bot_loop_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called at the start of the bot iteration (one loop).
|
||||
Might be used to perform pair-independent tasks
|
||||
(e.g. gather some remote resource for comparison)
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
# Assign this to the class by using self.*
|
||||
# can then be used by populate_* methods
|
||||
self.remote_data = requests.get('https://some_remote_source.example.com')
|
||||
|
||||
```
|
||||
|
||||
### Stake size management
|
||||
|
||||
Called before entering a trade, makes it possible to manage your position size when placing a new trade.
|
||||
|
||||
```python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: float, max_stake: float,
|
||||
side: str, **kwargs) -> float:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
|
||||
current_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
if current_candle['fastk_rsi_1h'] > current_candle['fastd_rsi_1h']:
|
||||
if self.config['stake_amount'] == 'unlimited':
|
||||
# Use entire available wallet during favorable conditions when in compounding mode.
|
||||
return max_stake
|
||||
else:
|
||||
# Compound profits during favorable conditions instead of using a static stake.
|
||||
return self.wallets.get_total_stake_amount() / self.config['max_open_trades']
|
||||
|
||||
# Use default stake amount.
|
||||
return proposed_stake
|
||||
```
|
||||
|
||||
Freqtrade will fall back to the `proposed_stake` value should your code raise an exception. The exception itself will be logged.
|
||||
|
||||
!!! Tip
|
||||
You do not _have_ to ensure that `min_stake <= returned_value <= max_stake`. Trades will succeed as the returned value will be clamped to supported range and this acton will be logged.
|
||||
|
||||
!!! Tip
|
||||
Returning `0` or `None` will prevent trades from being placed.
|
||||
|
||||
## Custom sell signal
|
||||
|
||||
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
|
||||
|
||||
Allows to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need trade data to make an exit decision.
|
||||
|
||||
For example you could implement a 1:2 risk-reward ROI with `custom_sell()`.
|
||||
|
||||
Using custom_sell() signals in place of stoploss though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
|
||||
|
||||
!!! Note
|
||||
Returning a (none-empty) `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
|
||||
|
||||
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
|
||||
current_profit: float, **kwargs):
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
# Above 20% profit, sell when rsi < 80
|
||||
if current_profit > 0.2:
|
||||
if last_candle['rsi'] < 80:
|
||||
return 'rsi_below_80'
|
||||
|
||||
# Between 2% and 10%, sell if EMA-long above EMA-short
|
||||
if 0.02 < current_profit < 0.1:
|
||||
if last_candle['emalong'] > last_candle['emashort']:
|
||||
return 'ema_long_below_80'
|
||||
|
||||
# Sell any positions at a loss if they are held for more than one day.
|
||||
if current_profit < 0.0 and (current_time - trade.open_date_utc).days >= 1:
|
||||
return 'unclog'
|
||||
```
|
||||
|
||||
See [Dataframe access](strategy-advanced.md#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
## Custom stoploss
|
||||
|
||||
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
|
||||
|
||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade).
|
||||
|
||||
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||
|
||||
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
|
||||
|
||||
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
|
||||
|
||||
``` python
|
||||
# additional imports required
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
"""
|
||||
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
|
||||
e.g. returning -0.05 would create a stoploss 5% below current_rate.
|
||||
The custom stoploss can never be below self.stoploss, which serves as a hard maximum loss.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns the initial stoploss value
|
||||
Only called when use_custom_stoploss is set to True.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: New stoploss value, relative to the current rate
|
||||
"""
|
||||
return -0.04
|
||||
```
|
||||
|
||||
Stoploss on exchange works similar to `trailing_stop`, and the stoploss on exchange is updated as configured in `stoploss_on_exchange_interval` ([More details about stoploss on exchange](stoploss.md#stop-loss-on-exchange-freqtrade)).
|
||||
|
||||
!!! Note "Use of dates"
|
||||
All time-based calculations should be done based on `current_time` - using `datetime.now()` or `datetime.utcnow()` is discouraged, as this will break backtesting support.
|
||||
|
||||
!!! Tip "Trailing stoploss"
|
||||
It's recommended to disable `trailing_stop` when using custom stoploss values. Both can work in tandem, but you might encounter the trailing stop to move the price higher while your custom function would not want this, causing conflicting behavior.
|
||||
|
||||
### Custom stoploss examples
|
||||
|
||||
The next section will show some examples on what's possible with the custom stoploss function.
|
||||
Of course, many more things are possible, and all examples can be combined at will.
|
||||
|
||||
#### Time based trailing stop
|
||||
|
||||
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# Make sure you have the longest interval first - these conditions are evaluated from top to bottom.
|
||||
if current_time - timedelta(minutes=120) > trade.open_date_utc:
|
||||
return -0.05
|
||||
elif current_time - timedelta(minutes=60) > trade.open_date_utc:
|
||||
return -0.10
|
||||
return 1
|
||||
```
|
||||
|
||||
#### Different stoploss per pair
|
||||
|
||||
Use a different stoploss depending on the pair.
|
||||
In this example, we'll trail the highest price with 10% trailing stoploss for `ETH/BTC` and `XRP/BTC`, with 5% trailing stoploss for `LTC/BTC` and with 15% for all other pairs.
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
if pair in ('ETH/BTC', 'XRP/BTC'):
|
||||
return -0.10
|
||||
elif pair in ('LTC/BTC'):
|
||||
return -0.05
|
||||
return -0.15
|
||||
```
|
||||
|
||||
#### Trailing stoploss with positive offset
|
||||
|
||||
Use the initial stoploss until the profit is above 4%, then use a trailing stoploss of 50% of the current profit with a minimum of 2.5% and a maximum of 5%.
|
||||
|
||||
Please note that the stoploss can only increase, values lower than the current stoploss are ignored.
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
if current_profit < 0.04:
|
||||
return -1 # return a value bigger than the initial stoploss to keep using the initial stoploss
|
||||
|
||||
# After reaching the desired offset, allow the stoploss to trail by half the profit
|
||||
desired_stoploss = current_profit / 2
|
||||
|
||||
# Use a minimum of 2.5% and a maximum of 5%
|
||||
return max(min(desired_stoploss, 0.05), 0.025)
|
||||
```
|
||||
|
||||
#### Stepped stoploss
|
||||
|
||||
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.
|
||||
|
||||
* Use the regular stoploss until 20% profit is reached
|
||||
* Once profit is > 20% - set stoploss to 7% above open price.
|
||||
* Once profit is > 25% - set stoploss to 15% above open price.
|
||||
* Once profit is > 40% - set stoploss to 25% above open price.
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import stoploss_from_open
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# evaluate highest to lowest, so that highest possible stop is used
|
||||
if current_profit > 0.40:
|
||||
return stoploss_from_open(0.25, current_profit)
|
||||
elif current_profit > 0.25:
|
||||
return stoploss_from_open(0.15, current_profit)
|
||||
elif current_profit > 0.20:
|
||||
return stoploss_from_open(0.07, current_profit)
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
#### Custom stoploss using an indicator from dataframe example
|
||||
|
||||
Absolute stoploss value may be derived from indicators stored in dataframe. Example uses parabolic SAR below the price as stoploss.
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# <...>
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
# Use parabolic sar as absolute stoploss price
|
||||
stoploss_price = last_candle['sar']
|
||||
|
||||
# Convert absolute price to percentage relative to current_rate
|
||||
if stoploss_price < current_rate:
|
||||
return (stoploss_price / current_rate) - 1
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
See [Dataframe access](strategy-advanced.md#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
### Common helpers for stoploss calculations
|
||||
|
||||
#### Stoploss relative to open price
|
||||
|
||||
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss relative to the *open* price, we need to use `current_profit` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||
|
||||
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||
|
||||
#### Stoploss percentage from absolute price
|
||||
|
||||
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||
|
||||
The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||
|
||||
---
|
||||
|
||||
## Custom order price rules
|
||||
|
||||
By default, freqtrade use the orderbook to automatically set an order price([Relevant documentation](configuration.md#prices-used-for-orders)), you also have the option to create custom order prices based on your strategy.
|
||||
|
||||
You can use this feature by creating a `custom_entry_price()` function in your strategy file to customize entry prices and `custom_exit_price()` for exits.
|
||||
|
||||
Each of these methods are called right before placing an order on the exchange.
|
||||
|
||||
!!! Note
|
||||
If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration.
|
||||
|
||||
### Custom order entry and exit price example
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def custom_entry_price(self, pair: str, current_time: datetime,
|
||||
proposed_rate, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1]
|
||||
|
||||
return new_entryprice
|
||||
|
||||
def custom_exit_price(self, pair: str, trade: Trade,
|
||||
current_time: datetime, proposed_rate: float,
|
||||
current_profit: float, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_exitprice = dataframe['bollinger_10_upperband'].iat[-1]
|
||||
|
||||
return new_exitprice
|
||||
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
|
||||
**Example**:
|
||||
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98, which is 2% below the current (proposed) rate.
|
||||
|
||||
!!! Warning "No backtesting support"
|
||||
Custom entry-prices are currently not supported during backtesting.
|
||||
|
||||
## Custom order timeout rules
|
||||
|
||||
Simple, time-based order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
|
||||
|
||||
However, freqtrade also offers a custom callback for both order types, which allows you to decide based on custom criteria if an order did time out or not.
|
||||
|
||||
!!! Note
|
||||
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
|
||||
|
||||
### Custom order timeout example
|
||||
|
||||
Called for every open order until that order is either filled or cancelled.
|
||||
`check_buy_timeout()` is called for trade entries, while `check_sell_timeout()` is called for trade exit orders.
|
||||
|
||||
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
|
||||
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
|
||||
|
||||
The function must return either `True` (cancel order) or `False` (keep order alive).
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date_utc < datetime.now(timezone.utc) - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
!!! Note
|
||||
For the above example, `unfilledtimeout` must be set to something bigger than 24h, otherwise that type of timeout will apply first.
|
||||
|
||||
### Custom order timeout example (using additional data)
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since the maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['bids'][0][0]
|
||||
# Cancel buy order if price is more than 2% above the order.
|
||||
if current_price > order['price'] * 1.02:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['asks'][0][0]
|
||||
# Cancel sell order if price is more than 2% below the order.
|
||||
if current_price < order['price'] * 0.98:
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Bot order confirmation
|
||||
|
||||
Confirm trade entry / exits.
|
||||
This are the last methods that will be called before an order is placed.
|
||||
|
||||
### Trade entry (buy order) confirmation
|
||||
|
||||
`confirm_trade_entry()` can be used to abort a trade entry at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime,
|
||||
side: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a entry order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought/shorted.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param side: 'long' or 'short' - indicating the direction of the proposed trade
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
```
|
||||
|
||||
### Trade exit (sell order) confirmation
|
||||
|
||||
`confirm_trade_exit()` can be used to abort a trade exit (sell) at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str,
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
if sell_reason == 'force_sell' and trade.calc_profit_ratio(rate) < 0:
|
||||
# Reject force-sells with negative profit
|
||||
# This is just a sample, please adjust to your needs
|
||||
# (this does not necessarily make sense, assuming you know when you're force-selling)
|
||||
return False
|
||||
return True
|
||||
|
||||
```
|
||||
|
||||
## Leverage Callback
|
||||
|
||||
When trading in markets that allow leverage, this method must return the desired Leverage (Defaults to 1 -> No leverage).
|
||||
|
||||
Assuming a capital of 500USDT, a trade with leverage=3 would result in a position with 500 x 3 = 1500 USDT.
|
||||
|
||||
Values that are above `max_leverage` will be adjusted to `max_leverage`.
|
||||
For markets / exchanges that don't support leverage, this method is ignored.
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def leverage(self, pair: str, current_time: 'datetime', current_rate: float,
|
||||
proposed_leverage: float, max_leverage: float, side: str,
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
Customize leverage for each new trade.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param proposed_leverage: A leverage proposed by the bot.
|
||||
:param max_leverage: Max leverage allowed on this pair
|
||||
:param side: 'long' or 'short' - indicating the direction of the proposed trade
|
||||
:return: A leverage amount, which is between 1.0 and max_leverage.
|
||||
"""
|
||||
return 1.0
|
||||
```
|
@ -317,20 +317,14 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
Setting a stoploss is highly recommended to protect your capital from strong moves against you.
|
||||
|
||||
Sample:
|
||||
Sample of setting a 10% stoploss:
|
||||
|
||||
``` python
|
||||
stoploss = -0.10
|
||||
```
|
||||
|
||||
This would signify a stoploss of -10%.
|
||||
|
||||
For the full documentation on stoploss features, look at the dedicated [stoploss page](stoploss.md).
|
||||
|
||||
If your exchange supports it, it's recommended to also set `"stoploss_on_exchange"` in the order_types dictionary, so your stoploss is on the exchange and cannot be missed due to network problems, high load or other reasons.
|
||||
|
||||
For more information on order_types please look [here](configuration.md#understand-order_types).
|
||||
|
||||
### Timeframe (formerly ticker interval)
|
||||
|
||||
This is the set of candles the bot should download and use for the analysis.
|
||||
@ -346,7 +340,7 @@ The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `p
|
||||
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
|
||||
|
||||
The Metadata-dict should not be modified and does not persist information across multiple calls.
|
||||
Instead, have a look at the section [Storing information](strategy-advanced.md#Storing-information)
|
||||
Instead, have a look at the [Storing information](strategy-advanced.md#Storing-information) section.
|
||||
|
||||
## Strategy file loading
|
||||
|
||||
@ -1016,6 +1010,10 @@ The following lists some common patterns which should be avoided to prevent frus
|
||||
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
|
||||
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
|
||||
|
||||
### Colliding signals
|
||||
|
||||
When buy and sell signals collide (both `'buy'` and `'sell'` are 1), freqtrade will do nothing and ignore the entry (buy) signal. This will avoid trades that buy, and sell immediately. Obviously, this can potentially lead to missed entries.
|
||||
|
||||
## Further strategy ideas
|
||||
|
||||
To get additional Ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
|
||||
|
@ -12,6 +12,7 @@ from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalP
|
||||
# --------------------------------
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import pandas_ta as pta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
|
||||
@ -36,6 +37,9 @@ class {{ strategy }}(IStrategy):
|
||||
# Check the documentation or the Sample strategy to get the latest version.
|
||||
INTERFACE_VERSION = 2
|
||||
|
||||
# Optimal timeframe for the strategy.
|
||||
timeframe = '5m'
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi".
|
||||
minimal_roi = {
|
||||
@ -54,9 +58,6 @@ class {{ strategy }}(IStrategy):
|
||||
# trailing_stop_positive = 0.01
|
||||
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
||||
|
||||
# Optimal timeframe for the strategy.
|
||||
timeframe = '5m'
|
||||
|
||||
# Run "populate_indicators()" only for new candle.
|
||||
process_only_new_candles = False
|
||||
|
||||
@ -68,6 +69,10 @@ class {{ strategy }}(IStrategy):
|
||||
# Number of candles the strategy requires before producing valid signals
|
||||
startup_candle_count: int = 30
|
||||
|
||||
# Strategy parameters
|
||||
buy_rsi = IntParameter(10, 40, default=30, space="buy")
|
||||
sell_rsi = IntParameter(60, 90, default=70, space="sell")
|
||||
|
||||
# Optional order type mapping.
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
|
@ -1,3 +1,3 @@
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)) & # Signal: RSI crosses above buy_rsi
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
|
||||
|
@ -1 +1 @@
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)) & # Signal: RSI crosses above buy_rsi
|
||||
|
@ -1,3 +1,3 @@
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) & # Signal: RSI crosses above sell_rsi
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
|
||||
|
@ -1 +1 @@
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) & # Signal: RSI crosses above sell_rsi
|
||||
|
@ -11,8 +11,9 @@ nav:
|
||||
- Freqtrade Basics: bot-basics.md
|
||||
- Configuration: configuration.md
|
||||
- Strategy Customization: strategy-customization.md
|
||||
- Plugins: plugins.md
|
||||
- Strategy Callbacks: strategy-callbacks.md
|
||||
- Stoploss: stoploss.md
|
||||
- Plugins: plugins.md
|
||||
- Start the bot: bot-usage.md
|
||||
- Control the bot:
|
||||
- Telegram: telegram-usage.md
|
||||
|
Loading…
Reference in New Issue
Block a user