Compare commits

..

1097 Commits

Author SHA1 Message Date
robcaulk
6c96a2464f Merge remote-tracking branch 'origin/develop' into feat/convolutional-neural-net 2022-12-16 12:24:35 +01:00
Matthias
935275010f Remove some unused fixtures 2022-12-16 06:46:54 +01:00
Matthias
bc10bcaf61 Merge pull request #7901 from samgermain/delist-bibox
delisted bibox following ccxt PR https://github.com/ccxt/ccxt/pull/16067
2022-12-15 23:16:33 +01:00
Sam Germain
32d57f624e delisted bibox following ccxt PR https://github.com/ccxt/ccxt/pull/16067 2022-12-15 15:00:27 -05:00
Matthias
2828255435 Merge pull request #7842 from wizrds/feat/refactor-emc
Change to broadcasting single candles in Producer/Consumer
2022-12-15 19:47:29 +01:00
Matthias
b915872f66 Merge pull request #7899 from freqtrade/fix/multiproc-dp
Ensure data provider is passed to multiproc envs
2022-12-15 19:31:23 +01:00
robcaulk
581a5296cc fix docstrings to reflect new env_info changes 2022-12-15 16:50:08 +01:00
robcaulk
7b4abd5ef5 use a dictionary to make code more readable 2022-12-15 12:25:33 +01:00
Matthias
7a0eadbdf5 Don't recalc profit on closed trades 2022-12-15 07:05:07 +01:00
Matthias
33dce5cf10 Clarify partial exit calculation messaging 2022-12-15 07:05:07 +01:00
Matthias
ca2a878b86 Update test naming 2022-12-14 20:06:55 +01:00
Emre
d3ad5cb722 Merge branch 'fix/multiproc-dp' of https://github.com/freqtrade/freqtrade into fix/multiproc-dp 2022-12-14 22:04:43 +03:00
Emre
3af2251ce8 Fix add_state_info backtesting bug 2022-12-14 22:03:23 +03:00
Emre
2018da0767 Add env_info dict to base environment 2022-12-14 22:03:05 +03:00
Matthias
fa260e6560 Move "replace or append" decision to dataprovider 2022-12-14 19:56:54 +01:00
robcaulk
dac1c8ab89 fix isort 2022-12-14 18:28:52 +01:00
robcaulk
2285ca7d2a add dp to multiproc 2022-12-14 18:22:20 +01:00
Matthias
350cebb0a8 Merge pull request #7898 from initrv/patch-1
fix doc minimal_roi
2022-12-14 12:56:51 +01:00
initrv
de19d1cfbb fix doc minimal_roi 2022-12-14 13:36:07 +03:00
Matthias
97fee37072 Improve emc test 2022-12-14 07:22:51 +01:00
Matthias
1d92db7805 Change CI to actually run one 2 randomized point. 2022-12-13 19:23:40 +01:00
Matthias
3c2a802ec0 Merge pull request #7897 from freqtrade/revert-7884-dependabot/pip/develop/scikit-learn-1.2.0
Revert "Bump scikit-learn from 1.1.3 to 1.2.0"
2022-12-13 19:23:19 +01:00
Matthias
fed46d330f Revert "Bump scikit-learn from 1.1.3 to 1.2.0" 2022-12-13 18:14:56 +01:00
Matthias
c042d0146e Don't run gc_setup during tests 2022-12-13 17:14:28 +00:00
Robert Caulk
e6da646e2f Merge pull request #7866 from initrv/cleanup-tensorboard-callback
Cleanup tensorboard callback
2022-12-13 09:05:46 +01:00
Timothy Pogue
0dd3836cc7 fix rpc method docstring 2022-12-12 22:47:35 -07:00
Matthias
1c0c4fd420 Improve test 2022-12-12 22:47:35 -07:00
Matthias
a693495a6d Improve external_candle aggregation 2022-12-12 22:47:35 -07:00
Matthias
96edd31458 Test add_external_candle 2022-12-12 22:47:35 -07:00
Timothy Pogue
414c0ce050 change unused var 2022-12-12 22:47:35 -07:00
Timothy Pogue
6717dff19b update overlapping candle handling, move append to misc 2022-12-12 22:47:35 -07:00
Timothy Pogue
0602479f7d minor changes, update candle appending to support overlaps 2022-12-12 22:47:35 -07:00
Timothy Pogue
f1ebaf4730 fix tests 2022-12-12 22:47:35 -07:00
Timothy Pogue
49f6f40662 remove comment 2022-12-12 22:47:35 -07:00
Timothy Pogue
0d5b2eed94 fix same candle handling 2022-12-12 22:47:35 -07:00
Timothy Pogue
d376bf4052 fix indefinite reconnecting 2022-12-12 22:47:35 -07:00
Timothy Pogue
ccd1aa70a2 change log calls to debug, handle already received candle 2022-12-12 22:47:35 -07:00
Timothy Pogue
c050eb8b8b add candle difference calculation to dataprovider 2022-12-12 22:47:35 -07:00
Timothy Pogue
89338fa677 allow specifying channel send throttle 2022-12-12 22:47:35 -07:00
Timothy Pogue
d2c8487ecf update add_external_candle, fix breaking on ping error, handle empty dataframes 2022-12-12 22:47:35 -07:00
Timothy Pogue
fce1e9d6d0 update analyzed df request to allow specifying a single pair 2022-12-12 22:47:35 -07:00
Timothy Pogue
36a00e8de0 update add_external_candle returns 2022-12-12 22:47:35 -07:00
Timothy Pogue
4cbb3341d7 change how missing candles will be handled 2022-12-12 22:47:35 -07:00
Timothy Pogue
9660e445b8 use new channel apis in emc, extend analyzed df to include list of dates for candles 2022-12-12 22:47:35 -07:00
Matthias
3e4e6bb114 Merge pull request #7895 from freqtrade/fix-blosc-error-arm64
Temporarily downgrade blosc for arm64
2022-12-12 20:03:43 +01:00
Matthias
abc3badfb5 Improve shutdown behavior
closes #7882
2022-12-12 20:01:54 +01:00
Emre
5c984bf5c2 Temporarily downgrade blosc for arm64 2022-12-12 21:33:12 +03:00
Matthias
b328a18a97 Merge pull request #7890 from freqtrade/dependabot/pip/develop/xgboost-1.7.2
Bump xgboost from 1.7.1 to 1.7.2
2022-12-12 18:18:45 +01:00
Matthias
ff0577445e Merge pull request #7886 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.36
Bump prompt-toolkit from 3.0.33 to 3.0.36
2022-12-12 14:52:39 +01:00
initrv
f940280d5e Fix tensorboard_log incrementing note 2022-12-12 14:35:44 +03:00
initrv
f9b7d35900 add increment param for tensorboard_log 2022-12-12 14:14:23 +03:00
Matthias
b53b3f435c Merge pull request #7888 from freqtrade/dependabot/pip/develop/ccxt-2.2.92
Bump ccxt from 2.2.67 to 2.2.92
2022-12-12 09:03:26 +01:00
Matthias
a55d0c0d81 Merge pull request #7891 from freqtrade/dependabot/pip/develop/python-telegram-bot-13.15
Bump python-telegram-bot from 13.14 to 13.15
2022-12-12 08:27:50 +01:00
Matthias
dee5b72835 Merge pull request #7892 from freqtrade/dependabot/pip/develop/filelock-3.8.2
Bump filelock from 3.8.0 to 3.8.2
2022-12-12 08:27:29 +01:00
Matthias
39bd6fb2d3 Merge pull request #7894 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.6.4
Bump pypa/gh-action-pypi-publish from 1.6.1 to 1.6.4
2022-12-12 07:11:34 +01:00
dependabot[bot]
de9784267a Bump filelock from 3.8.0 to 3.8.2
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.8.0 to 3.8.2.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.8.0...3.8.2)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:39:16 +00:00
Matthias
61592e76b0 Merge pull request #7884 from freqtrade/dependabot/pip/develop/scikit-learn-1.2.0
Bump scikit-learn from 1.1.3 to 1.2.0
2022-12-12 06:38:29 +01:00
Matthias
dc8f68d410 Merge pull request #7885 from freqtrade/dependabot/pip/develop/blosc-1.11.0
Bump blosc from 1.10.6 to 1.11.0
2022-12-12 06:31:39 +01:00
dependabot[bot]
915e0ac62f Bump ccxt from 2.2.67 to 2.2.92
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.2.67 to 2.2.92.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.2.67...2.2.92)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:31:01 +00:00
dependabot[bot]
bc2b9981d3 Bump python-telegram-bot from 13.14 to 13.15
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.14 to 13.15.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/v13.15/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.14...v13.15)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:30:55 +00:00
Matthias
686253e7cd Merge pull request #7887 from freqtrade/dependabot/pip/develop/nbconvert-7.2.6
Bump nbconvert from 7.2.5 to 7.2.6
2022-12-12 06:30:37 +01:00
Matthias
2d68b0f6f6 Merge pull request #7889 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.20.3
Bump pytest-asyncio from 0.20.2 to 0.20.3
2022-12-12 06:30:14 +01:00
Matthias
f7a099f878 Merge pull request #7893 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.45
Bump sqlalchemy from 1.4.44 to 1.4.45
2022-12-12 06:29:49 +01:00
dependabot[bot]
2647c35f48 Bump pypa/gh-action-pypi-publish from 1.6.1 to 1.6.4
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.6.1 to 1.6.4.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.6.1...v1.6.4)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:02:53 +00:00
dependabot[bot]
0344203372 Bump sqlalchemy from 1.4.44 to 1.4.45
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.44 to 1.4.45.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:32 +00:00
dependabot[bot]
5a7b493d3e Bump xgboost from 1.7.1 to 1.7.2
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.1 to 1.7.2.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.1...v1.7.2)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:11 +00:00
dependabot[bot]
5625648011 Bump pytest-asyncio from 0.20.2 to 0.20.3
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.20.2 to 0.20.3.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Changelog](https://github.com/pytest-dev/pytest-asyncio/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.20.2...v0.20.3)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:07 +00:00
dependabot[bot]
a35111e55e Bump nbconvert from 7.2.5 to 7.2.6
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.5 to 7.2.6.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.5...v7.2.6)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:54 +00:00
dependabot[bot]
63d3a9ced6 Bump prompt-toolkit from 3.0.33 to 3.0.36
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.33 to 3.0.36.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.33...3.0.36)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:49 +00:00
dependabot[bot]
434eec7334 Bump blosc from 1.10.6 to 1.11.0
Bumps [blosc](https://github.com/blosc/python-blosc) from 1.10.6 to 1.11.0.
- [Release notes](https://github.com/blosc/python-blosc/releases)
- [Changelog](https://github.com/Blosc/python-blosc/blob/main/RELEASE_NOTES.rst)
- [Commits](https://github.com/blosc/python-blosc/compare/v1.10.6...v1.11.0)

---
updated-dependencies:
- dependency-name: blosc
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:46 +00:00
dependabot[bot]
78c40f0535 Bump scikit-learn from 1.1.3 to 1.2.0
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.3 to 1.2.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.3...1.2.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:40 +00:00
Matthias
42afdbb0e5 Merge pull request #7883 from freqtrade/fix/multioutput-bug
fix bug in MultiOutput* with conv_width = 1
2022-12-11 15:52:10 +01:00
robcaulk
0f6b98b69a merge develop into tensorboard cleanup 2022-12-11 15:38:32 +01:00
robcaulk
0fd8e214e4 add documentation for tensorboard_log, change how users interact with tensorboard_log 2022-12-11 15:31:29 +01:00
Matthias
888ba65367 Merge branch 'develop' into fix/multioutput-bug 2022-12-11 15:23:53 +01:00
initrv
cb8fc3c8c7 custom info to tensorboard_metrics 2022-12-11 15:37:45 +03:00
Robert Caulk
0f75ec9c97 Merge pull request #7860 from freqtrade/update-freqai-tf-handling
Ensure base tf to be include_timeframes
2022-12-11 12:50:07 +01:00
robcaulk
8c7ec07951 ensure predict_proba follows suit. Remove all lib specific params from example config 2022-12-11 12:39:31 +01:00
robcaulk
85f22b5c30 fix bug in MultiOutput* with conv_width = 1 2022-12-11 12:15:19 +01:00
Emre
6b9f3f2795 Fix test validation 2022-12-11 13:24:24 +03:00
Emre
272c3302e3 Merge remote-tracking branch 'origin/develop' into update-freqai-tf-handling 2022-12-11 13:12:45 +03:00
Matthias
980a5a9b52 Fix docs typo 2022-12-10 19:54:04 +01:00
Matthias
1da8ad69d9 improve more tests by freezing time 2022-12-08 14:33:16 +01:00
Matthias
da4914513a Merge pull request #7835 from rzhb/patch-1
update strategy_analysis_example.ipynb
2022-12-08 14:17:50 +01:00
Matthias
bbedc4b63e Stop clock to avoid random failures on slow CI runs 2022-12-08 14:15:29 +01:00
Matthias
39e19bd0c9 Merge pull request #7607 from matteoettam09/develop
Docker compose now in docker
2022-12-08 13:34:06 +01:00
Matthias
3d3a7033ed Improve Docker documentation wording 2022-12-08 08:46:16 +01:00
Matthias
fcbc1a8a07 Merge pull request #7868 from freqtrade/fix-add-state-info-bt
Fix add state info bt
2022-12-08 08:34:11 +01:00
Matthias
74e623fe5b Improve kraken test resiliance 2022-12-08 08:33:07 +01:00
robcaulk
2c3a310ce2 allow DI with CNN 2022-12-07 20:30:13 +01:00
robcaulk
71c6ff18c4 try to avoid possible memory leaks 2022-12-07 20:08:31 +01:00
robcaulk
b438cd4b3f add newline to end of freqai-configuration.md 2022-12-07 19:52:31 +01:00
robcaulk
7b3406914c flip add_state_info 2022-12-07 19:49:39 +01:00
robcaulk
9b4364ddc3 ensure that add_state_info is deactivated during backtesting 2022-12-07 19:49:14 +01:00
initrv
58604c747e cleanup tensorboard callback 2022-12-07 14:37:55 +03:00
robcaulk
6343fbf9e3 remove verbose from CNNPredictionModel 2022-12-07 00:02:02 +01:00
robcaulk
389ab7e44b add test for CNNPredictionModel 2022-12-06 23:50:34 +01:00
robcaulk
665eed3906 add documentation for CNN, allow it to interact with model_training_parameters 2022-12-06 23:26:07 +01:00
Robert Caulk
b9f6911a6a Merge pull request #7843 from smarmau/develop
freqai RL agent info during training
2022-12-06 20:06:41 +01:00
Matthias
e7195b7bfb Merge pull request #7862 from freqtrade/ws_newcandle
New websocket message "new_candle"
2022-12-06 07:07:32 +01:00
Robert Caulk
27b8f462dc Merge pull request #7837 from freqtrade/freqai_bt_from_predictions_improvement
freqAI backtesting - Perfomance improvement
2022-12-05 23:20:55 +01:00
Wagner Costa
c81b00fb37 Merge branch 'develop' into freqai_bt_from_predictions_improvement 2022-12-05 18:00:55 -03:00
Emre
227cdb0938 Change dict update order 2022-12-05 23:58:04 +03:00
Emre
26a61afa15 Move base tf logic to config validation 2022-12-05 23:54:15 +03:00
Emre
bc48099e48 Revert changes 2022-12-05 23:52:48 +03:00
robcaulk
9ce8255f24 isort. 2022-12-05 21:03:05 +01:00
robcaulk
72b1d1c9ae allow users to pass 0 test data 2022-12-05 20:55:05 +01:00
robcaulk
5826fae8ee Merge remote-tracking branch 'origin/develop' into feat/convolutional-neural-net 2022-12-05 20:40:19 +01:00
robcaulk
43c0d305a3 fix tensorflow version 2022-12-05 20:36:08 +01:00
robcaulk
62c69bf2b5 fix custom_info 2022-12-05 20:22:54 +01:00
Matthias
72472587dd Increase test range for api version test 2022-12-05 20:19:01 +01:00
Matthias
7c27eedda5 Bump API version 2022-12-05 19:56:33 +01:00
Matthias
24edc276ea Simplify new_candle message 2022-12-05 19:46:39 +01:00
Matthias
d30a872ed4 Move message-silencing list next to enum 2022-12-05 19:23:03 +01:00
Matthias
687eefa06e Improve emit_df testcase 2022-12-05 18:19:19 +01:00
Matthias
5e533b550f Emit a simple "new candle" message to allow UI's to refresh charts 2022-12-05 18:19:19 +01:00
Matthias
189fa64052 Add more dynamic to directory change 2022-12-05 18:14:16 +01:00
Emre
730fba956b Ensure base tf included in include_timeframes 2022-12-05 16:16:17 +03:00
Emre
e734b39929 Make model_training_parameters optional 2022-12-05 14:54:42 +03:00
Matthias
b0f430b5ac Merge pull request #7850 from freqtrade/dependabot/pip/develop/pytest-random-order-1.1.0
Bump pytest-random-order from 1.0.4 to 1.1.0
2022-12-05 08:50:52 +01:00
Matthias
261f9ac7dc Merge pull request #7851 from freqtrade/dependabot/pip/develop/ccxt-2.2.67
Bump ccxt from 2.2.36 to 2.2.67
2022-12-05 08:06:16 +01:00
Matthias
80f3908626 Merge pull request #7857 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.11
Bump mkdocs-material from 8.5.10 to 8.5.11
2022-12-05 08:00:23 +01:00
Matthias
4dfb35c165 Merge pull request #7858 from freqtrade/dependabot/pip/develop/orjson-3.8.3
Bump orjson from 3.8.2 to 3.8.3
2022-12-05 08:00:08 +01:00
Matthias
6e657f9911 Merge pull request #7859 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.6.1
Bump pypa/gh-action-pypi-publish from 1.5.1 to 1.6.1
2022-12-05 06:27:37 +01:00
dependabot[bot]
102ab91fa4 Bump orjson from 3.8.2 to 3.8.3
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.2 to 3.8.3.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.2...3.8.3)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:23:02 +00:00
dependabot[bot]
179adea0e2 Bump ccxt from 2.2.36 to 2.2.67
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.2.36 to 2.2.67.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.2.36...2.2.67)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:22:42 +00:00
Matthias
d456ec7d5e Merge pull request #7856 from freqtrade/dependabot/pip/develop/fastapi-0.88.0
Bump fastapi from 0.87.0 to 0.88.0
2022-12-05 06:22:18 +01:00
Matthias
0bb4f108dd Merge pull request #7853 from freqtrade/dependabot/pip/develop/pandas-1.5.2
Bump pandas from 1.5.1 to 1.5.2
2022-12-05 06:21:46 +01:00
dependabot[bot]
82d4dca183 Bump mkdocs-material from 8.5.10 to 8.5.11
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.10 to 8.5.11.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.10...8.5.11)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:21:15 +00:00
Matthias
cf0e5903c5 Merge pull request #7852 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.9
Bump pymdown-extensions from 9.8 to 9.9
2022-12-05 06:20:23 +01:00
Matthias
4d19f98bef Merge pull request #7855 from freqtrade/dependabot/pip/develop/jsonschema-4.17.3
Bump jsonschema from 4.17.1 to 4.17.3
2022-12-05 06:19:43 +01:00
dependabot[bot]
2eb8f9f028 Bump pypa/gh-action-pypi-publish from 1.5.1 to 1.6.1
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.5.1 to 1.6.1.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.5.1...v1.6.1)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:03:47 +00:00
dependabot[bot]
66bb2c5253 Bump fastapi from 0.87.0 to 0.88.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.87.0 to 0.88.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.87.0...0.88.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:16 +00:00
dependabot[bot]
caae4441e5 Bump jsonschema from 4.17.1 to 4.17.3
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.17.1 to 4.17.3.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.17.1...v4.17.3)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:12 +00:00
dependabot[bot]
441069f363 Bump pandas from 1.5.1 to 1.5.2
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.5.1 to 1.5.2.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/main/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.5.1...v1.5.2)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:03 +00:00
dependabot[bot]
16bad8dca6 Bump pymdown-extensions from 9.8 to 9.9
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.8 to 9.9.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.8...9.9)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:00:56 +00:00
dependabot[bot]
133a081a39 Bump pytest-random-order from 1.0.4 to 1.1.0
Bumps [pytest-random-order](https://github.com/jbasko/pytest-random-order) from 1.0.4 to 1.1.0.
- [Release notes](https://github.com/jbasko/pytest-random-order/releases)
- [Commits](https://github.com/jbasko/pytest-random-order/compare/v1.0.4...v1.1.0)

---
updated-dependencies:
- dependency-name: pytest-random-order
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:00:39 +00:00
Robert Caulk
f28b314266 Merge pull request #7849 from smarmau/patch-1
Update freqai-reinforcement-learning.md
2022-12-04 15:17:01 +01:00
robcaulk
d8565261e1 ignore initializer type 2022-12-04 14:10:33 +01:00
robcaulk
24766928ba reorganize/generalize tensorboard callback 2022-12-04 13:54:30 +01:00
Matthias
24d8585c33 Merge pull request #7840 from freqtrade/feature-plot-dir
Add plot_feature_importances output dir to docs
2022-12-04 12:53:44 +01:00
smarmau
f7b4fc5bbc Update freqai-reinforcement-learning.md
Change typo of default Tensorboard port to reflect correct port (6006)
2022-12-04 22:22:23 +11:00
robcaulk
38d3b4cab2 add details to doc plot_feature_importance doc 2022-12-04 11:29:21 +01:00
Matthias
310eba5932 Merge pull request #7735 from freqtrade/gc_improvements
Improve python GC behavior
2022-12-03 15:54:59 +01:00
Emre
ad7729e5d8 Fix function signature 2022-12-03 17:43:59 +03:00
smarmau
b2edc58089 fix flake8 2022-12-03 22:31:02 +11:00
smarmau
d6f45a12ae add multiproc fix flake8 2022-12-03 22:30:04 +11:00
smarmau
469aa0d43f add state/action info to callbacks 2022-12-03 21:16:46 +11:00
smarmau
075c8c23c8 add state/action info to callbacks 2022-12-03 21:16:04 +11:00
Matthias
0be82b4ed1 Merge pull request #7818 from freqtrade/dependabot/pip/develop/torch-1.13.0
Bump torch from 1.12.1 to 1.13.0
2022-12-02 15:52:34 +01:00
Robert Caulk
7ddf7ec0ae Update freqai-parameter-table.md 2022-12-02 11:28:00 +01:00
Matthias
4dc591a170 Merge pull request #7834 from freqtrade/fix-data-drawer-model-load
Fix sb3_contrib loading issue
2022-12-02 06:29:23 +01:00
Matthias
f2624112b0 Merge pull request #7833 from gaugau3000/develop
binance restricted locations and server location
2022-12-02 06:20:35 +01:00
Matthias
8a078a328e Merge pull request #7836 from freqtrade/fix-fees-rl
fix fees RL
2022-12-02 06:15:20 +01:00
Matthias
05424045b0 Temporarily disable since binance blocks US 2022-12-02 06:12:21 +01:00
Wagner Costa
77dc2c92a7 performance improvevemnts - backtest freqai from saved predictions 2022-12-01 12:53:19 -03:00
robcaulk
aceee67e2b Merge remote-tracking branch 'origin/develop' into gc_improvements 2022-12-01 14:32:19 +01:00
robcaulk
2b3e166dc2 fix fees RL 2022-12-01 10:10:28 +01:00
k
eb81cccede add download-data command
change directory
fix relative config path
2022-12-01 16:37:24 +08:00
Emre
396e666e9b Keep old behavior of model loading 2022-12-01 11:03:51 +03:00
Emre
4a9982f86b Fix sb3_contrib loading issue 2022-12-01 10:08:42 +03:00
Matthias
95651fcd5a Improve/simplify telegram exception handling
Move exceptionhandling to the decorator.
2022-12-01 06:27:25 +01:00
gautier pialat
59c7ce02f5 binance restricted locations and server location
Inform end user before he creates server in a binance restricted location
https://github.com/ccxt/ccxt/issues/15872
2022-11-30 21:29:34 +01:00
Matthias
dac4a35be2 Merge pull request #7828 from freqtrade/fix-state-info-rl
bring back market side setting in get_state_info
2022-11-30 19:57:28 +01:00
Robert Caulk
2bcd8e4e21 Merge pull request #7737 from freqtrade/backtest_fitlivepredictions
FreqAI - Backtesting enhancements and bug fix
2022-11-30 16:51:04 +01:00
Wagner Costa
79821ebb33 fix flake8 errors 2022-11-30 08:41:44 -03:00
robcaulk
e7f72d52b8 bring back market side setting in get_state_info 2022-11-30 12:36:26 +01:00
Wagner Costa
26e8a5766f Merge branch 'develop' into backtest_fitlivepredictions 2022-11-30 08:29:28 -03:00
Wagner Costa
17cf3c7e83 bug fixes and removed fillna from fit_live_predictions 2022-11-30 08:28:45 -03:00
Matthias
915524a161 Merge pull request #7827 from rzhb/patch-2
Update data-analysis.md
2022-11-30 06:45:27 +01:00
rzhb
10a45474e8 Update data-analysis.md
fix typo in code
2022-11-30 12:28:21 +08:00
robcaulk
4571aedb33 consolidate and clean code 2022-11-30 00:53:35 +01:00
Matthias
3c322bf7df Improve forceenter validation messages 2022-11-29 18:27:08 +01:00
Matthias
e6b8cb8ea9 Merge pull request #7795 from froggleston/entry_exit_date_print
Add date selection arguments to backtest-analysis printout
2022-11-29 16:56:58 +01:00
Wagner Costa
8ea58ab352 change BT prediction files to feather format 2022-11-29 10:38:35 -03:00
Wagner Costa
df979ece33 Merge branch 'develop' into backtest_fitlivepredictions 2022-11-29 09:39:15 -03:00
dependabot[bot]
b87545cd12 Bump torch from 1.12.1 to 1.13.0
Bumps [torch](https://github.com/pytorch/pytorch) from 1.12.1 to 1.13.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.12.1...v1.13.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-29 07:46:38 +00:00
Robert Caulk
066d040fd3 Merge pull request #7814 from freqtrade/dependabot/pip/develop/sb3-contrib-1.6.2
Bump sb3-contrib from 1.6.1 to 1.6.2
2022-11-29 08:45:50 +01:00
Matthias
c3daddc629 Merge pull request #7809 from richardjozsa/develop
Improve the RL learning process
2022-11-29 06:28:36 +01:00
Matthias
100d65b20b Merge pull request #7822 from eltociear/patch-1
Fix typo in strategy_analysis_example.md
2022-11-29 06:24:36 +01:00
Matthias
5500c10f78 Improve CI file layout 2022-11-28 20:41:26 +01:00
Matthias
2c75b5e027 Extract "live" test from regular tests 2022-11-28 20:41:26 +01:00
Matthias
8efa8bc78a Update stable-baselines3 to 1.6.2 2022-11-28 19:35:17 +01:00
Matthias
e891c41760 Fix typo in ipynb, too. 2022-11-28 18:20:30 +01:00
Robert Caulk
c9cc87b4ac Merge pull request #7823 from freqtrade/fix/rl-model-type
Set model_type in base RL model
2022-11-28 18:07:36 +01:00
Emre
9cbfa12011 Directly set model_type in base RL model 2022-11-28 16:02:17 +03:00
Robert Davey
05a7fca242 Fix utils docs for backtesting-analysis 2022-11-28 12:12:45 +00:00
Matthias
1cdf5e0cfd Merge pull request #7812 from freqtrade/dependabot/pip/develop/jsonschema-4.17.1
Bump jsonschema from 4.17.0 to 4.17.1
2022-11-28 10:06:12 +01:00
Ikko Ashimine
9880e9ab60 Fix typo in strategy_analysis_example.md
seperate -> separate
2022-11-28 17:10:17 +09:00
Matthias
d67ca27f5e Merge pull request #7817 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.33
Bump prompt-toolkit from 3.0.32 to 3.0.33
2022-11-28 08:12:11 +01:00
dependabot[bot]
dc03317cc8 Bump jsonschema from 4.17.0 to 4.17.1
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.17.0 to 4.17.1.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.17.0...v4.17.1)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 07:02:54 +00:00
Matthias
f7ba1a4348 Merge pull request #7819 from freqtrade/dependabot/pip/develop/cryptography-38.0.4
Bump cryptography from 38.0.1 to 38.0.4
2022-11-28 08:02:22 +01:00
Matthias
98883fc909 Merge pull request #7815 from freqtrade/dependabot/pip/develop/urllib3-1.26.13
Bump urllib3 from 1.26.12 to 1.26.13
2022-11-28 08:01:10 +01:00
Matthias
40b274351c Merge pull request #7813 from freqtrade/dependabot/pip/develop/flake8-6.0.0
Bump flake8 from 5.0.4 to 6.0.0
2022-11-28 08:00:45 +01:00
Matthias
868c2061b7 Merge pull request #7816 from freqtrade/dependabot/pip/develop/pyarrow-10.0.1
Bump pyarrow from 10.0.0 to 10.0.1
2022-11-28 06:40:38 +01:00
Matthias
d73fd42769 Fix flake8 error introduced with 6.0 update 2022-11-28 06:38:35 +01:00
dependabot[bot]
9c28cc810d Bump cryptography from 38.0.1 to 38.0.4
Bumps [cryptography](https://github.com/pyca/cryptography) from 38.0.1 to 38.0.4.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/38.0.1...38.0.4)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 05:33:45 +00:00
Matthias
8e60364f0d Merge pull request #7808 from freqtrade/fix-freqai-rl-reward-link
Fix custom reward function link
2022-11-28 06:33:24 +01:00
Matthias
51e773fe37 Merge pull request #7820 from freqtrade/dependabot/pip/develop/ccxt-2.2.36
Bump ccxt from 2.1.96 to 2.2.36
2022-11-28 06:32:17 +01:00
dependabot[bot]
348731598e Bump ccxt from 2.1.96 to 2.2.36
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.1.96 to 2.2.36.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.1.96...2.2.36)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:01:25 +00:00
dependabot[bot]
a46b09d400 Bump prompt-toolkit from 3.0.32 to 3.0.33
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.32 to 3.0.33.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.32...3.0.33)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:01:01 +00:00
dependabot[bot]
924bbad199 Bump pyarrow from 10.0.0 to 10.0.1
Bumps [pyarrow](https://github.com/apache/arrow) from 10.0.0 to 10.0.1.
- [Release notes](https://github.com/apache/arrow/releases)
- [Commits](https://github.com/apache/arrow/compare/go/v10.0.0...go/v10.0.1)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:58 +00:00
dependabot[bot]
5aec51a16c Bump urllib3 from 1.26.12 to 1.26.13
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.12 to 1.26.13.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.13/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.12...1.26.13)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:55 +00:00
dependabot[bot]
7e75bc8fcf Bump sb3-contrib from 1.6.1 to 1.6.2
Bumps [sb3-contrib](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib) from 1.6.1 to 1.6.2.
- [Release notes](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/releases)
- [Commits](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/compare/v1.6.1...v1.6.2)

---
updated-dependencies:
- dependency-name: sb3-contrib
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:48 +00:00
dependabot[bot]
49e41925b0 Bump flake8 from 5.0.4 to 6.0.0
Bumps [flake8](https://github.com/pycqa/flake8) from 5.0.4 to 6.0.0.
- [Release notes](https://github.com/pycqa/flake8/releases)
- [Commits](https://github.com/pycqa/flake8/compare/5.0.4...6.0.0)

---
updated-dependencies:
- dependency-name: flake8
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:42 +00:00
Emre
f21dbbd8bb Update imports of custom model 2022-11-28 00:06:02 +03:00
robcaulk
56518def42 isort 2022-11-27 21:06:01 +01:00
robcaulk
7fd6bc526e add randomize_starting_position to the rl_config 2022-11-27 21:03:13 +01:00
robcaulk
25e041b98e sneak in small change to FreqaiExampleHybridStrategy docstring and startup count 2022-11-27 20:50:03 +01:00
richardjozsa
64d4a52a56 Improve the RL learning process
Improve the RL learning process by selecting random start point for the agent, it can help to block the agent to only learn on the selected period of time, while improving the quality of the model.
2022-11-27 20:43:50 +01:00
robcaulk
67d9469277 small wording fix 2022-11-27 20:42:04 +01:00
Emre
a02da08065 Fix typo 2022-11-27 22:23:00 +03:00
Matthias
320535a227 improve tests doc wording 2022-11-27 20:07:44 +01:00
Joe Schr
a85602eb9c add "how to run tests" 2022-11-27 20:07:44 +01:00
Emre
5b5859238b Fix typo 2022-11-27 22:06:14 +03:00
Emre
fe00a65163 FIx custom reward link 2022-11-27 21:34:07 +03:00
robcaulk
57aaa390d0 start convolution neural network plugin 2022-11-27 17:42:03 +01:00
Matthias
f4025ee5de Merge pull request #7289 from freqtrade/feat/freqai-rl-dev
Add reinforcement learning module to FreqAI
2022-11-27 17:15:21 +01:00
Matthias
2219d2f491 Merge pull request #7707 from freqtrade/bt/full_detail
backtesting - use full detail timeframe
2022-11-27 16:09:23 +01:00
Matthias
cf000a4c00 Bump develop version to 2022.12-dev 2022-11-27 16:08:54 +01:00
Matthias
e4a3efc7d4 Don't use strategy.stoploss too often
discovered in #7760
2022-11-27 15:54:35 +01:00
Matthias
3fc367f536 Merge pull request #7771 from wizrds/feat/refactor-ws
Refactor WebSocket API for performance
2022-11-27 15:49:34 +01:00
Matthias
21d7406291 Temporary fix for kraken download
closes #7790
will be removed once the patch is in ccxt.
2022-11-27 15:16:43 +01:00
froggleston
1a3f88c7b9 Replace separate start/end date option with usual timerange option 2022-11-27 11:30:13 +00:00
Robert Caulk
732757e087 Merge pull request #7801 from initrv/patch-1
Fix 4ac update_total_profit
2022-11-27 12:29:07 +01:00
Matthias
79a7dd5bd1 Merge pull request #7799 from freqtrade/fix-init-extra-rets
Use default `extra_returns_per_train`
2022-11-27 07:58:42 +01:00
stm
51d21b413d Fix 4ac update_total_profit
_update_total_profit() must be executed before "self._position = Positions.Neutral" because _update_total_profit() calls get_unrealized_profit(), which returns 0 if position is neutral and total_profit is not updated
2022-11-26 23:35:20 +03:00
robcaulk
dba30393fb ensure extra_returns_per_train are set properly on first hist_preds build 2022-11-26 18:04:47 +01:00
froggleston
706bc9ebea Merge branch 'entry_exit_date_print' of github.com:froggleston/freqtrade into entry_exit_date_print 2022-11-26 16:59:27 +00:00
froggleston
4790aaaae1 Implement cli options for backtesting-analysis date filtering 2022-11-26 16:58:56 +00:00
Robert Davey
e1456e407b Merge branch 'freqtrade:develop' into entry_exit_date_print 2022-11-26 16:53:48 +00:00
Timothy Pogue
a26b3a9ca8 change sleep call back to 0.01 2022-11-26 09:40:22 -07:00
Matthias
9af62ad117 Add note to dev docs about freqUI release 2022-11-26 14:09:05 +01:00
Matthias
ce213b55a2 Bybit fix candle limit 2022-11-26 13:58:22 +01:00
robcaulk
b52f05923a fix list to array in constants.py 2022-11-26 13:47:47 +01:00
robcaulk
be890b52fd remove np import 2022-11-26 13:44:58 +01:00
robcaulk
aaaa5a5f64 add documentation for net_arch, other small changes 2022-11-26 13:44:58 +01:00
Matthias
fcf13580f1 Revert "offload initial df computation to thread"
This reverts commit f268187e9b.
2022-11-26 13:33:54 +01:00
Matthias
7b0a76fb70 Improve typehint 2022-11-26 13:33:26 +01:00
Matthias
7ebc8ee169 Fix missing Optional typehint 2022-11-26 13:32:18 +01:00
Matthias
8660ac9aa0 Fix import in docs 2022-11-26 13:12:44 +01:00
Matthias
cf2f12b472 Headers between Tables -> Tables can be jumped to directly 2022-11-26 13:06:21 +01:00
Matthias
bdfedb5fcb Improve typehints / reduce warnings from mypy 2022-11-26 13:03:07 +01:00
robcaulk
81fd2e588f ensure typing, remove unsued code 2022-11-26 12:11:59 +01:00
robcaulk
8dbfd2cacf improve docstring clarity about how to inherit from ReinforcementLearner, demonstrate inherittance with ReinforcementLearner_multiproc 2022-11-26 11:51:08 +01:00
robcaulk
9f13d99b99 improve parameter table, add better documentation for custom calculate_reward, add various helpful notes in docstrings etc 2022-11-26 11:32:39 +01:00
Timothy Pogue
bd95392eea fix formatted string in warning message :) 2022-11-25 13:10:22 -07:00
Timothy Pogue
4aa4c6f49d change sleep in channel send to 0 2022-11-25 13:08:41 -07:00
Timothy Pogue
f268187e9b offload initial df computation to thread 2022-11-25 12:56:33 -07:00
Timothy Pogue
afc00bc30a log warning if channel too far behind, add docstrings to message stream 2022-11-25 12:48:57 -07:00
froggleston
391817243c Tidy up complex functions 2022-11-25 16:12:15 +00:00
Matthias
756921b16a Update fthypt file 2022-11-25 17:05:49 +01:00
Matthias
79c041b62d Update tests for new export format 2022-11-25 16:57:58 +01:00
Matthias
8c014bd365 Export trade-counts to csv
closes #7789
2022-11-25 16:57:45 +01:00
Matthias
8ee8b6e943 Improve hyperopt list output
closes  #7789
2022-11-25 16:31:21 +01:00
Matthias
0f97ef0d7b Reset stoploss_order_id when order is canceled
closes #7766
2022-11-25 16:08:33 +01:00
Matthias
1b3e62bcbc Lock execute_entry to prevent timing hickups 2022-11-25 14:50:48 +01:00
Matthias
c593cdc438 Improve type hints 2022-11-25 14:48:06 +01:00
Matthias
5e6cda11ef Update method name for trade fee updating 2022-11-25 14:43:56 +01:00
Matthias
048119ad3d Improve doc wording around informative pair candle types
closes #7792
2022-11-25 14:20:41 +01:00
Matthias
b8d1862ca8 Update cached binance leverage tiers
closes #7794
2022-11-25 10:42:19 +01:00
Timothy Pogue
bcc8063eeb Merge branch 'develop' into feat/refactor-ws 2022-11-24 13:42:57 -07:00
Timothy Pogue
fc59b02255 prevent ws endpoint from running without valid token 2022-11-24 13:41:10 -07:00
Timothy Pogue
101dec461e close ws channel if can't accept 2022-11-24 11:35:50 -07:00
robcaulk
2e82e6784a move data_provider cleanup to shutdown() 2022-11-24 19:07:38 +01:00
robcaulk
73c458d47b use importlib instead of __import___ 2022-11-24 19:04:35 +01:00
robcaulk
00d2a01bf0 isort 2022-11-24 18:57:01 +01:00
robcaulk
4894d772ed merge develop into feat/freqai-rl-dev 2022-11-24 18:50:11 +01:00
robcaulk
3a07749fcc fix docstring 2022-11-24 18:46:54 +01:00
robcaulk
8855e36f57 reduce freqai testing time by reducing retrain frequency and number of features 2022-11-24 18:16:33 +01:00
robcaulk
44b042ba51 remove unused function 2022-11-24 17:53:26 +01:00
Matthias
8f1a8c752b Add freqairl docker build process 2022-11-24 07:00:12 +01:00
Matthias
e5fc21f577 Fix broken table rendering 2022-11-23 20:59:45 +01:00
Matthias
3d26659d5e Fix some doc typos 2022-11-23 20:09:55 +01:00
Matthias
c963fd720b Slightly change test setup for dry_run_order_fill 2022-11-23 18:17:14 +01:00
Robert Caulk
12e17b80fe Merge pull request #7791 from freqtrade/fix-m1-wheel-lightgbm
Enable --use-pep517 flag for freqai
2022-11-23 17:52:20 +01:00
Emre
335de760ed Enable --use-pep517 flag for freqai 2022-11-23 18:34:50 +03:00
Timothy Pogue
48242ca02b update catch block in cancel channel tasks 2022-11-22 12:43:45 -07:00
Matthias
7785c91c5d Merge pull request #7756 from wizrds/feat/secure-ws-conn
Support SSL in WebSocket connection
2022-11-22 19:18:16 +01:00
Wagner Costa
d09157efb8 update code to use one prediction file / pair 2022-11-22 15:15:42 -03:00
Matthias
bd05f85c26 Simplify ssl documentation 2022-11-22 18:11:18 +01:00
Timothy Pogue
a5442772fc ensure only broadcasting to subscribed topics 2022-11-22 09:42:09 -07:00
Wagner Costa
91779bb28b Merge branch 'develop' into backtest_fitlivepredictions 2022-11-22 13:09:48 -03:00
Wagner Costa
c01f25ddc9 update code to freqai_backtest_live_models only from historic predictions 2022-11-22 13:09:09 -03:00
Timothy Pogue
fff745fd83 add map to nginx config 2022-11-22 07:17:57 -07:00
Matthias
5a489ce71b Fix docs typo 2022-11-22 10:46:38 +01:00
Timothy Pogue
86ff711525 update docs on reverse proxy 2022-11-21 12:52:18 -07:00
Matthias
8cb2b4666d Improve proxy docs
closes #7769
2022-11-21 20:42:07 +01:00
Timothy Pogue
d9d7df70bf fix tests, log unknown errors 2022-11-21 12:21:40 -07:00
Matthias
0fa5217043 Improve protection setup
lock_pair should be called when the order closes, not when the exit order is placed.
it should also be called for stoploss orders, too.

closes #7783
2022-11-21 19:30:49 +01:00
Matthias
be80d91ca6 Merge pull request #7779 from freqtrade/dependabot/pip/develop/uvicorn-0.20.0
Bump uvicorn from 0.19.0 to 0.20.0
2022-11-21 18:08:27 +01:00
Matthias
450ebaa2cc Merge pull request #7778 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.5
Bump types-requests from 2.28.11.4 to 2.28.11.5
2022-11-21 13:23:52 +01:00
Matthias
7c00ef8a76 Bump pre-commit requests version 2022-11-21 11:32:31 +01:00
Matthias
74be124a47 Merge pull request #7775 from freqtrade/dependabot/pip/develop/ccxt-2.1.96
Bump ccxt from 2.1.75 to 2.1.96
2022-11-21 11:31:48 +01:00
dependabot[bot]
adc1174d2e Bump types-requests from 2.28.11.4 to 2.28.11.5
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.4 to 2.28.11.5.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 10:30:22 +00:00
Matthias
69b2e31bdb Merge pull request #7773 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.4
Bump types-python-dateutil from 2.8.19.3 to 2.8.19.4
2022-11-21 11:29:03 +01:00
Matthias
747dd9cb16 Merge pull request #7774 from freqtrade/dependabot/pip/develop/mypy-0.991
Bump mypy from 0.990 to 0.991
2022-11-21 07:12:19 +01:00
Matthias
2df0d613da Bump types-dateutil for precommit 2022-11-21 06:58:59 +01:00
dependabot[bot]
beec9e2d1a Bump mypy from 0.990 to 0.991
Bumps [mypy](https://github.com/python/mypy) from 0.990 to 0.991.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.990...v0.991)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 05:36:52 +00:00
Matthias
129f549793 Merge pull request #7781 from freqtrade/dependabot/pip/develop/orjson-3.8.2
Bump orjson from 3.8.1 to 3.8.2
2022-11-21 06:36:34 +01:00
Matthias
1456022dfe Merge pull request #7780 from freqtrade/dependabot/pip/develop/httpx-0.23.1
Bump httpx from 0.23.0 to 0.23.1
2022-11-21 06:35:55 +01:00
Matthias
0d615cfdd8 Merge pull request #7777 from freqtrade/dependabot/pip/develop/nbconvert-7.2.5
Bump nbconvert from 7.2.4 to 7.2.5
2022-11-21 06:35:40 +01:00
Matthias
3dc6a30d65 Merge pull request #7772 from freqtrade/dependabot/pip/develop/numpy-1.23.5
Bump numpy from 1.23.4 to 1.23.5
2022-11-21 06:35:19 +01:00
dependabot[bot]
f09fb2374b Bump orjson from 3.8.1 to 3.8.2
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.1 to 3.8.2.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.1...3.8.2)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:47 +00:00
dependabot[bot]
8d1ee67ed4 Bump httpx from 0.23.0 to 0.23.1
Bumps [httpx](https://github.com/encode/httpx) from 0.23.0 to 0.23.1.
- [Release notes](https://github.com/encode/httpx/releases)
- [Changelog](https://github.com/encode/httpx/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/httpx/compare/0.23.0...0.23.1)

---
updated-dependencies:
- dependency-name: httpx
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:38 +00:00
dependabot[bot]
844334a7ea Bump uvicorn from 0.19.0 to 0.20.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.19.0 to 0.20.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.19.0...0.20.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:34 +00:00
dependabot[bot]
ec15ef0398 Bump nbconvert from 7.2.4 to 7.2.5
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.4 to 7.2.5.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.4...v7.2.5)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:26 +00:00
dependabot[bot]
3f9dacc9be Bump ccxt from 2.1.75 to 2.1.96
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.1.75 to 2.1.96.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.1.75...2.1.96)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:15 +00:00
dependabot[bot]
5cce8f4f2d Bump types-python-dateutil from 2.8.19.3 to 2.8.19.4
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.3 to 2.8.19.4.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:02:00 +00:00
dependabot[bot]
0cb08024f1 Bump numpy from 1.23.4 to 1.23.5
Bumps [numpy](https://github.com/numpy/numpy) from 1.23.4 to 1.23.5.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.23.4...v1.23.5)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-21 03:01:59 +00:00
Timothy Pogue
edb817e2e6 add tutorial for ssl in docs 2022-11-20 19:19:28 -07:00
Timothy Pogue
106ac2ab4d fix tests, change to get call 2022-11-20 16:36:22 -07:00
Timothy Pogue
d2870d48ea change typing to async iterator 2022-11-20 16:24:44 -07:00
Timothy Pogue
48a1f2418f update typing, remove unneeded try block, readd sleep 2022-11-20 16:18:24 -07:00
Timothy Pogue
60a167bdef add dynamic send timeout 2022-11-20 14:09:45 -07:00
Timothy Pogue
dc79284c54 Merge branch 'develop' into feat/refactor-ws 2022-11-20 10:05:22 -07:00
Matthias
12b471c64b Prevent 2 parallel open orders through forceentry
this leads to forgetting the prior order

closes #7765
2022-11-20 09:28:14 +01:00
Wagner Costa Santos
fdc82af883 fix tests - update code to backtest with historic_predictions 2022-11-19 22:27:58 -03:00
Timothy Pogue
3714d7074b smaller throttle in channel send 2022-11-19 13:29:23 -07:00
Timothy Pogue
c1a73a5512 move sleep call in send, minor cleanup 2022-11-19 13:21:26 -07:00
Wagner Costa Santos
80d070e9ee update code to use historic_predictions for freqai_backtest_live_models 2022-11-19 14:15:58 -03:00
robcaulk
d02da279f8 document the simplifications of the training environment 2022-11-19 13:20:20 +01:00
Wagner Costa Santos
3d3195847c Merge branch 'develop' into backtest_fitlivepredictions 2022-11-18 17:53:34 -03:00
Timothy Pogue
98d87b3ba6 Merge branch 'develop' into feat/refactor-ws 2022-11-18 13:41:22 -07:00
Timothy Pogue
0cb6f71c02 better error handling, true async sending, more readable api 2022-11-18 13:32:27 -07:00
Matthias
4de9a46618 Merge pull request #7759 from wizrds/fix/pd-mem-leak
Fix Pandas to_json memory leak
2022-11-18 20:24:16 +01:00
Timothy Pogue
b6a8e421f1 remove redundant timestamp conversion in ws serializer 2022-11-18 09:43:39 -07:00
robcaulk
61a859ba4c remove tensorboard req from rl reqs 2022-11-18 17:30:03 +01:00
Matthias
12cd83453c Add warning when queue websocket queue becomes too full 2022-11-18 14:03:56 +01:00
Matthias
4c7bb79c86 Restore prior data transfer format 2022-11-18 13:59:29 +01:00
Timothy Pogue
ba493eb7a7 Merge fix/pd-mem-leak 2022-11-17 16:21:12 -07:00
robcaulk
387c905a86 merge develop into RL 2022-11-17 21:59:07 +01:00
robcaulk
60fcd8dce2 fix skipped mac test, fix RL bug in add_state_info, fix use of __import__, revise doc 2022-11-17 21:50:02 +01:00
robcaulk
91df79ff44 merge dev into backtest-live-predictions 2022-11-17 21:20:47 +01:00
Matthias
436b314c80 add safe_remaining
fixes #7757
2022-11-17 19:07:47 +00:00
Matthias
1975e942d6 Add test for no remaining
(kucoin case - https://github.com/freqtrade/freqtrade/issues/7757).
2022-11-17 19:07:47 +00:00
Matthias
48e5a45856 rpc_test: dont replicate whole response,
updating  what's changed improves readability
2022-11-17 19:07:47 +00:00
Timothy Pogue
49ecc83061 Merge branch 'develop' into fix/pd-mem-leak 2022-11-17 12:04:49 -07:00
Timothy Pogue
ce43fa5f43 small fix to websocketchannel and relay 2022-11-17 12:03:11 -07:00
Timothy Pogue
875e9ab447 change df serialization to avoid mem leak 2022-11-17 11:59:03 -07:00
Robert Caulk
cd6f87be17 Merge pull request #7728 from freqtrade/improve_timerange
Simplify timerange handling
2022-11-17 19:57:48 +01:00
Matthias
b929e0bb2b Merge branch 'develop' into gc_improvements 2022-11-17 19:55:03 +01:00
Matthias
9432bcd065 Fix telegram error on force_enter exception
closes #7727
2022-11-17 19:52:03 +01:00
Wagner Costa Santos
3903b04d3f save_live_data_backtest - added docs and tests 2022-11-17 15:20:07 -03:00
Timothy Pogue
a993cb512d change to get call in ws_client 2022-11-17 10:22:55 -07:00
Wagner Costa Santos
99bff9cbfa backtesting_from_live_saved_files - code refactoring 2022-11-17 10:30:51 -03:00
Wagner Costa Santos
913749c81b backtesting_from_live_saved_files - code refactoring 2022-11-17 10:30:16 -03:00
Wagner Costa Santos
b01e4e3dbf change default value - save_live_data_backtest as false 2022-11-17 10:14:30 -03:00
Wagner Costa Santos
1a19d90e2e Merge branch 'develop' into backtest_fitlivepredictions 2022-11-17 10:13:11 -03:00
Matthias
0a7f4fd3cc fix httpx test warning 2022-11-17 10:36:24 +00:00
Matthias
afcb86f422 Improve migration types 2022-11-17 10:25:51 +00:00
Matthias
93addbe5c3 Improve typechecking 2022-11-17 10:16:38 +00:00
Matthias
097af973d2 improve RPC testcase to cover open orders 2022-11-17 07:10:47 +01:00
Timothy Pogue
1380ddd066 update ws client 2022-11-15 22:44:02 -07:00
Matthias
019577f73d Temporarily Downgrade cryptography until piwheels has the new wheel available 2022-11-16 06:36:26 +01:00
Timothy Pogue
86e094e39b update docs 2022-11-15 22:33:42 -07:00
Timothy Pogue
6a1655c047 support ssl connections in emc 2022-11-15 22:26:54 -07:00
Timothy Pogue
442467e8ae remove old comments and code 2022-11-14 22:26:34 -07:00
Matthias
6deb2dfb61 Merge pull request #7744 from freqtrade/dependabot/pip/develop/mypy-0.990
Bump mypy from 0.982 to 0.990
2022-11-15 06:24:24 +01:00
Timothy Pogue
d713af045f remove main queue completely 2022-11-14 22:21:40 -07:00
Timothy Pogue
659c8c237f initial revision 2022-11-14 20:27:45 -07:00
Matthias
0a702cdd26 Ensure more methods are typechecked 2022-11-14 20:56:35 +01:00
Matthias
f27be7ada8 Configure mypy to old behavior
based on https://mypy-lang.blogspot.com/2022/11/mypy-0990-released.html release
2022-11-14 20:52:40 +01:00
Matthias
a951b49541 Use Generator when sending initial dataframes 2022-11-14 19:43:59 +01:00
Matthias
30b467906c Delist FTX, following ccxt's delisting. 2022-11-14 19:40:57 +01:00
Matthias
663039835d Merge pull request #7745 from freqtrade/dependabot/pip/develop/fastapi-0.87.0
Bump fastapi from 0.85.1 to 0.87.0
2022-11-14 15:19:52 +01:00
Matthias
c72ffad698 Add starlette test dependency 2022-11-14 13:08:29 +00:00
Matthias
2a1bfb8e57 Merge pull request #7746 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.3
Bump types-python-dateutil from 2.8.19.2 to 2.8.19.3
2022-11-14 14:05:03 +01:00
Matthias
a689538b9a Merge pull request #7751 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.44
Bump sqlalchemy from 1.4.43 to 1.4.44
2022-11-14 09:39:47 +01:00
Matthias
e24f644251 Merge pull request #7742 from freqtrade/dependabot/pip/develop/cryptography-38.0.3
Bump cryptography from 38.0.1 to 38.0.3
2022-11-14 09:39:25 +01:00
Matthias
c12dcd9b9b update pre-commit dateutil 2022-11-14 08:40:09 +01:00
dependabot[bot]
4cece8720a Bump mypy from 0.982 to 0.990
Bumps [mypy](https://github.com/python/mypy) from 0.982 to 0.990.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.982...v0.990)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 07:33:06 +00:00
dependabot[bot]
721998521b Bump types-python-dateutil from 2.8.19.2 to 2.8.19.3
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.2 to 2.8.19.3.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 07:33:03 +00:00
dependabot[bot]
60449d9bec Bump cryptography from 38.0.1 to 38.0.3
Bumps [cryptography](https://github.com/pyca/cryptography) from 38.0.1 to 38.0.3.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/38.0.1...38.0.3)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 07:32:31 +00:00
Matthias
5ca705ae3a Merge pull request #7747 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.4
Bump types-requests from 2.28.11.2 to 2.28.11.4
2022-11-14 08:32:11 +01:00
Matthias
cf6aa0506f Merge pull request #7750 from freqtrade/dependabot/pip/develop/ccxt-2.1.75
Bump ccxt from 2.1.54 to 2.1.75
2022-11-14 08:31:41 +01:00
Matthias
849c028133 Merge pull request #7749 from freqtrade/dependabot/pip/develop/psutil-5.9.4
Bump psutil from 5.9.3 to 5.9.4
2022-11-14 08:28:38 +01:00
Matthias
cf9944c48d Merge pull request #7741 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.10
Bump mkdocs-material from 8.5.8 to 8.5.10
2022-11-14 08:03:39 +01:00
dependabot[bot]
cf5cda4df5 Bump sqlalchemy from 1.4.43 to 1.4.44
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.43 to 1.4.44.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 06:04:54 +00:00
dependabot[bot]
7275d48516 Bump ccxt from 2.1.54 to 2.1.75
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.1.54 to 2.1.75.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.1.54...2.1.75)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 06:04:37 +00:00
dependabot[bot]
60de797dcc Bump psutil from 5.9.3 to 5.9.4
Bumps [psutil](https://github.com/giampaolo/psutil) from 5.9.3 to 5.9.4.
- [Release notes](https://github.com/giampaolo/psutil/releases)
- [Changelog](https://github.com/giampaolo/psutil/blob/master/HISTORY.rst)
- [Commits](https://github.com/giampaolo/psutil/compare/release-5.9.3...release-5.9.4)

---
updated-dependencies:
- dependency-name: psutil
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 06:03:58 +00:00
Matthias
95fd4072fa Merge pull request #7701 from freqtrade/add-single-precision-freqai
add option to force single precision
2022-11-14 07:02:35 +01:00
Matthias
b2de070462 bump types-requests 2022-11-14 07:01:49 +01:00
Matthias
03d3492838 Merge pull request #7739 from freqtrade/dependabot/pip/develop/tensorboard-2.11.0
Bump tensorboard from 2.10.1 to 2.11.0
2022-11-14 06:55:24 +01:00
dependabot[bot]
9843fb2087 Bump mkdocs-material from 8.5.8 to 8.5.10
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.8 to 8.5.10.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.8...8.5.10)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 05:55:09 +00:00
Matthias
447635043e Merge pull request #7740 from freqtrade/dependabot/pip/develop/nbconvert-7.2.4
Bump nbconvert from 7.2.3 to 7.2.4
2022-11-14 06:54:47 +01:00
Matthias
5d92008293 Merge pull request #7743 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.20.2
Bump pytest-asyncio from 0.20.1 to 0.20.2
2022-11-14 06:54:27 +01:00
Matthias
d22a22d161 Merge pull request #7748 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.8
Bump pymdown-extensions from 9.7 to 9.8
2022-11-14 06:53:51 +01:00
dependabot[bot]
bbfcaca9e0 Bump pymdown-extensions from 9.7 to 9.8
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.7 to 9.8.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.7...9.8)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:02:26 +00:00
dependabot[bot]
48c4d8d2df Bump types-requests from 2.28.11.2 to 2.28.11.4
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.2 to 2.28.11.4.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:02:21 +00:00
dependabot[bot]
ce269b7984 Bump fastapi from 0.85.1 to 0.87.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.85.1 to 0.87.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.85.1...0.87.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:02:14 +00:00
dependabot[bot]
9d8d18d76b Bump pytest-asyncio from 0.20.1 to 0.20.2
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.20.1 to 0.20.2.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Changelog](https://github.com/pytest-dev/pytest-asyncio/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.20.1...v0.20.2)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:01:42 +00:00
dependabot[bot]
001602e034 Bump nbconvert from 7.2.3 to 7.2.4
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.3 to 7.2.4.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.3...v7.2.4)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:01:11 +00:00
dependabot[bot]
3e6834e3f0 Bump tensorboard from 2.10.1 to 2.11.0
Bumps [tensorboard](https://github.com/tensorflow/tensorboard) from 2.10.1 to 2.11.0.
- [Release notes](https://github.com/tensorflow/tensorboard/releases)
- [Changelog](https://github.com/tensorflow/tensorboard/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorboard/compare/2.10.1...2.11.0)

---
updated-dependencies:
- dependency-name: tensorboard
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-14 03:01:08 +00:00
Matthias
42b29cd307 Fix constants type 2022-11-13 19:31:49 +01:00
robcaulk
bf4d5b432a ensure model_type is defined 2022-11-13 18:50:25 +01:00
robcaulk
6394ef4558 fix docstrings 2022-11-13 17:43:52 +01:00
robcaulk
c8d3e57712 add note that these environments are designed for short-long bots only. 2022-11-13 17:30:56 +01:00
robcaulk
c76afc255a explain how to choose environments, and how to customize them 2022-11-13 17:26:11 +01:00
robcaulk
96fafb7f56 remove limit_ram_use 2022-11-13 17:14:47 +01:00
robcaulk
b421521be3 help default ReinforcementLearner users by assigning the model_type automatically 2022-11-13 17:12:17 +01:00
robcaulk
90f168d1ff remove more user references. cleanup dataprovider 2022-11-13 17:06:06 +01:00
robcaulk
f8f553ec14 remove references to "the user" 2022-11-13 16:58:36 +01:00
robcaulk
388ca21200 update docs, fix bug in environment 2022-11-13 16:56:31 +01:00
robcaulk
3c249ba994 add doc for data_kitchen_thread_count` 2022-11-13 16:11:14 +01:00
robcaulk
1e9e7887aa fix constants.py, fix freqai test 2022-11-13 15:38:35 +01:00
robcaulk
af9e400562 add test coverage, fix bug in base environment. Ensure proper fee is used. 2022-11-13 15:31:37 +01:00
Matthias
a59d61472b Add test for dataframe footprint reduction 2022-11-13 15:29:37 +01:00
Matthias
942840da2d Improve setting wording to keep future possibilities open 2022-11-13 15:22:44 +01:00
robcaulk
81f800a79b switch to using FT calc_profi_pct, reverse entry/exit fees 2022-11-13 13:41:17 +01:00
robcaulk
e45d791c19 Merge remote-tracking branch 'origin/develop' into feat/freqai-rl-dev 2022-11-13 13:00:16 +01:00
Matthias
c6013e5819 Fix doc typo 2022-11-13 12:01:20 +01:00
Matthias
535c365b4a Disable ftx ccxt_compat tests
Their API is down due to being insolvent ...
2022-11-13 10:33:54 +01:00
Matthias
fed3bc6730 Simplify Websocket Init 2022-11-13 10:33:54 +01:00
Matthias
914bdbdd83 Remove FTX from list of supported exchanges 2022-11-12 20:32:17 +01:00
Matthias
d39b997489 Merge pull request #7736 from M451z/patch-1
Update README.md
2022-11-12 20:30:50 +01:00
Matthias
954da4fec9 Add "forcebuy error" exception log
part of #7727
2022-11-12 19:52:10 +01:00
robcaulk
259f87bd40 fix rl test; 2022-11-12 19:01:40 +01:00
robcaulk
e71a8b8ac1 add ability to integrate state info or not, and prevent state info integration during backtesting 2022-11-12 18:46:48 +01:00
Wagner Costa Santos
27fa9f1f4e backtest saved dataframe from live 2022-11-12 14:37:23 -03:00
Matthias
ee0e59157c Update join relationship of orders table to selectin
closes #6791 by slightly improving performance in this area.
2022-11-12 16:34:00 +01:00
Colt 1911
8c092d457c Update README.md
Removed the FTX option under the "Supported Exchange marketplaces" title, because of FTX bankrupt.
2022-11-12 18:28:51 +03:00
Matthias
7adca97358 Improve python GC behavior 2022-11-12 15:43:02 +01:00
Wagner Costa Santos
f9c6c538be Merge branch 'develop' into backtest_fitlivepredictions 2022-11-12 09:37:45 -03:00
robcaulk
9c6b97c678 ensure normalization acceleration methods are employed in RL 2022-11-12 12:01:59 +01:00
robcaulk
6746868ea7 store dataprovider to self instead of strategy 2022-11-12 11:33:03 +01:00
robcaulk
6ff0e66ddf ensure strat tests are updated 2022-11-12 11:13:31 +01:00
robcaulk
7a4bb040a5 merge develop into feat/freqai-rl-dev 2022-11-12 10:54:34 +01:00
robcaulk
214c622475 move dataframe converter to converter.py 2022-11-12 10:38:25 +01:00
robcaulk
9617d8143d Merge remote-tracking branch 'origin/develop' into add-single-precision-freqai 2022-11-12 10:21:38 +01:00
Matthias
e6172a68d7 Merge pull request #7730 from freqtrade/fix-metric-tracker
fix loading of metric tracker from disk
2022-11-11 20:01:26 +01:00
Robert Caulk
833578716c Merge pull request #7644 from markdregan/multi-target-classifier
Support for multi target multi-class classification (FreqaiMultiOutputRegressor for Classification)
2022-11-11 18:48:38 +01:00
robcaulk
790ff2a84b merge develop into add-single-prec 2022-11-11 18:08:51 +01:00
robcaulk
e46a57bbd0 move mem logs to debug 2022-11-11 18:05:32 +01:00
robcaulk
66514e84e4 add LightGBMClassifierMultiTarget. add test 2022-11-11 17:45:53 +01:00
robcaulk
054133955b fix loading of metric tracker from disk 2022-11-11 17:24:09 +01:00
Matthias
e34f0f60a5 Merge pull request #7724 from wassertim/bugfix/7723
Support git and local changes in dev containers
2022-11-10 21:05:36 +01:00
Matthias
4664d5e1d8 Split installation to onCreateCommand 2022-11-10 18:56:19 +00:00
Matthias
0f9c5f8d41 Simplify timerange handling 2022-11-10 18:28:18 +01:00
Matthias
57313dd961 Update some usages of timerange to new, simplified method 2022-11-10 18:11:39 +01:00
Matthias
3e676dbaa4 Add properties to simplify timerange handling 2022-11-10 16:33:57 +01:00
Matthias
7147f52e02 FreqAI also requires plotting dependencies
cloess #7726
2022-11-10 16:03:30 +01:00
Tim
be83e73411 add pip install 2022-11-10 08:42:47 +00:00
Matthias
88ad3fe43e Remove typo from main page 2022-11-10 07:32:55 +01:00
Matthias
22c419d5c4 Add warning about FTX 2022-11-10 07:14:10 +01:00
Matthias
9e17eabd0a Improve Bybit configuration 2022-11-10 07:09:54 +01:00
Tim
ec6ee7ead9 remove empty space 2022-11-09 21:06:14 +01:00
Tim
7953280513 remove github.copilot extension 2022-11-09 21:05:05 +01:00
Tim
037363f9ee support git and local changes in dev containers #7723 2022-11-09 19:53:09 +01:00
Matthias
d3006f7f3e Bump ccxt to 2.1.54
closes okx: #7720
2022-11-09 17:59:51 +01:00
Wagner Costa Santos
4f0f3e5b64 removed unnecessary code 2022-11-09 10:07:24 -03:00
Wagner Costa Santos
8ee95db927 refactoring backtesting_fit_live_predictions function 2022-11-09 09:51:42 -03:00
Wagner Costa Santos
3e57c18ac6 add fix_live_predictions function to backtesting 2022-11-08 18:20:39 -03:00
Matthias
f43f967040 Improve handling of unfilled stoploss orders in edge-cases 2022-11-08 20:34:18 +01:00
Matthias
ce3959a0c6 Merge pull request #7708 from freqtrade/improve_iteration
Improve iteration logic
2022-11-08 19:25:01 +01:00
Wagner Costa Santos
8d9988a942 enforce date column in backtesting freqai predictions files 2022-11-08 11:06:23 -03:00
Wagner Costa Santos
9c5ba0732a save predictions with date and merge by date 2022-11-08 10:32:18 -03:00
Robert Caulk
d59b3e2359 Merge pull request #7710 from freqtrade/dependabot/pip/develop/catboost-1.1.1
Bump catboost from 1.1 to 1.1.1
2022-11-08 11:22:29 +01:00
dependabot[bot]
ea489133ac Bump catboost from 1.1 to 1.1.1
Bumps [catboost](https://github.com/catboost/catboost) from 1.1 to 1.1.1.
- [Release notes](https://github.com/catboost/catboost/releases)
- [Changelog](https://github.com/catboost/catboost/blob/master/RELEASE.md)
- [Commits](https://github.com/catboost/catboost/compare/v1.1...v1.1.1)

---
updated-dependencies:
- dependency-name: catboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 23:54:59 +00:00
Robert Caulk
c3d2df2f4e Merge pull request #7711 from freqtrade/dependabot/pip/develop/xgboost-1.7.1
Bump xgboost from 1.6.2 to 1.7.1
2022-11-08 00:53:51 +01:00
Matthias
426a26f268 Merge pull request #7475 from freqtrade/backtest_live_models
FreqAI - Backtest live/ready models
2022-11-07 20:39:49 +01:00
Matthias
884014a4b9 Fix some minor typos 2022-11-07 18:35:28 +00:00
Wagner Costa Santos
6559384286 Merge branch 'develop' into backtest_live_models 2022-11-07 15:14:10 -03:00
Matthias
8bc71f2025 Merge pull request #7709 from freqtrade/dependabot/pip/develop/jsonschema-4.17.0
Bump jsonschema from 4.16.0 to 4.17.0
2022-11-07 08:19:12 +01:00
Matthias
24df2d576e Merge pull request #7718 from freqtrade/dependabot/pip/develop/orjson-3.8.1
Bump orjson from 3.8.0 to 3.8.1
2022-11-07 08:18:30 +01:00
Matthias
5ba012c592 Disable "tick" in test_update_funding_fees_schedule
we only want to test run frequency, not time progression.
2022-11-07 07:18:09 +00:00
Matthias
05fc6a5e9f Merge pull request #7717 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.8
Bump mkdocs-material from 8.5.7 to 8.5.8
2022-11-07 07:54:48 +01:00
dependabot[bot]
850b04357e Bump mkdocs-material from 8.5.7 to 8.5.8
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.7 to 8.5.8.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.7...8.5.8)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 06:05:47 +00:00
Matthias
a90d91b576 Merge pull request #7714 from freqtrade/dependabot/pip/develop/progressbar2-4.2.0
Bump progressbar2 from 4.1.1 to 4.2.0
2022-11-07 07:04:56 +01:00
Matthias
95a1827af7 Merge pull request #7712 from freqtrade/dependabot/pip/develop/mkdocs-1.4.2
Bump mkdocs from 1.4.1 to 1.4.2
2022-11-07 07:04:02 +01:00
Matthias
689f936390 Merge pull request #7716 from freqtrade/dependabot/pip/develop/pytest-7.2.0
Bump pytest from 7.1.3 to 7.2.0
2022-11-07 07:03:34 +01:00
Matthias
031c472a23 Merge pull request #7715 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.32
Bump prompt-toolkit from 3.0.31 to 3.0.32
2022-11-07 07:03:10 +01:00
Matthias
71580a7159 Merge pull request #7713 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.43
Bump sqlalchemy from 1.4.42 to 1.4.43
2022-11-07 06:57:46 +01:00
dependabot[bot]
d978ff6bfb Bump orjson from 3.8.0 to 3.8.1
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.0 to 3.8.1.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.0...3.8.1)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:02:15 +00:00
dependabot[bot]
0bb57f738d Bump pytest from 7.1.3 to 7.2.0
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.1.3 to 7.2.0.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.1.3...7.2.0)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:54 +00:00
dependabot[bot]
37e066bd76 Bump prompt-toolkit from 3.0.31 to 3.0.32
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.31 to 3.0.32.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.31...3.0.32)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:47 +00:00
dependabot[bot]
224507dfa0 Bump progressbar2 from 4.1.1 to 4.2.0
Bumps [progressbar2](https://github.com/WoLpH/python-progressbar) from 4.1.1 to 4.2.0.
- [Release notes](https://github.com/WoLpH/python-progressbar/releases)
- [Changelog](https://github.com/wolph/python-progressbar/blob/develop/CHANGES.rst)
- [Commits](https://github.com/WoLpH/python-progressbar/compare/v4.1.1...v4.2.0)

---
updated-dependencies:
- dependency-name: progressbar2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:36 +00:00
dependabot[bot]
f174b41fd7 Bump sqlalchemy from 1.4.42 to 1.4.43
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.42 to 1.4.43.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:30 +00:00
dependabot[bot]
01a31a6e01 Bump mkdocs from 1.4.1 to 1.4.2
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.4.1 to 1.4.2.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.4.1...1.4.2)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:08 +00:00
dependabot[bot]
1814f25601 Bump xgboost from 1.6.2 to 1.7.1
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.6.2 to 1.7.1.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.6.2...v1.7.1)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:01:03 +00:00
dependabot[bot]
3cbbfde6bc Bump jsonschema from 4.16.0 to 4.17.0
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.16.0 to 4.17.0.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.16.0...v4.17.0)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-07 03:00:40 +00:00
Matthias
29585b5ecd Improve worker iteration logic 2022-11-06 11:18:13 +01:00
Matthias
2068a44fd0 Add test for new behavior 2022-11-06 11:17:25 +01:00
Matthias
d48a9ae96d Add leverage to backtest results
closes #7574
2022-11-06 09:40:44 +01:00
Matthias
1d2b89bc13 Improve handling of get_fee to not allow impossible combinations 2022-11-06 09:16:03 +01:00
Matthias
3af177d8af bump ccxt to 2.1.33
closes #7700
2022-11-06 09:16:03 +01:00
Matthias
2c1330a4e2 Update docs to new behavior 2022-11-06 08:32:27 +01:00
Matthias
ded57fb301 Remove no longer valid test part 2022-11-05 20:32:31 +01:00
Matthias
d089fdae34 Fix current-time_det calculation 2022-11-05 20:02:36 +01:00
Matthias
5bd3e54b17 Add test for detail backtesting 2022-11-05 20:01:05 +01:00
Robert Caulk
820aad670c Merge pull request #7690 from freqtrade/track-current-candle
Track current candle in FreqAI
2022-11-05 17:35:05 +01:00
Emre
06a2957837 Merge branch 'develop' into add-single-precision-freqai 2022-11-05 19:15:12 +03:00
Emre
43bdd34964 Optimize reduce_dataframe_footprint function 2022-11-05 19:13:02 +03:00
Matthias
0888b53b5a Udpate current_time handling for detail loop 2022-11-05 17:02:27 +01:00
Matthias
29ba263c3c Update some test parameters 2022-11-05 17:02:27 +01:00
Matthias
a11d579bc2 Verify order fills on "detail" timeframe 2022-11-05 17:02:27 +01:00
Matthias
25b8d34fe2 Update backtesting test
Had bad behavior before, and didn't properly test what it was supposed to
2022-11-05 17:02:18 +01:00
robcaulk
53df607067 avoid duplicating features with okx/gateio, ensure inference timer gets logged 2022-11-05 15:42:19 +01:00
Matthias
6e09d552ac Properly handle and test ohlcv min_max with empty files 2022-11-05 13:14:35 +01:00
Matthias
a9ea84e2c4 Merge pull request #7702 from freqtrade/move-write-metric-param
move write_metrics_to_disk to proper place in param table
2022-11-04 18:25:34 +01:00
robcaulk
257c833831 add doc for single precision, dont allow half precision, add test 2022-11-04 18:10:04 +01:00
robcaulk
d4cfcbda24 move write_metrics_to_disk to proper place in param table 2022-11-04 17:53:15 +01:00
robcaulk
3ccc120f92 add option to force single precision 2022-11-04 17:42:10 +01:00
robcaulk
8bdc99a3d6 fix self-imposed bug 2022-11-04 16:41:38 +01:00
robcaulk
19d90b813a improve readibility in start_backtesting() 2022-11-04 16:10:46 +01:00
Wagner Costa Santos
8008c63319 Merge branch 'develop' into backtest_live_models 2022-11-04 09:09:39 -03:00
Wagner Costa Santos
a7acfb7ab7 fix dict key error 2022-11-04 09:02:28 -03:00
robcaulk
90c5bfb4b5 add default conv_width 2022-11-03 21:35:12 +01:00
robcaulk
05b309caf2 ensure colon replaced for cached attach 2022-11-03 21:17:48 +01:00
robcaulk
6938ed6584 change default conv_width to 1 2022-11-03 21:11:26 +01:00
robcaulk
444a068481 merge develop into track-current-candle 2022-11-03 21:09:08 +01:00
robcaulk
db942321ad fix bug with lightgbm and colons 2022-11-03 21:03:48 +01:00
Matthias
c2130ed3dd Merge pull request #7695 from freqtrade/fix_issue_7666
Fix inconsistent backtesting results - FreqAI
2022-11-03 19:52:48 +01:00
robcaulk
d721b50230 flake8 2022-11-03 19:13:24 +01:00
robcaulk
3ba1e221eb fix typo 2022-11-03 19:08:33 +01:00
robcaulk
6c4bdb8f67 remove special characters from feature names 2022-11-03 18:49:39 +01:00
Wagner Costa Santos
17798b3397 Merge branch 'develop' into backtest_live_models 2022-11-03 13:29:25 -03:00
Wagner Costa Santos
356d79b38a verify mean and std exists in model metadata 2022-11-03 13:27:56 -03:00
Wagner Costa Santos
cdf12cc541 Merge branch 'develop' into fix_issue_7666 2022-11-03 08:30:46 -03:00
Matthias
0aff8c4823 Merge pull request #7692 from wizrds/fix/ws-memory
Fix Memory Leak in Websockets
2022-11-03 07:17:01 +01:00
Matthias
ff619edebf Improve explanation comment as to why we're waiting ourselfs 2022-11-03 06:50:18 +01:00
Timothy Pogue
b749f3edd6 add latency measure from ping in emc and ws_client 2022-11-02 19:30:35 -06:00
Timothy Pogue
a0965606a5 update ws_client more verbosity, better readable time delta 2022-11-02 18:49:11 -06:00
Timothy Pogue
000b0c2198 prevent memory leaks from error in _broadcast_queue_data 2022-11-02 18:00:10 -06:00
Timothy Pogue
cbede2e27d refactor channel.send to avoid queue.put 2022-11-02 17:57:11 -06:00
Timothy Pogue
2dc55e89e6 better error handling channel send 2022-11-02 15:25:39 -06:00
Timothy Pogue
55bf195bfb remove debugging log calls 2022-11-02 14:21:34 -06:00
Timothy Pogue
c2bdaea84a change exception handling in channel send 2022-11-02 14:19:08 -06:00
Timothy Pogue
d848c27283 add task done to broadcast queue method 2022-11-02 13:30:42 -06:00
robcaulk
b3b756ec14 ensure test pass 2022-11-02 20:30:04 +01:00
Timothy Pogue
e25dea7e0e update channel disconnecting 2022-11-02 13:26:27 -06:00
robcaulk
ce92731132 ensure backwards compatitibility 2022-11-02 20:20:35 +01:00
Wagner Costa Santos
23b6915dde fix issue with different backtesting prediction size 2022-11-02 15:49:51 -03:00
Matthias
09e0a8d4df Merge pull request #7689 from freqtrade/add-pca-dbscan-tests
add integrated tests for PCA and DBSCAN
2022-11-02 19:41:37 +01:00
Matthias
2c3c7e1e3a Merge pull request #7663 from freqtrade/shuffle_list_enhance
Improve ShufflePairlist to shuffle only once per candle
2022-11-02 19:37:48 +01:00
robcaulk
1a38c10fc6 remove old code 2022-11-02 19:37:47 +01:00
robcaulk
255eb71270 start tracking the current candle in FreqAI, add robustness to corr_df caching and inference timer, add test for cache corr_df 2022-11-02 19:32:22 +01:00
robcaulk
63458a6130 isort 2022-11-02 18:40:13 +01:00
robcaulk
2afa185dc6 add integrated tests for PCA and DBSCAN 2022-11-02 18:34:56 +01:00
Matthias
2ed04916ae Merge pull request #7676 from freqtrade/dependabot/pip/develop/pyarrow-10.0.0
Bump pyarrow from 9.0.0 to 10.0.0
2022-11-02 08:14:55 +01:00
Matthias
d9f41e5570 Update pyarrow prebuilt wheel 2022-11-02 06:41:15 +01:00
Matthias
b82fc3fabd Merge pull request #7612 from freqtrade/reduce-indicator-population
avoid redundant indicator population for corr_pair list
2022-10-31 20:24:27 +01:00
Matthias
f5c694213b Merge pull request #7672 from freqtrade/dependabot/pip/develop/scikit-learn-1.1.3
Bump scikit-learn from 1.1.2 to 1.1.3
2022-10-31 19:27:33 +01:00
Matthias
4f1d1d4688 Merge pull request #7683 from freqtrade/add-statement-of-need
add statement of need to FreqAI docs
2022-10-31 18:59:45 +01:00
robcaulk
162056a362 fix flake8 2022-10-31 18:23:35 +01:00
robcaulk
97df232ac6 add a warning to __init__ for get_corr_dataframes 2022-10-31 18:18:00 +01:00
robcaulk
e6a70d95df Merge branch 'develop' into reduce-indicator-population 2022-10-31 18:13:55 +01:00
robcaulk
7b880a969a change elect to decide 2022-10-31 18:13:48 +01:00
robcaulk
fbc281e695 fix grammar, remove hyperlink 2022-10-31 18:10:31 +01:00
robcaulk
c3c6733b2d add statement of need to FreqAI docs 2022-10-31 18:03:53 +01:00
Matthias
0f2e540a64 Update windows documentation about 32bit Windows 2022-10-31 17:39:41 +01:00
Matthias
ef8007fc42 Merge pull request #7675 from freqtrade/dependabot/pip/develop/uvicorn-0.19.0
Bump uvicorn from 0.18.3 to 0.19.0
2022-10-31 17:33:58 +01:00
Matthias
b3f612ecfb Bump ccxt to 2.0.96 2022-10-31 17:21:52 +01:00
Matthias
735546ab89 Merge pull request #7674 from freqtrade/dependabot/pip/develop/nbconvert-7.2.3
Bump nbconvert from 7.2.1 to 7.2.3
2022-10-31 15:26:38 +01:00
robcaulk
66d8ed6c0b Merge remote-tracking branch 'origin/develop' into reduce-indicator-population 2022-10-31 09:42:01 +01:00
dependabot[bot]
aa3d6dc298 Bump uvicorn from 0.18.3 to 0.19.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.18.3 to 0.19.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.18.3...0.19.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 08:23:29 +00:00
Matthias
ccba651d37 Merge pull request #7671 from freqtrade/dependabot/pip/develop/plotly-5.11.0
Bump plotly from 5.10.0 to 5.11.0
2022-10-31 09:22:45 +01:00
Matthias
53bc72f27f Merge pull request #7680 from freqtrade/dependabot/pip/develop/psutil-5.9.3
Bump psutil from 5.9.2 to 5.9.3
2022-10-31 09:21:53 +01:00
Matthias
9c7e686db0 Merge pull request #7678 from freqtrade/dependabot/pip/develop/ccxt-2.0.90
Bump ccxt from 2.0.58 to 2.0.90
2022-10-31 08:50:10 +01:00
Matthias
ecd5e22960 Merge pull request #7673 from freqtrade/dependabot/pip/develop/pycoingecko-3.1.0
Bump pycoingecko from 3.0.0 to 3.1.0
2022-10-31 08:40:03 +01:00
Matthias
e010c01446 Merge pull request #7679 from freqtrade/dependabot/pip/develop/websockets-10.4
Bump websockets from 10.3 to 10.4
2022-10-31 08:36:28 +01:00
dependabot[bot]
be67eb9586 Bump psutil from 5.9.2 to 5.9.3
Bumps [psutil](https://github.com/giampaolo/psutil) from 5.9.2 to 5.9.3.
- [Release notes](https://github.com/giampaolo/psutil/releases)
- [Changelog](https://github.com/giampaolo/psutil/blob/master/HISTORY.rst)
- [Commits](https://github.com/giampaolo/psutil/compare/release-5.9.2...release-5.9.3)

---
updated-dependencies:
- dependency-name: psutil
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 07:35:55 +00:00
Matthias
51c97d8099 Merge pull request #7677 from freqtrade/dependabot/pip/develop/colorama-0.4.6
Bump colorama from 0.4.5 to 0.4.6
2022-10-31 08:34:44 +01:00
dependabot[bot]
39f145e7ba Bump websockets from 10.3 to 10.4
Bumps [websockets](https://github.com/aaugustin/websockets) from 10.3 to 10.4.
- [Release notes](https://github.com/aaugustin/websockets/releases)
- [Commits](https://github.com/aaugustin/websockets/compare/10.3...10.4)

---
updated-dependencies:
- dependency-name: websockets
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:55 +00:00
dependabot[bot]
ac86d19459 Bump ccxt from 2.0.58 to 2.0.90
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.0.58 to 2.0.90.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.0.58...2.0.90)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:52 +00:00
dependabot[bot]
7e12d03225 Bump colorama from 0.4.5 to 0.4.6
Bumps [colorama](https://github.com/tartley/colorama) from 0.4.5 to 0.4.6.
- [Release notes](https://github.com/tartley/colorama/releases)
- [Changelog](https://github.com/tartley/colorama/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tartley/colorama/compare/0.4.5...0.4.6)

---
updated-dependencies:
- dependency-name: colorama
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:42 +00:00
dependabot[bot]
a5824f5cf2 Bump pyarrow from 9.0.0 to 10.0.0
Bumps [pyarrow](https://github.com/apache/arrow) from 9.0.0 to 10.0.0.
- [Release notes](https://github.com/apache/arrow/releases)
- [Commits](https://github.com/apache/arrow/compare/go/v9.0.0...go/v10.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:38 +00:00
dependabot[bot]
7348a8074e Bump nbconvert from 7.2.1 to 7.2.3
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.1 to 7.2.3.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.1...v7.2.3)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:31 +00:00
dependabot[bot]
30f0a4dba2 Bump pycoingecko from 3.0.0 to 3.1.0
Bumps [pycoingecko](https://github.com/man-c/pycoingecko) from 3.0.0 to 3.1.0.
- [Release notes](https://github.com/man-c/pycoingecko/releases)
- [Changelog](https://github.com/man-c/pycoingecko/blob/master/CHANGELOG.md)
- [Commits](https://github.com/man-c/pycoingecko/compare/3.0.0...3.1.0)

---
updated-dependencies:
- dependency-name: pycoingecko
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:22 +00:00
dependabot[bot]
eb01bed33a Bump scikit-learn from 1.1.2 to 1.1.3
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.2 to 1.1.3.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.2...1.1.3)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:20 +00:00
dependabot[bot]
41c2dc2c68 Bump plotly from 5.10.0 to 5.11.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.10.0 to 5.11.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.10.0...v5.11.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-31 03:01:16 +00:00
robcaulk
a49edfbaee add tests for CatboostClassifier 2022-10-30 18:08:10 +01:00
robcaulk
d59a7fa2f9 remove analysis_lock and realign example hybrid strat 2022-10-30 17:07:33 +01:00
Matthias
32a03a89c6 Merge pull request #7665 from freqtrade/update_ci
Update generic CI's to ubuntu 22.04
2022-10-30 15:55:09 +01:00
Matthias
707b224af5 Update generic CI's to ubuntu 22.04 2022-10-30 15:09:53 +01:00
Matthias
391c3f56f7 Add typehint to corr_pairlist 2022-10-30 13:28:01 +01:00
Matthias
bd051cb205 Remove pandas workaround for pi image 2022-10-30 12:44:39 +01:00
Mark Regan
7053f81fa8 simplified predict and predict_proba using super(). Added duplicate class label check. 2022-10-30 09:48:30 +00:00
Matthias
cf4af2175c Merge pull request #7662 from markdregan/backtest_extra_returns_fix
Fix missing f-string from PR #7611
2022-10-30 10:47:06 +01:00
robcaulk
a2843165e1 fix leftovers from merge 2022-10-30 10:31:38 +01:00
robcaulk
52e15b2070 Merge remote-tracking branch 'origin/develop' into feat/freqai-rl-dev 2022-10-30 10:16:39 +01:00
robcaulk
d1a0874683 merge develop into feat/freqai-rl-dev 2022-10-30 10:13:03 +01:00
robcaulk
fc53054d43 leverage list length knowledge, f-string change 2022-10-30 10:12:14 +01:00
Emre
f98c7a2423 Remove loop of normalization from metadata 2022-10-30 10:12:14 +01:00
Matthias
5c14aeddc6 Add "--log-file" alias for "--logfile" 2022-10-30 09:50:54 +01:00
Matthias
5013351143 Rename "shuffle" parameter to "shuffle_freq" 2022-10-30 09:48:55 +01:00
Matthias
a323acf343 Improve ShufflePairlist to shuffle only once per candle 2022-10-30 09:46:12 +01:00
Mark Regan
c26fda282f fix missing f-string from PR #7611 2022-10-30 08:19:59 +00:00
robcaulk
650bb8b7d7 ensure full pair string is used for caching dataframes. If not, revert to old behavior. Update docs. 2022-10-29 22:26:49 +02:00
Matthias
352adaf127 Improve readability of is_time_to_refresh function 2022-10-29 19:45:46 +02:00
Matthias
b7d2c14f2c Improve trading limits docs to mention upper limits
#7654
2022-10-29 09:29:22 +02:00
Matthias
c23a9475e6 Move exchange utilities into separate module 2022-10-29 09:29:17 +02:00
Matthias
801e91c39e Merge pull request #7618 from wizrds/fix/docker-config-record
Update function in FreqAI interface to record FreqAI config params
2022-10-29 08:56:20 +02:00
Matthias
54c7122cc3 Merge pull request #7647 from freqtrade/combine_stop
Combine stop logic
2022-10-28 19:38:40 +02:00
Matthias
777af5517d Version bump develop version to 2022.11-dev 2022-10-28 19:38:19 +02:00
Mark Regan
6ef82dd8b6 minor change to return 2022-10-27 12:41:12 +01:00
Matthias
9e0b39cddc Properly invert sign
fixes 98ba57ff
2022-10-27 06:56:33 +02:00
Mark Regan
1c98640129 Delete MultiTargetClassifierTestStrategy.py 2022-10-26 13:11:10 +01:00
Mark Regan
a9a3ceadf7 Delete config_test.json 2022-10-26 13:10:18 +01:00
Matthias
255f38537e Simplify stoploss behavior by combining more commonalities 2022-10-26 07:14:33 +02:00
Matthias
6e0ca058f4 Update function-head for _get_stop_params 2022-10-26 07:12:49 +02:00
Matthias
cf6b75a3f3 Use combined stoploss_adjust where possible 2022-10-26 07:12:42 +02:00
Matthias
d831d7d317 Rename Freqai hybrid example
closes #7645
2022-10-26 06:47:34 +02:00
Matthias
110db8b241 Merge pull request #7621 from wizrds/fix/channel-api
Improved WebSocketChannel API
2022-10-26 06:31:42 +02:00
Timothy Pogue
b9bf9edb02 update rapidjson opts 2022-10-25 14:12:13 -06:00
Timothy Pogue
fd5f31368c fix indent in initial df send 2022-10-25 14:08:28 -06:00
Robert Caulk
1f5e92c0e7 Merge pull request #7642 from smarmau/patch-3
Update freqai-running.md
2022-10-25 21:39:35 +02:00
Mark Regan
217add70bd add strat and config for testing on PR 2022-10-25 20:07:39 +01:00
Matthias
604f966c82 Enhance documentation with full space override sample
closes #7643
2022-10-25 20:27:38 +02:00
Matthias
d94c0039eb Add missing import to hyperopt docs 2022-10-25 20:20:51 +02:00
Matthias
3fa50077c9 Don't use pydantic to type-verify outgoing messages 2022-10-25 20:00:53 +02:00
Mark Regan
47056eded3 multi target classifier working but not for parallel 2022-10-25 18:24:27 +01:00
Matthias
1ef38f137d Fix XGBoost regressor "used before assignment" 2022-10-25 13:37:04 +02:00
smarmau
f12d40bd6b Update freqai-running.md
Updated the follower section of the docs to include parameters to make the config schema validate on start up for follow_mode
2022-10-25 20:59:39 +11:00
Matthias
283dab667d Fix pydantic version pin 2022-10-25 09:04:31 +00:00
Matthias
f70c00dd4c Improve variance around worker timing test 2022-10-25 06:14:42 +00:00
Timothy Pogue
51be45547f remove np object, make default str 2022-10-24 12:23:54 -06:00
Timothy Pogue
32600a113f fix broadcast 2022-10-24 12:21:17 -06:00
Matthias
f93b6eec63 Improve timing for worker throttling 2022-10-24 20:09:13 +02:00
Matthias
e969479525 Merge pull request #7619 from freqtrade/stop/usehighlow
Stop/usehighlow
2022-10-24 20:04:36 +02:00
Matthias
5bbd861512 Update binance sample config with better blacklist 2022-10-24 19:30:53 +02:00
Matthias
10bdaa8671 Merge pull request #7627 from freqtrade/dependabot/pip/develop/progressbar2-4.1.1
Bump progressbar2 from 4.0.0 to 4.1.1
2022-10-24 19:20:13 +02:00
Matthias
a12ac2e8c4 Merge pull request #7629 from freqtrade/dependabot/pip/develop/python-rapidjson-1.9
Bump python-rapidjson from 1.8 to 1.9
2022-10-24 18:13:16 +02:00
Matthias
6669714a73 Update mal-formatted docstrings 2022-10-24 18:12:17 +02:00
Matthias
dd45a3f500 Merge pull request #7631 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.2
Bump types-python-dateutil from 2.8.19.1 to 2.8.19.2
2022-10-24 13:16:14 +02:00
Matthias
ba82cd9baa bump types-python-dateutil for pre-commit 2022-10-24 12:29:04 +02:00
Matthias
fd6ce6a9aa Merge pull request #7633 from freqtrade/dependabot/pip/develop/pandas-1.5.1
Bump pandas from 1.5.0 to 1.5.1
2022-10-24 12:28:11 +02:00
Matthias
7b7bb06291 Merge pull request #7634 from freqtrade/dependabot/pip/develop/scipy-1.9.3
Bump scipy from 1.9.2 to 1.9.3
2022-10-24 09:05:03 +02:00
Robert Caulk
137aa1756b Merge pull request #7593 from th0rntwig/prediction-shape
Fix constant PCA
2022-10-24 08:33:36 +02:00
Matthias
24fbbfc64b Merge pull request #7635 from freqtrade/dependabot/pip/develop/pyjwt-2.6.0
Bump pyjwt from 2.5.0 to 2.6.0
2022-10-24 08:26:43 +02:00
Matthias
d718b57cba Merge pull request #7632 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.7
Bump pymdown-extensions from 9.6 to 9.7
2022-10-24 08:26:06 +02:00
Matthias
b9bc91a881 Bump correct pandas version 2022-10-24 08:25:39 +02:00
dependabot[bot]
afe0a29fb0 Bump pandas from 1.5.0 to 1.5.1
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.5.0 to 1.5.1.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/main/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.5.0...v1.5.1)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 06:22:46 +00:00
Matthias
71c8a51d90 Merge pull request #7628 from freqtrade/dependabot/pip/develop/ccxt-2.0.58
Bump ccxt from 2.0.25 to 2.0.58
2022-10-24 08:21:46 +02:00
dependabot[bot]
af89c83fa5 Bump pymdown-extensions from 9.6 to 9.7
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.6 to 9.7.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.6...9.7)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 04:39:32 +00:00
Matthias
57364b776c Merge pull request #7630 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.7
Bump mkdocs-material from 8.5.6 to 8.5.7
2022-10-24 06:38:51 +02:00
Matthias
d8893a9d85 Merge pull request #7626 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.20.1
Bump pytest-asyncio from 0.19.0 to 0.20.1
2022-10-24 06:38:34 +02:00
Matthias
3a40ad87c6 Merge pull request #7615 from freqtrade/price_jump_warn
Add price jump warning
2022-10-24 06:27:53 +02:00
dependabot[bot]
06311b6a17 Bump pyjwt from 2.5.0 to 2.6.0
Bumps [pyjwt](https://github.com/jpadilla/pyjwt) from 2.5.0 to 2.6.0.
- [Release notes](https://github.com/jpadilla/pyjwt/releases)
- [Changelog](https://github.com/jpadilla/pyjwt/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jpadilla/pyjwt/commits)

---
updated-dependencies:
- dependency-name: pyjwt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:03:19 +00:00
dependabot[bot]
0328cd5026 Bump scipy from 1.9.2 to 1.9.3
Bumps [scipy](https://github.com/scipy/scipy) from 1.9.2 to 1.9.3.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.9.2...v1.9.3)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:03:14 +00:00
dependabot[bot]
bde4fbbc59 Bump types-python-dateutil from 2.8.19.1 to 2.8.19.2
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.1 to 2.8.19.2.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:57 +00:00
dependabot[bot]
e516190b63 Bump mkdocs-material from 8.5.6 to 8.5.7
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.6 to 8.5.7.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.6...8.5.7)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:54 +00:00
dependabot[bot]
3480549f4e Bump python-rapidjson from 1.8 to 1.9
Bumps [python-rapidjson](https://github.com/python-rapidjson/python-rapidjson) from 1.8 to 1.9.
- [Release notes](https://github.com/python-rapidjson/python-rapidjson/releases)
- [Changelog](https://github.com/python-rapidjson/python-rapidjson/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-rapidjson/python-rapidjson/compare/v1.8...v1.9)

---
updated-dependencies:
- dependency-name: python-rapidjson
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:50 +00:00
dependabot[bot]
54d029da7a Bump ccxt from 2.0.25 to 2.0.58
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.0.25 to 2.0.58.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.0.25...2.0.58)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:47 +00:00
dependabot[bot]
96f4de442a Bump progressbar2 from 4.0.0 to 4.1.1
Bumps [progressbar2](https://github.com/WoLpH/python-progressbar) from 4.0.0 to 4.1.1.
- [Release notes](https://github.com/WoLpH/python-progressbar/releases)
- [Changelog](https://github.com/wolph/python-progressbar/blob/develop/CHANGES.rst)
- [Commits](https://github.com/WoLpH/python-progressbar/compare/v4.0.0...v4.1.1)

---
updated-dependencies:
- dependency-name: progressbar2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:37 +00:00
dependabot[bot]
c29f96a643 Bump pytest-asyncio from 0.19.0 to 0.20.1
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.19.0 to 0.20.1.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Changelog](https://github.com/pytest-dev/pytest-asyncio/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.19.0...v0.20.1)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-24 03:02:32 +00:00
robcaulk
4d2b7a74f1 move record params to utils, use rapidjson 2022-10-23 20:51:32 +02:00
Timothy Pogue
bb06745227 fix tests 2022-10-23 12:25:39 -06:00
Timothy Pogue
07e813dfa0 change param record to only get certain params 2022-10-23 12:09:07 -06:00
Timothy Pogue
94b65a007a fix message typing in channel manager, minor improvements 2022-10-23 11:42:59 -06:00
th0rntwig
49ff51f11f Change storage loc and fix test fail 2022-10-23 16:24:02 +02:00
Matthias
10090a36d5 simplify throttle 2022-10-23 14:52:10 +02:00
Matthias
d0571464db Improve test for worker throttle 2022-10-23 14:20:59 +02:00
Matthias
c36141594e Simplify "refresh" condition 2022-10-23 13:56:11 +02:00
Timothy Pogue
9cffa3ca2b add comment in channel 2022-10-22 21:03:57 -06:00
Timothy Pogue
4cbea0fd00 Merge branch 'develop' of https://github.com/wizrds/freqtrade into fix/channel-api 2022-10-22 21:03:31 -06:00
Timothy Pogue
3d7a311caa removed sleep calls, better channel sending 2022-10-22 19:02:05 -06:00
Timothy Pogue
c4a2ee05e7 fix freqai test 2022-10-22 09:31:55 -06:00
Timothy Pogue
2b6d00dde4 initial channel api change 2022-10-22 09:30:18 -06:00
Matthias
abcc6dadf2 use pre-built pyarrow for pi image 2022-10-22 15:57:11 +02:00
Matthias
47e93dd2b2 Update documentation 2022-10-22 15:21:39 +02:00
Matthias
3a9853db10 use high/low for custom stoploss evaluation in backtesting 2022-10-22 12:52:13 +02:00
Matthias
84a194bcab Simplify stoploss logic by removing redundant condition 2022-10-22 11:57:59 +02:00
Matthias
547fd28811 Price-jump detection should only run once 2022-10-22 08:43:37 +02:00
Matthias
0ff7a0771d Move price_jump_warn to dataloading
it's not relevant for live data, and should only run when loading data
from disk.
2022-10-22 08:37:30 +02:00
Timothy Pogue
4464e91256 use self.identifier in full path 2022-10-21 19:53:33 -06:00
Timothy Pogue
5ee3b8cbbb update config recording to use all configs, fix tests 2022-10-21 19:48:26 -06:00
Robert Caulk
a85826bf24 Merge pull request #7611 from markdregan/backtest_extra_returns
Make extra_returns_per_train data available during backtest
2022-10-21 17:13:22 +02:00
Matthias
b715d9c521 Improve fee handling
closes #7586
2022-10-21 16:30:14 +02:00
Robert Caulk
410a744ee9 Merge pull request #7613 from freqtrade/fix_typo_fit_live_predictions_candles
fix typos - live predictions candles
2022-10-21 16:19:40 +02:00
Matthias
d1591883a6 add missing datetime conversion in fromJson 2022-10-21 07:01:47 +02:00
Matthias
212b511bbe Remove explicit rateLimit setting for freqAI config 2022-10-21 06:44:25 +02:00
Matthias
bd424a877b Add Trade from_json method 2022-10-20 20:33:08 +02:00
Matthias
0aa840792b Move persistence tests to package 2022-10-20 20:05:15 +02:00
Matthias
f4814a7d59 Improve test resiliance to small roundings 2022-10-20 19:57:56 +02:00
Matthias
107845afa8 Keep version number in docker versioning 2022-10-20 19:55:42 +02:00
Wagner Costa Santos
6606a0113f refactoring - remove unnecessary config file 2022-10-20 14:53:25 -03:00
Matthias
60cb11a44d Add price jump warning 2022-10-20 19:36:28 +02:00
Wagner Costa Santos
589944055e fix typos - live predictions candles 2022-10-20 12:15:41 -03:00
Wagner Costa Santos
52b60c5cbb Merge branch 'develop' into backtest_live_models 2022-10-20 11:59:37 -03:00
rcaulk
a9db668082 avoid redundant indicator population for corr_pair list 2022-10-20 16:30:32 +02:00
Mark Regan
073ce1659e remove un-used f-string 2022-10-20 14:26:10 +01:00
Mark Regan
295ba21389 Make extra_returns_per_train values available during backtest 2022-10-20 12:05:37 +01:00
Matthias
7192ed7be6 Fix bug with dataframe not being 0 indexed 2022-10-19 11:57:18 +02:00
Matthias
6e95b6667d Modify test ensuring we always have a 0 index 2022-10-19 11:57:05 +02:00
Matteo Manzi
51b410ac1a Update utils.md 2022-10-18 19:28:29 +02:00
Matteo Manzi
8c39b37223 Update bug_report.md 2022-10-18 19:26:09 +02:00
Matteo Manzi
35cc6aa966 Update data-analysis.md 2022-10-18 19:25:37 +02:00
Matteo Manzi
67850d92af Update question.md 2022-10-18 19:24:46 +02:00
Matteo Manzi
fe3d99b568 Update feature_request.md 2022-10-18 19:22:49 +02:00
Matteo Manzi
11d6d0be9e Update sql_cheatsheet.md 2022-10-18 19:22:07 +02:00
Matteo Manzi
abcbe7a421 Update updating.md 2022-10-18 19:15:59 +02:00
Matteo Manzi
d427226900 Update docker_quickstart.md 2022-10-18 19:15:20 +02:00
th0rntwig
033c5bd441 Make check constant pred labels agnostic 2022-10-18 12:55:47 +02:00
Matthias
c3d4fb9f1b Simplify backtest calling interface 2022-10-18 06:39:55 +02:00
Matthias
c7fff1213c Rate-limit EMC startup to avoid overwelming the queue 2022-10-17 20:46:15 +02:00
Matthias
880ddccaa8 Merge pull request #7590 from freqtrade/list-models
List models
2022-10-17 20:40:41 +02:00
Matthias
441032be25 Fix sys.stdout bug for CatboostRegressorMultiTarget 2022-10-17 19:48:27 +02:00
Matthias
b166c04cba Bring back asyncio.sleep to avoid overwelming the a consumer queue 2022-10-17 19:29:30 +02:00
Matthias
c8e103e4a4 Adjust typehints to match return value 2022-10-17 10:02:55 +00:00
Matthias
c2914feb12 Don't fail contract size repopulation if pair is no longer available 2022-10-17 09:55:18 +00:00
Matthias
08e684a3e8 Merge pull request #7598 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.1
Bump types-python-dateutil from 2.8.19 to 2.8.19.1
2022-10-17 08:36:08 +02:00
Matthias
caf907e202 Update date-util precommit types 2022-10-17 08:03:52 +02:00
Matthias
2a6b8dd88b Merge pull request #7601 from freqtrade/dependabot/pip/develop/mkdocs-1.4.1
Bump mkdocs from 1.4.0 to 1.4.1
2022-10-17 08:03:10 +02:00
Matthias
ef87976b7c Merge pull request #7600 from freqtrade/dependabot/pip/develop/ccxt-2.0.25
Bump ccxt from 1.95.30 to 2.0.25
2022-10-17 08:02:27 +02:00
Matthias
943f5f21ff Improve get_pair_dataframe doc wording 2022-10-17 07:23:44 +02:00
Matthias
abe4d32ead Update wording in get_analyzed_dataframe docs 2022-10-17 07:19:24 +02:00
Matthias
6cb14148aa Fix random test failure due to catboost bug
https://github.com/catboost/catboost/issues/2195
2022-10-17 07:00:44 +02:00
Matthias
6252ae466e Convert position_stacking to attribute of backtest 2022-10-17 06:57:26 +02:00
Matthias
8534dfb0d4 Extract backtest 1 candle from main function 2022-10-17 06:57:26 +02:00
Matthias
0e8cf366f5 Keep trade state in LocalTrade 2022-10-17 06:57:26 +02:00
dependabot[bot]
5aeea5b14c Bump ccxt from 1.95.30 to 2.0.25
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.95.30 to 2.0.25.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.95.30...2.0.25)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 04:35:36 +00:00
Matthias
49426a924d Merge pull request #7603 from freqtrade/dependabot/pip/develop/lightgbm-3.3.3
Bump lightgbm from 3.3.2 to 3.3.3
2022-10-17 06:34:41 +02:00
Matthias
c4caaf559b Merge pull request #7602 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.42
Bump sqlalchemy from 1.4.41 to 1.4.42
2022-10-17 06:33:01 +02:00
Matthias
db3def962b Merge pull request #7599 from freqtrade/dependabot/pip/develop/numpy-1.23.4
Bump numpy from 1.23.3 to 1.23.4
2022-10-17 06:32:40 +02:00
Matthias
ef2a14425b Merge pull request #7604 from freqtrade/dependabot/pip/develop/fastapi-0.85.1
Bump fastapi from 0.85.0 to 0.85.1
2022-10-17 06:31:39 +02:00
dependabot[bot]
7ec1e3b94f Bump fastapi from 0.85.0 to 0.85.1
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.85.0 to 0.85.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.85.0...0.85.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:55 +00:00
dependabot[bot]
600b886241 Bump lightgbm from 3.3.2 to 3.3.3
Bumps [lightgbm](https://github.com/microsoft/LightGBM) from 3.3.2 to 3.3.3.
- [Release notes](https://github.com/microsoft/LightGBM/releases)
- [Commits](https://github.com/microsoft/LightGBM/compare/v3.3.2...v3.3.3)

---
updated-dependencies:
- dependency-name: lightgbm
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:51 +00:00
dependabot[bot]
a9bb7db06c Bump sqlalchemy from 1.4.41 to 1.4.42
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.41 to 1.4.42.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:46 +00:00
dependabot[bot]
2ddfc7bbba Bump mkdocs from 1.4.0 to 1.4.1
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.4.0 to 1.4.1.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.4.0...1.4.1)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:37 +00:00
dependabot[bot]
8550eb513e Bump numpy from 1.23.3 to 1.23.4
Bumps [numpy](https://github.com/numpy/numpy) from 1.23.3 to 1.23.4.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.23.3...v1.23.4)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:22 +00:00
dependabot[bot]
dd3f62ac13 Bump types-python-dateutil from 2.8.19 to 2.8.19.1
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19 to 2.8.19.1.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-17 03:01:10 +00:00
Matthias
23a5a516f9 Merge pull request #7557 from freqtrade/add-metric-tracker
Add metric tracker to FreqAI
2022-10-16 18:20:07 +02:00
Matthias
e82baf5f60 Use helper-method to modify trades_open 2022-10-16 16:45:16 +02:00
Matthias
2b70106019 Merge pull request #7596 from iprogger/fix/backtest-counting-available-slots
Fix counting available trade slots in backtesting.
2022-10-16 16:45:09 +02:00
Evgeniy Vladimirov
82d75d8914 Fix tests that failed due to new strategy. 2022-10-16 14:59:55 +03:00
Matthias
f4059ccabe Merge pull request #7595 from matteoettam09/develop
Update stoploss.md
2022-10-16 13:29:45 +02:00
Matteo Manzi
b7dce8d24a Update stoploss.md 2022-10-16 12:02:27 +02:00
Evgeniy Vladimirov
de9f5660f3 Fix counting available trade slots in backtesting. 2022-10-16 12:56:59 +03:00
Matthias
dc50186d5b Merge branch 'develop' into list-models 2022-10-16 09:23:10 +02:00
Matthias
b6c096d3bc Simplify backtest condition 2022-10-16 09:22:56 +02:00
th0rntwig
20fc521771 Fix constant PCA 2022-10-15 23:30:12 +02:00
Robert Caulk
62ca822597 Merge pull request #7569 from Silur/develop
Add XGBoost random forest predictors to freqai
2022-10-15 16:09:26 +02:00
Robert Caulk
46ba3bb357 Merge pull request #7585 from aemr3/add-eval-set-catboost
Add eval set to CatboostClassifier
2022-10-15 16:08:13 +02:00
robcaulk
9135e631c0 :Merge branch 'develop' into add-metric-tracker 2022-10-15 15:54:41 +02:00
robcaulk
3b4402aaab Merge branch 'move-disk-writing-to-ram' into add-metric-tracker 2022-10-15 13:52:14 +02:00
robcaulk
99dbba6cad avoid reading from disk to instantiate large objects 2022-10-15 13:50:55 +02:00
robcaulk
d81eef0b70 add timestamps to each metric, use rapidjson 2022-10-15 13:23:01 +02:00
Matthias
05ca725e4d Remove no longer needed local state 2022-10-15 12:07:22 +02:00
Matthias
c8e6dad9cd use exit_reason to determine left open trades 2022-10-15 12:00:20 +02:00
Matthias
498289728d Fix catboost tests polluting CWD 2022-10-15 08:48:41 +02:00
Matthias
93ad3810fd Add test for list-freqaimodels 2022-10-15 08:20:06 +02:00
Matthias
4bfe58706b Generalize "path" variables for resolvers 2022-10-14 19:49:06 +02:00
robcaulk
b236e362ba Merge remote-tracking branch 'origin/develop' into add-metric-tracker 2022-10-14 19:00:49 +02:00
Matthias
2ef315e8c2 Add documentation for list-freqaimodels 2022-10-14 18:24:15 +02:00
Matthias
fda3a2827b add list-freqAI models command 2022-10-14 16:20:49 +00:00
Matthias
4a8cb3359b Fix broken tests 2022-10-14 16:07:49 +00:00
Matthias
9d4ba767c4 Update usages of search_all_objects 2022-10-14 14:50:52 +00:00
Matthias
1d8d360a12 update _search_all_objects functioning 2022-10-14 14:32:30 +00:00
Emre
7f05b44376 Add eval set to CatboostClassifier 2022-10-13 23:01:09 +03:00
Wagner Costa Santos
02fc59d473 Merge branch 'develop' into backtest_live_models 2022-10-13 15:52:19 -03:00
Wagner Costa Santos
4e1bf79239 backtest live models - documentation 2022-10-13 15:47:31 -03:00
Wagner Costa Santos
6919f3aa75 Backtest live models - fix utc date convert issue 2022-10-13 15:03:27 -03:00
Matthias
c6d2eed4fc Merge pull request #7582 from th0rntwig/improve-freqai-docs
Add model info
2022-10-13 19:57:56 +02:00
Matthias
f019471051 Don't round prices if no custom prices have been used
closes #7573
2022-10-13 19:51:42 +02:00
Matthias
7672586de9 Fix unreliable hyperopt test 2022-10-13 19:43:37 +02:00
Matthias
c71c0e8da0 Fix some typos 2022-10-13 18:16:39 +02:00
Wagner Costa Santos
93fe2b6446 Merge branch 'develop' into backtest_live_models 2022-10-13 11:22:58 -03:00
Matthias
c4d60184cd Merge pull request #7581 from TheJoeSchr/develop
Docs: add `ignore_buying_expired_candle_after` and `order pricing` to summary
2022-10-13 14:23:18 +02:00
Matthias
28be784c2e Fix kucoin live test failure 2022-10-13 12:17:53 +00:00
Matthias
2045780810 Reinstate default of 1000% for roi
closes #7583
2022-10-13 11:58:32 +00:00
th0rntwig
f8331e0326 Add model libs info 2022-10-13 10:53:25 +02:00
Matthias
e3ca740704 Merge pull request #7558 from wizrds/feat/queue-per-client-ws
Refactor broadcasting in Message Websocket
2022-10-13 09:52:29 +02:00
Matthias
75f1a123eb Move "tickers_needed" check to pairlistmanager to cover all pairlists 2022-10-13 06:58:17 +00:00
Matthias
39c27cfc37 Don't fail if fetchTickers is not availlable 2022-10-13 06:58:02 +00:00
Joe Schr
96e6c1b190 Docs: add ignore_buying_expired_candle_after and order pricing to summary 2022-10-12 20:11:17 +02:00
Matthias
a6f6a17393 Type fetch_ticker 2022-10-11 21:42:48 +02:00
Matthias
52e9528361 Improve ticker type 2022-10-11 19:33:07 +00:00
Matthias
35f3f988d4 Improve price handling in priceFilter 2022-10-11 19:33:05 +00:00
Matthias
afaca2167c use Type Alias for Ticker result to improve keyerror resiliancy 2022-10-11 19:33:02 +00:00
Robert Caulk
8ab600f7b2 Merge pull request #7576 from freqtrade/bugfix-tensorboard
catboost tensorboard bugfix
2022-10-11 21:27:42 +02:00
robcaulk
1e31be562e remove whitespace 2022-10-11 21:05:42 +02:00
robcaulk
dba1b573bc remove tensorboard dir from other pred models 2022-10-11 19:49:24 +02:00
robcaulk
88b8f18639 add test for metric tracker 2022-10-11 19:24:47 +02:00
robcaulk
5b5bb8aab5 catboost tensorboard bugfix 2022-10-11 19:05:46 +02:00
silur
30a45bb597 add XGBoostRF models to freqai test interface 2022-10-11 13:17:21 +02:00
Matthias
8f2a887a58 Merge pull request #7572 from wizrds/fix/ws-client-timestamp
Test WebSocket client fix
2022-10-11 08:49:47 +02:00
Timothy Pogue
16c0fef72e update timestamp calculation to correct int, remove internal ping interval 2022-10-11 00:10:57 -06:00
Timothy Pogue
eb8c89fe31 move send delay to relay 2022-10-10 23:32:10 -06:00
Timothy Pogue
5ada5eb540 fix error message, update exception import 2022-10-10 23:30:43 -06:00
Matthias
28f0a35e73 Merge pull request #7549 from froggleston/discord_sendmsg
Add support for dp.send_msg() to webhooks
2022-10-11 06:35:29 +02:00
Robert Caulk
2e34aa9f04 Merge pull request #7544 from th0rntwig/prediction-shape
Remove constant labels from prediction
2022-10-10 21:24:25 +02:00
Robert Caulk
7bcb7d9a1a Merge pull request #7554 from initrv/add-catboost-tensorboard
Add tensorboard for catboost
2022-10-10 21:03:45 +02:00
robcaulk
c9eee2eba4 revert syntax 2022-10-10 20:50:54 +02:00
robcaulk
724be0afef add tensorboard asset to fai doc 2022-10-10 20:39:31 +02:00
Wagner Costa Santos
01e3507e4c fix freqai backtest live models 2022-10-10 15:15:43 -03:00
Wagner Costa Santos
88418d524a Merge branch 'develop' into backtest_live_models 2022-10-10 15:14:59 -03:00
Matthias
341cfc0cb6 Merge pull request #7571 from freqtrade/feat/freqaimodels
document user_data/freqaimodels
2022-10-10 19:57:23 +02:00
Wagner Costa Santos
3081e73f8a Merge branch 'develop' into backtest_live_models 2022-10-10 14:53:45 -03:00
Matthias
5ffa3cb9ba Update docs to mention freqaimodels directory
closes #7570
2022-10-10 18:11:32 +02:00
Matthias
ee0d90d1aa Automatically create freqai models directory 2022-10-10 18:04:54 +02:00
Matthias
002a46c5a0 Fix typo in docstring 2022-10-10 14:16:37 +00:00
silur
2ad086dd7a add XGBoost random forest predictors to freqai 2022-10-10 14:38:43 +02:00
Matthias
eaae9c9e03 Update docstring format 2022-10-10 12:19:29 +00:00
Matthias
60de192d47 Update Classifier docstrings 2022-10-10 12:13:41 +00:00
Matthias
d3b2b2972e Update pairlist docstring to be less missleading 2022-10-10 12:01:39 +00:00
Matthias
6be9b81f4c Fix workflow syntax error 2022-10-10 12:12:30 +02:00
Matthias
53e685f97b Merge pull request #7568 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.2
Bump types-requests from 2.28.11 to 2.28.11.2
2022-10-10 10:12:20 +02:00
Matthias
d0b163764e Run coveralls only when needed 2022-10-10 07:42:27 +00:00
Matthias
81ed80c594 Merge pull request #7566 from freqtrade/dependabot/pip/develop/pytest-mock-3.10.0
Bump pytest-mock from 3.9.0 to 3.10.0
2022-10-10 09:26:58 +02:00
Matthias
f120c66987 types-requests - update pre-commit 2022-10-10 08:52:38 +02:00
dependabot[bot]
5218fb1df5 Bump types-requests from 2.28.11 to 2.28.11.2
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11 to 2.28.11.2.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 06:49:11 +00:00
Matthias
2b1c1afc46 Merge pull request #7567 from freqtrade/dependabot/pip/develop/types-tabulate-0.9.0.0
Bump types-tabulate from 0.8.11 to 0.9.0.0
2022-10-10 08:48:02 +02:00
Matthias
9412d76934 Merge pull request #7564 from freqtrade/dependabot/pip/develop/scipy-1.9.2
Bump scipy from 1.9.1 to 1.9.2
2022-10-10 08:31:51 +02:00
Matthias
d9ff072dd6 Merge pull request #7563 from freqtrade/dependabot/pip/develop/mypy-0.982
Bump mypy from 0.981 to 0.982
2022-10-10 08:31:01 +02:00
Matthias
13529fabb1 types-tabulate in pre-commit 2022-10-10 08:16:26 +02:00
Matthias
884410a761 Merge pull request #7565 from freqtrade/dependabot/pip/develop/ccxt-1.95.30
Bump ccxt from 1.95.2 to 1.95.30
2022-10-10 08:12:24 +02:00
Matthias
3fcba2fb8d Remove hard-pin on python version in ci 2022-10-10 08:03:40 +02:00
Matthias
c55bea2a5e Merge pull request #7562 from freqtrade/dependabot/pip/develop/tabulate-0.9.0
Bump tabulate from 0.8.10 to 0.9.0
2022-10-10 07:09:52 +02:00
dependabot[bot]
c1dfa837bd Bump mypy from 0.981 to 0.982
Bumps [mypy](https://github.com/python/mypy) from 0.981 to 0.982.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.981...v0.982)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 04:56:43 +00:00
Matthias
9776067028 Merge pull request #7561 from freqtrade/dependabot/pip/develop/nbconvert-7.2.1
Bump nbconvert from 7.0.0 to 7.2.1
2022-10-10 06:55:50 +02:00
dependabot[bot]
935adc99ae Bump types-tabulate from 0.8.11 to 0.9.0.0
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.8.11 to 0.9.0.0.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:03:06 +00:00
dependabot[bot]
9d2f281ca6 Bump pytest-mock from 3.9.0 to 3.10.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.9.0 to 3.10.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.9.0...v3.10.0)

---
updated-dependencies:
- dependency-name: pytest-mock
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:02:57 +00:00
dependabot[bot]
8bb7b94f8d Bump ccxt from 1.95.2 to 1.95.30
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.95.2 to 1.95.30.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.95.2...1.95.30)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:02:53 +00:00
dependabot[bot]
dab2759c21 Bump scipy from 1.9.1 to 1.9.2
Bumps [scipy](https://github.com/scipy/scipy) from 1.9.1 to 1.9.2.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.9.1...v1.9.2)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:02:43 +00:00
dependabot[bot]
40afa079b1 Bump tabulate from 0.8.10 to 0.9.0
Bumps [tabulate](https://github.com/astanin/python-tabulate) from 0.8.10 to 0.9.0.
- [Release notes](https://github.com/astanin/python-tabulate/releases)
- [Changelog](https://github.com/astanin/python-tabulate/blob/master/CHANGELOG)
- [Commits](https://github.com/astanin/python-tabulate/compare/v0.8.10...v0.9.0)

---
updated-dependencies:
- dependency-name: tabulate
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:02:31 +00:00
dependabot[bot]
337ea04ba0 Bump nbconvert from 7.0.0 to 7.2.1
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.0.0 to 7.2.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/7.0.0...v7.2.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-10 03:02:27 +00:00
Timothy Pogue
db8cf6c957 disable ping interval in client 2022-10-09 18:51:52 -06:00
Timothy Pogue
71bbffd10a update ws channel send to add data to queue 2022-10-09 18:49:04 -06:00
Timothy Pogue
2c76dd9e39 change wait timeout to 30 seconds to better support reverse proxies 2022-10-09 15:23:56 -06:00
Timothy Pogue
2f64a08623 set channel queue maxsize to 32 2022-10-09 15:11:58 -06:00
Timothy Pogue
3e8d8fd1b0 refactor broadcasting to a queue per client 2022-10-09 15:04:52 -06:00
robcaulk
a4aa1b972c isolate and standardize location of tensorboard files, add doc, ensure backtesting functionality 2022-10-09 21:11:37 +02:00
robcaulk
76b33359a9 add an optional metric tracker to collect train timings, inference timings, and cpu load data 2022-10-09 20:22:42 +02:00
Matthias
a10b2d003f Add freqai timeframe validation (incl. test)
closes #7543
2022-10-09 14:40:25 +02:00
Matthias
4623c3ec1d Improve test resiliance 2022-10-09 10:55:38 +02:00
Matthias
4f967fed97 Improve ccxt tests 2022-10-09 10:52:01 +02:00
Matthias
db1132bebd ensure required_candle_call_count is always set
closes #7552
2022-10-09 09:29:37 +02:00
Matthias
8e3a4eca41 Remove unused type:ignore 2022-10-09 09:15:11 +02:00
th0rntwig
4daf0000c7 Move check and add log warning 2022-10-08 16:15:48 +02:00
robcaulk
8d7adfabe9 clean RL tests to avoid dir pollution and increase speed 2022-10-08 12:10:38 +02:00
Matthias
9454fb8f7b Fix discord message sending 2022-10-07 20:59:49 +02:00
Matthias
df5ae66252 Refactor webhook method 2022-10-07 20:52:52 +02:00
Matthias
1aedf08ba5 Update tests 2022-10-07 20:48:37 +02:00
Matthias
ed12cddf3f Update docs with new wording for webhook settings 2022-10-07 20:45:15 +02:00
Matthias
fb2f2d9a39 Allow webhook message setting directly 2022-10-07 20:44:47 +02:00
Emre
e337d4b78a Reset dataframe index after slice 2022-10-07 20:00:05 +02:00
Matthias
bc09c812a8 Merge pull request #7551 from wizrds/fix/test-ws-client
Test WS Client typo fix
2022-10-07 19:24:41 +02:00
Timothy Pogue
0460f362fb typo in handle func name 2022-10-07 10:41:06 -06:00
froggleston
8fcb80df69 Add support for dp.send_msg() to webhooks 2022-10-07 16:06:30 +01:00
initrv
ec7af83c87 add tensorboard to freqai reqs 2022-10-07 17:13:19 +03:00
Matthias
d42fb15608 Improve generic exception handler 2022-10-07 16:05:41 +02:00
Matthias
a5bf34587a Improve fiat-convert behavior in case of coingecko outage 2022-10-07 15:46:31 +02:00
Matthias
fab6b2f105 Align datetime import in fiat_convert 2022-10-07 15:23:32 +02:00
Matthias
1cabfe8d0a Merge pull request #7545 from wizrds/feat/test-ws-client
Message WebSocket Testing client
2022-10-07 15:23:22 +02:00
Matthias
3e258e000e Don't set use_db without resetting it 2022-10-07 07:05:56 +02:00
Timothy Pogue
1595e5fd8a small fix in protocol 2022-10-06 21:00:28 -06:00
Timothy Pogue
b92b98af29 fix formatting 2022-10-06 14:33:04 -06:00
Timothy Pogue
3e08c6e540 testing/debugging ws client script 2022-10-06 14:12:44 -06:00
Matthias
6e179c7699 Only store tick refresh time if we cache 2022-10-06 19:35:38 +02:00
th0rntwig
a9d5e04a43 Remove constant labels from prediction 2022-10-06 19:26:33 +02:00
initrv
86c781798a Add сatboost train_dir for tensorboard 2022-10-06 19:59:35 +03:00
Matthias
7c702dd106 Add cache eviction 2022-10-06 14:51:52 +00:00
Matthias
92a1d58df8 Evict cache if we didn't get new candles for X hours 2022-10-06 14:51:52 +00:00
Matthias
f475c6c305 Add Specific, time-sensitive test-case for new behavior 2022-10-06 14:51:52 +00:00
Matthias
638515bce5 Test advanced caching 2022-10-06 14:51:52 +00:00
Matthias
678272e2ef Improve test formatting 2022-10-06 14:51:52 +00:00
Matthias
cea017e79f Age out old candles 2022-10-06 14:51:52 +00:00
Matthias
b7f26e4f96 Update some formatting issues 2022-10-06 14:51:52 +00:00
Matthias
02e238a944 Combine ohlcv data in exchange class for live mode 2022-10-06 14:51:52 +00:00
Matthias
b9f1872d51 Install RL dependencies as dev dependency 2022-10-06 08:28:15 +02:00
Matthias
edb942f662 Add typing import to sampleStrategy 2022-10-06 06:30:38 +02:00
robcaulk
e5204101d9 add tensorboard back to reqs to keep default integration working (and for docker) 2022-10-05 21:34:10 +02:00
robcaulk
488739424d fix reward inconsistency in template 2022-10-05 20:55:50 +02:00
Matthias
9b1fb02df8 Refactor generic data generation to conftest 2022-10-05 18:09:26 +02:00
robcaulk
017e476f49 add extras to setup.py for RL 2022-10-05 17:20:40 +02:00
robcaulk
cf10a76a2a bring back Trades.use_db = True 2022-10-05 17:06:18 +02:00
robcaulk
17fb7f7a3b gym needs 0.21 to match stable_baselines3 2022-10-05 16:46:02 +02:00
robcaulk
ab4705efd2 provide background and goals for RL in doc 2022-10-05 16:39:38 +02:00
robcaulk
b5dd92f85a remove RL reqs from general FAI reqs 2022-10-05 16:25:24 +02:00
robcaulk
9cb4832c87 merge feat/freqai into dev-merge-rl 2022-10-05 16:16:07 +02:00
robcaulk
5cfadc689b Merge remote-tracking branch 'origin/develop' into fix-freqai-rl-remote 2022-10-05 16:05:37 +02:00
robcaulk
936ca24482 separate RL install from general FAI install, update docs 2022-10-05 15:58:54 +02:00
robcaulk
9c73411ac2 Merge remote-tracking branch 'origin/develop' into dev-merge-rl 2022-10-05 15:21:45 +02:00
Matthias
b0eff4160f Merge pull request #7538 from freqtrade/improve-freqai-tests
improve freqai tests
2022-10-05 15:15:20 +02:00
Matthias
7dbb78da95 Losely pin pydantic to avoid dependency problems
closes #7537
2022-10-05 13:14:36 +00:00
robcaulk
0d67afe15b allow less precision, ensure regex is catching the right chars 2022-10-05 14:38:50 +02:00
robcaulk
4edb30bfa8 isort 2022-10-05 14:11:19 +02:00
robcaulk
0e0bda8f13 improve freqai tests 2022-10-05 14:08:03 +02:00
Robert Caulk
8c7f478724 Update requirements-freqai.txt 2022-10-05 10:59:33 +02:00
Robert Caulk
52b774b5eb Merge branch 'develop' into feat/freqai-rl-dev 2022-10-05 09:37:17 +02:00
Matthias
22043deffa Merge pull request #7535 from mciepluc/develop
Fixes #7534 - add leverage in check_order_replace/replace_order
2022-10-05 08:54:19 +02:00
Matthias
ca913fb29d Add leveraged test-case for order-adjustment 2022-10-05 07:28:34 +02:00
Marek Cieplucha
4df533feb0 Add missing comma 2022-10-04 21:16:30 +02:00
Robert Caulk
a1a598dcab Merge pull request #7519 from freqtrade/dependabot/pip/develop/catboost-1.1
Bump catboost from 1.0.6 to 1.1
2022-10-04 21:08:11 +02:00
Marek Cieplucha
5019300d5c Fix for #7534 in bot 2022-10-04 20:28:47 +02:00
Marek Cieplucha
3264d7b890 Fix for #7534 in backtesting 2022-10-04 20:27:13 +02:00
Matthias
c1d8ade2fa Improve supported exchange check by supporting exchange aliases 2022-10-04 19:28:57 +02:00
Matthias
68db0bc647 move check_exchange to exchange package 2022-10-04 18:25:23 +02:00
Matthias
a6296be2f5 Update market_change datatype 2022-10-04 10:27:04 +00:00
Matthias
eb8eebe492 Reset open_order_id after trade cancel
Part of #7526
2022-10-04 10:08:58 +00:00
Matthias
016e438468 Calculate market-change in hyperopt
closes #7532
2022-10-04 08:37:07 +00:00
Matthias
bc6729f724 Improve readability of "now_is_time_to_refresh" 2022-10-04 06:56:10 +02:00
Matthias
7f308c5186 Remove last occurance of timerange index 2022-10-04 06:56:10 +02:00
Matthias
7f475e37d7 refactor refresh_latest_ohlcv 2022-10-04 06:56:06 +02:00
Matthias
dc5c3a0ed2 Merge pull request #7523 from freqtrade/dependabot/pip/develop/ccxt-1.95.2
Bump ccxt from 1.93.98 to 1.95.2
2022-10-03 20:54:11 +02:00
Matthias
4c83552f3b Merge pull request #7506 from freqtrade/cancel_partial_sell
Support cancellation partially filled exit orders
2022-10-03 19:36:51 +02:00
Matthias
f0c04212f2 Merge pull request #7512 from freqtrade/add-data-hist-preds
add close price and date to `historic_predictions.pkl`
2022-10-03 19:27:45 +02:00
robcaulk
292d72d593 automatically handle model_save_type for user 2022-10-03 18:42:20 +02:00
Matthias
ca22d857b7 Improve handling of trades that fail to cancel as they are closed 2022-10-03 18:09:53 +02:00
Robert Caulk
3585742b43 remove trailing whitespace 2022-10-03 17:28:45 +02:00
Robert Caulk
74277c7eff Merge pull request #7511 from th0rntwig/improve-freqai-docs
Fix typos and correct/improve descriptions
2022-10-03 14:48:03 +02:00
Robert Caulk
265795824b make default type for close_price and date_pred np.nan 2022-10-03 11:58:22 +02:00
th0rntwig
c2d0eca9d8 Remove backticks around FreqAI 2022-10-03 11:01:58 +02:00
Robert Caulk
6ecd92de4a Allow updating without changing identifier 2022-10-03 09:55:57 +02:00
Matthias
3921615023 Merge pull request #7524 from freqtrade/dependabot/pip/develop/mypy-0.981
Bump mypy from 0.971 to 0.981
2022-10-03 09:00:27 +02:00
Matthias
ac7df58447 Merge pull request #7516 from freqtrade/dependabot/pip/develop/time-machine-2.8.2
Bump time-machine from 2.8.1 to 2.8.2
2022-10-03 08:59:13 +02:00
dependabot[bot]
a78d6a05a6 Bump mypy from 0.971 to 0.981
Bumps [mypy](https://github.com/python/mypy) from 0.971 to 0.981.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.971...v0.981)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 06:10:30 +00:00
Matthias
616d69e0bd Merge pull request #7517 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.6
Bump pymdown-extensions from 9.5 to 9.6
2022-10-03 08:10:01 +02:00
Matthias
ae0a39521b Merge pull request #7518 from freqtrade/dependabot/pip/develop/pytest-cov-4.0.0
Bump pytest-cov from 3.0.0 to 4.0.0
2022-10-03 08:09:01 +02:00
dependabot[bot]
3c789bca63 Bump pymdown-extensions from 9.5 to 9.6
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.5 to 9.6.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.5...9.6)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 05:07:25 +00:00
Matthias
0af124701b Merge pull request #7522 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.6
Bump mkdocs-material from 8.5.3 to 8.5.6
2022-10-03 07:06:19 +02:00
Matthias
4cf4642a6c Parametrize EMC test 2022-10-03 06:40:21 +02:00
dependabot[bot]
f3d4c56b3b Bump pytest-cov from 3.0.0 to 4.0.0
Bumps [pytest-cov](https://github.com/pytest-dev/pytest-cov) from 3.0.0 to 4.0.0.
- [Release notes](https://github.com/pytest-dev/pytest-cov/releases)
- [Changelog](https://github.com/pytest-dev/pytest-cov/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-cov/compare/v3.0.0...v4.0.0)

---
updated-dependencies:
- dependency-name: pytest-cov
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 04:35:34 +00:00
dependabot[bot]
6defa62297 Bump mkdocs-material from 8.5.3 to 8.5.6
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.3 to 8.5.6.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.3...8.5.6)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 04:35:31 +00:00
Matthias
9691524ade Merge pull request #7520 from freqtrade/dependabot/pip/develop/mkdocs-1.4.0
Bump mkdocs from 1.3.1 to 1.4.0
2022-10-03 06:34:36 +02:00
Matthias
a6bc00501f Merge pull request #7521 from freqtrade/dependabot/pip/develop/pytest-mock-3.9.0
Bump pytest-mock from 3.8.2 to 3.9.0
2022-10-03 06:34:00 +02:00
dependabot[bot]
373132e135 Bump ccxt from 1.93.98 to 1.95.2
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.93.98 to 1.95.2.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.93.98...1.95.2)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 03:01:50 +00:00
dependabot[bot]
70d6c27e3e Bump pytest-mock from 3.8.2 to 3.9.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.8.2 to 3.9.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.8.2...v3.9.0)

---
updated-dependencies:
- dependency-name: pytest-mock
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 03:01:38 +00:00
dependabot[bot]
0a7e4d6da5 Bump mkdocs from 1.3.1 to 1.4.0
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.3.1 to 1.4.0.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.3.1...1.4.0)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 03:01:36 +00:00
dependabot[bot]
f722104f7e Bump catboost from 1.0.6 to 1.1
Bumps [catboost](https://github.com/catboost/catboost) from 1.0.6 to 1.1.
- [Release notes](https://github.com/catboost/catboost/releases)
- [Changelog](https://github.com/catboost/catboost/blob/master/RELEASE.md)
- [Commits](https://github.com/catboost/catboost/compare/v1.0.6...v1.1)

---
updated-dependencies:
- dependency-name: catboost
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 03:01:30 +00:00
dependabot[bot]
6f7b75d4b0 Bump time-machine from 2.8.1 to 2.8.2
Bumps [time-machine](https://github.com/adamchainz/time-machine) from 2.8.1 to 2.8.2.
- [Release notes](https://github.com/adamchainz/time-machine/releases)
- [Changelog](https://github.com/adamchainz/time-machine/blob/main/HISTORY.rst)
- [Commits](https://github.com/adamchainz/time-machine/compare/2.8.1...2.8.2)

---
updated-dependencies:
- dependency-name: time-machine
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-10-03 03:01:13 +00:00
robcaulk
b70f18f4c3 add close price and date to historic_predictions 2022-10-02 18:33:39 +02:00
Matthias
1727f99b58 Fix missing mock 2022-10-02 18:14:00 +02:00
th0rntwig
21440eaec2 Fix typos and correct/improve descriptions 2022-10-02 12:47:58 +02:00
Matthias
d0b8c8b1a0 improve invalid canceled order response handling 2022-10-02 08:45:41 +02:00
Matthias
a5bc75b48c Merge branch 'develop' into cancel_partial_sell 2022-10-02 08:38:18 +02:00
Matthias
e686faf1bc Remove faulty test cleanup 2022-10-02 08:37:37 +02:00
Matthias
9bb061073d Improve tests 2022-10-02 08:36:34 +02:00
Matthias
308fa43007 Don't use magicmock as trade object 2022-10-02 08:30:19 +02:00
Matthias
564318415e Improve test resiliance 2022-10-02 08:12:03 +02:00
Matthias
2c94ed2e59 Decrease message throughput
fixes memory leak by queue raising indefinitely
2022-10-01 21:23:33 +02:00
robcaulk
cf882fa84e fix tests 2022-10-01 20:26:41 +02:00
robcaulk
ab9d781b06 add reinforcement learning page to docs 2022-10-01 17:50:05 +02:00
robcaulk
048cb95bd6 Merge remote-tracking branch 'origin/develop' into dev-merge-rl 2022-10-01 17:48:47 +02:00
Robert Caulk
3e34f10e3d Merge pull request #7508 from aemr3/fix-pca-errors
Fix feature list match for PCA
2022-10-01 16:50:29 +02:00
Robert Caulk
84b822dbf1 Merge pull request #7495 from th0rntwig/train-test-shuffle
Set train-test-split parameters shuffle=False as default and remove stratification
2022-10-01 14:52:14 +02:00
robcaulk
f4c6b99d63 remove commented lines 2022-10-01 14:23:15 +02:00
robcaulk
cd514cf15d fix inlier metric in backtesting 2022-10-01 14:18:46 +02:00
robcaulk
f2b875483f ensure raw features match when PCA is employed 2022-10-01 13:14:59 +02:00
robcaulk
51556e08c3 Merge branch 'develop' into pr/th0rntwig/7495 2022-10-01 12:45:08 +02:00
Matthias
6702a1b219 Update test to verify webhook won't log-spam on new messagetypes 2022-10-01 09:45:58 +02:00
Matthias
8f8b5cc28e Disable log spam from analyze_df in webhook/discord 2022-10-01 09:35:21 +02:00
Matthias
201bbbcee6 Okx formatting 2022-10-01 09:32:16 +02:00
Matthias
a96aa568bf Add binance futures mode checks
closes #7505
2022-10-01 09:23:41 +02:00
Matthias
545d652352 Update okx exception wording 2022-10-01 09:02:05 +02:00
Matthias
fad9026939 Update updating docs
closes #7507
2022-10-01 08:35:51 +02:00
Emre
cdc01a0781 Fix feature list match for pca 2022-09-30 15:22:05 -07:00
Matthias
47ef99f588 Simplify interface to notify_exit_cancel 2022-09-30 17:18:27 +02:00
Matthias
819488c906 Improve exit message wording 2022-09-30 17:04:34 +02:00
Matthias
c946d30596 Add partial cancel message 2022-09-30 16:24:16 +02:00
Matthias
649879192b Implement partial sell 2022-09-30 16:24:16 +02:00
Matthias
d462f40299 Simple test improvements 2022-09-30 16:24:07 +02:00
Matthias
bd664580fb Don't unnecessarily reset order_id 2022-09-30 15:43:23 +02:00
Matthias
cc06c60fd8 Fix pandas deprecation warnings from freqAI 2022-09-30 15:43:23 +02:00
Matthias
0d8dfc1a92 Force joblib update via setup.py 2022-09-30 13:47:26 +02:00
Matthias
f6a0d677d2 Remove pointless notification assignment 2022-09-30 09:34:00 +02:00
Matthias
7dd984e25e Simplify cancel_entry 2022-09-30 09:34:00 +02:00
Matthias
561600e98b Remove false test statements
a trade is ONLY closed on `.close()` - which will only happen once the last order has been filled.
2022-09-30 09:34:00 +02:00
Matthias
2d2ff2fff6 remove unnecessary assignments and comments 2022-09-30 09:34:00 +02:00
Matthias
2ce265bed3 Merge pull request #7473 from freqtrade/feat/producerpairlist
Producerpairlist
2022-09-30 06:54:15 +02:00
Matthias
34951f59d2 Update failing tests 2022-09-30 06:44:19 +02:00
robcaulk
be48131185 make shuffle false in constants 2022-09-30 00:33:08 +02:00
robcaulk
38aca8e908 fix failing svm test 2022-09-30 00:22:31 +02:00
Robert Caulk
09e834fa21 Merge pull request #7492 from wizrds/freqai-rl-dev
Shutdown Subproc Env on signal
2022-09-30 00:19:44 +02:00
Matthias
578da343dc Merge pull request #7491 from freqtrade/partial_close_leverage
Partial close leverage
2022-09-29 19:42:16 +02:00
Matthias
b4fb28e4ef Update tests for new dataload strategy 2022-09-29 19:18:52 +02:00
Matthias
00965d8c06 Default to assume stored data only contains complete candles
closes #7468
2022-09-29 19:18:52 +02:00
Robert Caulk
6e74d46660 Ensure 1 thread available 2022-09-29 14:02:00 +02:00
Robert Caulk
7ef56e3029 Ensure at least 1 thread is available 2022-09-29 14:01:22 +02:00
Robert Caulk
555cc42630 Ensure 1 thread is available (for testing purposes) 2022-09-29 14:00:09 +02:00
Wagner Costa Santos
6845a5c6ea backtest_live_models - refactoring after PR review 2022-09-29 01:48:38 -03:00
Robert Caulk
dcf6ebe273 Update BaseReinforcementLearningModel.py 2022-09-29 00:37:03 +02:00
robcaulk
83343dc2f1 control number of threads, update doc 2022-09-29 00:10:18 +02:00
th0rntwig
772abfc6f0 Add default value for shuffle in docs 2022-09-28 19:29:02 +02:00
th0rntwig
683b084323 Set train-test-split shuffle=False as default and remove stratification 2022-09-28 18:23:56 +02:00
Wagner Costa Santos
df0927cdee Merge branch 'develop' into backtest_live_models 2022-09-28 08:49:15 -03:00
Wagner Costa Santos
55ebbeec18 backtest_live models tests refactoring 2022-09-28 08:48:32 -03:00
Timothy Pogue
099137adac remove hasattr calls 2022-09-27 22:35:15 -06:00
Timothy Pogue
9e36b0d2ea fix formatting 2022-09-27 22:02:33 -06:00
Timothy Pogue
caa47a2f47 close subproc env on shutdown 2022-09-28 03:06:05 +00:00
Matthias
255c748ca2 Update docs for new trade_position behavior 2022-09-27 19:55:17 +02:00
Matthias
30a5bb08dd partial exits should account for leverage 2022-09-27 19:53:55 +02:00
Matthias
8eda3a45a3 Test backest detail with leverage 2022-09-27 19:52:34 +02:00
Wagner Costa Santos
3c002ff752 Merge branch 'develop' into backtest_live_models 2022-09-27 10:27:47 -03:00
Wagner Costa Santos
0be115de9c backtest_live_models - added new tests and refactoring 2022-09-27 10:26:57 -03:00
Wagner Costa Santos
72aa47fc51 backtest_live_models - fix issue with timerange BT and 2 trainings within same candle (no data) 2022-09-27 00:14:12 -03:00
Wagner Costa Santos
14b96aaa38 backtesting live models - fix ci issues 2022-09-26 19:52:59 -03:00
Wagner Costa Santos
290afd9699 backtest_live_models - fix typo 2022-09-26 19:21:53 -03:00
Wagner Costa Santos
0318ca9f12 backtest_live_models - fix typo 2022-09-26 19:08:25 -03:00
Wagner Costa Santos
22bef71d5d backtest_live_models - add function comments and tests 2022-09-26 19:01:24 -03:00
Wagner Costa Santos
182d9e5426 Merge branch 'develop' into backtest_live_models 2022-09-26 17:23:44 -03:00
Wagner Costa Santos
ec947ad65c remove commented code - backtest_live_models 2022-09-25 23:47:27 -03:00
Wagner Costa Santos
5880f7a638 backtest_live_models - params validation and get timerange from live models in BT 2022-09-25 23:14:00 -03:00
Wagner Costa Santos
f3f3917da3 Merge branch 'develop' into backtest_live_models 2022-09-25 20:05:26 -03:00
Matthias
af59572cb9 prior pairlists should go first 2022-09-25 19:32:39 +02:00
Wagner Costa Santos
0ed7b2bfc3 change start_backtesting to handle backtest_live_models 2022-09-25 10:35:55 -03:00
Matthias
bd106b4b8e Add tests for Producerpairlist 2022-09-25 10:13:00 +02:00
Matthias
1bb45a2650 Fix crash due to insufficient check 2022-09-25 09:47:57 +02:00
Matthias
30d51b6939 Move "pairlist" logging to manager 2022-09-25 09:43:39 +02:00
Matthias
1c089dcd51 Add docs for Producer/consumer pairlist 2022-09-25 09:40:44 +02:00
Matthias
527fd36134 num_assets should be optional 2022-09-25 09:38:20 +02:00
Matthias
4940fa7be3 Add Producer Pairlist 2022-09-25 09:29:22 +02:00
Matthias
0c810868de Add Dataprovider to pairlist 2022-09-25 09:22:21 +02:00
Wagner Costa Santos
7f116db95e added generic function to get timerange from existent models 2022-09-24 13:01:53 -03:00
Wagner Costa Santos
d9c16d4888 Merge branch 'develop' into backtest_live_models 2022-09-24 12:30:55 -03:00
Wagner Costa Santos
3ee7eb63f7 starting backtest live models 2022-09-24 12:28:52 -03:00
robcaulk
647200e8a7 isort 2022-09-23 19:30:56 +02:00
robcaulk
77c360b264 improve typing, improve docstrings, ensure global tests pass 2022-09-23 19:17:27 +02:00
robcaulk
9c361f4422 increase test coverage for RL and FreqAI 2022-09-23 18:04:43 +02:00
Robert Caulk
95121550ef Remove unnecessary models, add model arg 2022-09-23 10:37:34 +02:00
Robert Caulk
f7dd3045f7 Parameterize backtesting test 2022-09-23 10:30:52 +02:00
Robert Caulk
f5cd8f62c6 Remove unused code from BaseEnv 2022-09-23 10:24:39 +02:00
robcaulk
1c56fa034f add test_models folder 2022-09-23 09:19:16 +02:00
robcaulk
7295ba0fb2 add test for Base4ActionEnv 2022-09-22 23:42:33 +02:00
robcaulk
f6e9753c99 show advanced users how they can customize agent indepth` 2022-09-22 21:18:09 +02:00
robcaulk
eeebb78a5c skip darwin in RL tests, remove example scripts, improve doc 2022-09-22 21:16:21 +02:00
robcaulk
ea8e34e192 Merge branch 'develop' into dev-merge-rl 2022-09-22 19:46:50 +02:00
robcaulk
7b1d409c98 fix mypy/flake8 2022-09-17 17:51:06 +02:00
robcaulk
d056d766ed make tests pass 2022-09-17 17:46:47 +02:00
robcaulk
025b98decd bring back doc sentence 2022-09-15 01:01:33 +02:00
robcaulk
3b97b3d5c8 fix mypy error for strategy 2022-09-15 00:56:51 +02:00
robcaulk
8aac644009 add tests. add guardrails. 2022-09-15 00:46:35 +02:00
robcaulk
48140bff91 fix bug in 4ActRLEnv 2022-09-14 22:53:53 +02:00
robcaulk
81417cb795 Merge branch 'develop' into dev-merge-rl 2022-09-14 22:49:11 +02:00
robcaulk
69b3fcfd32 Merge branch 'develop' into dev-merge-rl 2022-09-04 11:23:25 +02:00
robcaulk
27dce20b29 fix bug in Base4ActionRLEnv, improve example strats 2022-09-04 11:21:54 +02:00
robcaulk
240b529533 fix tensorboard path so that users can track all historical models 2022-08-31 16:50:39 +02:00
Richard Jozsa
2493e0c8a5 Unnecessary lines in Base4, and changes for box space, to fit better for our needs (#7324) 2022-08-31 16:37:02 +02:00
Richard Jozsa
1a8e1362a1 There was an error in the docs around continual learning and thread count (#7314)
* Error in the docs
2022-08-29 11:15:06 +02:00
robcaulk
67cddae756 fix tensorboard image 2022-08-28 21:00:26 +02:00
robcaulk
af8f308584 start the reinforcement learning doc 2022-08-28 20:52:03 +02:00
robcaulk
7766350c15 refactor environment inheritence tree to accommodate flexible action types/counts. fix bug in train profit handling 2022-08-28 19:21:57 +02:00
robcaulk
8c313b431d remove whitespace from Dockerfile 2022-08-26 11:14:01 +02:00
robcaulk
baa4f8e3d0 remove Base3ActionEnv in favor of Base4Action 2022-08-26 11:04:25 +02:00
richardjozsa
cdc550da9a Revert the docker changes to be inline with the original freqtrade image
Reverted the changes, and added a new way of doing, Dockerfile.freqai with that file the users can make their own dockerimage.
2022-08-26 11:04:25 +02:00
richardjozsa
d31926efdf Added Base4Action 2022-08-26 11:04:25 +02:00
robcaulk
3199eb453b reduce code for base use-case, ensure multiproc inherits custom env, add ability to limit ram use. 2022-08-25 19:05:51 +02:00
robcaulk
05ccebf9a1 automate eval freq in multiproc 2022-08-25 12:29:48 +02:00
robcaulk
94cfc8e63f fix multiproc callback, add continual learning to multiproc, fix totalprofit bug in env, set eval_freq automatically, improve default reward 2022-08-25 11:46:18 +02:00
robcaulk
d1bee29b1e improve default reward, fix bugs in environment 2022-08-24 18:32:40 +02:00
robcaulk
a61821e1c6 remove monitor log 2022-08-24 16:33:13 +02:00
robcaulk
bd870e2331 fix monitor bug, set default values in case user doesnt set params 2022-08-24 16:32:14 +02:00
robcaulk
c0cee5df07 add continual retraining feature, handly mypy typing reqs, improve docstrings 2022-08-24 13:00:55 +02:00
robcaulk
b708134c1a switch multiproc thread count to rl_config definition 2022-08-24 13:00:55 +02:00
robcaulk
b26ed7dea4 fix generic reward, add time duration to reward 2022-08-24 13:00:55 +02:00
robcaulk
280a1dc3f8 add live rate, add trade duration 2022-08-24 13:00:55 +02:00
robcaulk
f9a49744e6 add strategy to the freqai object 2022-08-24 13:00:55 +02:00
richardjozsa
a2a4bc05db Fix the state profit calculation logic 2022-08-24 13:00:55 +02:00
robcaulk
29f0e01c4a expose environment reward parameters to the user config 2022-08-24 13:00:55 +02:00
robcaulk
d88a0dbf82 add sb3_contrib models to the available agents. include sb3_contrib in requirements. 2022-08-24 13:00:55 +02:00
robcaulk
8b3a8234ac fix env bug, allow example strat to short 2022-08-24 13:00:55 +02:00
mrzdev
8cd4daad0a Feat/freqai rl dev (#7)
* access trades through get_trades_proxy method to allow backtesting
2022-08-24 13:00:55 +02:00
robcaulk
3eb897c2f8 reuse callback, allow user to acces all stable_baselines3 agents via config 2022-08-24 13:00:55 +02:00
robcaulk
4b9499e321 improve nomenclature and fix short exit bug 2022-08-24 13:00:55 +02:00
sonnhfit
4baa36bdcf fix persist a single training environment for PPO 2022-08-24 13:00:55 +02:00
robcaulk
f95602f6bd persist a single training environment. 2022-08-24 13:00:55 +02:00
robcaulk
5d4e5e69fe reinforce training with state info, reinforce prediction with state info, restructure config to accommodate all parameters from any user imported model type. Set 5Act to default env on TDQN. Clean example config. 2022-08-24 13:00:55 +02:00
sonnhfit
7962a1439b remove keep low profit 2022-08-24 13:00:55 +02:00
sonnhfit
81b5aa66e8 make env keep current position when low profit 2022-08-24 13:00:55 +02:00
sonnhfit
45218faeb0 fix coding convention 2022-08-24 13:00:55 +02:00
richardjozsa
d55092ff17 Docker building update, and TDQN repair with the newer release of SB+ 2022-08-24 13:00:55 +02:00
robcaulk
74e4fd0633 ensure config example can work with backtesting RL 2022-08-24 13:00:55 +02:00
robcaulk
b90da46b1b improve price df handling to enable backtesting 2022-08-24 13:00:55 +02:00
MukavaValkku
2080ff86ed 5ac base fixes in logic 2022-08-24 13:00:55 +02:00
robcaulk
16cec7dfbd fix save/reload functionality for stablebaselines 2022-08-24 13:00:55 +02:00
sonnhfit
0475b7cb18 remove unuse code and fix coding conventions 2022-08-24 13:00:55 +02:00
MukavaValkku
d60a166fbf multiproc TDQN with xtra callbacks 2022-08-24 13:00:55 +02:00
robcaulk
dd382dd370 add monitor to eval env so that multiproc can save best_model 2022-08-24 13:00:55 +02:00
robcaulk
69d542d3e2 match config and strats to upstream freqai 2022-08-24 13:00:55 +02:00
robcaulk
e5df39e891 ensuring best_model is placed in ram and saved to disk and loaded from disk 2022-08-24 13:00:55 +02:00
robcaulk
bf7ceba958 set cpu threads in config 2022-08-24 13:00:55 +02:00
MukavaValkku
57c488a6f1 learning_rate + multicpu changes 2022-08-24 13:00:55 +02:00
MukavaValkku
48bb51b458 example config added 2022-08-24 13:00:55 +02:00
MukavaValkku
b1fc5a06ca example config added 2022-08-24 13:00:55 +02:00
sonnhfit
6d8e838a8f update tensorboard dependency 2022-08-24 13:00:55 +02:00
robcaulk
acf3484e88 add multiprocessing variant of ReinforcementLearningPPO 2022-08-24 13:00:55 +02:00
MukavaValkku
cf0731095f type fix 2022-08-24 13:00:55 +02:00
MukavaValkku
1c81ec6016 3ac and 5ac example strategies 2022-08-24 13:00:55 +02:00
MukavaValkku
13cd18dc9a PPO policy change + verbose=1 2022-08-24 13:00:55 +02:00
robcaulk
926023935f make base 3ac and base 5ac environments. TDQN defaults to 3AC. 2022-08-24 13:00:55 +02:00
MukavaValkku
096533bcb9 3ac to 5ac 2022-08-24 13:00:55 +02:00
MukavaValkku
718c9d0440 action fix 2022-08-24 13:00:55 +02:00
robcaulk
9c78e6c26f base PPO model only customizes reward for 3AC 2022-08-24 13:00:55 +02:00
robcaulk
6048f60f13 get TDQN working with 5 action environment 2022-08-24 13:00:55 +02:00
robcaulk
d4db5c3281 ensure TDQN class is properly named 2022-08-24 13:00:55 +02:00
robcaulk
91683e1dca restructure RL so that user can customize environment 2022-08-24 13:00:55 +02:00
sonnhfit
ecd1f55abc add rl module 2022-08-24 13:00:55 +02:00
sonnhfit
70b25461f0 add rl dependency 2022-08-24 13:00:55 +02:00
MukavaValkku
9b895500b3 initial commit - new dev branch 2022-08-24 13:00:55 +02:00
MukavaValkku
cd3fe44424 callback function and TDQN model added 2022-08-24 13:00:55 +02:00
MukavaValkku
01232e9a1f callback function and TDQN model added 2022-08-24 13:00:55 +02:00
MukavaValkku
8eeaab2746 add reward function 2022-08-24 13:00:55 +02:00
MukavaValkku
ec813434f5 ReinforcementLearningModel 2022-08-24 13:00:55 +02:00
MukavaValkku
2f4d73eb06 Revert "ReinforcementLearningModel"
This reverts commit 4d8dfe1ff1daa47276eda77118ddf39c13512a85.
2022-08-24 13:00:55 +02:00
MukavaValkku
c1e7db3130 ReinforcementLearningModel 2022-08-24 13:00:55 +02:00
robcaulk
05ed1b544f Working base for reinforcement learning model 2022-08-24 13:00:40 +02:00
233 changed files with 10469 additions and 4981 deletions

View File

@@ -11,12 +11,14 @@
"mounts": [
"source=freqtrade-bashhistory,target=/home/ftuser/commandhistory,type=volume"
],
"workspaceMount": "source=${localWorkspaceFolder},target=/workspaces/freqtrade,type=bind,consistency=cached",
// Uncomment to connect as a non-root user if you've added one. See https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "ftuser",
"onCreateCommand": "pip install --user -e .",
"postCreateCommand": "freqtrade create-userdir --userdir user_data/",
"workspaceFolder": "/freqtrade/",
"workspaceFolder": "/workspaces/freqtrade",
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",

View File

@@ -20,7 +20,7 @@ Please do not use bug reports to request new features.
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.

View File

@@ -18,7 +18,7 @@ Have you search for this feature before requesting it? It's highly likely that a
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Describe the enhancement

View File

@@ -18,7 +18,7 @@ Please do not use the question template to report bugs or to request new feature
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Your question

View File

@@ -24,7 +24,7 @@ jobs:
strategy:
matrix:
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10.6"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@@ -66,15 +66,9 @@ jobs:
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
if: matrix.python-version != '3.9' || matrix.os != 'ubuntu-22.04'
- name: Tests incl. ccxt compatibility tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04'
- name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.9')
if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
@@ -94,7 +88,7 @@ jobs:
run: |
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
freqtrade hyperopt --datadir tests/testdata -e 6 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Flake8
run: |
@@ -121,7 +115,7 @@ jobs:
strategy:
matrix:
os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10.6"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@@ -205,7 +199,7 @@ jobs:
strategy:
matrix:
os: [ windows-latest ]
python-version: ["3.8", "3.9", "3.10.6"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@@ -258,7 +252,7 @@ jobs:
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
mypy_version_check:
runs-on: ubuntu-20.04
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
@@ -283,7 +277,7 @@ jobs:
- uses: pre-commit/action@v3.0.0
docs_check:
runs-on: ubuntu-20.04
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
@@ -310,10 +304,65 @@ jobs:
details: Freqtrade doc test failed!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.9"
- name: Cache_dependencies
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@v3
if: runner.os == 'Linux'
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: TA binary *nix
if: steps.cache.outputs.cache-hit != 'true'
run: |
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e .
- name: Tests incl. ccxt compatibility tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
# Notify only once - when CI completes (and after deploy) in case it's successfull
notify-complete:
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ]
runs-on: ubuntu-20.04
needs: [
build_linux,
build_macos,
build_windows,
docs_check,
mypy_version_check,
pre-commit,
build_linux_online
]
runs-on: ubuntu-22.04
# Discord notification can't handle schedule events
if: (github.event_name != 'schedule')
permissions:
@@ -338,7 +387,7 @@ jobs:
deploy:
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ]
runs-on: ubuntu-20.04
runs-on: ubuntu-22.04
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
@@ -361,7 +410,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
@@ -369,7 +418,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
@@ -441,4 +490,4 @@ jobs:
with:
severity: info
details: Deploy Succeeded!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}

1
.gitignore vendored
View File

@@ -109,7 +109,6 @@ target/
!*.gitkeep
!config_examples/config_binance.example.json
!config_examples/config_bittrex.example.json
!config_examples/config_ftx.example.json
!config_examples/config_full.example.json
!config_examples/config_kraken.example.json
!config_examples/config_freqai.example.json

View File

@@ -15,9 +15,9 @@ repos:
additional_dependencies:
- types-cachetools==5.2.1
- types-filelock==3.2.7
- types-requests==2.28.11
- types-tabulate==0.8.11
- types-python-dateutil==2.8.19
- types-requests==2.28.11.5
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.4
# stages: [push]
- repo: https://github.com/pycqa/isort

View File

@@ -28,7 +28,6 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
@@ -39,7 +38,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.

View File

@@ -7,11 +7,13 @@ export DOCKER_BUILDKIT=1
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
TAG_FREQAI_RL_ARM=${TAG_FREQAI_RL}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@@ -41,9 +43,11 @@ docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker tag freqtrade:$TAG_FREQAI_RL_ARM ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -58,6 +62,7 @@ docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
docker push ${CACHE_IMAGE}:$TAG_ARM
# Create multi-arch image
@@ -74,6 +79,9 @@ docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM} ${CACHE_IMAGE}:${TAG_FREQAI}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM} ${CACHE_IMAGE}:${TAG_FREQAI_RL}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}

View File

@@ -6,6 +6,7 @@
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
@@ -51,9 +52,11 @@ docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_FREQAI} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI
docker tag freqtrade:$TAG_FREQAI_RL ${CACHE_IMAGE}:$TAG_FREQAI_RL
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -68,6 +71,7 @@ docker images
docker push ${CACHE_IMAGE}
docker push ${CACHE_IMAGE}:$TAG_PLOT
docker push ${CACHE_IMAGE}:$TAG_FREQAI
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL
docker push ${CACHE_IMAGE}:$TAG

View File

@@ -53,7 +53,7 @@
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/BTC"
"BNB/.*"
]
},
"pairlists": [

View File

@@ -18,13 +18,8 @@
"name": "binance",
"key": "",
"secret": "",
"ccxt_config": {
"enableRateLimit": true
},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
"1INCH/USDT",
"ALGO/USDT"
@@ -84,9 +79,7 @@
"test_size": 0.33,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 1000
}
"model_training_parameters": {}
},
"bot_name": "",
"force_entry_enable": true,

View File

@@ -1,96 +0,0 @@
{
"max_open_trades": 3,
"stake_currency": "USD",
"stake_amount": 50,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"timeframe": "5m",
"dry_run": true,
"cancel_open_orders_on_exit": false,
"unfilledtimeout": {
"entry": 10,
"exit": 10,
"exit_timeout_count": 0,
"unit": "minutes"
},
"entry_pricing": {
"price_side": "same",
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"exit_pricing": {
"price_side": "same",
"use_order_book": true,
"order_book_top": 1
},
"exchange": {
"name": "ftx",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
"BTC/USD",
"ETH/USD",
"BNB/USD",
"USDT/USD",
"LTC/USD",
"SRM/USD",
"SXP/USD",
"XRP/USD",
"DOGE/USD",
"1INCH/USD",
"CHZ/USD",
"MATIC/USD",
"LINK/USD",
"OXY/USD",
"SUSHI/USD"
],
"pair_blacklist": [
"FTT/USD"
]
},
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"api_server": {
"enabled": false,
"listen_ip_address": "127.0.0.1",
"listen_port": 8080,
"verbosity": "error",
"jwt_secret_key": "somethingrandom",
"CORS_origins": [],
"username": "freqtrader",
"password": "SuperSecurePassword"
},
"bot_name": "freqtrade",
"initial_state": "running",
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
}
}

View File

@@ -204,6 +204,7 @@
"strategy_path": "user_data/strategies/",
"recursive_strategy_search": false,
"add_config_files": [],
"reduce_df_footprint": false,
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
}

View File

@@ -11,7 +11,7 @@ ENV FT_APP_ENV="docker"
# Prepare environment
RUN mkdir /freqtrade \
&& apt-get update \
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-dev \
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-dev libutf8proc-dev libsnappy-dev \
&& apt-get clean \
&& useradd -u 1000 -G sudo -U -m ftuser \
&& chown ftuser:ftuser /freqtrade \
@@ -37,6 +37,7 @@ ENV LD_LIBRARY_PATH /usr/local/lib
COPY --chown=ftuser:ftuser requirements.txt /freqtrade/
USER ftuser
RUN pip install --user --no-cache-dir numpy \
&& pip install --user /tmp/pyarrow-*.whl \
&& pip install --user --no-cache-dir -r requirements.txt
# Copy dependencies to runtime-image

View File

@@ -0,0 +1,8 @@
ARG sourceimage=freqtradeorg/freqtrade
ARG sourcetag=develop_freqai
FROM ${sourceimage}:${sourcetag}
# Install dependencies
COPY requirements-freqai.txt requirements-freqai-rl.txt /freqtrade/
RUN pip install -r requirements-freqai-rl.txt --user --no-cache-dir

View File

@@ -100,3 +100,17 @@ freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 2 --enter-re
The indicators have to be present in your strategy's main DataFrame (either for your main
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.
### Filtering the trade output by date
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
```
--timerange : Timerange to filter output trades, start date inclusive, end date exclusive. e.g. 20220101-20221231
```
For example, if your backtest timerange was `20220101-20221231` but you only want to output trades in January:
```bash
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```

View File

@@ -78,6 +78,8 @@ This function needs to return a floating point number (`float`). Smaller numbers
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
```python
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
# Define a custom stoploss space.
@@ -94,6 +96,33 @@ class MyAwesomeStrategy(IStrategy):
SKDecimal(0.01, 0.07, decimals=3, name='roi_p2'),
SKDecimal(0.01, 0.20, decimals=3, name='roi_p3'),
]
def generate_roi_table(params: Dict) -> Dict[int, float]:
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
def trailing_space() -> List[Dimension]:
# All parameters here are mandatory, you can only modify their type or the range.
return [
# Fixed to true, if optimizing trailing_stop we assume to use trailing stop at all times.
Categorical([True], name='trailing_stop'),
SKDecimal(0.01, 0.35, decimals=3, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
SKDecimal(0.001, 0.1, decimals=3, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
```
!!! Note

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

BIN
docs/assets/tensorboard.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

View File

@@ -522,13 +522,13 @@ Since backtesting lacks some detailed information about what happens within a ca
- ROI
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- Forceexits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Force-exits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point. This rule is NOT applicable to custom-stoploss scenarios, since there's no information about the stoploss logic available.
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so exits with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
@@ -546,8 +546,8 @@ In addition to the above assumptions, strategy authors should carefully read the
### Trading limits in backtesting
Exchanges have certain trading limits, like minimum base currency, or minimum stake (quote) currency.
These limits are usually listed in the exchange documentation as "trading rules" or similar.
Exchanges have certain trading limits, like minimum (and maximum) base currency, or minimum/maximum stake (quote) currency.
These limits are usually listed in the exchange documentation as "trading rules" or similar and can be quite different between different pairs.
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
Freqtrade has however no information about historic limits.
@@ -583,7 +583,8 @@ To utilize this, you can append `--timeframe-detail 5m` to your regular backtest
freqtrade backtesting --strategy AwesomeStrategy --timeframe 1h --timeframe-detail 5m
```
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe - and for every "open trade candle" (candles where a trade is open) the 5m data will be used to simulate intra-candle movements.
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe, and Entry orders will only be placed at the main timeframe, however Order fills and exit signals will be evaluated at the 5m candle, simulating intra-candle movements.
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.

View File

@@ -215,16 +215,18 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `telegram.allow_custom_messages` | Enable the sending of Telegram messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Webhook**
| `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentrycancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentryfill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry_cancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry_fill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit_cancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit_fill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.status` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.allow_custom_messages` | Enable the sending of Webhook messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Rest API / FreqUI / Producer-Consumer**
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
@@ -251,6 +253,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage (and decreasing train/inference timing in FreqAI). (Currently only affects FreqAI use-cases) <br> **Datatype:** Boolean. <br> Default: `False`.
### Parameters in the strategy
@@ -550,7 +553,7 @@ The possible values are: `GTC` (default), `FOK` or `IOC`.
```
!!! Warning
This is ongoing work. For now, it is supported only for binance, gate, ftx and kucoin.
This is ongoing work. For now, it is supported only for binance, gate and kucoin.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values for your particular exchange.
### What values can be used for fiat_display_currency?
@@ -662,6 +665,7 @@ You should also make sure to read the [Exchanges](exchanges.md) section of the d
### Using proxy with Freqtrade
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
This will have the proxy settings applied to everything (telegram, coingecko, ...) except exchange requests.
``` bash
export HTTP_PROXY="http://addr:port"
@@ -669,17 +673,20 @@ export HTTPS_PROXY="http://addr:port"
freqtrade
```
#### Proxy just exchange requests
#### Proxy exchange requests
To use a proxy just for exchange connections (skips/ignores telegram and coingecko) - you can also define the proxies as part of the ccxt configuration.
To use a proxy for exchange connections - you will have to define the proxies as part of the ccxt configuration.
``` json
"ccxt_config": {
{
"exchange": {
"ccxt_config": {
"aiohttp_proxy": "http://addr:port",
"proxies": {
"http": "http://addr:port",
"https": "http://addr:port"
"http": "http://addr:port",
"https": "http://addr:port"
},
}
}
```

View File

@@ -5,7 +5,7 @@ You can analyze the results of backtests and trading history easily using Jupyte
## Quick start with docker
Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command: `docker-compose -f docker/docker-compose-jupyter.yml up`
You can run this server using the following command: `docker compose -f docker/docker-compose-jupyter.yml up`
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
Please use the link that's printed in the console after startup for simplified login.
@@ -83,7 +83,7 @@ from pathlib import Path
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
os.chdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):

View File

@@ -177,13 +177,13 @@ freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT --
### Data format
Freqtrade currently supports 3 data-formats for both OHLCV and trades data:
Freqtrade currently supports the following data-formats:
* `json` - plain "text" json files
* `jsongz` - a gzip-zipped version of json files
* `hdf5` - a high performance datastore
* `feather` - a dataformat based on Apache Arrow
* `parquet` - columnar datastore
* `feather` - a dataformat based on Apache Arrow (OHLCV only)
* `parquet` - columnar datastore (OHLCV only)
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.

View File

@@ -66,11 +66,11 @@ We will keep a compatibility layer for 1-2 versions (so both `buy_tag` and `ente
#### Naming changes
Webhook terminology changed from "sell" to "exit", and from "buy" to "entry".
Webhook terminology changed from "sell" to "exit", and from "buy" to "entry", removing "webhook" in the process.
* `webhookbuy` -> `webhookentry`
* `webhookbuyfill` -> `webhookentryfill`
* `webhookbuycancel` -> `webhookentrycancel`
* `webhooksell` -> `webhookexit`
* `webhooksellfill` -> `webhookexitfill`
* `webhooksellcancel` -> `webhookexitcancel`
* `webhookbuy`, `webhookentry` -> `entry`
* `webhookbuyfill`, `webhookentryfill` -> `entry_fill`
* `webhookbuycancel`, `webhookentrycancel` -> `entry_cancel`
* `webhooksell`, `webhookexit` -> `exit`
* `webhooksellfill`, `webhookexitfill` -> `exit_fill`
* `webhooksellcancel`, `webhookexitcancel` -> `exit_cancel`

View File

@@ -49,6 +49,13 @@ For more information about the [Remote container extension](https://code.visuals
New code should be covered by basic unittests. Depending on the complexity of the feature, Reviewers may request more in-depth unittests.
If necessary, the Freqtrade team can assist and give guidance with writing good tests (however please don't expect anyone to write the tests for you).
#### How to run tests
Use `pytest` in root folder to run all available testcases and confirm your local environment is setup correctly
!!! Note "feature branches"
Tests are expected to pass on the `develop` and `stable` branches. Other branches may be work in progress with tests not working yet.
#### Checking log content in tests
Freqtrade uses 2 main methods to check log content in tests, `log_has()` and `log_has_re()` (to check using regex, in case of dynamic log-messages).
@@ -434,6 +441,11 @@ To keep the release-log short, best wrap the full git changelog into a collapsib
</details>
```
### FreqUI release
If FreqUI has been updated substantially, make sure to create a release before merging the release branch.
Make sure that freqUI CI on the release is finished and passed before merging the release.
### Create github release / tag
Once the PR against stable is merged (best right after merging):

View File

@@ -4,20 +4,22 @@ This page explains how to run the bot with Docker. It is not meant to work out o
## Install Docker
Start by downloading and installing Docker CE for your platform:
Start by downloading and installing Docker / Docker Desktop for your platform:
* [Mac](https://docs.docker.com/docker-for-mac/install/)
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
!!! Info "Docker compose install"
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
## Freqtrade with docker-compose
## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
!!! Note
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user.
- The following section assumes that `docker` is installed and available to the logged in user.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start
@@ -31,13 +33,13 @@ cd ft_userdata/
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image
docker-compose pull
docker compose pull
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
docker compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
docker compose run --rm freqtrade new-config --config user_data/config.json
```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
@@ -64,7 +66,7 @@ The `SampleStrategy` is run by default.
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
docker-compose up -d
docker compose up -d
```
!!! Warning "Default configuration"
@@ -84,27 +86,27 @@ You can now access the UI by typing localhost:8080 in your browser.
#### Monitoring the bot
You can check for running instances with `docker-compose ps`.
You can check for running instances with `docker compose ps`.
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
#### Docker-compose logs
#### Docker compose logs
Logs will be written to: `user_data/logs/freqtrade.log`.
You can also check the latest log with the command `docker-compose logs -f`.
You can also check the latest log with the command `docker compose logs -f`.
#### Database
The database will be located at: `user_data/tradesv3.sqlite`
#### Updating freqtrade with docker-compose
#### Updating freqtrade with docker
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands:
Updating freqtrade when using `docker` is as simple as running the following 2 commands:
``` bash
# Download the latest image
docker-compose pull
docker compose pull
# Restart the image
docker-compose up -d
docker compose up -d
```
This will first pull the latest image, and will then restart the container with the just pulled version.
@@ -116,43 +118,43 @@ This will first pull the latest image, and will then restart the container with
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
All freqtrade arguments will be available by running `docker compose run --rm freqtrade <command> <optional arguments>`.
!!! Warning "`docker-compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead.
!!! Warning "`docker compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker compose run` - but should use `docker compose up -d` instead.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
!!! Note "`docker-compose run --rm`"
!!! Note "`docker compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose"
"`docker-compose run --rm`" will require a compose file to be provided.
??? Note "Using docker without docker"
"`docker compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose
#### Example: Download data with docker
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
docker compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
#### Example: Backtest with docker-compose
#### Example: Backtest with docker
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
docker compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
```
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
### Additional dependencies with docker-compose
### Additional dependencies with docker
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
@@ -166,15 +168,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
dockerfile: "./Dockerfile.<yourextension>"
```
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above.
You can then run `docker compose build --pull` to build the docker image, and run it using the commands described above.
### Plotting with docker-compose
### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
You can then use these commands as follows:
``` bash
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
docker compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
```
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
@@ -185,7 +187,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command:
``` bash
docker-compose -f docker/docker-compose-jupyter.yml up
docker compose -f docker/docker-compose-jupyter.yml up
```
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
@@ -194,7 +196,7 @@ Please use the link that's printed in the console after startup for simplified l
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
``` bash
docker-compose -f docker/docker-compose-jupyter.yml build --no-cache
docker compose -f docker/docker-compose-jupyter.yml build --no-cache
```
## Troubleshooting

View File

@@ -54,17 +54,27 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
!!! Tip "Stoploss on Exchange"
Binance supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Binance supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
### Binance Blacklist
### Binance Blacklist recommendation
For Binance, it is suggested to add `"BNB/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `BNB` on the account or unless you're willing to disable using `BNB` for fees.
Binance accounts may use `BNB` for fees, and if a trade happens to be on `BNB`, further trades may consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
### Binance sites
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
### Binance Futures
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
@@ -87,12 +97,14 @@ When trading on Binance Futures market, orderbook must be used because there is
},
```
### Binance sites
#### Binance futures settings
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
Users will also have to have the futures-setting "Position Mode" set to "One-way Mode", and "Asset Mode" set to "Single-Asset Mode".
These settings will be checked on startup, and freqtrade will show an error if this setting is wrong.
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
![Binance futures settings](assets/binance_futures_settings.png)
Freqtrade will not attempt to change these settings.
## Kraken
@@ -164,26 +176,6 @@ res = [p for p, x in lm.items() if 'US' in x['info']['prohibitedIn']]
print(res)
```
## FTX
!!! Tip "Stoploss on Exchange"
FTX supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type of stoploss shall be used.
### Using subaccounts
To use subaccounts with FTX, you need to edit the configuration and add the following:
``` json
"exchange": {
"ccxt_config": {
"headers": {
"FTX-SUBACCOUNT": "name"
}
},
}
```
## Kucoin
Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:

View File

@@ -102,6 +102,12 @@ If this happens for all pairs in the pairlist, this might indicate a recent exch
Irrespectively of the reason, Freqtrade will fill up these candles with "empty" candles, where open, high, low and close are set to the previous candle close - and volume is empty. In a chart, this will look like a `_` - and is aligned with how exchanges usually represent 0 volume candles.
### I'm getting "Price jump between 2 candles detected"
This message is a warning that the candles had a price jump of > 30%.
This might be a sign that the pair stopped trading, and some token exchange took place (e.g. COCOS in 2021 - where price jumped from 0.0000154 to 0.01621).
This message is often accompanied by ["Missing data fillup"](#im-getting-missing-data-fillup-messages-in-the-log) - as trading on such pairs is often stopped for some time.
### I'm getting "Outdated history for pair xxx" in the log
The bot is trying to tell you that it got an outdated last candle (not the last complete candle).

View File

@@ -1,10 +1,10 @@
# Configuration
`FreqAI` is configured through the typical [Freqtrade config file](configuration.md) and the standard [Freqtrade strategy](strategy-customization.md). Examples of `FreqAI` config and strategy files can be found in `config_examples/config_freqai.example.json` and `freqtrade/templates/FreqaiExampleStrategy.py`, respectively.
FreqAI is configured through the typical [Freqtrade config file](configuration.md) and the standard [Freqtrade strategy](strategy-customization.md). Examples of FreqAI config and strategy files can be found in `config_examples/config_freqai.example.json` and `freqtrade/templates/FreqaiExampleStrategy.py`, respectively.
## Setting up the configuration file
Although there are plenty of additional parameters to choose from, as highlighted in the [parameter table](freqai-parameter-table.md#parameter-table), a `FreqAI` config must at minimum include the following parameters (the parameter values are only examples):
Although there are plenty of additional parameters to choose from, as highlighted in the [parameter table](freqai-parameter-table.md#parameter-table), a FreqAI config must at minimum include the following parameters (the parameter values are only examples):
```json
"freqai": {
@@ -26,18 +26,15 @@
},
"data_split_parameters" : {
"test_size": 0.25
},
"model_training_parameters" : {
"n_estimators": 100
},
}
}
```
A full example config is available in `config_examples/config_freqai.example.json`.
## Building a `FreqAI` strategy
## Building a FreqAI strategy
The `FreqAI` strategy requires including the following lines of code in the standard [Freqtrade strategy](strategy-customization.md):
The FreqAI strategy requires including the following lines of code in the standard [Freqtrade strategy](strategy-customization.md):
```python
# user should define the maximum startup candle count (the largest number of candles
@@ -61,7 +58,7 @@ The `FreqAI` strategy requires including the following lines of code in the stan
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + coin `
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e. user should not prepend any supporting metrics
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
@@ -69,20 +66,17 @@ The `FreqAI` strategy requires including the following lines of code in the stan
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
:param coin: the name of the coin which will modify the feature names.
"""
coin = pair.split('/')[0]
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
@@ -121,7 +115,7 @@ The `FreqAI` strategy requires including the following lines of code in the stan
```
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice also the location of the labels under `if set_generalized_indicators:` at the bottom of the example. This is where single features and labels/targets should be added to the feature set to avoid duplication of them from various configuration parameters that multiply the feature set, such as `include_timeframes`.
@@ -129,12 +123,12 @@ Notice also the location of the labels under `if set_generalized_indicators:` at
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
!!! Note
Features **must** be defined in `populate_any_indicators()`. Defining `FreqAI` features in `populate_indicators()`
Features **must** be defined in `populate_any_indicators()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, the following structure inside `populate_any_indicators()` should be used
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
```python
def populate_any_indicators(self, metadata, pair, df, tf, informative=None, coin="", set_generalized_indicators=False):
def populate_any_indicators(self, pair, df, tf, informative=None, set_generalized_indicators=False):
...
@@ -166,15 +160,15 @@ Below are the values you can expect to include/use inside a typical strategy dat
| DataFrame Key | Description |
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside `FreqAI` (typically following the naming convention `&-s*`). The names of these dataframe columns are fed back as the predictions. For example, to predict the price change in the next 40 candles (similar to `templates/FreqaiExampleStrategy.py`), you would set `df['&-s_close']`. `FreqAI` makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -1 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, `FreqAI` will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -1 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence `FreqAI` has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features is easily engineered using the multiplictative functionality described in the `feature_parameters` table shown above), these features are removed from the dataframe upon return from `FreqAI`. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
## Setting the `startup_candle_count`
The `startup_candle_count` in the `FreqAI` strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
!!! Note
There are instances where the Ta-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
@@ -185,33 +179,80 @@ The `startup_candle_count` in the `FreqAI` strategy needs to be set up in the sa
## Creating a dynamic target threshold
Deciding when to enter or exit a trade can be done in a dynamic way to reflect current market conditions. `FreqAI` allows you to return additional information from the training of a model (more info [here](freqai-feature-engineering.md#returning-additional-info-from-training)). For example, the `&*_std/mean` return values describe the statistical distribution of the target/label *during the most recent training*. Comparing a given prediction to these values allows you to know the rarity of the prediction. In `templates/FreqaiExampleStrategy.py`, the `target_roi` and `sell_roi` are defined to be 1.25 z-scores away from the mean which causes predictions that are closer to the mean to be filtered out.
Deciding when to enter or exit a trade can be done in a dynamic way to reflect current market conditions. FreqAI allows you to return additional information from the training of a model (more info [here](freqai-feature-engineering.md#returning-additional-info-from-training)). For example, the `&*_std/mean` return values describe the statistical distribution of the target/label *during the most recent training*. Comparing a given prediction to these values allows you to know the rarity of the prediction. In `templates/FreqaiExampleStrategy.py`, the `target_roi` and `sell_roi` are defined to be 1.25 z-scores away from the mean which causes predictions that are closer to the mean to be filtered out.
```python
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
dataframe["sell_roi"] = dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * 1.25
```
To consider the population of *historical predictions* for creating the dynamic target instead of information from the training as discussed above, you would set `fit_live_prediction_candles` in the config to the number of historical prediction candles you wish to use to generate target statistics.
To consider the population of *historical predictions* for creating the dynamic target instead of information from the training as discussed above, you would set `fit_live_predictions_candles` in the config to the number of historical prediction candles you wish to use to generate target statistics.
```json
"freqai": {
"fit_live_prediction_candles": 300,
"fit_live_predictions_candles": 300,
}
```
If this value is set, `FreqAI` will initially use the predictions from the training data and subsequently begin introducing real prediction data as it is generated. `FreqAI` will save this historical data to be reloaded if you stop and restart a model with the same `identifier`.
If this value is set, FreqAI will initially use the predictions from the training data and subsequently begin introducing real prediction data as it is generated. FreqAI will save this historical data to be reloaded if you stop and restart a model with the same `identifier`.
## Using different prediction models
`FreqAI` has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `Catboost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`. However, it is possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to let these customize various aspects of the training procedures.
FreqAI has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `CatBoost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`.
### Setting classifier targets
Regression and classification models differ in what targets they predict - a regression model will predict a target of continuous values, for example what price BTC will be at tomorrow, whilst a classifier will predict a target of discrete values, for example if the price of BTC will go up tomorrow or not. This means that you have to specify your targets differently depending on which model type you are using (see details [below](#setting-model-targets)).
`FreqAI` includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example:
All of the aforementioned model libraries implement gradient boosted decision tree algorithms. They all work on the principle of ensemble learning, where predictions from multiple simple learners are combined to get a final prediction that is more stable and generalized. The simple learners in this case are decision trees. Gradient boosting refers to the method of learning, where each simple learner is built in sequence - the subsequent learner is used to improve on the error from the previous learner. If you want to learn more about the different model libraries you can find the information in their respective docs:
* CatBoost: https://catboost.ai/en/docs/
* LightGBM: https://lightgbm.readthedocs.io/en/v3.3.2/#
* XGBoost: https://xgboost.readthedocs.io/en/stable/#
There are also numerous online articles describing and comparing the algorithms. Some relatively light-weight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model.
Make sure to use unique names to avoid overriding built-in models.
### Setting model targets
#### Regressors
If you are using a regressor, you need to specify a target that has continuous values. FreqAI includes a variety of regressors, such as the `CatboostRegressor`via the flag `--freqaimodel CatboostRegressor`. An example of how you could set a regression target for predicting the price 100 candles into the future would be
```python
df['&s-close_price'] = df['close'].shift(-100)
```
If you want to predict multiple targets, you need to define multiple labels using the same syntax as shown above.
#### Classifiers
If you are using a classifier, you need to specify a target that has discrete values. FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example, if you want to predict if the price 100 candles into the future goes up or down you would set
```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
```
Additionally, the example classifier models do not accommodate multiple labels, but they do allow multi-class classification within a single label column.
If you want to predict multiple targets you must specify all labels in the same label column. You could, for example, add the label `same` to define where the price was unchanged by setting
```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
df['&s-up_or_down'] = np.where( df["close"].shift(-100) == df["close"], 'same', df['&s-up_or_down'])
```
### Convolutional Neural Network model
The `CNNPredictionModel` is a non-linear regression based on `Tensorflow` which follows very similar configuration to the other regressors. Feature engineering and label creation remains the same as highlighted [here](#building-a-freqai-strategy) and [here](#setting-model-targets). Control of the model is focused in the `model_training_parameters` configuration dictionary, which accepts any hyperparameter available to the CNN `fit()` function of Tensorflow [more here](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). For example, this is where the `epochs` and `batch_size` are controlled:
```json
"model_training_parameters" : {
"batch_size": 64,
"epochs": 10,
"verbose": "auto",
"shuffle": false,
"workers": 1,
"use_multiprocessing": false
}
```
Running the `CNNPredictionModel` is the same as other regressors: `--freqaimodel CNNPredictionModel`.

View File

@@ -2,13 +2,13 @@
## Project architecture
The architecture and functions of `FreqAI` are generalized to encourages development of unique features, functions, models, etc.
The architecture and functions of FreqAI are generalized to encourages development of unique features, functions, models, etc.
The class structure and a detailed algorithmic overview is depicted in the following diagram:
![image](assets/freqai_algorithm-diagram.jpg)
As shown, there are three distinct objects comprising `FreqAI`:
As shown, there are three distinct objects comprising FreqAI:
* **IFreqaiModel** - A singular persistent object containing all the necessary logic to collect, store, and process data, engineer features, run training, and inference models.
* **FreqaiDataKitchen** - A non-persistent object which is created uniquely for each unique asset/model. Beyond metadata, it also contains a variety of data processing tools.
@@ -18,7 +18,7 @@ There are a variety of built-in [prediction models](freqai-configuration.md#usin
## Data handling
`FreqAI` aims to organize model files, prediction data, and meta data in a way that simplifies post-processing and enhances crash resilience by automatic data reloading. The data is saved in a file structure,`user_data_dir/models/`, which contains all the data associated with the trainings and backtests. The `FreqaiDataKitchen()` relies heavily on the file structure for proper training and inferencing and should therefore not be manually modified.
FreqAI aims to organize model files, prediction data, and meta data in a way that simplifies post-processing and enhances crash resilience by automatic data reloading. The data is saved in a file structure,`user_data_dir/models/`, which contains all the data associated with the trainings and backtests. The `FreqaiDataKitchen()` relies heavily on the file structure for proper training and inferencing and should therefore not be manually modified.
### File structure
@@ -27,13 +27,13 @@ The file structure is automatically generated based on the model `identifier` se
| Structure | Description |
|-----------|-------------|
| `config_*.json` | A copy of the model specific configuration file. |
| `historic_predictions.pkl` | A file containing all historic predictions generated during the lifetime of the `identifier` model during live deployment. `historic_predictions.pkl` is used to reload the model after a crash or a config change. A backup file is always held incase of corruption on the main file. **`FreqAI` automatically detects corruption and replaces the corrupted file with the backup**. |
| `historic_predictions.pkl` | A file containing all historic predictions generated during the lifetime of the `identifier` model during live deployment. `historic_predictions.pkl` is used to reload the model after a crash or a config change. A backup file is always held in case of corruption on the main file. FreqAI **automatically** detects corruption and replaces the corrupted file with the backup. |
| `pair_dictionary.json` | A file containing the training queue as well as the on disk location of the most recently trained model. |
| `sub-train-*_TIMESTAMP` | A folder containing all the files associated with a single model, such as: <br>
|| `*_metadata.json` - Metadata for the model, such as normalization max/mins, expected training feature list, etc. <br>
|| `*_metadata.json` - Metadata for the model, such as normalization max/min, expected training feature list, etc. <br>
|| `*_model.*` - The model file saved to disk for reloading from a crash. Can be `joblib` (typical boosting libs), `zip` (stable_baselines), `hd5` (keras type), etc. <br>
|| `*_pca_object.pkl` - The [Principal component analysis (PCA)](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis) transform (if `principal_component_analysis: true` is set in the config) which will be used to transform unseen prediction features. <br>
|| `*_svm_model.pkl` - The [Support Vector Machine (SVM)](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm) model which is used to detect outliers in unseen prediction features. <br>
|| `*_pca_object.pkl` - The [Principal component analysis (PCA)](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis) transform (if `principal_component_analysis: True` is set in the config) which will be used to transform unseen prediction features. <br>
|| `*_svm_model.pkl` - The [Support Vector Machine (SVM)](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm) model (if `use_SVM_to_remove_outliers: True` is set in the config) which is used to detect outliers in unseen prediction features. <br>
|| `*_trained_df.pkl` - The dataframe containing all the training features used to train the `identifier` model. This is used for computing the [Dissimilarity Index (DI)](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di) and can also be used for post-processing. <br>
|| `*_trained_dates.df.pkl` - The dates associated with the `trained_df.pkl`, which is useful for post-processing. |

View File

@@ -2,9 +2,12 @@
## Defining the features
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%`, while labels/targets are prepended with `&`.
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%-{pair}`, while labels/targets are prepended with `&`.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the `FreqAI` config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
!!! Note
Adding the full pair string, e.g. XYZ/USD, in the feature name enables improved performance for dataframe caching on the backend. If you decide *not* to add the full pair string in the feature string, FreqAI will operate in a reduced performance mode.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
It is advisable to start from the template `populate_any_indicators()` in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
@@ -15,7 +18,7 @@ It is advisable to start from the template `populate_any_indicators()` in the so
"""
Function designed to automatically generate, name, and merge features
from user-indicated timeframes in the configuration file. The user controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + coin `
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e., the user should not prepend any supporting metrics
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
@@ -23,37 +26,34 @@ It is advisable to start from the template `populate_any_indicators()` in the so
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
:param coin: the name of the coin which will modify the feature names.
"""
coin = pair.split('/')[0]
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
)
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{coin}bb_width-period_{t}"] = (
informative[f"{coin}bb_upperband-period_{t}"]
- informative[f"{coin}bb_lowerband-period_{t}"]
) / informative[f"{coin}bb_middleband-period_{t}"]
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
informative[f"%-{pair}bb_width-period_{t}"] = (
informative[f"{pair}bb_upperband-period_{t}"]
- informative[f"{pair}bb_lowerband-period_{t}"]
) / informative[f"{pair}bb_middleband-period_{t}"]
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
)
informative[f"%-{coin}relative_volume-period_{t}"] = (
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
)
@@ -122,7 +122,7 @@ The `include_timeframes` in the config above are the timeframes (`tf`) of each c
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells `FreqAI` to include the past 2 candles for each of the features in the feature set.
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
@@ -131,7 +131,7 @@ In total, the number of features the user of the presented example strat has cre
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
`FreqAI` takes the `my_new_value` assigned in this dictionary and expands it to fit the dataframe that is returned to the strategy. You can then use the returned metrics in your strategy through `dataframe['my_new_value']`. An example of how return values can be used in `FreqAI` are the `&*_mean` and `&*_std` values that are used to [created a dynamic target threshold](freqai-configuration.md#creating-a-dynamic-target-threshold).
FreqAI takes the `my_new_value` assigned in this dictionary and expands it to fit the dataframe that is returned to the strategy. You can then use the returned metrics in your strategy through `dataframe['my_new_value']`. An example of how return values can be used in FreqAI are the `&*_mean` and `&*_std` values that are used to [created a dynamic target threshold](freqai-configuration.md#creating-a-dynamic-target-threshold).
Another example, where the user wants to use live metrics from the trade database, is shown below:
@@ -141,15 +141,15 @@ Another example, where the user wants to use live metrics from the trade databas
}
```
You need to set the standard dictionary in the config so that `FreqAI` can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the preset values are what will be returned.
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
## Feature normalization
`FreqAI` is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
FreqAI is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
$$X^{train}_{norm} = 2 * \frac{X^{train} - X^{train}.min()}{X^{train}.max() - X^{train}.min()} - 1$$
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. `FreqAI` stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify `FreqAI` internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. FreqAI stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify FreqAI internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
## Data dimensionality reduction with Principal Component Analysis
@@ -169,17 +169,17 @@ This will perform PCA on the features and reduce their dimensionality so that th
The `inlier_metric` is a metric aimed at quantifying how similar a the features of a data point are to the most recent historic data points.
You define the lookback window by setting `inlier_metric_window` and `FreqAI` computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
![inlier-metric](assets/freqai_inlier-metric.jpg)
`FreqAI` adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
FreqAI adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
This function does **not** remove outliers from the data set.
## Weighting features for temporal importance
`FreqAI` allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
$$ W_i = \exp(\frac{-i}{\alpha*n}) $$
@@ -189,13 +189,13 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B
## Outlier detection
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. `FreqAI` implements a variety of methods to identify such outliers and hence mitigate risk.
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
### Identifying outliers with the Dissimilarity Index (DI)
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
You can tell `FreqAI` to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
```json
"freqai": {
@@ -205,7 +205,7 @@ You can tell `FreqAI` to remove outlier data points from the training/test data
}
```
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, `FreqAI` measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
@@ -229,7 +229,7 @@ Below is a figure that describes the DI for a 3D data set.
### Identifying outliers using a Support Vector Machine (SVM)
You can tell `FreqAI` to remove outlier data points from the training/test data sets using a Support Vector Machine (SVM) by including the following statement in the config:
You can tell FreqAI to remove outlier data points from the training/test data sets using a Support Vector Machine (SVM) by including the following statement in the config:
```json
"freqai": {
@@ -241,7 +241,7 @@ You can tell `FreqAI` to remove outlier data points from the training/test data
The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
`FreqAI` uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
FreqAI uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
@@ -249,7 +249,7 @@ The parameter `nu`, *very* broadly, is the amount of data points that should be
### Identifying outliers with DBSCAN
You can configure `FreqAI` to use DBSCAN to cluster and remove outliers from the training/test data set or incoming outliers from predictions, by activating `use_DBSCAN_to_remove_outliers` in the config:
You can configure FreqAI to use DBSCAN to cluster and remove outliers from the training/test data set or incoming outliers from predictions, by activating `use_DBSCAN_to_remove_outliers` in the config:
```json
"freqai": {
@@ -265,4 +265,4 @@ Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters
![dbscan](assets/freqai_dbscan.jpg)
`FreqAI` uses `sklearn.cluster.DBSCAN` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) (external website)) with `min_samples` ($N$) taken as 1/4 of the no. of time points in the feature set. `eps` ($\varepsilon$) is computed automatically as the elbow point in the *k-distance graph* computed from the nearest neighbors in the pairwise distances of all data points in the feature set.
FreqAI uses `sklearn.cluster.DBSCAN` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) (external website)) with `min_samples` ($N$) taken as 1/4 of the no. of time points (candles) in the feature set. `eps` ($\varepsilon$) is computed automatically as the elbow point in the *k-distance graph* computed from the nearest neighbors in the pairwise distances of all data points in the feature set.

View File

@@ -1,52 +1,94 @@
# Parameter table
The table below will list all configuration parameters available for `FreqAI`. Some of the parameters are exemplified in `config_examples/config_freqai.example.json`.
The table below will list all configuration parameters available for FreqAI. Some of the parameters are exemplified in `config_examples/config_freqai.example.json`.
Mandatory parameters are marked as **Required** and have to be set in one of the suggested ways.
### General configuration parameters
| Parameter | Description |
|------------|-------------|
| | **General configuration parameters**
| `freqai` | **Required.** <br> The parent dictionary containing all the parameters for controlling `FreqAI`. <br> **Datatype:** Dictionary.
| | **General configuration parameters within the `config.freqai` tree**
| `freqai` | **Required.** <br> The parent dictionary containing all the parameters for controlling FreqAI. <br> **Datatype:** Dictionary.
| `train_period_days` | **Required.** <br> Number of days to use for the training data (width of the sliding window). <br> **Datatype:** Positive integer.
| `backtest_period_days` | **Required.** <br> Number of days to inference from the trained model before sliding the `train_period_days` window defined above, and retraining the model during backtesting (more info [here](freqai-running.md#backtesting)). This can be fractional days, but beware that the provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br> **Datatype:** Float.
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: 0 (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: 0 (models never expire).
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Delete obsolete models. <br> **Datatype:** Boolean. <br> Default: `False` (all historic models remain on disk).
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
| | **Feature parameters**
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
### Feature parameters
| Parameter | Description |
|------------|-------------|
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br> **Datatype:** Dictionary.
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that `FreqAI` will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, `FreqAI` will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br> **Datatype:** Positive float (typically < 1).
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. `FreqAI` uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN <br> **Datatype:** Positive integer.
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
| `stratify_training_data` | Split the feature set into training and testing datasets. For example, `stratify_training_data: 2` would set every 2nd data point into a separate dataset to be pulled from during training/testing. See details about how it works [here](freqai-running.md#data-stratification-for-training-and-testing-the-model). <br> **Datatype:** Positive integer.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. defaults to `false`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features.<br> **Datatype:** Integer, defaults to `0`.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br> **Datatype:** Boolean.
| `inlier_metric_window` | If set, `FreqAI` adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br> **Datatype:** Integer. <br> Default: 0.
| `noise_standard_deviation` | If set, `FreqAI` adds noise to the training features with the aim of preventing overfitting. `FreqAI` generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in `FreqAI` is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: 0.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, `FreqAI` will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `inlier_metric_window` | If set, FreqAI adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br> **Datatype:** Integer. <br> Default: `0`.
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| | **Data split parameters**
### Data split parameters
| Parameter | Description |
|------------|-------------|
| | **Data split parameters within the `freqai.data_split_parameters` sub dictionary**
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1.
| `shuffle` | Shuffle the training data points during training. Typically, for time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean.
| | **Model training parameters**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. <br> **Datatype:** Dictionary.
| `n_estimators` | The number of boosted trees to fit in regression. <br> **Datatype:** Integer.
| `learning_rate` | Boosting learning rate during regression. <br> **Datatype:** Float.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`.
### Model training parameters
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. A list of the currently available models can be found [here](freqai-configuration.md#using-different-prediction-models). <br> **Datatype:** Dictionary.
| `n_estimators` | The number of boosted trees to fit in the training of the model. <br> **Datatype:** Integer.
| `learning_rate` | Boosting learning rate during training of the model. <br> **Datatype:** Float.
| `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br> **Datatype:** Float.
### Reinforcement Learning parameters
| Parameter | Description |
|------------|-------------|
| | **Reinforcement Learning Parameters within the `freqai.rl_config` sub dictionary**
| `rl_config` | A dictionary containing the control parameters for a Reinforcement Learning model. <br> **Datatype:** Dictionary.
| `train_cycles` | Training time steps will be set based on the `train_cycles * number of training data points. <br> **Datatype:** Integer.
| `cpu_count` | Number of processors to dedicate to the Reinforcement Learning training process. <br> **Datatype:** int.
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the customizable `calculate_reward()` function. <br> **Datatype:** int.
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentaiton. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). Recommended to leave this untouched, by default, this value is set to the total number of physical cores minus 1. <br> **Datatype:** int.
| `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
### Additional parameters
| Parameter | Description |
|------------|-------------|
| | **Extraneous parameters**
| `keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: 2.
| `freqai.keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag should be activated so that the model save/loading follows Keras standards. If the the provided `CNNPredictionModel` is used, then this is handled automatically. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.

View File

@@ -0,0 +1,286 @@
# Reinforcement Learning
!!! Note "Installation size"
Reinforcement learning dependencies include large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqairl`.
## Background and terminology
### What is RL and why does FreqAI need it?
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-a-custom-reward-function)). The reward is used to train weights in a neural network.
A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.*
Reinforcement learning is a natural progression for FreqAI, since it adds a new layer of adaptivity and market reactivity that Classifiers and Regressors cannot match. However, Classifiers and Regressors have strengths that RL does not have such as robust predictions. Improperly trained RL agents may find "cheats" and "tricks" to maximize reward without actually winning any trades. For this reason, RL is more complex and demands a higher level of understanding than typical Classifiers and Regressors.
### The RL interface
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-a-custom-reward-function).
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
```bash
freqtrade trade --freqaimodel ReinforcementLearner --strategy MyRLStrategy --config config.json
```
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `populate_any_indicators` as a typical Regressor:
```python
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
# The following raw price values are necessary for RL models
informative[f"%-{pair}raw_close"] = informative["close"]
informative[f"%-{pair}raw_open"] = informative["open"]
informative[f"%-{pair}raw_high"] = informative["high"]
informative[f"%-{pair}raw_low"] = informative["low"]
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
# For RL, there are no direct targets to set. This is filler (neutral)
# until the agent sends an action.
df["&-action"] = 0
return df
```
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
```python
# The following features are necessary for RL models
informative[f"%-{pair}raw_close"] = informative["close"]
informative[f"%-{pair}raw_open"] = informative["open"]
informative[f"%-{pair}raw_high"] = informative["high"]
informative[f"%-{pair}raw_low"] = informative["low"]
```
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
```python
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3]
if enter_short_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
] = (1, "short")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2]
if exit_long_conditions:
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4]
if exit_short_conditions:
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
return df
```
It is important to consider that `&-action` depends on which environment they choose to use. The example above shows 5 actions, where 0 is neutral, 1 is enter long, 2 is exit long, 3 is enter short and 4 is exit short.
## Configuring the Reinforcement Learner
In order to configure the `Reinforcement Learner` the following dictionary must exist in the `freqai` config:
```json
"rl_config": {
"train_cycles": 25,
"add_state_info": true,
"max_trade_duration_candles": 300,
"max_training_drawdown_pct": 0.02,
"cpu_count": 8,
"model_type": "PPO",
"policy_type": "MlpPolicy",
"model_reward_parameters": {
"rr": 1,
"profit_aim": 0.025
}
}
```
Parameter details can be found [here](freqai-parameter-table.md), but in general the `train_cycles` decides how many times the agent should cycle through the candle data in its artificial environment to train weights in the model. `model_type` is a string which selects one of the available models in [stable_baselines](https://stable-baselines3.readthedocs.io/en/master/)(external link).
!!! Note
If you would like to experiment with `continual_learning`, then you should set that value to `true` in the main `freqai` configuration dictionary. This will tell the Reinforcement Learning library to continue training new models from the final state of previous models, instead of retraining new models from scratch each time a retrain is initiated.
!!! Note
Remember that the general `model_training_parameters` dictionary should contain all the model hyperparameter customizations for the particular `model_type`. For example, `PPO` parameters can be found [here](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html).
## Creating a custom reward function
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but users are encouraged to create their own custom reinforcement learning model class (see below) and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
```python
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
class MyCoolRLModel(ReinforcementLearner):
"""
User created RL prediction model.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100
# reward agent for entering trades
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
and self._position == Positions.Neutral:
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
```
### Using Tensorboard
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
### Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```py
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
### Choosing a base environment
FreqAI provides two base environments, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 4 or 5 actions. In the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Meanwhile, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
* the actions available in the `calculate_reward`
* the actions consumed by the user strategy
Both of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
!!! Note
FreqAI does not provide by default, a long-only training environment. However, creating one should be as simple as copy-pasting one of the built in environments and removing the `short` actions (and all associated references to those).

View File

@@ -1,6 +1,6 @@
# Running FreqAI
There are two ways to train and deploy an adaptive machine learning model - live deployment and historical backtesting. In both cases, `FreqAI` runs/simulates periodic retraining of models as shown in the following figure:
There are two ways to train and deploy an adaptive machine learning model - live deployment and historical backtesting. In both cases, FreqAI runs/simulates periodic retraining of models as shown in the following figure:
![freqai-window](assets/freqai_moving-window.jpg)
@@ -33,7 +33,7 @@ FreqAI automatically downloads the proper amount of data needed to ensure traini
### Saving prediction data
All predictions made during the lifetime of a specific `identifier` model are stored in `historical_predictions.pkl` to allow for reloading after a crash or changes made to the config.
All predictions made during the lifetime of a specific `identifier` model are stored in `historic_predictions.pkl` to allow for reloading after a crash or changes made to the config.
### Purging old model data
@@ -73,21 +73,28 @@ Backtesting mode requires [downloading the necessary data](#downloading-data-to-
To allow for tweaking your strategy (**not** the features!), FreqAI will automatically save the predictions during backtesting so that they can be reused for future backtests and live runs using the same `identifier` model. This provides a performance enhancement geared towards enabling **high-level hyperopting** of entry/exit criteria.
An additional directory called `predictions`, which contains all the predictions stored in `hdf` format, will be created in the `unique-id` folder.
An additional directory called `backtesting_predictions`, which contains all the predictions stored in `hdf` format, will be created in the `unique-id` folder.
To change your **features**, you **must** set a new `identifier` in the config to signal to `FreqAI` to train new models.
To change your **features**, you **must** set a new `identifier` in the config to signal to FreqAI to train new models.
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
### Backtest live collected predictions
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
### Downloading data to cover the full backtest period
For live/dry deployments, FreqAI will download the necessary data automatically. However, to use backtesting functionality, you need to download the necessary data using `download-data` (details [here](data-download.md#data-downloading)). You need to pay careful attention to understanding how much *additional* data needs to be downloaded to ensure that there is a sufficient amount of training data *before* the start of the backtesting timerange. The amount of additional data can be roughly estimated by moving the start date of the timerange backwards by `train_period_days` and the `startup_candle_count` (see the [parameter table](freqai-parameter-table.md) for detailed descriptions of these parameters) from the beginning of the desired backtesting timerange.
For live/dry deployments, FreqAI will download the necessary data automatically. However, to use backtesting functionality, you need to download the necessary data using `download-data` (details [here](data-download.md#data-downloading)). You need to pay careful attention to understanding how much *additional* data needs to be downloaded to ensure that there is a sufficient amount of training data *before* the start of the backtesting time range. The amount of additional data can be roughly estimated by moving the start date of the time range backwards by `train_period_days` and the `startup_candle_count` (see the [parameter table](freqai-parameter-table.md) for detailed descriptions of these parameters) from the beginning of the desired backtesting time range.
As an example, to backtest the `--timerange 20210501-20210701` using the [example config](freqai-configuration.md#setting-up-the-configuration-file) which sets `train_period_days` to 30, together with `startup_candle_count: 40` on a maximum `include_timeframes` of 1h, the start date for the downloaded data needs to be `20210501` - 30 days - 40 * 1h / 24 hours = 20210330 (31.7 days earlier than the start of the desired training timerange).
As an example, to backtest the `--timerange 20210501-20210701` using the [example config](freqai-configuration.md#setting-up-the-configuration-file) which sets `train_period_days` to 30, together with `startup_candle_count: 40` on a maximum `include_timeframes` of 1h, the start date for the downloaded data needs to be `20210501` - 30 days - 40 * 1h / 24 hours = 20210330 (31.7 days earlier than the start of the desired training time range).
### Deciding the size of the sliding training window and backtesting duration
The backtesting timerange is defined with the typical `--timerange` parameter in the configuration file. The duration of the sliding training window is set by `train_period_days`, whilst `backtest_period_days` is the sliding backtesting window, both in number of days (`backtest_period_days` can be
The backtesting time range is defined with the typical `--timerange` parameter in the configuration file. The duration of the sliding training window is set by `train_period_days`, whilst `backtest_period_days` is the sliding backtesting window, both in number of days (`backtest_period_days` can be
a float to indicate sub-daily retraining in live/dry mode). In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file) (found in `config_examples/config_freqai.example.json`), the user is asking FreqAI to use a training period of 30 days and backtest on the subsequent 7 days. After the training of the model, FreqAI will backtest the subsequent 7 days. The "sliding window" then moves one week forward (emulating FreqAI retraining once per week in live mode) and the new model uses the previous 30 days (including the 7 days used for backtesting by the previous model) to train. This is repeated until the end of `--timerange`. This means that if you set `--timerange 20210501-20210701`, FreqAI will have trained 8 separate models at the end of `--timerange` (because the full range comprises 8 weeks).
!!! Note
@@ -105,23 +112,6 @@ During dry/live mode, FreqAI trains each coin pair sequentially (on separate thr
In the presented example config, the user will only allow predictions on models that are less than 1/2 hours old.
## Data stratification for training and testing the model
You can stratify (group) the training/testing data using:
```json
"freqai": {
"feature_parameters" : {
"stratify_training_data": 3
}
}
```
This will split the data chronologically so that every Xth data point is used to test the model after training. In the example above, the user is asking for every third data point in the dataframe to be used for
testing; the other points are used for training.
The test data is used to evaluate the performance of the model after training. If the test score is high, the model is able to capture the behavior of the data well. If the test score is low, either the model does not capture the complexity of the data, the test data is significantly different from the train data, or a different type of model should be used.
## Controlling the model learning process
Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement.
@@ -132,7 +122,7 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number
## Continual learning
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `false` which means that all new models are trained from scratch, without input from previous models.
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
## Hyperopt
@@ -159,15 +149,32 @@ dataframe['outlier'] = np.where(dataframe['DI_values'] > self.di_max.value/10, 1
This specific hyperopt would help you understand the appropriate `DI_values` for your particular parameter space.
## Using Tensorboard
CatBoost models benefit from tracking training metrics via Tensorboard. You can take advantage of the FreqAI integration to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
## Setting up a follower
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:
```json
"freqai": {
"enabled": true,
"follow_mode": true,
"identifier": "example"
"identifier": "example",
"feature_parameters": {
// leader bots feature_parameters inserted here
},
}
```
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models.
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models. The user will also need to duplicate the `feature_parameters` parameters from from the leaders freqai configuration file into the freqai section of the followers config.

View File

@@ -1,10 +1,10 @@
![freqai-logo](assets/freqai_doc_logo.svg)
# `FreqAI`
# FreqAI
## Introduction
`FreqAI` is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input features.
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, the FreqAI aims to be a sand-box for easily deploying robust machine-learning libraries on real-time data ([details])(#freqai-position-in-open-source-machine-learning-landscape).
Features include:
@@ -23,7 +23,7 @@ Features include:
## Quick start
The easiest way to quickly test `FreqAI` is to run it in dry mode with the following command:
The easiest way to quickly test FreqAI is to run it in dry mode with the following command:
```bash
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMRegressor --strategy-path freqtrade/templates
@@ -37,7 +37,7 @@ An example strategy, prediction model, and config to use as a starting points ca
## General approach
You provide `FreqAI` with a set of custom *base indicators* (the same way as in a [typical Freqtrade strategy](strategy-customization.md)) as well as target values (*labels*). For each pair in the whitelist, `FreqAI` trains a model to predict the target values based on the input of custom indicators. The models are then consistently retrained, with a predetermined frequency, to adapt to market conditions. `FreqAI` offers the ability to both backtest strategies (emulating reality with periodic retraining on historic data) and deploy dry/live runs. In dry/live conditions, `FreqAI` can be set to constant retraining in a background thread to keep models as up to date as possible.
You provide FreqAI with a set of custom *base indicators* (the same way as in a [typical Freqtrade strategy](strategy-customization.md)) as well as target values (*labels*). For each pair in the whitelist, FreqAI trains a model to predict the target values based on the input of custom indicators. The models are then consistently retrained, with a predetermined frequency, to adapt to market conditions. FreqAI offers the ability to both backtest strategies (emulating reality with periodic retraining on historic data) and deploy dry/live runs. In dry/live conditions, FreqAI can be set to constant retraining in a background thread to keep models as up to date as possible.
An overview of the algorithm, explaining the data processing pipeline and model usage, is shown below.
@@ -45,21 +45,21 @@ An overview of the algorithm, explaining the data processing pipeline and model
### Important machine learning vocabulary
**Features** - the parameters, based on historic data, on which a model is trained. All features for a single candle is stored as a vector. In `FreqAI`, you build a feature data sets from anything you can construct in the strategy.
**Features** - the parameters, based on historic data, on which a model is trained. All features for a single candle are stored as a vector. In FreqAI, you build a feature data set from anything you can construct in the strategy.
**Labels** - the target values that a model is trained toward. Each feature vector is associated with a single label that is defined by you within the strategy. These labels intentionally look into the future, and are not available to the model during dry/live/backtesting.
**Labels** - the target values that the model is trained toward. Each feature vector is associated with a single label that is defined by you within the strategy. These labels intentionally look into the future and are what you are training the model to be able to predict.
**Training** - the process of "teaching" the model to match the feature sets to the associated labels. Different types of models "learn" in different ways. More information about the different models can be found [here](freqai-configuration.md#using-different-prediction-models).
**Training** - the process of "teaching" the model to match the feature sets to the associated labels. Different types of models "learn" in different ways which means that one might be better than another for a specific application. More information about the different models that are already implemented in FreqAI can be found [here](freqai-configuration.md#using-different-prediction-models).
**Train data** - a subset of the feature data set that is fed to the model during training. This data directly influences weight connections in the model.
**Train data** - a subset of the feature data set that is fed to the model during training to "teach" the model how to predict the targets. This data directly influences weight connections in the model.
**Test data** - a subset of the feature data set that is used to evaluate the performance of the model after training. This data does not influence nodal weights within the model.
**Inferencing** - the process of feeding a trained model new data on which it will make a prediction.
**Inferencing** - the process of feeding a trained model new unseen data on which it will make a prediction.
## Install prerequisites
The normal Freqtrade install process will ask if you wish to install `FreqAI` dependencies. You should reply "yes" to this question if you wish to use `FreqAI`. If you did not reply yes, you can manually install these dependencies after the install with:
The normal Freqtrade install process will ask if you wish to install FreqAI dependencies. You should reply "yes" to this question if you wish to use FreqAI. If you did not reply yes, you can manually install these dependencies after the install with:
``` bash
pip install -r requirements-freqai.txt
@@ -70,18 +70,23 @@ pip install -r requirements-freqai.txt
### Usage with docker
If you are using docker, a dedicated tag with `FreqAI` dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular `FreqAI` dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
## Common pitfalls
`FreqAI` cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
This is for performance reasons - `FreqAI` relies on making quick predictions/retrains. To do this effectively,
it needs to download all the training data at the beginning of a dry/live instance. `FreqAI` stores and appends
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, `FreqAI` does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
FreqAI cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
This is for performance reasons - FreqAI relies on making quick predictions/retrains. To do this effectively,
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
## Credits
`FreqAI` is developed by a group of individuals who all contribute specific skillsets to the project.
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.
Conception and software development:
Robert Caulk @robcaulk
@@ -96,5 +101,4 @@ Software development:
Wagner Costa @wagnercosta
Beta testing and bug reporting:
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Robert Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau,
Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds

View File

@@ -22,6 +22,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list)
* [`ProducerPairList`](#producerpairlist)
* [`AgeFilter`](#agefilter)
* [`OffsetFilter`](#offsetfilter)
* [`PerformanceFilter`](#performancefilter)
@@ -84,7 +85,7 @@ Filtering instances (not the first position in the list) will not apply any cach
You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange.
### VolumePairList Advanced mode
##### VolumePairList Advanced mode
`VolumePairList` can also operate in an advanced mode to build volume over a given timerange of specified candle size. It utilizes exchange historical candle data, builds a typical price (calculated by (open+high+low)/3) and multiplies the typical price with every candle's volume. The sum is the `quoteVolume` over the given range. This allows different scenarios, for a more smoothened volume, when using longer ranges with larger candle sizes, or the opposite when using a short range with small candles.
@@ -146,6 +147,32 @@ More sophisticated approach can be used, by using `lookback_timeframe` for candl
!!! Note
`VolumePairList` does not support backtesting mode.
#### ProducerPairList
With `ProducerPairList`, you can reuse the pairlist from a [Producer](producer-consumer.md) without explicitly defining the pairlist on each consumer.
[Consumer mode](producer-consumer.md) is required for this pairlist to work.
The pairlist will perform a check on active pairs against the current exchange configuration to avoid attempting to trade on invalid markets.
You can limit the length of the pairlist with the optional parameter `number_assets`. Using `"number_assets"=0` or omitting this key will result in the reuse of all producer pairs valid for the current setup.
```json
"pairlists": [
{
"method": "ProducerPairList",
"number_assets": 5,
"producer_name": "default",
}
],
```
!!! Tip "Combining pairlists"
This pairlist can be combined with all other pairlists and filters for further pairlist reduction, and can also act as an "additional" pairlist, on top of already defined pairs.
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
#### AgeFilter
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).
@@ -241,7 +268,7 @@ This option is disabled by default, and will only apply if set to > 0.
The `max_value` setting removes pairs where the minimum value change is above a specified value.
This is useful when an exchange has unbalanced limits. For example, if step-size = 1 (so you can only buy 1, or 2, or 3, but not 1.1 Coins) - and the price is pretty high (like 20\$) as the coin has risen sharply since the last limit adaption.
As a result of the above, you can only buy for 20\$, or 40\$ - but not for 25\$.
On exchanges that deduct fees from the receiving currency (e.g. FTX) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
On exchanges that deduct fees from the receiving currency (e.g. binance) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
This option is disabled by default, and will only apply if set to > 0.
@@ -259,6 +286,18 @@ Min price precision for SHITCOIN/BTC is 8 decimals. If its price is 0.00000011 -
Shuffles (randomizes) pairs in the pairlist. It can be used for preventing the bot from trading some of the pairs more frequently then others when you want all pairs be treated with the same priority.
By default, ShuffleFilter will shuffle pairs once per candle.
To shuffle on every iteration, set `"shuffle_frequency"` to `"iteration"` instead of the default of `"candle"`.
``` json
{
"method": "ShuffleFilter",
"shuffle_frequency": "candle",
"seed": 42
}
```
!!! Tip
You may set the `seed` value for this Pairlist to obtain reproducible results, which can be useful for repeated backtesting sessions. If `seed` is not set, the pairs are shuffled in the non-repeatable random order. ShuffleFilter will automatically detect runmodes and apply the `seed` only for backtesting modes - if a `seed` value is set.

View File

@@ -32,7 +32,7 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Control/Monitor: Use Telegram or a WebUI (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
- Analyze: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
## Supported exchange marketplaces
@@ -40,7 +40,6 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
@@ -51,7 +50,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.

View File

@@ -21,6 +21,7 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
"name": "default", // This can be any name you'd like, default is "default"
"host": "127.0.0.1", // The host from your producer's api_server config
"port": 8080, // The port from your producer's api_server config
"secure": false, // Use a secure websockets connection, default false
"ws_token": "sercet_Ws_t0ken" // The ws_token from your producer's api_server config
}
],
@@ -42,6 +43,7 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br> **Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br> **Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br> **Datatype:** string
| `producers.secure` | **Optional.** Use ssl in websockets connection. Default False.<br> **Datatype:** string
| `producers.ws_token` | **Required.** `ws_token` as configured on the producer.<br> **Datatype:** string
| | **Optional settings**
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br> **Datatype:** Integer - in seconds.

View File

@@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.3.1
mkdocs-material==8.5.3
mkdocs==1.4.2
mkdocs-material==8.5.11
mdx_truly_sane_lists==1.3
pymdown-extensions==9.5
pymdown-extensions==9.9
jinja2==3.1.2

View File

@@ -389,6 +389,44 @@ Now anytime those types of RPC messages are sent in the bot, you will receive th
}
```
#### Reverse Proxy setup
When using [Nginx](https://nginx.org/en/docs/), the following configuration is required for WebSockets to work (Note this configuration is incomplete, it's missing some information and can not be used as is):
Please make sure to replace `<freqtrade_listen_ip>` (and the subsequent port) with the IP and Port matching your configuration/setup.
```
http {
map $http_upgrade $connection_upgrade {
default upgrade;
'' close;
}
#...
server {
#...
location / {
proxy_http_version 1.1;
proxy_pass http://<freqtrade_listen_ip>:8080;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_set_header Host $host;
}
}
}
```
To properly configure your reverse proxy (securely), please consult it's documentation for proxying websockets.
- **Traefik**: Traefik supports websockets out of the box, see the [documentation](https://doc.traefik.io/traefik/)
- **Caddy**: Caddy v2 supports websockets out of the box, see the [documentation](https://caddyserver.com/docs/v2-upgrade#proxy)
!!! Tip "SSL certificates"
You can use tools like certbot to setup ssl certificates to access your bot's UI through encrypted connection by using any fo the above reverse proxies.
While this will protect your data in transit, we do not recommend to run the freqtrade API outside of your private network (VPN, SSH tunnel).
### OpenAPI interface
To enable the builtin openAPI interface (Swagger UI), specify `"enable_openapi": true` in the api_server configuration.

View File

@@ -13,12 +13,12 @@ Feel free to use a visual Database editor like SqliteBrowser if you feel more co
sudo apt-get install sqlite3
```
### Using sqlite3 via docker-compose
### Using sqlite3 via docker
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
``` bash
docker-compose exec freqtrade /bin/bash
docker compose exec freqtrade /bin/bash
sqlite3 <database-file>.sqlite
```

View File

@@ -24,7 +24,7 @@ These modes can be configured with these values:
```
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), FTX (stop limit and stop-market) Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
@@ -87,7 +87,7 @@ At this stage the bot contains the following stoploss support modes:
2. Trailing stop loss.
3. Trailing stop loss, custom positive loss.
4. Trailing stop loss only once the trade has reached a certain offset.
5. [Custom stoploss function](strategy-advanced.md#custom-stoploss)
5. [Custom stoploss function](strategy-callbacks.md#custom-stoploss)
### Static Stop Loss

View File

@@ -159,6 +159,7 @@ The stoploss price can only ever move upwards - if the stoploss value returned f
The method must return a stoploss value (float / number) as a percentage of the current price.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
During backtesting, `current_rate` (and `current_profit`) are provided against the candle's high (or low for short trades) - while the resulting stoploss is evaluated against the candle's low (or high for short trades).
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
@@ -643,7 +644,7 @@ This callback is **not** called when there is an open order (either buy or sell)
Additional Buys are ignored once you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible, and the stake-amount is assumed to be before applying leverage.
!!! Note "About stake size"
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
@@ -772,7 +773,7 @@ class DigDeeperStrategy(IStrategy):
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% <- *This will be the last "Exit" message*
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).

View File

@@ -363,9 +363,9 @@ class AwesomeStrategy(IStrategy):
timeframe = "1d"
timeframe_mins = timeframe_to_minutes(timeframe)
minimal_roi = {
"0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles
"0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3): 0.02, # 2% after 3 candles
str(timeframe_mins * 6): 0.01, # 1% After 6 candles
}
```
@@ -446,15 +446,17 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
??? Note "Alternative candle types"
Informative_pairs can also provide a 3rd tuple element defining the candle type explicitly.
Availability of alternative candle-types will depend on the trading-mode and the exchange. Details about this can be found in the exchange documentation.
Availability of alternative candle-types will depend on the trading-mode and the exchange.
In general, spot pairs cannot be used in futures markets, and futures candles can't be used as informative pairs for spot bots.
Details about this may vary, if they do, this can be found in the exchange documentation.
``` python
def informative_pairs(self):
return [
("ETH/USDT", "5m", ""), # Uses default candletype, depends on trading_mode
("ETH/USDT", "5m", "spot"), # Forces usage of spot candles
("BTC/TUSD", "15m", "futures"), # Uses futures candles
("BTC/TUSD", "15m", "mark"), # Uses mark candles
("ETH/USDT", "5m", ""), # Uses default candletype, depends on trading_mode (recommended)
("ETH/USDT", "5m", "spot"), # Forces usage of spot candles (only valid for bots running on spot markets).
("BTC/TUSD", "15m", "futures"), # Uses futures candles (only bots with `trading_mode=futures`)
("BTC/TUSD", "15m", "mark"), # Uses mark candles (only bots with `trading_mode=futures`)
]
```
***
@@ -655,13 +657,13 @@ This is where calling `self.dp.current_whitelist()` comes in handy.
# fetch live / historical candle (OHLCV) data for the first informative pair
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
Be careful when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode.
In backtesting, `dp.get_pair_dataframe()` behavior differs depending on where it's called.
Within `populate_*()` methods, `dp.get_pair_dataframe()` returns the full timerange. Please make sure to not "look into the future" to avoid surprises when running in dry/live mode.
Within [callbacks](strategy-callbacks.md), you'll get the full timerange up to the current (simulated) candle.
### *get_analyzed_dataframe(pair, timeframe)*
@@ -670,13 +672,13 @@ It can also be used in specific callbacks to get the signal that caused the acti
``` python
# fetch current dataframe
if self.dp.runmode.value in ('live', 'dry_run'):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.timeframe)
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.timeframe)
```
!!! Note "No data available"
Returns an empty dataframe if the requested pair was not cached.
You can check for this with `if dataframe.empty:` and handle this case accordingly.
This should not happen when using whitelisted pairs.
### *orderbook(pair, maximum)*
@@ -723,7 +725,7 @@ if self.dp.runmode.value in ('live', 'dry_run'):
!!! Warning
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
vary for different exchanges. For instance, many exchanges do not return `vwap` values, the FTX exchange
vary for different exchanges. For instance, many exchanges do not return `vwap` values, some exchanges
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
data returned from the exchange and add appropriate error handling / defaults.

View File

@@ -2,12 +2,37 @@
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
## Setup
### Change Working directory to repository root
```python
import os
from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
### Configure Freqtrade environment
```python
from freqtrade.configuration import Configuration
# Customize these according to your needs.
@@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally (recommended), use existing configuration file
# config = Configuration.from_files(["config.json"])
# config = Configuration.from_files(["user_data/config.json"])
# Define some constants
config["timeframe"] = "5m"
# Name of the strategy class
config["strategy"] = "SampleStrategy"
# Location of the data
data_location = config['datadir']
data_location = config["datadir"]
# Pair to analyze - Only use one pair here
pair = "BTC/USDT"
```
@@ -36,12 +61,12 @@ from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "hdf5",
data_format = "json", # Make sure to update this to your data
candle_type=CandleType.SPOT,
)
# Confirm success
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}")
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
candles.head()
```
@@ -232,7 +257,7 @@ graph = generate_candlestick_graph(pair=pair,
# Show graph inline
# graph.show()
# Render graph in a seperate window
# Render graph in a separate window
graph.show(renderer="browser")
```

View File

@@ -43,19 +43,25 @@ Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `fo
* `order_time_in_force` buy -> entry, sell -> exit.
* `order_types` buy -> entry, sell -> exit.
* `unfilledtimeout` buy -> entry, sell -> exit.
* `ignore_buying_expired_candle_after` -> moved to root level instead of "ask_strategy/exit_pricing"
* Terminology changes
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
* `sell_signal` -> `exit_signal`
* `custom_sell` -> `custom_exit`
* `force_sell` -> `force_exit`
* `emergency_sell` -> `emergency_exit`
* Order pricing
* `bid_strategy` -> `entry_pricing`
* `ask_strategy` -> `exit_pricing`
* `ask_last_balance` -> `price_last_balance`
* `bid_last_balance` -> `price_last_balance`
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
* `webhookbuy` -> `webhookentry`
* `webhookbuyfill` -> `webhookentryfill`
* `webhookbuycancel` -> `webhookentrycancel`
* `webhooksell` -> `webhookexit`
* `webhooksellfill` -> `webhookexitfill`
* `webhooksellcancel` -> `webhookexitcancel`
* `webhookbuy` -> `entry`
* `webhookbuyfill` -> `entry_fill`
* `webhookbuycancel` -> `entry_cancel`
* `webhooksell` -> `exit`
* `webhooksellfill` -> `exit_fill`
* `webhooksellcancel` -> `exit_cancel`
* Telegram notification settings
* `buy` -> `entry`
* `buy_fill` -> `entry_fill`
@@ -443,6 +449,7 @@ Please refer to the [pricing documentation](configuration.md#prices-used-for-ord
"use_order_book": true,
"order_book_top": 1,
"bid_last_balance": 0.0
"ignore_buying_expired_candle_after": 120
}
}
```
@@ -466,6 +473,7 @@ after:
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0
}
},
"ignore_buying_expired_candle_after": 120
}
```

View File

@@ -77,6 +77,7 @@ Example configuration showing the different settings:
"enabled": true,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id",
"allow_custom_messages": true,
"notification_settings": {
"status": "silent",
"warning": "on",
@@ -115,6 +116,7 @@ Example configuration showing the different settings:
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`allow_custom_messages` completely disable strategy messages.
`reload` allows you to disable reload-buttons on selected messages.
## Create a custom keyboard (command shortcut buttons)

View File

@@ -6,14 +6,14 @@ To update your freqtrade installation, please use one of the below methods, corr
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
For the develop branch, please follow PR's to avoid being surprised by changes.
## docker-compose
## docker
!!! Note "Legacy installations using the `master` image"
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
``` bash
docker-compose pull
docker-compose up -d
docker compose pull
docker compose up -d
```
## Installation via setup script
@@ -37,3 +37,12 @@ pip install -e .
# Ensure freqUI is at the latest version
freqtrade install-ui
```
### Problems updating
Update-problems usually come missing dependencies (you didn't follow the above instructions) - or from updated dependencies, which fail to install (for example TA-lib).
Please refer to the corresponding installation sections (common problems linked below)
Common problems and their solutions:
* [ta-lib update on windows](windows_installation.md#2-install-ta-lib)

View File

@@ -169,6 +169,43 @@ Example: Search dedicated strategy path.
freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/
```
## List freqAI models
Use the `list-freqaimodels` subcommand to see all freqAI models available.
This subcommand is useful for finding problems in your environment with loading freqAI models: modules with models that contain errors and failed to load are printed in red (LOAD FAILED), while models with duplicate names are printed in yellow (DUPLICATE NAME).
```
usage: freqtrade list-freqaimodels [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--freqaimodel-path PATH] [-1] [--no-color]
optional arguments:
-h, --help show this help message and exit
--freqaimodel-path PATH
Specify additional lookup path for freqaimodels.
-1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH, --data-dir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
## List Exchanges
Use the `list-exchanges` subcommand to see the exchanges available for the bot.
@@ -226,7 +263,6 @@ equos True missing opt: fetchTicker, fetchTickers
eterbase True
fcoin True missing opt: fetchMyTrades, fetchTickers
fcoinjp True missing opt: fetchMyTrades, fetchTickers
ftx True
gateio True
gemini True
gopax True
@@ -332,7 +368,6 @@ fcoin True missing opt: fetchMyTrades, fetchTickers
fcoinjp True missing opt: fetchMyTrades, fetchTickers
flowbtc False missing: fetchOrder, fetchOHLCV
foxbit False missing: fetchOrder, fetchOHLCV
ftx True
gateio True
gemini True
gopax True
@@ -617,7 +652,7 @@ Common arguments:
You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
You can use `docker compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated:
@@ -627,7 +662,7 @@ Alternatively, you can reconfigure the docker-compose file to have the command u
--config /freqtrade/user_data/config.json
```
You can now use `docker-compose up` to start the webserver.
You can now use `docker compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip
@@ -687,6 +722,7 @@ usage: freqtrade backtesting-analysis [-h] [-v] [--logfile FILE] [-V]
[--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]]
[--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]]
[--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]]
[--timerange YYYYMMDD-[YYYYMMDD]]
optional arguments:
-h, --help show this help message and exit
@@ -709,6 +745,10 @@ optional arguments:
--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]
Comma separated list of indicators to analyse. e.g.
'close,rsi,bb_lowerband,profit_abs'
--timerange YYYYMMDD-[YYYYMMDD]
Timerange to filter trades for analysis,
start inclusive, end exclusive. e.g.
20220101-20220201
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@@ -10,37 +10,37 @@ Sample configuration (tested using IFTTT).
"webhook": {
"enabled": true,
"url": "https://maker.ifttt.com/trigger/<YOUREVENT>/with/key/<YOURKEY>/",
"webhookentry": {
"entry": {
"value1": "Buying {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhookentrycancel": {
"entry_cancel": {
"value1": "Cancelling Open Buy Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhookentryfill": {
"entry_fill": {
"value1": "Buy Order for {pair} filled",
"value2": "at {open_rate:8f}",
"value3": ""
},
"webhookexit": {
"exit": {
"value1": "Exiting {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhookexitcancel": {
"exit_cancel": {
"value1": "Cancelling Open Exit Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhookexitfill": {
"exit_fill": {
"value1": "Exit Order for {pair} filled",
"value2": "at {close_rate:8f}.",
"value3": ""
},
"webhookstatus": {
"status": {
"value1": "Status: {status}",
"value2": "",
"value3": ""
@@ -57,7 +57,7 @@ You can set the POST body format to Form-Encoded (default), JSON-Encoded, or raw
"enabled": true,
"url": "https://<YOURSUBDOMAIN>.cloud.mattermost.com/hooks/<YOURHOOK>",
"format": "json",
"webhookstatus": {
"status": {
"text": "Status: {status}"
}
},
@@ -88,17 +88,30 @@ Optional parameters are available to enable automatic retries for webhook messag
"url": "https://<YOURHOOKURL>",
"retries": 3,
"retry_delay": 0.2,
"webhookstatus": {
"status": {
"status": "Status: {status}"
}
},
```
Custom messages can be sent to Webhook endpoints via the `self.dp.send_msg()` function from within the strategy. To enable this, set the `allow_custom_messages` option to `true`:
```json
"webhook": {
"enabled": true,
"url": "https://<YOURHOOKURL>",
"allow_custom_messages": true,
"strategy_msg": {
"status": "StrategyMessage: {msg}"
}
},
```
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
### Webhookentry
### Entry
The fields in `webhook.webhookentry` are filled when the bot executes a long/short. Parameters are filled using string.format.
The fields in `webhook.entry` are filled when the bot executes a long/short. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -118,9 +131,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhookentrycancel
### Entry cancel
The fields in `webhook.webhookentrycancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
The fields in `webhook.entry_cancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -139,9 +152,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhookentryfill
### Entry fill
The fields in `webhook.webhookentryfill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
The fields in `webhook.entry_fill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -160,9 +173,9 @@ Possible parameters are:
* `current_rate`
* `enter_tag`
### Webhookexit
### Exit
The fields in `webhook.webhookexit` are filled when the bot exits a trade. Parameters are filled using string.format.
The fields in `webhook.exit` are filled when the bot exits a trade. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -184,9 +197,9 @@ Possible parameters are:
* `open_date`
* `close_date`
### Webhookexitfill
### Exit fill
The fields in `webhook.webhookexitfill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format.
The fields in `webhook.exit_fill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -209,9 +222,9 @@ Possible parameters are:
* `open_date`
* `close_date`
### Webhookexitcancel
### Exit cancel
The fields in `webhook.webhookexitcancel` are filled when the bot cancels a exit order. Parameters are filled using string.format.
The fields in `webhook.exit_cancel` are filled when the bot cancels a exit order. Parameters are filled using string.format.
Possible parameters are:
* `trade_id`
@@ -234,9 +247,9 @@ Possible parameters are:
* `open_date`
* `close_date`
### Webhookstatus
### Status
The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.
The fields in `webhook.status` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.
The only possible value here is `{status}`.
@@ -280,7 +293,6 @@ You can configure this as follows:
}
```
The above represents the default (`exit_fill` and `entry_fill` are optional and will default to the above configuration) - modifications are obviously possible.
Available fields correspond to the fields for webhooks and are documented in the corresponding webhook sections.
@@ -288,3 +300,13 @@ Available fields correspond to the fields for webhooks and are documented in the
The notifications will look as follows by default.
![discord-notification](assets/discord_notification.png)
Custom messages can be sent from a strategy to Discord endpoints via the dataprovider.send_msg() function. To enable this, set the `allow_custom_messages` option to `true`:
```json
"discord": {
"enabled": true,
"webhook_url": "https://discord.com/api/webhooks/<Your webhook URL ...>",
"allow_custom_messages": true,
},
```

View File

@@ -3,15 +3,16 @@
We **strongly** recommend that Windows users use [Docker](docker_quickstart.md) as this will work much easier and smoother (also more secure).
If that is not possible, try using the Windows Linux subsystem (WSL) - for which the Ubuntu instructions should work.
Otherwise, try the instructions below.
Otherwise, please follow the instructions below.
## Install freqtrade manually
!!! Note
Make sure to use 64bit Windows and 64bit Python to avoid problems with backtesting or hyperopt due to the memory constraints 32bit applications have under Windows.
!!! Note "64bit Python version"
Please make sure to use 64bit Windows and 64bit Python to avoid problems with backtesting or hyperopt due to the memory constraints 32bit applications have under Windows.
32bit python versions are no longer supported under Windows.
!!! Hint
Using the [Anaconda Distribution](https://www.anaconda.com/distribution/) under Windows can greatly help with installation problems. Check out the [Anaconda installation section](installation.md#Anaconda) in this document for more information.
Using the [Anaconda Distribution](https://www.anaconda.com/distribution/) under Windows can greatly help with installation problems. Check out the [Anaconda installation section](installation.md#installation-with-conda) in the documentation for more information.
### 1. Clone the git repository
@@ -34,7 +35,7 @@ python -m venv .env
.env\Scripts\activate.ps1
# optionally install ta-lib from wheel
# Eventually adjust the below filename to match the downloaded wheel
pip install --find-links build_helpers\ TA-Lib
pip install --find-links build_helpers\ TA-Lib -U
pip install -r requirements.txt
pip install -e .
freqtrade

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2022.9'
__version__ = '2022.12.dev'
if 'dev' in __version__:
try:
@@ -16,6 +16,6 @@ if 'dev' in __version__:
from pathlib import Path
versionfile = Path('./freqtrade_commit')
if versionfile.is_file():
__version__ = f"docker-{versionfile.read_text()[:8]}"
__version__ = f"docker-{__version__}-{versionfile.read_text()[:8]}"
except Exception:
pass

View File

@@ -15,9 +15,9 @@ from freqtrade.commands.db_commands import start_convert_db
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
start_new_strategy)
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_markets,
start_list_strategies, start_list_timeframes,
start_show_trades)
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_freqAI_models,
start_list_markets, start_list_strategies,
start_list_timeframes, start_show_trades)
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist

View File

@@ -60,10 +60,4 @@ def start_analysis_entries_exits(args: Dict[str, Any]) -> None:
logger.info('Starting freqtrade in analysis mode')
process_entry_exit_reasons(config['exportfilename'],
config['exchange']['pair_whitelist'],
config['analysis_groups'],
config['enter_reason_list'],
config['exit_reason_list'],
config['indicator_list']
)
process_entry_exit_reasons(config)

View File

@@ -25,7 +25,8 @@ ARGS_COMMON_OPTIMIZE = ["timeframe", "timerange", "dataformat_ohlcv",
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"enable_protections", "dry_run_wallet", "timeframe_detail",
"strategy_list", "export", "exportfilename",
"backtest_breakdown", "backtest_cache"]
"backtest_breakdown", "backtest_cache",
"freqai_backtest_live_models"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "use_max_market_positions",
@@ -41,6 +42,8 @@ ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized",
"recursive_strategy_search"]
ARGS_LIST_FREQAIMODELS = ["freqaimodel_path", "print_one_column", "print_colorized"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
ARGS_BACKTEST_SHOW = ["exportfilename", "backtest_show_pair_list"]
@@ -103,11 +106,11 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
"disableparamexport", "backtest_breakdown"]
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list"]
"exit_reason_list", "indicator_list", "timerange"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",
"hyperopt-list", "hyperopt-show", "backtest-filter",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
"list-data", "hyperopt-list", "hyperopt-show", "backtest-filter",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
@@ -192,10 +195,11 @@ class Arguments:
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
start_list_markets, start_list_strategies,
start_list_timeframes, start_new_config, start_new_strategy,
start_plot_dataframe, start_plot_profit, start_show_trades,
start_test_pairlist, start_trading, start_webserver)
start_list_freqAI_models, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_config, start_new_strategy, start_plot_dataframe,
start_plot_profit, start_show_trades, start_test_pairlist,
start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@@ -362,6 +366,15 @@ class Arguments:
list_strategies_cmd.set_defaults(func=start_list_strategies)
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
# Add list-freqAI Models subcommand
list_freqaimodels_cmd = subparsers.add_parser(
'list-freqaimodels',
help='Print available freqAI models.',
parents=[_common_parser],
)
list_freqaimodels_cmd.set_defaults(func=start_list_freqAI_models)
self._build_args(optionlist=ARGS_LIST_FREQAIMODELS, parser=list_freqaimodels_cmd)
# Add list-timeframes subcommand
list_timeframes_cmd = subparsers.add_parser(
'list-timeframes',

View File

@@ -108,7 +108,6 @@ def ask_user_config() -> Dict[str, Any]:
"binance",
"binanceus",
"bittrex",
"ftx",
"gateio",
"huobi",
"kraken",

View File

@@ -49,7 +49,7 @@ AVAILABLE_CLI_OPTIONS = {
default=0,
),
"logfile": Arg(
'--logfile',
'--logfile', '--log-file',
help="Log to the file specified. Special values are: 'syslog', 'journald'. "
"See the documentation for more details.",
metavar='FILE',
@@ -668,4 +668,9 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify additional lookup path for freqaimodels.',
metavar='PATH',
),
"freqai_backtest_live_models": Arg(
'--freqai-backtest-live-models',
help='Run backtest with ready models.',
action='store_true'
),
}

View File

@@ -1,7 +1,6 @@
import csv
import logging
import sys
from pathlib import Path
from typing import Any, Dict, List
import rapidjson
@@ -10,7 +9,6 @@ from colorama import init as colorama_init
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges
@@ -41,7 +39,7 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> None:
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
@@ -55,7 +53,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> No
names = [s['name'] for s in objs]
objs_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].relative_to(base_dir),
'location': s['location_rel'],
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
@@ -76,9 +74,8 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(
directory, not args['print_one_column'], config.get('recursive_strategy_search', False))
config, not args['print_one_column'], config.get('recursive_strategy_search', False))
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
for obj in strategy_objs:
@@ -90,7 +87,22 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False), directory)
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_freqAI_models(args: Dict[str, Any]) -> None:
"""
Print files with FreqAI models custom classes available in the directory
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
model_objs = FreqaiModelResolver.search_all_objects(config, not args['print_one_column'])
# Sort alphabetically
model_objs = sorted(model_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in model_objs]))
else:
_print_objs_tabular(model_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@@ -1,6 +1,5 @@
# flake8: noqa: F401
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.configuration.configuration import Configuration

View File

@@ -86,6 +86,8 @@ def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False)
_validate_unlimited_amount(conf)
_validate_ask_orderbook(conf)
_validate_freqai_hyperopt(conf)
_validate_freqai_backtest(conf)
_validate_freqai_include_timeframes(conf)
_validate_consumers(conf)
validate_migrated_strategy_settings(conf)
@@ -334,6 +336,53 @@ def _validate_freqai_hyperopt(conf: Dict[str, Any]) -> None:
'Using analyze-per-epoch parameter is not supported with a FreqAI strategy.')
def _validate_freqai_include_timeframes(conf: Dict[str, Any]) -> None:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
if freqai_enabled:
main_tf = conf.get('timeframe', '5m')
freqai_include_timeframes = conf.get('freqai', {}).get('feature_parameters', {}
).get('include_timeframes', [])
from freqtrade.exchange import timeframe_to_seconds
main_tf_s = timeframe_to_seconds(main_tf)
offending_lines = []
for tf in freqai_include_timeframes:
tf_s = timeframe_to_seconds(tf)
if tf_s < main_tf_s:
offending_lines.append(tf)
if offending_lines:
raise OperationalException(
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
# Ensure that the base timeframe is included in the include_timeframes list
if main_tf not in freqai_include_timeframes:
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
include_timeframes = [main_tf] + freqai_include_timeframes
conf.get('freqai', {}).get('feature_parameters', {}) \
.update({**feature_parameters, 'include_timeframes': include_timeframes})
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
timerange = conf.get('timerange')
freqai_backtest_live_models = conf.get('freqai_backtest_live_models', False)
if freqai_backtest_live_models and freqai_enabled and timerange:
raise OperationalException(
'Using timerange parameter is not supported with '
'--freqai-backtest-live-models parameter.')
if freqai_backtest_live_models and not freqai_enabled:
raise OperationalException(
'Using --freqai-backtest-live-models parameter is only '
'supported with a FreqAI strategy.')
if freqai_enabled and not freqai_backtest_live_models and not timerange:
raise OperationalException(
'Please pass --timerange if you intend to use FreqAI for backtesting.')
def _validate_consumers(conf: Dict[str, Any]) -> None:
emc_conf = conf.get('external_message_consumer', {})
if emc_conf.get('enabled', False):

View File

@@ -8,7 +8,6 @@ from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
from freqtrade import constants
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
@@ -100,6 +99,9 @@ class Configuration:
self._process_freqai_options(config)
# Import check_exchange here to avoid import cycle problems
from freqtrade.exchange.check_exchange import check_exchange
# Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
@@ -277,6 +279,9 @@ class Configuration:
self._args_to_config(config, argname='disableparamexport',
logstring='Parameter --disableparamexport detected: {} ...')
self._args_to_config(config, argname='freqai_backtest_live_models',
logstring='Parameter --freqai-backtest-live-models detected ...')
# Edge section:
if 'stoploss_range' in self.args and self.args["stoploss_range"]:
txt_range = eval(self.args["stoploss_range"])
@@ -457,6 +462,9 @@ class Configuration:
self._args_to_config(config, argname='indicator_list',
logstring='Analysis indicator list: {}')
self._args_to_config(config, argname='timerange',
logstring='Filter trades by timerange: {}')
def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run',

View File

@@ -3,7 +3,8 @@ import shutil
from pathlib import Path
from typing import Optional
from freqtrade.constants import USER_DATA_FILES, Config
from freqtrade.constants import (USER_DATA_FILES, USERPATH_FREQAIMODELS, USERPATH_HYPEROPTS,
USERPATH_NOTEBOOKS, USERPATH_STRATEGIES, Config)
from freqtrade.exceptions import OperationalException
@@ -49,8 +50,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs",
"notebooks", "plot", "strategies", ]
sub_dirs = ["backtest_results", "data", USERPATH_HYPEROPTS, "hyperopt_results", "logs",
USERPATH_NOTEBOOKS, "plot", USERPATH_STRATEGIES, USERPATH_FREQAIMODELS]
folder = Path(directory)
chown_user_directory(folder)
if not folder.is_dir():

View File

@@ -3,11 +3,12 @@ This module contains the argument manager class
"""
import logging
import re
from datetime import datetime
from datetime import datetime, timezone
from typing import Optional
import arrow
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.exceptions import OperationalException
@@ -29,6 +30,52 @@ class TimeRange:
self.startts: int = startts
self.stopts: int = stopts
@property
def startdt(self) -> Optional[datetime]:
if self.startts:
return datetime.fromtimestamp(self.startts, tz=timezone.utc)
return None
@property
def stopdt(self) -> Optional[datetime]:
if self.stopts:
return datetime.fromtimestamp(self.stopts, tz=timezone.utc)
return None
@property
def timerange_str(self) -> str:
"""
Returns a string representation of the timerange as used by parse_timerange.
Follows the format yyyymmdd-yyyymmdd - leaving out the parts that are not set.
"""
start = ''
stop = ''
if startdt := self.startdt:
start = startdt.strftime('%Y%m%d')
if stopdt := self.stopdt:
stop = stopdt.strftime('%Y%m%d')
return f"{start}-{stop}"
@property
def start_fmt(self) -> str:
"""
Returns a string representation of the start date
"""
val = 'unbounded'
if (startdt := self.startdt) is not None:
val = startdt.strftime(DATETIME_PRINT_FORMAT)
return val
@property
def stop_fmt(self) -> str:
"""
Returns a string representation of the stop date
"""
val = 'unbounded'
if (stopdt := self.stopdt) is not None:
val = stopdt.strftime(DATETIME_PRINT_FORMAT)
return val
def __eq__(self, other):
"""Override the default Equals behavior"""
return (self.starttype == other.starttype and self.stoptype == other.stoptype

View File

@@ -5,7 +5,7 @@ bot constants
"""
from typing import Any, Dict, List, Literal, Tuple
from freqtrade.enums import CandleType
from freqtrade.enums import CandleType, RPCMessageType
DEFAULT_CONFIG = 'config.json'
@@ -31,7 +31,7 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss',
'ProfitDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
@@ -61,6 +61,7 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
ENV_VAR_PREFIX = 'FREQTRADE__'
@@ -159,6 +160,7 @@ CONF_SCHEMA = {
'ignore_buying_expired_candle_after': {'type': 'number'},
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
'reduce_df_footprint': {'type': 'boolean', 'default': False},
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
'backtest_breakdown': {
'type': 'array',
@@ -282,6 +284,7 @@ CONF_SCHEMA = {
'enabled': {'type': 'boolean'},
'token': {'type': 'string'},
'chat_id': {'type': 'string'},
'allow_custom_messages': {'type': 'boolean', 'default': True},
'balance_dust_level': {'type': 'number', 'minimum': 0.0},
'notification_settings': {
'type': 'object',
@@ -344,6 +347,8 @@ CONF_SCHEMA = {
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
'retries': {'type': 'integer', 'minimum': 0},
'retry_delay': {'type': 'number', 'minimum': 0},
**dict([(x, {'type': 'object'}) for x in RPCMessageType]),
# Below -> Deprecated
'webhookentry': {'type': 'object'},
'webhookentrycancel': {'type': 'object'},
'webhookentryfill': {'type': 'object'},
@@ -508,6 +513,7 @@ CONF_SCHEMA = {
'minimum': 0,
'maximum': 65535
},
'secure': {'type': 'boolean', 'default': False},
'ws_token': {'type': 'string'},
},
'required': ['name', 'host', 'ws_token']
@@ -537,7 +543,9 @@ CONF_SCHEMA = {
"properties": {
"enabled": {"type": "boolean", "default": False},
"keras": {"type": "boolean", "default": False},
"conv_width": {"type": "integer", "default": 2},
"write_metrics_to_disk": {"type": "boolean", "default": False},
"purge_old_models": {"type": "boolean", "default": True},
"conv_width": {"type": "integer", "default": 1},
"train_period_days": {"type": "integer", "default": 0},
"backtest_period_days": {"type": "number", "default": 7},
"identifier": {"type": "string", "default": "example"},
@@ -567,12 +575,31 @@ CONF_SCHEMA = {
"properties": {
"test_size": {"type": "number"},
"random_state": {"type": "integer"},
"shuffle": {"type": "boolean", "default": False}
},
},
"model_training_parameters": {
"type": "object"
},
"rl_config": {
"type": "object",
"properties": {
"n_estimators": {"type": "integer", "default": 1000}
"train_cycles": {"type": "integer"},
"max_trade_duration_candles": {"type": "integer"},
"add_state_info": {"type": "boolean", "default": False},
"max_training_drawdown_pct": {"type": "number", "default": 0.02},
"cpu_count": {"type": "integer", "default": 1},
"model_type": {"type": "string", "default": "PPO"},
"policy_type": {"type": "string", "default": "MlpPolicy"},
"net_arch": {"type": "array", "default": [128, 128]},
"randomize_startinng_position": {"type": "boolean", "default": False},
"model_reward_parameters": {
"type": "object",
"properties": {
"rr": {"type": "number", "default": 1},
"profit_aim": {"type": "number", "default": 0.025}
}
}
},
},
},
@@ -582,9 +609,8 @@ CONF_SCHEMA = {
"backtest_period_days",
"identifier",
"feature_parameters",
"data_split_parameters",
"model_training_parameters"
]
"data_split_parameters"
]
},
},
}
@@ -652,5 +678,6 @@ LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell']
MakerTaker = Literal['maker', 'taker']
BidAsk = Literal['bid', 'ask']
Config = Dict[str, Any]

View File

@@ -26,7 +26,7 @@ BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'enter_tag',
'is_short', 'open_timestamp', 'close_timestamp', 'orders'
'leverage', 'is_short', 'open_timestamp', 'close_timestamp', 'orders'
]
@@ -280,6 +280,8 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = 0
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)

View File

@@ -3,10 +3,10 @@ Functions to convert data from one format to another
"""
import itertools
import logging
from datetime import datetime, timezone
from operator import itemgetter
from typing import Dict, List
import numpy as np
import pandas as pd
from pandas import DataFrame, to_datetime
@@ -47,8 +47,7 @@ def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
fill_missing: bool, drop_incomplete: bool) -> DataFrame:
"""
Cleanse a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
@@ -138,11 +137,9 @@ def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
df = df.iloc[startup_candles:, :]
else:
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
df = df.loc[df[df_date_col] >= timerange.startdt, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
df = df.loc[df[df_date_col] <= timerange.stopdt, :]
return df
@@ -314,3 +311,29 @@ def convert_ohlcv_format(
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
"""
Ensure all values are float32 in the incoming dataframe.
:param df: Dataframe to be converted to float/int 32s
:return: Dataframe converted to float/int 32s
"""
logger.debug(f"Memory usage of dataframe is "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
df_dtypes = df.dtypes
for column, dtype in df_dtypes.items():
if column in ['open', 'high', 'low', 'close', 'volume']:
continue
if dtype == np.float64:
df_dtypes[column] = np.float32
elif dtype == np.int64:
df_dtypes[column] = np.int32
df = df.astype(df_dtypes)
logger.debug(f"Memory usage after optimization is: "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
return df

View File

@@ -9,14 +9,16 @@ from collections import deque
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from pandas import DataFrame, to_timedelta
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
PairWithTimeframe)
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RPCMessageType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager
from freqtrade.util import PeriodicCache
@@ -104,13 +106,15 @@ class DataProvider:
def _emit_df(
self,
pair_key: PairWithTimeframe,
dataframe: DataFrame
dataframe: DataFrame,
new_candle: bool
) -> None:
"""
Send this dataframe as an ANALYZED_DF message to RPC
:param pair_key: PairWithTimeframe tuple
:param data: Tuple containing the DataFrame and the datetime it was cached
:param dataframe: Dataframe to emit
:param new_candle: This is a new candle
"""
if self.__rpc:
self.__rpc.send_msg(
@@ -118,13 +122,18 @@ class DataProvider:
'type': RPCMessageType.ANALYZED_DF,
'data': {
'key': pair_key,
'df': dataframe,
'df': dataframe.tail(1),
'la': datetime.now(timezone.utc)
}
}
)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,
'data': pair_key,
})
def _add_external_df(
def _replace_external_df(
self,
pair: str,
dataframe: DataFrame,
@@ -150,6 +159,85 @@ class DataProvider:
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
def _add_external_df(
self,
pair: str,
dataframe: DataFrame,
last_analyzed: datetime,
timeframe: str,
candle_type: CandleType,
producer_name: str = "default"
) -> Tuple[bool, int]:
"""
Append a candle to the existing external dataframe. The incoming dataframe
must have at least 1 candle.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:returns: False if the candle could not be appended, or the int number of missing candles.
"""
pair_key = (pair, timeframe, candle_type)
if dataframe.empty:
# The incoming dataframe must have at least 1 candle
return (False, 0)
if len(dataframe) >= FULL_DATAFRAME_THRESHOLD:
# This is likely a full dataframe
# Add the dataframe to the dataprovider
self._replace_external_df(
pair,
dataframe,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
if (producer_name not in self.__producer_pairs_df
or pair_key not in self.__producer_pairs_df[producer_name]):
# We don't have data from this producer yet,
# or we don't have data for this pair_key
# return False and 1000 for the full df
return (False, 1000)
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
# CHECK FOR MISSING CANDLES
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
# Remove existing candles that are newer than the incoming first candle
existing_df1 = existing_df[existing_df['date'] < incoming_first]
candle_difference = (incoming_first - local_last) / timeframe_delta
# If the difference divided by the timeframe is 1, then this
# is the candle we want and the incoming data isn't missing any.
# If the candle_difference is more than 1, that means
# we missed some candles between our data and the incoming
# so return False and candle_difference.
if candle_difference > 1:
return (False, candle_difference)
if existing_df1.empty:
appended_df = dataframe
else:
appended_df = append_candles_to_dataframe(existing_df1, dataframe)
# Everything is good, we appended
self._replace_external_df(
pair,
appended_df,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
def get_producer_df(
self,
pair: str,

View File

@@ -1,11 +1,12 @@
import logging
from pathlib import Path
from typing import List, Optional
import joblib
import pandas as pd
from tabulate import tabulate
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
load_backtest_stats)
from freqtrade.exceptions import OperationalException
@@ -152,37 +153,55 @@ def _do_group_table_output(bigdf, glist):
logger.warning("Invalid group mask specified.")
def _print_results(analysed_trades, stratname, analysis_groups,
enter_reason_list, exit_reason_list,
indicator_list, columns=None):
if columns is None:
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
if timerange:
if timerange.starttype == 'date':
df = df.loc[(df[df_date_col] >= timerange.startdt)]
if timerange.stoptype == 'date':
df = df.loc[(df[df_date_col] < timerange.stopdt)]
return df
bigdf = pd.DataFrame()
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
if enter_reason_list and "all" not in enter_reason_list:
df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list:
df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
return df
def prepare_results(analysed_trades, stratname,
enter_reason_list, exit_reason_list,
timerange=None):
res_df = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
bigdf = pd.concat([bigdf, trades], ignore_index=True)
res_df = pd.concat([res_df, trades], ignore_index=True)
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
res_df = _select_rows_within_dates(res_df, timerange)
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
return res_df
def print_results(res_df, analysis_groups, indicator_list):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(bigdf, analysis_groups)
if enter_reason_list and "all" not in enter_reason_list:
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list:
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
_do_group_table_output(res_df, analysis_groups)
if "all" in indicator_list:
print(bigdf)
print(res_df)
elif indicator_list is not None:
available_inds = []
for ind in indicator_list:
if ind in bigdf:
if ind in res_df:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False)
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
else:
print("\\_ No trades to show")
print("\\No trades to show")
def _print_table(df, sortcols=None, show_index=False):
@@ -201,27 +220,34 @@ def _print_table(df, sortcols=None, show_index=False):
)
def process_entry_exit_reasons(backtest_dir: Path,
pairlist: List[str],
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
enter_reason_list: Optional[List[str]] = ["all"],
exit_reason_list: Optional[List[str]] = ["all"],
indicator_list: Optional[List[str]] = []):
def process_entry_exit_reasons(config: Config):
try:
backtest_stats = load_backtest_stats(backtest_dir)
analysis_groups = config.get('analysis_groups', [])
enter_reason_list = config.get('enter_reason_list', ["all"])
exit_reason_list = config.get('exit_reason_list', ["all"])
indicator_list = config.get('indicator_list', [])
timerange = TimeRange.parse_timerange(None if config.get(
'timerange') is None else str(config.get('timerange')))
backtest_stats = load_backtest_stats(config['exportfilename'])
for strategy_name, results in backtest_stats['strategy'].items():
trades = load_backtest_data(backtest_dir, strategy_name)
trades = load_backtest_data(config['exportfilename'], strategy_name)
if not trades.empty:
signal_candles = _load_signal_candles(backtest_dir)
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
trades, signal_candles)
_print_results(analysed_trades_dict,
strategy_name,
analysis_groups,
enter_reason_list,
exit_reason_list,
indicator_list)
signal_candles = _load_signal_candles(config['exportfilename'])
analysed_trades_dict = _process_candles_and_indicators(
config['exchange']['pair_whitelist'], strategy_name,
trades, signal_candles)
res_df = prepare_results(analysed_trades_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
print_results(res_df,
analysis_groups,
indicator_list)
except ValueError as e:
raise OperationalException(e) from e

View File

@@ -1,6 +1,6 @@
import logging
import operator
from datetime import datetime, timezone
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Tuple
@@ -26,7 +26,7 @@ def load_pair_history(pair: str,
datadir: Path, *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
@@ -160,9 +160,9 @@ def _load_cached_data_for_updating(
end = None
if timerange:
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
start = timerange.startdt
if timerange.stoptype == 'date':
end = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
end = timerange.stopdt
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = data_handler.ohlcv_load(pair, timeframe=timeframe,

View File

@@ -102,6 +102,11 @@ class IDataHandler(ABC):
:return: (min, max)
"""
data = self._ohlcv_load(pair, timeframe, None, candle_type)
if data.empty:
return (
datetime.fromtimestamp(0, tz=timezone.utc),
datetime.fromtimestamp(0, tz=timezone.utc)
)
return data.iloc[0]['date'].to_pydatetime(), data.iloc[-1]['date'].to_pydatetime()
@abstractmethod
@@ -275,7 +280,7 @@ class IDataHandler(ABC):
candle_type: CandleType, *,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
warn_no_data: bool = True,
) -> DataFrame:
@@ -303,7 +308,7 @@ class IDataHandler(ABC):
timerange=timerange_startup,
candle_type=candle_type
)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
@@ -323,8 +328,9 @@ class IDataHandler(ABC):
self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data)
return pairdf
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str,
candle_type: CandleType, warn_no_data: bool):
def _check_empty_df(
self, pairdf: DataFrame, pair: str, timeframe: str, candle_type: CandleType,
warn_no_data: bool, warn_price: bool = False) -> bool:
"""
Warn on empty dataframe
"""
@@ -335,6 +341,20 @@ class IDataHandler(ABC):
"Use `freqtrade download-data` to download the data"
)
return True
elif warn_price:
candle_price_gap = 0
if (candle_type in (CandleType.SPOT, CandleType.FUTURES) and
not pairdf.empty
and 'close' in pairdf.columns and 'open' in pairdf.columns):
# Detect gaps between prior close and open
gaps = ((pairdf['open'] - pairdf['close'].shift(1)) / pairdf['close'].shift(1))
gaps = gaps.dropna()
if len(gaps):
candle_price_gap = max(abs(gaps))
if candle_price_gap > 0.1:
logger.info(f"Price jump in {pair}, {timeframe}, {candle_type} between two candles "
f"of {candle_price_gap:.2%} detected.")
return False
def _validate_pairdata(self, pair, pairdata: DataFrame, timeframe: str,
@@ -346,13 +366,11 @@ class IDataHandler(ABC):
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
if pairdata.iloc[0]['date'] > timerange.startdt:
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
if pairdata.iloc[-1]['date'] < timerange.stopdt:
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")

View File

@@ -392,7 +392,7 @@ class Edge:
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, df, pair, stoploss_range):
def _find_trades_for_stoploss_range(self, df, pair: str, stoploss_range) -> list:
buy_column = df['enter_long'].values
sell_column = df['exit_long'].values
date_column = df['date'].values
@@ -407,7 +407,7 @@ class Edge:
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair):
ohlc_columns, stoploss, pair: str):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to

View File

@@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
from freqtrade.enums.state import State

View File

@@ -21,6 +21,7 @@ class RPCMessageType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NEW_CANDLE = 'new_candle'
def __repr__(self):
return self.value
@@ -35,3 +36,6 @@ class RPCRequestType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NO_ECHO_MESSAGES = (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST, RPCMessageType.NEW_CANDLE)

View File

@@ -3,21 +3,20 @@
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange import (amount_to_contract_precision, amount_to_contracts,
amount_to_precision, available_exchanges, ccxt_exchanges,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, is_exchange_officially_supported,
market_is_active, price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds,
validate_exchange, validate_exchanges)
from freqtrade.exchange.ftx import Ftx
from freqtrade.exchange.exchange_utils import (amount_to_contract_precision, amount_to_contracts,
amount_to_precision, available_exchanges,
ccxt_exchanges, contracts_to_amount,
date_minus_candles, is_exchange_known_ccxt,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.gateio import Gateio
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.huobi import Huobi

View File

@@ -1,28 +0,0 @@
""" Bibox exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Bibox(Exchange):
"""
Bibox exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
# fetchCurrencies API point requires authentication for Bibox,
# so switch it off for Freqtrade load_markets()
@property
def _ccxt_config(self) -> Dict:
# Parameters to add directly to ccxt sync/async initialization.
config = {"has": {"fetchCurrencies": False}}
config.update(super()._ccxt_config)
return config

View File

@@ -11,6 +11,7 @@ from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.types import Tickers
from freqtrade.misc import deep_merge_dicts, json_load
@@ -41,25 +42,7 @@ class Binance(Exchange):
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
:param side: "buy" or "sell"
"""
order_types = ('stop_loss_limit', 'stop', 'stop_market')
return (
order.get('stopPrice', None) is None
or (
order['type'] in order_types
and (
(side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice']))
)
))
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict:
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
tickers = super().get_tickers(symbols=symbols, cached=cached)
if self.trading_mode == TradingMode.FUTURES:
# Binance's future result has no bid/ask values.
@@ -68,6 +51,37 @@ class Binance(Exchange):
tickers = deep_merge_dicts(bidsasks, tickers, allow_null_overrides=False)
return tickers
@retrier
def additional_exchange_init(self) -> None:
"""
Additional exchange initialization logic.
.api will be available at this point.
Must be overridden in child methods if required.
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
position_side = self._api.fapiPrivateGetPositionsideDual()
self._log_exchange_response('position_side_setting', position_side)
assets_margin = self._api.fapiPrivateGetMultiAssetsMargin()
self._log_exchange_response('multi_asset_margin', assets_margin)
msg = ""
if position_side.get('dualSidePosition') is True:
msg += (
"\nHedge Mode is not supported by freqtrade. "
"Please change 'Position Mode' on your binance futures account.")
if assets_margin.get('multiAssetsMargin') is True:
msg += ("\nMulti-Asset Mode is not supported by freqtrade. "
"Please change 'Asset Mode' on your binance futures account.")
if msg:
raise OperationalException(msg)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
def _set_leverage(
self,

File diff suppressed because it is too large Load Diff

View File

@@ -20,8 +20,12 @@ class Bybit(Exchange):
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
"ccxt_futures_name": "linear"
"ohlcv_candle_limit": 1000,
"ccxt_futures_name": "linear",
"ohlcv_has_history": False,
}
_ft_has_futures: Dict = {
"ohlcv_has_history": True,
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [

View File

@@ -3,8 +3,8 @@ import logging
from freqtrade.constants import Config
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
is_exchange_officially_supported, validate_exchange)
from freqtrade.exchange import available_exchanges, is_exchange_known_ccxt, validate_exchange
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS, SUPPORTED_EXCHANGES
logger = logging.getLogger(__name__)
@@ -52,7 +52,7 @@ def check_exchange(config: Config, check_for_bad: bool = True) -> bool:
else:
logger.warning(f'Exchange "{exchange}" will not work with Freqtrade. Reason: {reason}')
if is_exchange_officially_supported(exchange):
if MAP_EXCHANGE_CHILDCLASS.get(exchange, exchange) in SUPPORTED_EXCHANGES:
logger.info(f'Exchange "{exchange}" is officially supported '
f'by the Freqtrade development team.')
else:

View File

@@ -52,7 +52,6 @@ MAP_EXCHANGE_CHILDCLASS = {
SUPPORTED_EXCHANGES = [
'binance',
'bittrex',
'ftx',
'gateio',
'huobi',
'kraken',

View File

@@ -8,7 +8,6 @@ import inspect
import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from math import ceil
from threading import Lock
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
@@ -16,29 +15,31 @@ import arrow
import ccxt
import ccxt.async_support as ccxt_async
from cachetools import TTLCache
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from ccxt import TICK_SIZE
from dateutil import parser
from pandas import DataFrame
from pandas import DataFrame, concat
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BidAsk,
BuySell, Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
PairWithTimeframe)
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
SUPPORTED_EXCHANGES, remove_credentials, retrier,
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, remove_credentials, retrier,
retrier_async)
from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.exchange.types import Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.util import FtPrecise
CcxtModuleType = Any
logger = logging.getLogger(__name__)
@@ -180,13 +181,14 @@ class Exchange:
exchange_config, ccxt_async, ccxt_kwargs=ccxt_async_config)
logger.info(f'Using Exchange "{self.name}"')
self.required_candle_call_count = 1
if validate:
# Initial markets load
self._load_markets()
self.validate_config(config)
self._startup_candle_count: int = config.get('startup_candle_count', 0)
self.required_candle_call_count = self.validate_required_startup_candles(
config.get('startup_candle_count', 0), config.get('timeframe', ''))
self._startup_candle_count, config.get('timeframe', ''))
# Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_config.get(
@@ -409,11 +411,13 @@ class Exchange:
else:
return DataFrame()
def get_contract_size(self, pair: str) -> float:
def get_contract_size(self, pair: str) -> Optional[float]:
if self.trading_mode == TradingMode.FUTURES:
market = self.markets[pair]
market = self.markets.get(pair, {})
contract_size: float = 1.0
if market['contractSize'] is not None:
if not market:
return None
if market.get('contractSize') is not None:
# ccxt has contractSize in markets as string
contract_size = float(market['contractSize'])
return contract_size
@@ -1073,7 +1077,14 @@ class Exchange:
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
raise OperationalException(f"stoploss is not implemented for {self.name}.")
if not self._ft_has.get('stoploss_on_exchange'):
raise OperationalException(f"stoploss is not implemented for {self.name}.")
return (
order.get('stopPrice', None) is None
or ((side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice'])))
)
def _get_stop_order_type(self, user_order_type) -> Tuple[str, str]:
@@ -1103,7 +1114,7 @@ class Exchange:
'In stoploss limit order, stop price should be more than limit price')
return limit_rate
def _get_stop_params(self, ordertype: str, stop_price: float) -> Dict:
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
# Verify if stopPrice works for your exchange!
params.update({'stopPrice': stop_price})
@@ -1152,7 +1163,8 @@ class Exchange:
return dry_order
try:
params = self._get_stop_params(ordertype=ordertype, stop_price=stop_price_norm)
params = self._get_stop_params(side=side, ordertype=ordertype,
stop_price=stop_price_norm)
if self.trading_mode == TradingMode.FUTURES:
params['reduceOnly'] = True
@@ -1292,7 +1304,14 @@ class Exchange:
order = self.fetch_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
order = {
'id': order_id,
'status': 'canceled',
'amount': amount,
'filled': 0.0,
'fee': {},
'info': {}
}
return order
@@ -1413,14 +1432,17 @@ class Exchange:
raise OperationalException(e) from e
@retrier
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict:
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
"""
:param cached: Allow cached result
:return: fetch_tickers result
"""
tickers: Tickers
if not self.exchange_has('fetchTickers'):
return {}
if cached:
with self._cache_lock:
tickers = self._fetch_tickers_cache.get('fetch_tickers')
tickers = self._fetch_tickers_cache.get('fetch_tickers') # type: ignore
if tickers:
return tickers
try:
@@ -1443,12 +1465,12 @@ class Exchange:
# Pricing info
@retrier
def fetch_ticker(self, pair: str) -> dict:
def fetch_ticker(self, pair: str) -> Ticker:
try:
if (pair not in self.markets or
self.markets[pair].get('active', False) is False):
raise ExchangeError(f"Pair {pair} not available")
data = self._api.fetch_ticker(pair)
data: Ticker = self._api.fetch_ticker(pair)
return data
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
@@ -1499,7 +1521,7 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
def _get_price_side(self, side: str, is_short: bool, conf_strategy: Dict) -> str:
def _get_price_side(self, side: str, is_short: bool, conf_strategy: Dict) -> BidAsk:
price_side = conf_strategy['price_side']
if price_side in ('same', 'other'):
@@ -1518,7 +1540,7 @@ class Exchange:
def get_rate(self, pair: str, refresh: bool,
side: EntryExit, is_short: bool,
order_book: Optional[dict] = None, ticker: Optional[dict] = None) -> float:
order_book: Optional[dict] = None, ticker: Optional[Ticker] = None) -> float:
"""
Calculates bid/ask target
bid rate - between current ask price and last price
@@ -1667,6 +1689,17 @@ class Exchange:
@retrier
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: MakerTaker = 'maker') -> float:
"""
Retrieve fee from exchange
:param symbol: Pair
:param type: Type of order (market, limit, ...)
:param side: Side of order (buy, sell)
:param amount: Amount of order
:param price: Price of order
:param taker_or_maker: 'maker' or 'taker' (ignored if "type" is provided)
"""
if type and type == 'market':
taker_or_maker = 'taker'
try:
if self._config['dry_run'] and self._config.get('fee', None) is not None:
return self._config['fee']
@@ -1844,10 +1877,22 @@ class Exchange:
return pair, timeframe, candle_type, data
def _build_coroutine(self, pair: str, timeframe: str, candle_type: CandleType,
since_ms: Optional[int]) -> Coroutine:
since_ms: Optional[int], cache: bool) -> Coroutine:
not_all_data = cache and self.required_candle_call_count > 1
if cache and (pair, timeframe, candle_type) in self._klines:
candle_limit = self.ohlcv_candle_limit(timeframe, candle_type)
min_date = date_minus_candles(timeframe, candle_limit - 5).timestamp()
# Check if 1 call can get us updated candles without hole in the data.
if min_date < self._pairs_last_refresh_time.get((pair, timeframe, candle_type), 0):
# Cache can be used - do one-off call.
not_all_data = False
else:
# Time jump detected, evict cache
logger.info(
f"Time jump detected. Evicting cache for {pair}, {timeframe}, {candle_type}")
del self._klines[(pair, timeframe, candle_type)]
if (not since_ms
and (self._ft_has["ohlcv_require_since"] or self.required_candle_call_count > 1)):
if (not since_ms and (self._ft_has["ohlcv_require_since"] or not_all_data)):
# Multiple calls for one pair - to get more history
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(
timeframe, candle_type, since_ms)
@@ -1863,6 +1908,60 @@ class Exchange:
return self._async_get_candle_history(
pair, timeframe, since_ms=since_ms, candle_type=candle_type)
def _build_ohlcv_dl_jobs(
self, pair_list: ListPairsWithTimeframes, since_ms: Optional[int],
cache: bool) -> Tuple[List[Coroutine], List[Tuple[str, str, CandleType]]]:
"""
Build Coroutines to execute as part of refresh_latest_ohlcv
"""
input_coroutines = []
cached_pairs = []
for pair, timeframe, candle_type in set(pair_list):
if (timeframe not in self.timeframes
and candle_type in (CandleType.SPOT, CandleType.FUTURES)):
logger.warning(
f"Cannot download ({pair}, {timeframe}) combination as this timeframe is "
f"not available on {self.name}. Available timeframes are "
f"{', '.join(self.timeframes)}.")
continue
if ((pair, timeframe, candle_type) not in self._klines or not cache
or self._now_is_time_to_refresh(pair, timeframe, candle_type)):
input_coroutines.append(
self._build_coroutine(pair, timeframe, candle_type, since_ms, cache))
else:
logger.debug(
f"Using cached candle (OHLCV) data for {pair}, {timeframe}, {candle_type} ..."
)
cached_pairs.append((pair, timeframe, candle_type))
return input_coroutines, cached_pairs
def _process_ohlcv_df(self, pair: str, timeframe: str, c_type: CandleType, ticks: List[List],
cache: bool, drop_incomplete: bool) -> DataFrame:
# keeping last candle time as last refreshed time of the pair
if ticks and cache:
self._pairs_last_refresh_time[(pair, timeframe, c_type)] = ticks[-1][0] // 1000
# keeping parsed dataframe in cache
ohlcv_df = ohlcv_to_dataframe(ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=drop_incomplete)
if cache:
if (pair, timeframe, c_type) in self._klines:
old = self._klines[(pair, timeframe, c_type)]
# Reassign so we return the updated, combined df
ohlcv_df = clean_ohlcv_dataframe(concat([old, ohlcv_df], axis=0), timeframe, pair,
fill_missing=True, drop_incomplete=False)
candle_limit = self.ohlcv_candle_limit(timeframe, self._config['candle_type_def'])
# Age out old candles
ohlcv_df = ohlcv_df.tail(candle_limit + self._startup_candle_count)
ohlcv_df = ohlcv_df.reset_index(drop=True)
self._klines[(pair, timeframe, c_type)] = ohlcv_df
else:
self._klines[(pair, timeframe, c_type)] = ohlcv_df
return ohlcv_df
def refresh_latest_ohlcv(self, pair_list: ListPairsWithTimeframes, *,
since_ms: Optional[int] = None, cache: bool = True,
drop_incomplete: Optional[bool] = None
@@ -1880,27 +1979,9 @@ class Exchange:
"""
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
drop_incomplete = self._ohlcv_partial_candle if drop_incomplete is None else drop_incomplete
input_coroutines = []
cached_pairs = []
# Gather coroutines to run
for pair, timeframe, candle_type in set(pair_list):
if (timeframe not in self.timeframes
and candle_type in (CandleType.SPOT, CandleType.FUTURES)):
logger.warning(
f"Cannot download ({pair}, {timeframe}) combination as this timeframe is "
f"not available on {self.name}. Available timeframes are "
f"{', '.join(self.timeframes)}.")
continue
if ((pair, timeframe, candle_type) not in self._klines or not cache
or self._now_is_time_to_refresh(pair, timeframe, candle_type)):
input_coroutines.append(self._build_coroutine(
pair, timeframe, candle_type=candle_type, since_ms=since_ms))
else:
logger.debug(
f"Using cached candle (OHLCV) data for {pair}, {timeframe}, {candle_type} ..."
)
cached_pairs.append((pair, timeframe, candle_type))
# Gather coroutines to run
input_coroutines, cached_pairs = self._build_ohlcv_dl_jobs(pair_list, since_ms, cache)
results_df = {}
# Chunk requests into batches of 100 to avoid overwelming ccxt Throttling
@@ -1917,16 +1998,11 @@ class Exchange:
continue
# Deconstruct tuple (has 4 elements)
pair, timeframe, c_type, ticks = res
# keeping last candle time as last refreshed time of the pair
if ticks:
self._pairs_last_refresh_time[(pair, timeframe, c_type)] = ticks[-1][0] // 1000
# keeping parsed dataframe in cache
ohlcv_df = ohlcv_to_dataframe(
ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=drop_incomplete)
ohlcv_df = self._process_ohlcv_df(
pair, timeframe, c_type, ticks, cache, drop_incomplete)
results_df[(pair, timeframe, c_type)] = ohlcv_df
if cache:
self._klines[(pair, timeframe, c_type)] = ohlcv_df
# Return cached klines
for pair, timeframe, c_type in cached_pairs:
results_df[(pair, timeframe, c_type)] = self.klines(
@@ -1939,13 +2015,8 @@ class Exchange:
def _now_is_time_to_refresh(self, pair: str, timeframe: str, candle_type: CandleType) -> bool:
# Timeframe in seconds
interval_in_sec = timeframe_to_seconds(timeframe)
return not (
(self._pairs_last_refresh_time.get(
(pair, timeframe, candle_type),
0
) + interval_in_sec) >= arrow.utcnow().int_timestamp
)
plr = self._pairs_last_refresh_time.get((pair, timeframe, candle_type), 0) + interval_in_sec
return plr < arrow.utcnow().int_timestamp
@retrier_async
async def _async_get_candle_history(
@@ -1971,8 +2042,8 @@ class Exchange:
candle_limit = self.ohlcv_candle_limit(
timeframe, candle_type=candle_type, since_ms=since_ms)
if candle_type != CandleType.SPOT:
params.update({'price': candle_type})
if candle_type and candle_type != CandleType.SPOT:
params.update({'price': candle_type.value})
if candle_type != CandleType.FUNDING_RATE:
data = await self._api_async.fetch_ohlcv(
pair, timeframe=timeframe, since=since_ms,
@@ -2748,244 +2819,3 @@ class Exchange:
# describes the min amt for a tier, and the lowest tier will always go down to 0
else:
raise OperationalException(f"Cannot get maintenance ratio using {self.name}")
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)
def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in SUPPORTED_EXCHANGES
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return the list of all exchanges known to ccxt
"""
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
"""
exchanges = ccxt_exchanges(ccxt_module)
return [x for x in exchanges if validate_exchange(x)[0]]
def validate_exchange(exchange: str) -> Tuple[bool, str]:
ex_mod = getattr(ccxt, exchange.lower())()
if not ex_mod or not ex_mod.has:
return False, ''
missing = [k for k in EXCHANGE_HAS_REQUIRED if ex_mod.has.get(k) is not True]
if missing:
return False, f"missing: {', '.join(missing)}"
missing_opt = [k for k in EXCHANGE_HAS_OPTIONAL if not ex_mod.has.get(k)]
if exchange.lower() in BAD_EXCHANGES:
return False, BAD_EXCHANGES.get(exchange.lower(), '')
if missing_opt:
return True, f"missing opt: {', '.join(missing_opt)}"
return True, ''
def validate_exchanges(all_exchanges: bool) -> List[Tuple[str, bool, str]]:
"""
:return: List of tuples with exchangename, valid, reason.
"""
exchanges = ccxt_exchanges() if all_exchanges else available_exchanges()
exchanges_valid = [
(e, *validate_exchange(e)) for e in exchanges
]
return exchanges_valid
def timeframe_to_seconds(timeframe: str) -> int:
"""
Translates the timeframe interval value written in the human readable
form ('1m', '5m', '1h', '1d', '1w', etc.) to the number
of seconds for one timeframe interval.
"""
return ccxt.Exchange.parse_timeframe(timeframe)
def timeframe_to_minutes(timeframe: str) -> int:
"""
Same as timeframe_to_seconds, but returns minutes.
"""
return ccxt.Exchange.parse_timeframe(timeframe) // 60
def timeframe_to_msecs(timeframe: str) -> int:
"""
Same as timeframe_to_seconds, but returns milliseconds.
"""
return ccxt.Exchange.parse_timeframe(timeframe) * 1000
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine the candle start date for this date.
Does not round when given a candle start date.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to now(utc)
:returns: date of previous candle (with utc timezone)
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_DOWN) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine next candle.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to now(utc)
:returns: date of next candle (with utc timezone)
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_UP) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def date_minus_candles(
timeframe: str, candle_count: int, date: Optional[datetime] = None) -> datetime:
"""
subtract X candles from a date.
:param timeframe: timeframe in string format (e.g. "5m")
:param candle_count: Amount of candles to subtract.
:param date: date to use. Defaults to now(utc)
"""
if not date:
date = datetime.now(timezone.utc)
tf_min = timeframe_to_minutes(timeframe)
new_date = timeframe_to_prev_date(timeframe, date) - timedelta(minutes=tf_min * candle_count)
return new_date
def market_is_active(market: Dict) -> bool:
"""
Return True if the market is active.
"""
# "It's active, if the active flag isn't explicitly set to false. If it's missing or
# true then it's true. If it's undefined, then it's most likely true, but not 100% )"
# See https://github.com/ccxt/ccxt/issues/4874,
# https://github.com/ccxt/ccxt/issues/4075#issuecomment-434760520
return market.get('active', True) is not False
def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
"""
Convert amount to contracts.
:param amount: amount to convert
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: num-contracts
"""
if contract_size and contract_size != 1:
return float(FtPrecise(amount) / FtPrecise(contract_size))
else:
return amount
def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) -> float:
"""
Takes num-contracts and converts it to contract size
:param num_contracts: number of contracts
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: Amount
"""
if contract_size and contract_size != 1:
return float(FtPrecise(num_contracts) * FtPrecise(contract_size))
else:
return num_contracts
def amount_to_precision(amount: float, amount_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
:param amount: amount to truncate
:param amount_precision: amount precision to use.
should be retrieved from markets[pair]['precision']['amount']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: truncated amount
"""
if amount_precision is not None and precisionMode is not None:
precision = int(amount_precision) if precisionMode != TICK_SIZE else amount_precision
# precision must be an int for non-ticksize inputs.
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=precision,
counting_mode=precisionMode,
))
return amount
def amount_to_contract_precision(
amount, amount_precision: Optional[float], precisionMode: Optional[int],
contract_size: Optional[float]) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
including calculation to and from contracts.
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
:param amount: amount to truncate
:param amount_precision: amount precision to use.
should be retrieved from markets[pair]['precision']['amount']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: truncated amount
"""
if amount_precision is not None and precisionMode is not None:
contracts = amount_to_contracts(amount, contract_size)
amount_p = amount_to_precision(contracts, amount_precision, precisionMode)
return contracts_to_amount(amount_p, contract_size)
return amount
def price_to_precision(price: float, price_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
!!! Rounds up
:param price: price to convert
:param price_precision: price precision to use. Used from markets[pair]['precision']['price']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: price rounded up to the precision the Exchange accepts
"""
if price_precision is not None and precisionMode is not None:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=price_precision,
# counting_mode=self.precisionMode,
# ))
if precisionMode == TICK_SIZE:
precision = FtPrecise(price_precision)
price_str = FtPrecise(price)
missing = price_str % precision
if not missing == FtPrecise("0"):
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = price_precision
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price

View File

@@ -0,0 +1,252 @@
"""
Exchange support utils
"""
from datetime import datetime, timedelta, timezone
from math import ceil
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
from freqtrade.util import FtPrecise
CcxtModuleType = Any
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return the list of all exchanges known to ccxt
"""
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
"""
exchanges = ccxt_exchanges(ccxt_module)
return [x for x in exchanges if validate_exchange(x)[0]]
def validate_exchange(exchange: str) -> Tuple[bool, str]:
ex_mod = getattr(ccxt, exchange.lower())()
if not ex_mod or not ex_mod.has:
return False, ''
missing = [k for k in EXCHANGE_HAS_REQUIRED if ex_mod.has.get(k) is not True]
if missing:
return False, f"missing: {', '.join(missing)}"
missing_opt = [k for k in EXCHANGE_HAS_OPTIONAL if not ex_mod.has.get(k)]
if exchange.lower() in BAD_EXCHANGES:
return False, BAD_EXCHANGES.get(exchange.lower(), '')
if missing_opt:
return True, f"missing opt: {', '.join(missing_opt)}"
return True, ''
def validate_exchanges(all_exchanges: bool) -> List[Tuple[str, bool, str]]:
"""
:return: List of tuples with exchangename, valid, reason.
"""
exchanges = ccxt_exchanges() if all_exchanges else available_exchanges()
exchanges_valid = [
(e, *validate_exchange(e)) for e in exchanges
]
return exchanges_valid
def timeframe_to_seconds(timeframe: str) -> int:
"""
Translates the timeframe interval value written in the human readable
form ('1m', '5m', '1h', '1d', '1w', etc.) to the number
of seconds for one timeframe interval.
"""
return ccxt.Exchange.parse_timeframe(timeframe)
def timeframe_to_minutes(timeframe: str) -> int:
"""
Same as timeframe_to_seconds, but returns minutes.
"""
return ccxt.Exchange.parse_timeframe(timeframe) // 60
def timeframe_to_msecs(timeframe: str) -> int:
"""
Same as timeframe_to_seconds, but returns milliseconds.
"""
return ccxt.Exchange.parse_timeframe(timeframe) * 1000
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine the candle start date for this date.
Does not round when given a candle start date.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to now(utc)
:returns: date of previous candle (with utc timezone)
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_DOWN) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine next candle.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to now(utc)
:returns: date of next candle (with utc timezone)
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_UP) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def date_minus_candles(
timeframe: str, candle_count: int, date: Optional[datetime] = None) -> datetime:
"""
subtract X candles from a date.
:param timeframe: timeframe in string format (e.g. "5m")
:param candle_count: Amount of candles to subtract.
:param date: date to use. Defaults to now(utc)
"""
if not date:
date = datetime.now(timezone.utc)
tf_min = timeframe_to_minutes(timeframe)
new_date = timeframe_to_prev_date(timeframe, date) - timedelta(minutes=tf_min * candle_count)
return new_date
def market_is_active(market: Dict) -> bool:
"""
Return True if the market is active.
"""
# "It's active, if the active flag isn't explicitly set to false. If it's missing or
# true then it's true. If it's undefined, then it's most likely true, but not 100% )"
# See https://github.com/ccxt/ccxt/issues/4874,
# https://github.com/ccxt/ccxt/issues/4075#issuecomment-434760520
return market.get('active', True) is not False
def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
"""
Convert amount to contracts.
:param amount: amount to convert
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: num-contracts
"""
if contract_size and contract_size != 1:
return float(FtPrecise(amount) / FtPrecise(contract_size))
else:
return amount
def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) -> float:
"""
Takes num-contracts and converts it to contract size
:param num_contracts: number of contracts
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: Amount
"""
if contract_size and contract_size != 1:
return float(FtPrecise(num_contracts) * FtPrecise(contract_size))
else:
return num_contracts
def amount_to_precision(amount: float, amount_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
:param amount: amount to truncate
:param amount_precision: amount precision to use.
should be retrieved from markets[pair]['precision']['amount']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: truncated amount
"""
if amount_precision is not None and precisionMode is not None:
precision = int(amount_precision) if precisionMode != TICK_SIZE else amount_precision
# precision must be an int for non-ticksize inputs.
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=precision,
counting_mode=precisionMode,
))
return amount
def amount_to_contract_precision(
amount, amount_precision: Optional[float], precisionMode: Optional[int],
contract_size: Optional[float]) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
including calculation to and from contracts.
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
:param amount: amount to truncate
:param amount_precision: amount precision to use.
should be retrieved from markets[pair]['precision']['amount']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
:return: truncated amount
"""
if amount_precision is not None and precisionMode is not None:
contracts = amount_to_contracts(amount, contract_size)
amount_p = amount_to_precision(contracts, amount_precision, precisionMode)
return contracts_to_amount(amount_p, contract_size)
return amount
def price_to_precision(price: float, price_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
!!! Rounds up
:param price: price to convert
:param price_precision: price precision to use. Used from markets[pair]['precision']['price']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: price rounded up to the precision the Exchange accepts
"""
if price_precision is not None and precisionMode is not None:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=price_precision,
# counting_mode=self.precisionMode,
# ))
if precisionMode == TICK_SIZE:
precision = FtPrecise(price_precision)
price_str = FtPrecise(price)
missing = price_str % precision
if not missing == FtPrecise("0"):
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = price_precision
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price

View File

@@ -1,178 +0,0 @@
""" FTX exchange subclass """
import logging
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import API_FETCH_ORDER_RETRY_COUNT, retrier
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
class Ftx(Exchange):
_ft_has: Dict = {
"order_time_in_force": ['GTC', 'IOC', 'PO'],
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 1500,
"ohlcv_require_since": True,
"ohlcv_volume_currency": "quote",
"mark_ohlcv_price": "index",
"mark_ohlcv_timeframe": "1h",
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS)
]
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop' and (
side == "sell" and stop_loss > float(order['price']) or
side == "buy" and stop_loss < float(order['price'])
)
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: BuySell, leverage: float) -> Dict:
"""
Creates a stoploss order.
depending on order_types.stoploss configuration, uses 'market' or limit order.
Limit orders are defined by having orderPrice set, otherwise a market order is used.
"""
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
if side == "sell":
limit_rate = stop_price * limit_price_pct
else:
limit_rate = stop_price * (2 - limit_price_pct)
ordertype = "stop"
stop_price = self.price_to_precision(pair, stop_price)
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
pair, ordertype, side, amount, stop_price, leverage, stop_loss=True)
return dry_order
try:
params = self._params.copy()
if order_types.get('stoploss', 'market') == 'limit':
# set orderPrice to place limit order, otherwise it's a market order
params['orderPrice'] = limit_rate
if self.trading_mode == TradingMode.FUTURES:
params.update({'reduceOnly': True})
params['stopPrice'] = stop_price
amount = self.amount_to_precision(pair, amount)
self._lev_prep(pair, leverage, side)
order = self._api.create_order(symbol=pair, type=ordertype, side=side,
amount=amount, params=params)
self._log_exchange_response('create_stoploss_order', order)
logger.info('stoploss order added for %s. '
'stop price: %s.', pair, stop_price)
return order
except ccxt.InsufficientFunds as e:
raise InsufficientFundsError(
f'Insufficient funds to create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place {side} order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier(retries=API_FETCH_ORDER_RETRY_COUNT)
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
if self._config['dry_run']:
return self.fetch_dry_run_order(order_id)
try:
orders = self._api.fetch_orders(pair, None, params={'type': 'stop'})
order = [order for order in orders if order['id'] == order_id]
self._log_exchange_response('fetch_stoploss_order', order)
if len(order) == 1:
if order[0].get('status') == 'closed':
# Trigger order was triggered ...
real_order_id: Optional[str] = order[0].get('info', {}).get('orderId')
# OrderId may be None for stoploss-market orders
# So we need to get it through the endpoint
# /conditional_orders/{conditional_order_id}/triggers
if not real_order_id:
res = self._api.privateGetConditionalOrdersConditionalOrderIdTriggers(
params={'conditional_order_id': order_id})
self._log_exchange_response('fetch_stoploss_order2', res)
real_order_id = res['result'][0]['orderId'] if res.get(
'result', []) else None
if real_order_id:
order1 = self._api.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order1)
# Fake type to stop - as this was really a stop order.
order1['id_stop'] = order1['id']
order1['id'] = order_id
order1['type'] = 'stop'
order1['status_stop'] = 'triggered'
return order1
return order[0]
else:
raise InvalidOrderException(f"Could not get stoploss order for id {order_id}")
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
def cancel_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
if self._config['dry_run']:
return {}
try:
order = self._api.cancel_order(order_id, pair, params={'type': 'stop'})
self._log_exchange_response('cancel_stoploss_order', order)
return order
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not cancel order. Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if order['type'] == 'stop':
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']

View File

@@ -126,13 +126,3 @@ class Gateio(Exchange):
pair=pair,
params={'stop': True}
)
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return (order.get('stopPrice', None) is None or (
side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice']))
)

View File

@@ -2,6 +2,7 @@
import logging
from typing import Dict
from freqtrade.constants import BuySell
from freqtrade.exchange import Exchange
@@ -22,20 +23,7 @@ class Huobi(Exchange):
"l2_limit_range_required": False,
}
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return (
order.get('stopPrice', None) is None
or (
order['type'] == 'stop'
and stop_loss > float(order['stopPrice'])
)
)
def _get_stop_params(self, ordertype: str, stop_price: float) -> Dict:
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
params.update({

View File

@@ -12,6 +12,7 @@ from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, Invali
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.types import Tickers
logger = logging.getLogger(__name__)
@@ -45,7 +46,7 @@ class Kraken(Exchange):
return (parent_check and
market.get('darkpool', False) is False)
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict:
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
# Only fetch tickers for current stake currency
# Otherwise the request for kraken becomes too large.
symbols = list(self.get_markets(quote_currencies=[self._config['stake_currency']]))
@@ -217,3 +218,19 @@ class Kraken(Exchange):
fees = sum(df['open_fund'] * df['open_mark'] * amount * time_in_ratio)
return fees if is_short else -fees
def _trades_contracts_to_amount(self, trades: List) -> List:
"""
Fix "last" id issue for kraken data downloads
This whole override can probably be removed once the following
issue is closed in ccxt: https://github.com/ccxt/ccxt/issues/15827
"""
super()._trades_contracts_to_amount(trades)
if (
len(trades) > 0
and isinstance(trades[-1].get('info'), list)
and len(trades[-1].get('info', [])) > 7
):
trades[-1]['id'] = trades[-1].get('info', [])[-1]
return trades

View File

@@ -2,6 +2,7 @@
import logging
from typing import Dict
from freqtrade.constants import BuySell
from freqtrade.exchange import Exchange
@@ -27,17 +28,7 @@ class Kucoin(Exchange):
"ohlcv_candle_limit": 1500,
}
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return (
order.get('stopPrice', None) is None
or stop_loss > float(order['stopPrice'])
)
def _get_stop_params(self, ordertype: str, stop_price: float) -> Dict:
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
params.update({

View File

@@ -78,7 +78,8 @@ class Okx(Exchange):
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e

View File

@@ -0,0 +1,16 @@
from typing import Dict, Optional, TypedDict
class Ticker(TypedDict):
symbol: str
ask: Optional[float]
askVolume: Optional[float]
bid: Optional[float]
bidVolume: Optional[float]
last: Optional[float]
quoteVolume: Optional[float]
baseVolume: Optional[float]
# Several more - only listing required.
Tickers = Dict[str, Ticker]

View File

@@ -0,0 +1,141 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Exit = 1
Long_enter = 2
Short_enter = 3
class Base4ActionRLEnv(BaseEnvironment):
"""
Base class for a 4 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if self._total_profit < 1 - self.rl_config.get('max_training_drawdown_pct', 0.8):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short))
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
# Agent should only try to exit if it is in position
if action == Actions.Exit.value:
if self._position not in (Positions.Short, Positions.Long):
return False
# Agent should only try to enter if it is not in position
if action in (Actions.Short_enter.value, Actions.Long_enter.value):
if self._position != Positions.Neutral:
return False
return True

View File

@@ -0,0 +1,152 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Base5ActionRLEnv(BaseEnvironment):
"""
Base class for a 5 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Long_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Short_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Neutral))
def _is_valid(self, action: int) -> bool:
# trade signal
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
# Agent should only try to exit if it is in position
if action in (Actions.Short_exit.value, Actions.Long_exit.value):
if self._position not in (Positions.Short, Positions.Long):
return False
# Agent should only try to enter if it is not in position
if action in (Actions.Short_enter.value, Actions.Long_enter.value):
if self._position != Positions.Neutral:
return False
return True

View File

@@ -0,0 +1,361 @@
import logging
import random
from abc import abstractmethod
from enum import Enum
from typing import Optional, Type, Union
import gym
import numpy as np
import pandas as pd
from gym import spaces
from gym.utils import seeding
from pandas import DataFrame
logger = logging.getLogger(__name__)
class BaseActions(Enum):
"""
Default action space, mostly used for type handling.
"""
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Positions(Enum):
Short = 0
Long = 1
Neutral = 0.5
def opposite(self):
return Positions.Short if self == Positions.Long else Positions.Long
class BaseEnvironment(gym.Env):
"""
Base class for environments. This class is agnostic to action count.
Inherited classes customize this to include varying action counts/types,
See RL/Base5ActionRLEnv.py and RL/Base4ActionRLEnv.py
"""
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
fee: float = 0.0015):
"""
Initializes the training/eval environment.
:param df: dataframe of features
:param prices: dataframe of prices to be used in the training environment
:param window_size: size of window (temporal) to pass to the agent
:param reward_kwargs: extra config settings assigned by user in `rl_config`
:param starting_point: start at edge of window or not
:param id: string id of the environment (used in backend for multiprocessed env)
:param seed: Sets the seed of the environment higher in the gym.Env object
:param config: Typical user configuration file
:param live: Whether or not this environment is active in dry/live/backtesting
:param fee: The fee to use for environmental interactions.
"""
self.config = config
self.rl_config = config['freqai']['rl_config']
self.add_state_info = self.rl_config.get('add_state_info', False)
self.id = id
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades = config['stake_amount'] == 'unlimited'
if self.config.get('fee', None) is not None:
self.fee = self.config['fee']
else:
self.fee = fee
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.tensorboard_metrics: dict = {}
self.live = live
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
"""
Resets the environment when the agent fails (in our case, if the drawdown
exceeds the user set max_training_drawdown_pct)
:param df: dataframe of features
:param prices: dataframe of prices to be used in the training environment
:param window_size: size of window (temporal) to pass to the agent
:param reward_kwargs: extra config settings assigned by user in `rl_config`
:param starting_point: start at edge of window or not
"""
self.df = df
self.signal_features = self.df
self.prices = prices
self.window_size = window_size
self.starting_point = starting_point
self.rr = reward_kwargs["rr"]
self.profit_aim = reward_kwargs["profit_aim"]
# # spaces
if self.add_state_info:
self.total_features = self.signal_features.shape[1] + 3
else:
self.total_features = self.signal_features.shape[1]
self.shape = (window_size, self.total_features)
self.set_action_space()
self.observation_space = spaces.Box(
low=-1, high=1, shape=self.shape, dtype=np.float32)
# episode
self._start_tick: int = self.window_size
self._end_tick: int = len(self.prices) - 1
self._done: bool = False
self._current_tick: int = self._start_tick
self._last_trade_tick: Optional[int] = None
self._position = Positions.Neutral
self._position_history: list = [None]
self.total_reward: float = 0
self._total_profit: float = 1
self._total_unrealized_profit: float = 1
self.history: dict = {}
self.trade_history: list = []
@abstractmethod
def set_action_space(self):
"""
Unique to the environment action count. Must be inherited.
"""
def seed(self, seed: int = 1):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
function is designed for tracking incremented objects,
events, actions inside the training environment.
For example, a user can call this to track the
frequency of occurence of an `is_valid` call in
their `calculate_reward()`:
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
:param metric: metric to be tracked and incremented
:param value: value to increment `metric` by
:param inc: sets whether the `value` is incremented or not
"""
if not inc or metric not in self.tensorboard_metrics:
self.tensorboard_metrics[metric] = value
else:
self.tensorboard_metrics[metric] += value
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}
def reset(self):
"""
Reset is called at the beginning of every episode
"""
self.reset_tensorboard_log()
self._done = False
if self.starting_point is True:
if self.rl_config.get('randomize_starting_position', False):
length_of_data = int(self._end_tick / 4)
start_tick = random.randint(self.window_size + 1, length_of_data)
self._start_tick = start_tick
self._position_history = (self._start_tick * [None]) + [self._position]
else:
self._position_history = (self.window_size * [None]) + [self._position]
self._current_tick = self._start_tick
self._last_trade_tick = None
self._position = Positions.Neutral
self.total_reward = 0.
self._total_profit = 1. # unit
self.history = {}
self.trade_history = []
self.portfolio_log_returns = np.zeros(len(self.prices))
self._profits = [(self._start_tick, 1)]
self.close_trade_profit = []
self._total_unrealized_profit = 1
return self._get_observation()
@abstractmethod
def step(self, action: int):
"""
Step depeneds on action types, this must be inherited.
"""
return
def _get_observation(self):
"""
This may or may not be independent of action types, user can inherit
this in their custom "MyRLEnv"
"""
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
if self.add_state_info:
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct',
'position',
'trade_duration'],
index=features_window.index)
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
features_and_state['position'] = self._position.value
features_and_state['trade_duration'] = self.get_trade_duration()
features_and_state = pd.concat([features_window, features_and_state], axis=1)
return features_and_state
else:
return features_window
def get_trade_duration(self):
"""
Get the trade duration if the agent is in a trade
"""
if self._last_trade_tick is None:
return 0
else:
return self._current_tick - self._last_trade_tick
def get_unrealized_profit(self):
"""
Get the unrealized profit if the agent is in a trade
"""
if self._last_trade_tick is None:
return 0.
if self._position == Positions.Neutral:
return 0.
elif self._position == Positions.Short:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price
else:
return 0.
@abstractmethod
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal. This is
unique to the actions in the environment, and therefore must be
inherited.
"""
return True
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.This is
unique to the actions in the environment, and therefore must be
inherited.
"""
return True
def add_entry_fee(self, price):
return price * (1 + self.fee)
def add_exit_fee(self, price):
return price / (1 + self.fee)
def _update_history(self, info):
if not self.history:
self.history = {key: [] for key in info.keys()}
for key, value in info.items():
self.history[key].append(value)
@abstractmethod
def calculate_reward(self, action: int) -> float:
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
of weights in NN)
"""
def _update_unrealized_total_profit(self):
"""
Update the unrealized total profit incase of episode end.
"""
if self._position in (Positions.Long, Positions.Short):
pnl = self.get_unrealized_profit()
if self.compound_trades:
# assumes unit stake and compounding
unrl_profit = self._total_profit * (1 + pnl)
else:
# assumes unit stake and no compounding
unrl_profit = self._total_profit + pnl
self._total_unrealized_profit = unrl_profit
def _update_total_profit(self):
pnl = self.get_unrealized_profit()
if self.compound_trades:
# assumes unit stake and compounding
self._total_profit = self._total_profit * (1 + pnl)
else:
# assumes unit stake and no compounding
self._total_profit += pnl
def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open
def get_actions(self) -> Type[Enum]:
"""
Used by SubprocVecEnv to get actions from
initialized env for tensorboard callback
"""
return self.actions
# Keeping around incase we want to start building more complex environment
# templates in the future.
# def most_recent_return(self):
# """
# Calculate the tick to tick return if in a trade.
# Return is generated from rising prices in Long
# and falling prices in Short positions.
# The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
# """
# # Long positions
# if self._position == Positions.Long:
# current_price = self.prices.iloc[self._current_tick].open
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Short
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_entry_fee(previous_price)
# return np.log(current_price) - np.log(previous_price)
# # Short positions
# if self._position == Positions.Short:
# current_price = self.prices.iloc[self._current_tick].open
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Long
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_exit_fee(previous_price)
# return np.log(previous_price) - np.log(current_price)
# return 0
# def update_portfolio_log_returns(self, action):
# self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)

View File

@@ -0,0 +1,417 @@
import importlib
import logging
from abc import abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
import gym
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch as th
import torch.multiprocessing
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
torch.multiprocessing.set_sharing_strategy('file_system')
SB3_MODELS = ['PPO', 'A2C', 'DQN']
SB3_CONTRIB_MODELS = ['TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO']
class BaseReinforcementLearningModel(IFreqaiModel):
"""
User created Reinforcement Learning Model prediction class
"""
def __init__(self, **kwargs) -> None:
super().__init__(config=kwargs['config'])
self.max_threads = min(self.freqai_info['rl_config'].get(
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
self.continual_learning = self.freqai_info.get('continual_learning', False)
if self.model_type in SB3_MODELS:
import_str = 'stable_baselines3'
elif self.model_type in SB3_CONTRIB_MODELS:
import_str = 'sb3_contrib'
else:
raise OperationalException(f'{self.model_type} not available in stable_baselines3 or '
f'sb3_contrib. please choose one of {SB3_MODELS} or '
f'{SB3_CONTRIB_MODELS}')
mod = importlib.import_module(import_str, self.model_type)
self.MODELCLASS = getattr(mod, self.model_type)
self.policy_type = self.freqai_info['rl_config']['policy_type']
self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.dd.model_type = import_str
self.tensorboard_callback: TensorboardCallback = \
TensorboardCallback(verbose=1, actions=BaseActions)
def unset_outlier_removal(self):
"""
If user has activated any function that may remove training points, this
function will set them to false and warn them
"""
if self.ft_params.get('use_SVM_to_remove_outliers', False):
self.ft_params.update({'use_SVM_to_remove_outliers': False})
logger.warning('User tried to use SVM with RL. Deactivating SVM.')
if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
if self.freqai_info['data_split_parameters'].get('shuffle', False):
self.freqai_info['data_split_parameters'].update({'shuffle': False})
logger.warning('User tried to shuffle training data. Setting shuffle to False')
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
features_filtered, labels_filtered)
dk.fit_labels() # FIXME useless for now, but just satiating append methods
# normalize all data based on train_dataset only
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
data_dictionary = dk.normalize_data(data_dictionary)
# data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
f' features and {len(data_dictionary["train_features"])} data points'
)
self.set_train_and_eval_environments(data_dictionary, prices_train, prices_test, dk)
model = self.fit(data_dictionary, dk)
logger.info(f"--------------------done training {pair}--------------------")
return model
def set_train_and_eval_environments(self, data_dictionary: Dict[str, DataFrame],
prices_train: DataFrame, prices_test: DataFrame,
dk: FreqaiDataKitchen):
"""
User can override this if they are using a custom MyRLEnv
:param data_dictionary: dict = common data dictionary containing train and test
features/labels/weights.
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in the
environment during training or testing
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train,
**env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df,
prices=prices_test,
**env_info))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
def pack_env_dict(self) -> Dict[str, Any]:
"""
Create dictionary of environment arguments
"""
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
return env_info
@abstractmethod
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
"""
Agent customizations and abstract Reinforcement Learning customizations
go in here. Abstract method, so this function must be overridden by
user class.
"""
return
def get_state_info(self, pair: str) -> Tuple[float, float, int]:
"""
State info during dry/live (not backtesting) which is fed back
into the model.
:param pair: str = COIN/STAKE to get the environment information for
:return:
:market_side: float = representing short, long, or neutral for
pair
:current_profit: float = unrealized profit of the current trade
:trade_duration: int = the number of candles that the trade has
been open for
"""
open_trades = Trade.get_trades_proxy(is_open=True)
market_side = 0.5
current_profit: float = 0
trade_duration = 0
for trade in open_trades:
if trade.pair == pair:
if self.data_provider._exchange is None: # type: ignore
logger.error('No exchange available.')
return 0, 0, 0
else:
current_rate = self.data_provider._exchange.get_rate( # type: ignore
pair, refresh=False, side="exit", is_short=trade.is_short)
now = datetime.now(timezone.utc).timestamp()
trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
current_profit = trade.calc_profit_ratio(current_rate)
if trade.is_short:
market_side = 0
else:
market_side = 1
return market_side, current_profit, int(trade_duration)
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_dataframe, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk)
pred_df = self.rl_model_predict(
dk.data_dictionary["prediction_features"], dk, self.model)
pred_df.fillna(0, inplace=True)
return (pred_df, dk.do_predict)
def rl_model_predict(self, dataframe: DataFrame,
dk: FreqaiDataKitchen, model: Any) -> DataFrame:
"""
A helper function to make predictions in the Reinforcement learning module.
:param dataframe: DataFrame = the dataframe of features to make the predictions on
:param dk: FreqaiDatakitchen = data kitchen for the current pair
:param model: Any = the trained model used to inference the features.
"""
output = pd.DataFrame(np.zeros(len(dataframe)), columns=dk.label_list)
def _predict(window):
observations = dataframe.iloc[window.index]
if self.live and self.rl_config.get('add_state_info', False):
market_side, current_profit, trade_duration = self.get_state_info(dk.pair)
observations['current_profit_pct'] = current_profit
observations['position'] = market_side
observations['trade_duration'] = trade_duration
res, _ = model.predict(observations, deterministic=True)
return res
output = output.rolling(window=self.CONV_WIDTH).apply(_predict)
return output
def build_ohlc_price_dataframes(self, data_dictionary: dict,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame,
DataFrame]:
"""
Builds the train prices and test prices for the environment.
"""
pair = pair.replace(':', '')
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# price data for model training and evaluation
tf = self.config['timeframe']
ohlc_list = [f'%-{pair}raw_open_{tf}', f'%-{pair}raw_low_{tf}',
f'%-{pair}raw_high_{tf}', f'%-{pair}raw_close_{tf}']
rename_dict = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}
prices_train = train_df.filter(ohlc_list, axis=1)
if prices_train.empty:
raise OperationalException('Reinforcement learning module didnt find the raw prices '
'assigned in populate_any_indicators. Please assign them '
'with:\n'
'informative[f"%-{pair}raw_close"] = informative["close"]\n'
'informative[f"%-{pair}raw_open"] = informative["open"]\n'
'informative[f"%-{pair}raw_high"] = informative["high"]\n'
'informative[f"%-{pair}raw_low"] = informative["low"]\n')
prices_train.rename(columns=rename_dict, inplace=True)
prices_train.reset_index(drop=True)
prices_test = test_df.filter(ohlc_list, axis=1)
prices_test.rename(columns=rename_dict, inplace=True)
prices_test.reset_index(drop=True)
return prices_train, prices_test
def load_model_from_disk(self, dk: FreqaiDataKitchen) -> Any:
"""
Can be used by user if they are trying to limit_ram_usage *and*
perform continual learning.
For now, this is unused.
"""
exists = Path(dk.data_path / f"{dk.model_filename}_model").is_file()
if exists:
model = self.MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
else:
logger.info('No model file on disk to continue learning from.')
return model
def _on_stop(self):
"""
Hook called on bot shutdown. Close SubprocVecEnv subprocesses for clean shutdown.
"""
if self.train_env:
self.train_env.close()
if self.eval_env:
self.eval_env.close()
# Nested class which can be overridden by user to customize further
class MyRLEnv(Base5ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
sets a custom reward based on profit and trade duration.
"""
def calculate_reward(self, action: int) -> float:
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
of weights in NN)
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100.
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
if self._last_trade_tick:
trade_duration = self._current_tick - self._last_trade_tick
else:
trade_duration = 0
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if (self._position in (Positions.Short, Positions.Long) and
action == Actions.Neutral.value):
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
seed: int, train_df: DataFrame, price: DataFrame,
monitor: bool = False,
env_info: Dict[str, Any] = {}) -> Callable:
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
:param env_info: (dict) all required arguments to instantiate the environment.
:return: (Callable)
"""
def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
**env_info)
if monitor:
env = Monitor(env)
return env
set_random_seed(seed)
return _init

View File

@@ -0,0 +1,59 @@
from enum import Enum
from typing import Any, Dict, Type, Union
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard and
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super(TensorboardCallback, self).__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
self.actions: Type[Enum] = actions
def _on_training_start(self) -> None:
hparam_dict = {
"algorithm": self.model.__class__.__name__,
"learning_rate": self.model.learning_rate,
# "gamma": self.model.gamma,
# "gae_lambda": self.model.gae_lambda,
# "batch_size": self.model.batch_size,
# "n_steps": self.model.n_steps,
}
metric_dict: Dict[str, Union[float, int]] = {
"eval/mean_reward": 0,
"rollout/ep_rew_mean": 0,
"rollout/ep_len_mean": 0,
"train/value_loss": 0,
"train/explained_variance": 0,
}
self.logger.record(
"hparams",
HParam(hparam_dict, metric_dict),
exclude=("stdout", "log", "json", "csv"),
)
def _on_step(self) -> bool:
local_info = self.locals["infos"][0]
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for info in local_info:
if info not in ["episode", "terminal_observation"]:
self.logger.record(f"_info/{info}", local_info[info])
for info in tensorboard_metrics:
if info in [action.name for action in self.actions]:
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
else:
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
return True

View File

View File

@@ -51,7 +51,7 @@ class BaseClassifierModel(IFreqaiModel):
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
@@ -78,7 +78,7 @@ class BaseClassifierModel(IFreqaiModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
@@ -92,12 +92,17 @@ class BaseClassifierModel(IFreqaiModel):
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk, filtered_df)
self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list)
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions_prob = np.reshape(predictions_prob, (-1, len(self.model.classes_)))
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)

View File

@@ -50,7 +50,7 @@ class BaseRegressionModel(IFreqaiModel):
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
@@ -77,7 +77,7 @@ class BaseRegressionModel(IFreqaiModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
@@ -92,9 +92,12 @@ class BaseRegressionModel(IFreqaiModel):
dk.data_dictionary["prediction_features"] = filtered_df
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_df)
self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)

View File

@@ -2,6 +2,8 @@ import logging
from time import time
from typing import Any
import numpy as np
import tensorflow as tf
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
@@ -17,6 +19,14 @@ class BaseTensorFlowModel(IFreqaiModel):
User *must* inherit from this class and set fit() and predict().
"""
def __init__(self, **kwargs):
super().__init__(config=kwargs['config'])
self.keras = True
# if self.ft_params.get("DI_threshold", 0):
# self.ft_params["DI_threshold"] = 0
# logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.dd.model_type = 'keras'
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
@@ -33,7 +43,6 @@ class BaseTensorFlowModel(IFreqaiModel):
start_time = time()
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
@@ -41,10 +50,6 @@ class BaseTensorFlowModel(IFreqaiModel):
training_filter=True,
)
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
@@ -68,3 +73,76 @@ class BaseTensorFlowModel(IFreqaiModel):
f"({end_time - start_time:.2f} secs) --------------------")
return model
class WindowGenerator:
def __init__(
self,
input_width,
label_width,
shift,
train_df=None,
val_df=None,
test_df=None,
train_labels=None,
val_labels=None,
test_labels=None,
batch_size=None,
):
# Store the raw data.
self.train_df = train_df
self.val_df = val_df
self.test_df = test_df
self.train_labels = train_labels
self.val_labels = val_labels
self.test_labels = test_labels
self.batch_size = batch_size
self.input_width = input_width
self.label_width = label_width
self.shift = shift
self.total_window_size = input_width + shift
self.input_slice = slice(0, input_width)
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
def make_dataset(self, data, labels=None):
data = np.array(data, dtype=np.float32)
if labels is not None:
labels = np.array(labels, dtype=np.float32)
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
data=data,
targets=labels,
sequence_length=self.total_window_size,
sequence_stride=1,
sampling_rate=1,
shuffle=False,
batch_size=self.batch_size,
)
return ds
@property
def train(self):
return self.make_dataset(self.train_df, self.train_labels)
@property
def val(self):
return self.make_dataset(self.val_df, self.val_labels)
@property
def test(self):
return self.make_dataset(self.test_df, self.test_labels)
@property
def inference(self):
return self.make_dataset(self.test_df)
@property
def example(self):
"""Get and cache an example batch of `inputs, labels` for plotting."""
result = getattr(self, "_example", None)
if result is None:
# No example batch was found, so get one from the `.train` dataset
result = next(iter(self.train))
# And cache it for next time
self._example = result
return result

Some files were not shown because too many files have changed in this diff Show More