restructure RL so that user can customize environment
This commit is contained in:
parent
ecd1f55abc
commit
91683e1dca
318
freqtrade/freqai/RL/BaseRLEnv.py
Normal file
318
freqtrade/freqai/RL/BaseRLEnv.py
Normal file
@ -0,0 +1,318 @@
|
||||
import logging
|
||||
from enum import Enum
|
||||
# from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Actions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 2
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 0.5
|
||||
|
||||
def opposite(self):
|
||||
return Positions.Short if self == Positions.Long else Positions.Long
|
||||
|
||||
|
||||
def mean_over_std(x):
|
||||
std = np.std(x, ddof=1)
|
||||
mean = np.mean(x)
|
||||
return mean / std if std > 0 else 0
|
||||
|
||||
|
||||
class BaseRLEnv(gym.Env):
|
||||
|
||||
metadata = {'render.modes': ['human']}
|
||||
|
||||
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||
assert df.ndim == 2
|
||||
|
||||
self.seed()
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
self.window_size = window_size
|
||||
self.starting_point = starting_point
|
||||
self.rr = reward_kwargs["rr"]
|
||||
self.profit_aim = reward_kwargs["profit_aim"]
|
||||
|
||||
self.fee = 0.0015
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
self.observation_space = spaces.Box(
|
||||
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
self._start_tick = self.window_size
|
||||
self._end_tick = len(self.prices) - 1
|
||||
self._done = None
|
||||
self._current_tick = None
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history = None
|
||||
self.total_reward = None
|
||||
self._total_profit = None
|
||||
self._first_rendering = None
|
||||
self.history = None
|
||||
self.trade_history = []
|
||||
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
def seed(self, seed: int = 1):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def reset(self):
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point is True:
|
||||
self._position_history = (self._start_tick * [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
|
||||
self._current_tick = self._start_tick
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
|
||||
self.total_reward = 0.
|
||||
self._total_profit = 1. # unit
|
||||
self._first_rendering = True
|
||||
self.history = {}
|
||||
self.trade_history = []
|
||||
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||
|
||||
self._profits = [(self._start_tick, 1)]
|
||||
self.close_trade_profit = []
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
def step(self, action: int):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self.calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price) / last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price) / last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
|
||||
def is_tradesignal(self, action: int):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
def is_hold(self, action):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
return price * (1 + self.fee)
|
||||
|
||||
def add_sell_fee(self, price):
|
||||
return price / (1 + self.fee)
|
||||
|
||||
def _update_history(self, info):
|
||||
if not self.history:
|
||||
self.history = {key: [] for key in info.keys()}
|
||||
|
||||
for key, value in info.items():
|
||||
self.history[key].append(value)
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
def calculate_reward(self, action):
|
||||
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or
|
||||
action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or
|
||||
action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
||||
|
||||
def _update_profit(self, action):
|
||||
if self._is_trade(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
self._total_profit = self._total_profit + self._total_profit * pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
if self._position == Positions.Short:
|
||||
self._total_profit = self._total_profit + self._total_profit * pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
def most_recent_return(self, action: int):
|
||||
"""
|
||||
We support Long, Neutral and Short positions.
|
||||
Return is generated from rising prices in Long
|
||||
and falling prices in Short positions.
|
||||
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
||||
"""
|
||||
# Long positions
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Short
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_buy_fee(previous_price)
|
||||
|
||||
return np.log(current_price) - np.log(previous_price)
|
||||
|
||||
# Short positions
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Long
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_sell_fee(previous_price)
|
||||
|
||||
return np.log(previous_price) - np.log(current_price)
|
||||
|
||||
return 0
|
||||
|
||||
def get_portfolio_log_returns(self):
|
||||
return self.portfolio_log_returns[1:self._current_tick + 1]
|
||||
|
||||
def update_portfolio_log_returns(self, action):
|
||||
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
||||
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def prev_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
def sharpe_ratio(self):
|
||||
if len(self.close_trade_profit) == 0:
|
||||
return 0.
|
||||
returns = np.array(self.close_trade_profit)
|
||||
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
||||
return reward
|
230
freqtrade/freqai/RL/BaseReinforcementLearningModel.py
Normal file
230
freqtrade/freqai/RL/BaseReinforcementLearningModel.py
Normal file
@ -0,0 +1,230 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from abc import abstractmethod
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv, Actions, Positions
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:returns:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info("--------------------Starting training " f"{pair} --------------------")
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
|
||||
features_filtered, labels_filtered)
|
||||
dk.fit_labels() # useless for now, but just satiating append methods
|
||||
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary, pair)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
data_dictionary['train_features'], model, dk, pair)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
"""
|
||||
Agent customizations and abstract Reinforcement Learning customizations
|
||||
go in here. Abstract method, so this function must be overridden by
|
||||
user class.
|
||||
"""
|
||||
|
||||
return
|
||||
|
||||
def get_state_info(self, pair):
|
||||
open_trades = Trade.get_trades(trade_filter=Trade.is_open.is_(True))
|
||||
market_side = 0.5
|
||||
current_profit = 0
|
||||
for trade in open_trades:
|
||||
if trade.pair == pair:
|
||||
current_value = trade.open_trade_value
|
||||
openrate = trade.open_rate
|
||||
if 'long' in trade.enter_tag:
|
||||
market_side = 1
|
||||
else:
|
||||
market_side = 0
|
||||
current_profit = current_value / openrate - 1
|
||||
|
||||
total_profit = 0
|
||||
closed_trades = Trade.get_trades(
|
||||
trade_filter=[Trade.is_open.is_(False), Trade.pair == pair])
|
||||
for trade in closed_trades:
|
||||
total_profit += trade.close_profit
|
||||
|
||||
return market_side, current_profit, total_profit
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
|
||||
pred_df = self.rl_model_predict(dk.data_dictionary["prediction_features"], dk, self.model)
|
||||
pred_df.fillna(0, inplace=True)
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def rl_model_predict(self, dataframe: DataFrame,
|
||||
dk: FreqaiDataKitchen, model: Any) -> DataFrame:
|
||||
|
||||
output = pd.DataFrame(np.full((len(dataframe), 1), 2), columns=dk.label_list)
|
||||
|
||||
def _predict(window):
|
||||
observations = dataframe.iloc[window.index]
|
||||
res, _ = model.predict(observations, deterministic=True)
|
||||
return res
|
||||
|
||||
output = output.rolling(window=self.CONV_WIDTH).apply(_predict)
|
||||
|
||||
return output
|
||||
|
||||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
|
||||
pred_df = self.rl_model_predict(df, dk, model)
|
||||
pred_df.fillna(0, inplace=True)
|
||||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
for label in hist_preds_df.columns:
|
||||
if hist_preds_df[label].dtype == object:
|
||||
continue
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
hist_preds_df['do_predict'] = 0
|
||||
|
||||
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
|
||||
hist_preds_df['DI_values'] = 0
|
||||
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
|
||||
class MyRLEnv(BaseRLEnv):
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
@ -6,11 +6,10 @@ import torch as th
|
||||
from stable_baselines3 import DQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3.common.policies import BasePolicy
|
||||
from stable_baselines3.common.torch_layers import (BaseFeaturesExtractor, CombinedExtractor,
|
||||
from stable_baselines3.common.torch_layers import (BaseFeaturesExtractor,
|
||||
FlattenExtractor)
|
||||
from stable_baselines3.common.type_aliases import GymEnv, Schedule
|
||||
#from stable_baselines3.common.policies import register_policy
|
||||
from stable_baselines3.dqn.policies import (CnnPolicy, DQNPolicy, MlpPolicy, MultiInputPolicy,
|
||||
from stable_baselines3.dqn.policies import (CnnPolicy, DQNPolicy, MlpPolicy,
|
||||
QNetwork)
|
||||
from torch import nn
|
||||
|
||||
@ -47,16 +46,17 @@ def create_mlp_(
|
||||
]
|
||||
return modules
|
||||
|
||||
|
||||
class TDQNetwork(QNetwork):
|
||||
def __init__(self,
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
features_extractor: nn.Module,
|
||||
features_dim: int,
|
||||
net_arch: Optional[List[int]] = None,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
normalize_images: bool = True
|
||||
):
|
||||
observation_space: gym.spaces.Space,
|
||||
action_space: gym.spaces.Space,
|
||||
features_extractor: nn.Module,
|
||||
features_dim: int,
|
||||
net_arch: Optional[List[int]] = None,
|
||||
activation_fn: Type[nn.Module] = nn.ReLU,
|
||||
normalize_images: bool = True
|
||||
):
|
||||
super().__init__(
|
||||
observation_space=observation_space,
|
||||
action_space=action_space,
|
||||
@ -211,10 +211,3 @@ class TDQN(DQN):
|
||||
device=device,
|
||||
_init_setup_model=_init_setup_model
|
||||
)
|
||||
|
||||
|
||||
|
||||
# try:
|
||||
# register_policy("TMultiInputPolicy", TMultiInputPolicy)
|
||||
# except:
|
||||
# print("already registered")
|
@ -1,139 +0,0 @@
|
||||
# common library
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
from stable_baselines3 import A2C, DDPG, PPO, SAC, TD3
|
||||
from stable_baselines3.common.callbacks import (BaseCallback, CallbackList, CheckpointCallback,
|
||||
EvalCallback, StopTrainingOnRewardThreshold)
|
||||
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
|
||||
|
||||
from freqtrade.freqai.prediction_models.RL import config
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_v2 import TDQN
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env import DEnv
|
||||
|
||||
|
||||
# from stable_baselines3.common.vec_env import DummyVecEnv
|
||||
|
||||
# from meta.env_stock_trading.env_stock_trading import StockTradingEnv
|
||||
|
||||
# RL models from stable-baselines
|
||||
|
||||
|
||||
MODELS = {"a2c": A2C, "ddpg": DDPG, "td3": TD3, "sac": SAC, "ppo": PPO}
|
||||
|
||||
|
||||
MODEL_KWARGS = {x: config.__dict__[f"{x.upper()}_PARAMS"] for x in MODELS.keys()}
|
||||
|
||||
|
||||
NOISE = {
|
||||
"normal": NormalActionNoise,
|
||||
"ornstein_uhlenbeck": OrnsteinUhlenbeckActionNoise,
|
||||
}
|
||||
|
||||
|
||||
class TensorboardCallback(BaseCallback):
|
||||
"""
|
||||
Custom callback for plotting additional values in tensorboard.
|
||||
"""
|
||||
|
||||
def __init__(self, verbose=0):
|
||||
super(TensorboardCallback, self).__init__(verbose)
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
try:
|
||||
self.logger.record(key="train/reward", value=self.locals["rewards"][0])
|
||||
except BaseException:
|
||||
self.logger.record(key="train/reward", value=self.locals["reward"][0])
|
||||
return True
|
||||
|
||||
|
||||
class RLPrediction_agent:
|
||||
"""Provides implementations for DRL algorithms
|
||||
Based on:
|
||||
https://github.com/AI4Finance-Foundation/FinRL-Meta/blob/master/agents/stablebaselines3_models.py
|
||||
Attributes
|
||||
----------
|
||||
env: gym environment class
|
||||
user-defined class
|
||||
|
||||
Methods
|
||||
-------
|
||||
get_model()
|
||||
setup DRL algorithms
|
||||
train_model()
|
||||
train DRL algorithms in a train dataset
|
||||
and output the trained model
|
||||
DRL_prediction()
|
||||
make a prediction in a test dataset and get results
|
||||
"""
|
||||
|
||||
def __init__(self, env):
|
||||
self.env = env
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
model_name,
|
||||
policy="MlpPolicy",
|
||||
policy_kwargs=None,
|
||||
model_kwargs=None,
|
||||
reward_kwargs=None,
|
||||
#total_timesteps=None,
|
||||
verbose=1,
|
||||
seed=None
|
||||
):
|
||||
if model_name not in MODELS:
|
||||
raise NotImplementedError("NotImplementedError")
|
||||
|
||||
if model_kwargs is None:
|
||||
model_kwargs = MODEL_KWARGS[model_name]
|
||||
|
||||
if "action_noise" in model_kwargs:
|
||||
n_actions = self.env.action_space.shape[-1]
|
||||
model_kwargs["action_noise"] = NOISE[model_kwargs["action_noise"]](
|
||||
mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions)
|
||||
)
|
||||
print(model_kwargs)
|
||||
model = MODELS[model_name](
|
||||
policy=policy,
|
||||
env=self.env,
|
||||
tensorboard_log=f"{config.TENSORBOARD_LOG_DIR}/{model_name}",
|
||||
verbose=verbose,
|
||||
policy_kwargs=policy_kwargs,
|
||||
#model_kwargs=model_kwargs,
|
||||
#total_timesteps=model_kwargs["total_timesteps"],
|
||||
seed=seed
|
||||
#**model_kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
return model
|
||||
|
||||
def train_model(self, model, tb_log_name, model_kwargs, train_df, test_df, price, price_test, window_size):
|
||||
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_env = DEnv(df=train_df, prices=price, window_size=window_size, reward_kwargs=reward_params)
|
||||
eval_env = DEnv(df=test_df, prices=price_test, window_size=window_size, reward_kwargs=reward_params)
|
||||
|
||||
# checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/',
|
||||
# name_prefix='rl_model')
|
||||
|
||||
checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/')
|
||||
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path='./logs/best_model', log_path='./logs/results', eval_freq=500)
|
||||
#callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=1)
|
||||
|
||||
# Create the callback list
|
||||
callback = CallbackList([checkpoint_callback, eval_callback])
|
||||
|
||||
|
||||
model = model.learn(
|
||||
total_timesteps=model_kwargs["total_timesteps"],
|
||||
tb_log_name=tb_log_name,
|
||||
callback=callback,
|
||||
#callback=TensorboardCallback(),
|
||||
)
|
||||
return model
|
@ -1,513 +0,0 @@
|
||||
import logging
|
||||
import random
|
||||
from collections import deque
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Actions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 2
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 0.5
|
||||
|
||||
def opposite(self):
|
||||
return Positions.Short if self == Positions.Long else Positions.Long
|
||||
|
||||
def mean_over_std(x):
|
||||
std = np.std(x, ddof=1)
|
||||
mean = np.mean(x)
|
||||
return mean / std if std > 0 else 0
|
||||
|
||||
class DEnv(gym.Env):
|
||||
|
||||
metadata = {'render.modes': ['human']}
|
||||
|
||||
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||
assert df.ndim == 2
|
||||
|
||||
self.seed()
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
self.window_size = window_size
|
||||
self.starting_point = starting_point
|
||||
self.rr = reward_kwargs["rr"]
|
||||
self.profit_aim = reward_kwargs["profit_aim"]
|
||||
|
||||
self.fee=0.0015
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
self._start_tick = self.window_size
|
||||
self._end_tick = len(self.prices) - 1
|
||||
self._done = None
|
||||
self._current_tick = None
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history = None
|
||||
self.total_reward = None
|
||||
self._total_profit = None
|
||||
self._first_rendering = None
|
||||
self.history = None
|
||||
self.trade_history = []
|
||||
|
||||
# self.A_t, self.B_t = 0.000639, 0.00001954
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def reset(self):
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point == True:
|
||||
self._position_history = (self._start_tick* [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
|
||||
self._current_tick = self._start_tick
|
||||
self._last_trade_tick = None
|
||||
#self._last_trade_tick = self._current_tick - 1
|
||||
self._position = Positions.Neutral
|
||||
|
||||
self.total_reward = 0.
|
||||
self._total_profit = 1. # unit
|
||||
self._first_rendering = True
|
||||
self.history = {}
|
||||
self.trade_history = []
|
||||
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||
|
||||
self._profits = [(self._start_tick, 1)]
|
||||
self.close_trade_profit = []
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
temp_position = self._position
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type != None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick = self._current_tick,
|
||||
total_reward = self.total_reward,
|
||||
total_profit = self._total_profit,
|
||||
position = self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
# def processState(self, state):
|
||||
# return state.to_numpy()
|
||||
|
||||
# def convert_mlp_Policy(self, obs_):
|
||||
# pass
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price)/last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price)/last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
|
||||
def is_tradesignal(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
def is_hold(self, action):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
return price * (1 + self.fee)
|
||||
|
||||
def add_sell_fee(self, price):
|
||||
return price / (1 + self.fee)
|
||||
|
||||
def _update_history(self, info):
|
||||
if not self.history:
|
||||
self.history = {key: [] for key in info.keys()}
|
||||
|
||||
for key, value in info.items():
|
||||
self.history[key].append(value)
|
||||
|
||||
|
||||
# def render(self, mode='human'):
|
||||
# def _plot_position(position, tick):
|
||||
# color = None
|
||||
# if position == Positions.Short:
|
||||
# color = 'red'
|
||||
# elif position == Positions.Long:
|
||||
# color = 'green'
|
||||
# if color:
|
||||
# plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
# if self._first_rendering:
|
||||
# self._first_rendering = False
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# start_position = self._position_history[self._start_tick]
|
||||
# _plot_position(start_position, self._start_tick)
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# _plot_position(self._position, self._current_tick)
|
||||
# plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
# plt.pause(0.01)
|
||||
|
||||
# def render_all(self):
|
||||
# plt.figure()
|
||||
# window_ticks = np.arange(len(self._position_history))
|
||||
# plt.plot(self.prices['open'], alpha=0.5)
|
||||
# short_ticks = []
|
||||
# long_ticks = []
|
||||
# neutral_ticks = []
|
||||
# for i, tick in enumerate(window_ticks):
|
||||
# if self._position_history[i] == Positions.Short:
|
||||
# short_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Long:
|
||||
# long_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Neutral:
|
||||
# neutral_ticks.append(tick - 1)
|
||||
# plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
# 'o', color='grey', ms=3, alpha=0.1)
|
||||
# plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
# 'o', color='r', ms=3, alpha=0.8)
|
||||
# plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
# 'o', color='g', ms=3, alpha=0.8)
|
||||
# plt.suptitle("Generalising")
|
||||
# fig = plt.gcf()
|
||||
# fig.set_size_inches(15, 10)
|
||||
|
||||
# def close_trade_report(self):
|
||||
# small_trade = 0
|
||||
# positive_big_trade = 0
|
||||
# negative_big_trade = 0
|
||||
# small_profit = 0.003
|
||||
# for i in self.close_trade_profit:
|
||||
# if i < small_profit and i > -small_profit:
|
||||
# small_trade+=1
|
||||
# elif i > small_profit:
|
||||
# positive_big_trade += 1
|
||||
# elif i < -small_profit:
|
||||
# negative_big_trade += 1
|
||||
# print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
|
||||
# def report(self):
|
||||
# # get total trade
|
||||
# long_trade = 0
|
||||
# short_trade = 0
|
||||
# neutral_trade = 0
|
||||
# for trade in self.trade_history:
|
||||
# if trade['type'] == 'long':
|
||||
# long_trade += 1
|
||||
# elif trade['type'] == 'short':
|
||||
# short_trade += 1
|
||||
# else:
|
||||
# neutral_trade += 1
|
||||
# negative_trade = 0
|
||||
# positive_trade = 0
|
||||
# for tr in self.close_trade_profit:
|
||||
# if tr < 0.:
|
||||
# negative_trade += 1
|
||||
# if tr > 0.:
|
||||
# positive_trade += 1
|
||||
# total_trade_lr = negative_trade+positive_trade
|
||||
# total_trade = long_trade + short_trade
|
||||
# sharp_ratio = self.sharpe_ratio()
|
||||
# sharp_log = self.get_sharpe_ratio()
|
||||
# from tabulate import tabulate
|
||||
# headers = ["Performance", ""]
|
||||
# performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
# ["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
# ["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
# ["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
# ["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
# ["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# # ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
# ["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
# ]
|
||||
# tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
# print(tabulation)
|
||||
# result = {
|
||||
# "Start": "{0:.2f}".format(1.),
|
||||
# "End": "{0:.2f}".format(self._total_profit),
|
||||
# "Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
# "Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
# }
|
||||
# return result
|
||||
|
||||
# def close(self):
|
||||
# plt.close()
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
# def save_rendering(self, filepath):
|
||||
# plt.savefig(filepath)
|
||||
|
||||
# def pause_rendering(self):
|
||||
# plt.show()
|
||||
|
||||
def _calculate_reward(self, action):
|
||||
# rw = self.transaction_profit_reward(action)
|
||||
#rw = self.reward_rr_profit_config(action)
|
||||
rw = self.profit_only_when_close_reward(action)
|
||||
#rw = self.profit_only_when_close_reward_aim(action)
|
||||
return rw
|
||||
|
||||
def _update_profit(self, action):
|
||||
if self._is_trade(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
if self._position == Positions.Short:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
def most_recent_return(self, action):
|
||||
"""
|
||||
We support Long, Neutral and Short positions.
|
||||
Return is generated from rising prices in Long
|
||||
and falling prices in Short positions.
|
||||
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
||||
"""
|
||||
# Long positions
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Short
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_buy_fee(previous_price)
|
||||
|
||||
return np.log(current_price) - np.log(previous_price)
|
||||
|
||||
# Short positions
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Long
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_sell_fee(previous_price)
|
||||
|
||||
return np.log(previous_price) - np.log(current_price)
|
||||
|
||||
return 0
|
||||
|
||||
def get_portfolio_log_returns(self):
|
||||
return self.portfolio_log_returns[1:self._current_tick + 1]
|
||||
|
||||
# def get_trading_log_return(self):
|
||||
# return self.portfolio_log_returns[self._start_tick:]
|
||||
|
||||
def update_portfolio_log_returns(self, action):
|
||||
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
||||
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def prev_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick-1].open
|
||||
|
||||
def sharpe_ratio(self):
|
||||
if len(self.close_trade_profit) == 0:
|
||||
return 0.
|
||||
returns = np.array(self.close_trade_profit)
|
||||
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
||||
return reward
|
||||
|
||||
# def get_bnh_log_return(self):
|
||||
# return np.diff(np.log(self.prices['open'][self._start_tick:]))
|
||||
|
||||
def transaction_profit_reward(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt = self.prev_price()
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if self._position == Positions.Long:
|
||||
a_t = 1
|
||||
elif self._position == Positions.Short:
|
||||
a_t = -1
|
||||
else:
|
||||
a_t = 0
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
# close short
|
||||
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
pt_1 = self.add_buy_fee(self.current_price())
|
||||
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
else:
|
||||
rw = a_t*(pt_1 - pt)/pt
|
||||
|
||||
return np.clip(rw, 0, 1)
|
||||
|
||||
def profit_only_when_close_reward_aim(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
||||
|
||||
def profit_only_when_close_reward(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
@ -1,671 +0,0 @@
|
||||
import logging
|
||||
import random
|
||||
from collections import deque
|
||||
from enum import Enum
|
||||
#from sklearn.decomposition import PCA, KernelPCA
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# from bokeh.io import output_notebook
|
||||
# from bokeh.plotting import figure, show
|
||||
# from bokeh.models import (
|
||||
# CustomJS,
|
||||
# ColumnDataSource,
|
||||
# NumeralTickFormatter,
|
||||
# Span,
|
||||
# HoverTool,
|
||||
# Range1d,
|
||||
# DatetimeTickFormatter,
|
||||
# Scatter,
|
||||
# Label, LabelSet
|
||||
# )
|
||||
|
||||
|
||||
class Actions(Enum):
|
||||
Neutral = 0
|
||||
Long_buy = 1
|
||||
Long_sell = 2
|
||||
Short_buy = 3
|
||||
Short_sell = 4
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 0.5
|
||||
|
||||
def opposite(self):
|
||||
return Positions.Short if self == Positions.Long else Positions.Long
|
||||
|
||||
def mean_over_std(x):
|
||||
std = np.std(x, ddof=1)
|
||||
mean = np.mean(x)
|
||||
return mean / std if std > 0 else 0
|
||||
|
||||
class DEnv(gym.Env):
|
||||
|
||||
metadata = {'render.modes': ['human']}
|
||||
|
||||
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||
assert df.ndim == 2
|
||||
|
||||
self.seed()
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
self.window_size = window_size
|
||||
self.starting_point = starting_point
|
||||
self.rr = reward_kwargs["rr"]
|
||||
self.profit_aim = reward_kwargs["profit_aim"]
|
||||
|
||||
self.fee=0.0015
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
self._start_tick = self.window_size
|
||||
self._end_tick = len(self.prices) - 1
|
||||
self._done = None
|
||||
self._current_tick = None
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history = None
|
||||
self.total_reward = None
|
||||
self._total_profit = None
|
||||
self._first_rendering = None
|
||||
self.history = None
|
||||
self.trade_history = []
|
||||
|
||||
# self.A_t, self.B_t = 0.000639, 0.00001954
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
|
||||
def reset(self):
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point == True:
|
||||
self._position_history = (self._start_tick* [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
|
||||
self._current_tick = self._start_tick
|
||||
self._last_trade_tick = None
|
||||
#self._last_trade_tick = self._current_tick - 1
|
||||
self._position = Positions.Neutral
|
||||
|
||||
self.total_reward = 0.
|
||||
self._total_profit = 1. # unit
|
||||
self._first_rendering = True
|
||||
self.history = {}
|
||||
self.trade_history = []
|
||||
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||
|
||||
|
||||
self._profits = [(self._start_tick, 1)]
|
||||
self.close_trade_profit = []
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
|
||||
temp_position = self._position
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long_buy.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short_buy.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
elif action == Actions.Long_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Short_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type != None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick = self._current_tick,
|
||||
total_reward = self.total_reward,
|
||||
total_profit = self._total_profit,
|
||||
position = self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
|
||||
# def processState(self, state):
|
||||
# return state.to_numpy()
|
||||
|
||||
# def convert_mlp_Policy(self, obs_):
|
||||
# pass
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price)/last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price)/last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
|
||||
|
||||
def is_tradesignal(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_sell.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Short_sell.value and self._position == Positions.Long) or
|
||||
|
||||
(action == Actions.Long_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Long_sell.value and self._position == Positions.Long) or
|
||||
(action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Long_sell.value and self._position == Positions.Short))
|
||||
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short) or
|
||||
|
||||
(action == Actions.Neutral.Short_sell and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.Long_sell and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
|
||||
def is_hold(self, action):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
return price * (1 + self.fee)
|
||||
|
||||
def add_sell_fee(self, price):
|
||||
return price / (1 + self.fee)
|
||||
|
||||
def _update_history(self, info):
|
||||
if not self.history:
|
||||
self.history = {key: [] for key in info.keys()}
|
||||
|
||||
for key, value in info.items():
|
||||
self.history[key].append(value)
|
||||
|
||||
|
||||
# def render(self, mode='human'):
|
||||
|
||||
# def _plot_position(position, tick):
|
||||
# color = None
|
||||
# if position == Positions.Short:
|
||||
# color = 'red'
|
||||
# elif position == Positions.Long:
|
||||
# color = 'green'
|
||||
# if color:
|
||||
# plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
|
||||
# if self._first_rendering:
|
||||
# self._first_rendering = False
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# start_position = self._position_history[self._start_tick]
|
||||
# _plot_position(start_position, self._start_tick)
|
||||
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# _plot_position(self._position, self._current_tick)
|
||||
|
||||
# plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
# plt.pause(0.01)
|
||||
|
||||
|
||||
# def render_all(self):
|
||||
# plt.figure()
|
||||
# window_ticks = np.arange(len(self._position_history))
|
||||
# plt.plot(self.prices['open'], alpha=0.5)
|
||||
|
||||
# short_ticks = []
|
||||
# long_ticks = []
|
||||
# neutral_ticks = []
|
||||
# for i, tick in enumerate(window_ticks):
|
||||
# if self._position_history[i] == Positions.Short:
|
||||
# short_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Long:
|
||||
# long_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Neutral:
|
||||
# neutral_ticks.append(tick - 1)
|
||||
|
||||
# plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
# 'o', color='grey', ms=3, alpha=0.1)
|
||||
# plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
# 'o', color='r', ms=3, alpha=0.8)
|
||||
# plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
# 'o', color='g', ms=3, alpha=0.8)
|
||||
|
||||
# plt.suptitle("Generalising")
|
||||
# fig = plt.gcf()
|
||||
# fig.set_size_inches(15, 10)
|
||||
|
||||
|
||||
|
||||
|
||||
# def close_trade_report(self):
|
||||
# small_trade = 0
|
||||
# positive_big_trade = 0
|
||||
# negative_big_trade = 0
|
||||
# small_profit = 0.003
|
||||
# for i in self.close_trade_profit:
|
||||
# if i < small_profit and i > -small_profit:
|
||||
# small_trade+=1
|
||||
# elif i > small_profit:
|
||||
# positive_big_trade += 1
|
||||
# elif i < -small_profit:
|
||||
# negative_big_trade += 1
|
||||
# print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
|
||||
|
||||
# def report(self):
|
||||
|
||||
# # get total trade
|
||||
# long_trade = 0
|
||||
# short_trade = 0
|
||||
# neutral_trade = 0
|
||||
# for trade in self.trade_history:
|
||||
# if trade['type'] == 'long':
|
||||
# long_trade += 1
|
||||
|
||||
# elif trade['type'] == 'short':
|
||||
# short_trade += 1
|
||||
# else:
|
||||
# neutral_trade += 1
|
||||
|
||||
# negative_trade = 0
|
||||
# positive_trade = 0
|
||||
# for tr in self.close_trade_profit:
|
||||
# if tr < 0.:
|
||||
# negative_trade += 1
|
||||
|
||||
# if tr > 0.:
|
||||
# positive_trade += 1
|
||||
|
||||
# total_trade_lr = negative_trade+positive_trade
|
||||
|
||||
|
||||
# total_trade = long_trade + short_trade
|
||||
# sharp_ratio = self.sharpe_ratio()
|
||||
# sharp_log = self.get_sharpe_ratio()
|
||||
|
||||
# from tabulate import tabulate
|
||||
|
||||
# headers = ["Performance", ""]
|
||||
# performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
# ["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
# ["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
# ["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
# ["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
# ["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# # ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
# ["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
# ]
|
||||
# tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
# print(tabulation)
|
||||
|
||||
# result = {
|
||||
# "Start": "{0:.2f}".format(1.),
|
||||
# "End": "{0:.2f}".format(self._total_profit),
|
||||
# "Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
# "Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
# }
|
||||
# return result
|
||||
|
||||
# def close(self):
|
||||
# plt.close()
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
|
||||
# def save_rendering(self, filepath):
|
||||
# plt.savefig(filepath)
|
||||
|
||||
|
||||
# def pause_rendering(self):
|
||||
# plt.show()
|
||||
|
||||
|
||||
def _calculate_reward(self, action):
|
||||
# rw = self.transaction_profit_reward(action)
|
||||
#rw = self.reward_rr_profit_config(action)
|
||||
#rw = self.reward_rr_profit_config(action) # main
|
||||
#rw = self.profit_only_when_close_reward(action)
|
||||
rw = self.profit_only_when_close_reward_aim(action)
|
||||
return rw
|
||||
|
||||
|
||||
def _update_profit(self, action):
|
||||
#if self._is_trade(action) or self._done:
|
||||
if self._is_trade(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
if self._position == Positions.Short:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
|
||||
def most_recent_return(self, action):
|
||||
"""
|
||||
We support Long, Neutral and Short positions.
|
||||
Return is generated from rising prices in Long
|
||||
and falling prices in Short positions.
|
||||
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
||||
"""
|
||||
# Long positions
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
if action == Actions.Short_buy.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Short
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_buy_fee(previous_price)
|
||||
|
||||
return np.log(current_price) - np.log(previous_price)
|
||||
|
||||
# Short positions
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
if action == Actions.Long_buy.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Long
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_sell_fee(previous_price)
|
||||
|
||||
return np.log(previous_price) - np.log(current_price)
|
||||
|
||||
return 0
|
||||
|
||||
def get_portfolio_log_returns(self):
|
||||
return self.portfolio_log_returns[1:self._current_tick + 1]
|
||||
|
||||
|
||||
def get_trading_log_return(self):
|
||||
return self.portfolio_log_returns[self._start_tick:]
|
||||
|
||||
def update_portfolio_log_returns(self, action):
|
||||
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
||||
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def prev_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick-1].open
|
||||
|
||||
|
||||
|
||||
def sharpe_ratio(self):
|
||||
if len(self.close_trade_profit) == 0:
|
||||
return 0.
|
||||
returns = np.array(self.close_trade_profit)
|
||||
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
||||
return reward
|
||||
|
||||
def get_bnh_log_return(self):
|
||||
return np.diff(np.log(self.prices['open'][self._start_tick:]))
|
||||
|
||||
|
||||
def transaction_profit_reward(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt = self.prev_price()
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if self._position == Positions.Long:
|
||||
a_t = 1
|
||||
elif self._position == Positions.Short:
|
||||
a_t = -1
|
||||
else:
|
||||
a_t = 0
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
# close short
|
||||
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
pt_1 = self.add_buy_fee(self.current_price())
|
||||
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
else:
|
||||
rw = a_t*(pt_1 - pt)/pt
|
||||
|
||||
return np.clip(rw, 0, 1)
|
||||
|
||||
|
||||
def profit_only_when_close_reward(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
||||
|
||||
def profit_only_when_close_reward_aim(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
||||
|
||||
def reward_rr_profit_config(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if len(self.close_trade_profit) > 0:
|
||||
# long
|
||||
if self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions.Short_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 15
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = -10
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -15
|
||||
|
||||
if action == Actions.Long_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 20
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = -15
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -25
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0.005:
|
||||
rw = 0
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 0
|
||||
|
||||
# short
|
||||
if self._position == Positions.Short:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions.Long_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 15
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = -10
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw =- -25
|
||||
|
||||
if action == Actions.Short_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 20
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = -15
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -25
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0.005:
|
||||
rw = 0
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 0
|
||||
|
||||
return np.clip(rw, 0, 1)
|
@ -1,37 +0,0 @@
|
||||
# dir
|
||||
DATA_SAVE_DIR = "datasets"
|
||||
TRAINED_MODEL_DIR = "trained_models"
|
||||
TENSORBOARD_LOG_DIR = "tensorboard_log"
|
||||
RESULTS_DIR = "results"
|
||||
|
||||
# Model Parameters
|
||||
A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.01, "learning_rate": 0.0007}
|
||||
PPO_PARAMS = {
|
||||
"n_steps": 2048,
|
||||
"ent_coef": 0.01,
|
||||
"learning_rate": 0.00025,
|
||||
"batch_size": 64,
|
||||
}
|
||||
DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001}
|
||||
TD3_PARAMS = {
|
||||
"batch_size": 100,
|
||||
"buffer_size": 1000000,
|
||||
"learning_rate": 0.001,
|
||||
}
|
||||
SAC_PARAMS = {
|
||||
"batch_size": 64,
|
||||
"buffer_size": 100000,
|
||||
"learning_rate": 0.0001,
|
||||
"learning_starts": 100,
|
||||
"ent_coef": "auto_0.1",
|
||||
}
|
||||
ERL_PARAMS = {
|
||||
"learning_rate": 3e-5,
|
||||
"batch_size": 2048,
|
||||
"gamma": 0.985,
|
||||
"seed": 312,
|
||||
"net_dimension": 512,
|
||||
"target_step": 5000,
|
||||
"eval_gap": 30,
|
||||
}
|
||||
RLlib_PARAMS = {"lr": 5e-5, "train_batch_size": 500, "gamma": 0.99}
|
@ -1,253 +0,0 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
#from matplotlib.colors import DivergingNorm
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas as pd
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
import tensorflow as tf
|
||||
from freqtrade.freqai.prediction_models.BaseTensorFlowModel import BaseTensorFlowModel
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from tensorflow.keras.layers import Input, Conv1D, Dense, MaxPooling1D, Flatten, Dropout
|
||||
from tensorflow.keras.models import Model
|
||||
import numpy as np
|
||||
import copy
|
||||
|
||||
from keras.layers import *
|
||||
import random
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# tf.config.run_functions_eagerly(True)
|
||||
# tf.data.experimental.enable_debug_mode()
|
||||
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||||
|
||||
MAX_EPOCHS = 10
|
||||
LOOKBACK = 8
|
||||
|
||||
|
||||
class RLPredictionModel_v2(IFreqaiModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), fit().
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict, pair) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
train_labels = data_dictionary["train_labels"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
test_labels = data_dictionary["test_labels"]
|
||||
n_labels = len(train_labels.columns)
|
||||
if n_labels > 1:
|
||||
raise OperationalException(
|
||||
"Neural Net not yet configured for multi-targets. Please "
|
||||
" reduce number of targets to 1 in strategy."
|
||||
)
|
||||
|
||||
n_features = len(data_dictionary["train_features"].columns)
|
||||
BATCH_SIZE = self.freqai_info.get("batch_size", 64)
|
||||
input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features]
|
||||
|
||||
|
||||
w1 = WindowGenerator(
|
||||
input_width=self.CONV_WIDTH,
|
||||
label_width=1,
|
||||
shift=1,
|
||||
train_df=train_df,
|
||||
val_df=test_df,
|
||||
train_labels=train_labels,
|
||||
val_labels=test_labels,
|
||||
batch_size=BATCH_SIZE,
|
||||
)
|
||||
|
||||
|
||||
# train_agent()
|
||||
#pair = self.dd.historical_data[pair]
|
||||
#gym_env = FreqtradeEnv(data=train_df, prices=0.01, windows_size=100, pair=pair, stake_amount=100)
|
||||
|
||||
# sep = '/'
|
||||
# coin = pair.split(sep, 1)[0]
|
||||
|
||||
# # df1 = train_df.filter(regex='price')
|
||||
# # df2 = df1.filter(regex='raw')
|
||||
|
||||
# # df3 = df2.filter(regex=f"{coin}")
|
||||
# # print(df3)
|
||||
|
||||
# price = train_df[f"%-{coin}raw_price_5m"]
|
||||
# gym_env = RLPrediction_GymAnytrading(signal_features=train_df, prices=price, window_size=100)
|
||||
# sac = RLPrediction_Agent(gym_env)
|
||||
|
||||
# print(sac)
|
||||
|
||||
# return 0
|
||||
|
||||
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True
|
||||
) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:predictions: np.array of predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
|
||||
if first:
|
||||
full_df = dk.data_dictionary["prediction_features"]
|
||||
|
||||
w1 = WindowGenerator(
|
||||
input_width=self.CONV_WIDTH,
|
||||
label_width=1,
|
||||
shift=1,
|
||||
test_df=full_df,
|
||||
batch_size=len(full_df),
|
||||
)
|
||||
|
||||
predictions = self.model.predict(w1.inference)
|
||||
len_diff = len(dk.do_predict) - len(predictions)
|
||||
if len_diff > 0:
|
||||
dk.do_predict = dk.do_predict[len_diff:]
|
||||
|
||||
else:
|
||||
data = dk.data_dictionary["prediction_features"]
|
||||
data = tf.expand_dims(data, axis=0)
|
||||
predictions = self.model(data, training=False)
|
||||
|
||||
predictions = predictions[:, 0]
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
return (pred_df, np.ones(len(pred_df)))
|
||||
|
||||
|
||||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
|
||||
pass
|
||||
# w1 = WindowGenerator(
|
||||
# input_width=self.CONV_WIDTH, label_width=1, shift=1, test_df=df, batch_size=len(df)
|
||||
# )
|
||||
|
||||
# trained_predictions = model.predict(w1.inference)
|
||||
# #trained_predictions = trained_predictions[:, 0, 0]
|
||||
# trained_predictions = trained_predictions[:, 0]
|
||||
|
||||
# n_lost_points = len(df) - len(trained_predictions)
|
||||
# pred_df = DataFrame(trained_predictions, columns=dk.label_list)
|
||||
# zeros_df = DataFrame(np.zeros((n_lost_points, len(dk.label_list))), columns=dk.label_list)
|
||||
# pred_df = pd.concat([zeros_df, pred_df], axis=0)
|
||||
|
||||
# pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
|
||||
|
||||
# self.dd.historic_predictions[pair] = DataFrame()
|
||||
# self.dd.historic_predictions[pair] = copy.deepcopy(pred_df)
|
||||
|
||||
|
||||
class WindowGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
input_width,
|
||||
label_width,
|
||||
shift,
|
||||
train_df=None,
|
||||
val_df=None,
|
||||
test_df=None,
|
||||
train_labels=None,
|
||||
val_labels=None,
|
||||
test_labels=None,
|
||||
batch_size=None,
|
||||
):
|
||||
# Store the raw data.
|
||||
self.train_df = train_df
|
||||
self.val_df = val_df
|
||||
self.test_df = test_df
|
||||
self.train_labels = train_labels
|
||||
self.val_labels = val_labels
|
||||
self.test_labels = test_labels
|
||||
self.batch_size = batch_size
|
||||
self.input_width = input_width
|
||||
self.label_width = label_width
|
||||
self.shift = shift
|
||||
|
||||
self.total_window_size = input_width + shift
|
||||
|
||||
self.input_slice = slice(0, input_width)
|
||||
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
|
||||
|
||||
def make_dataset(self, data, labels=None):
|
||||
data = np.array(data, dtype=np.float32)
|
||||
if labels is not None:
|
||||
labels = np.array(labels, dtype=np.float32)
|
||||
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
|
||||
data=data,
|
||||
targets=labels,
|
||||
sequence_length=self.total_window_size,
|
||||
sequence_stride=1,
|
||||
sampling_rate=1,
|
||||
shuffle=False,
|
||||
batch_size=self.batch_size,
|
||||
)
|
||||
|
||||
return ds
|
||||
|
||||
@property
|
||||
def train(self):
|
||||
|
||||
|
||||
|
||||
return self.make_dataset(self.train_df, self.train_labels)
|
||||
|
||||
@property
|
||||
def val(self):
|
||||
return self.make_dataset(self.val_df, self.val_labels)
|
||||
|
||||
@property
|
||||
def test(self):
|
||||
return self.make_dataset(self.test_df, self.test_labels)
|
||||
|
||||
@property
|
||||
def inference(self):
|
||||
return self.make_dataset(self.test_df)
|
||||
|
||||
@property
|
||||
def example(self):
|
||||
"""Get and cache an example batch of `inputs, labels` for plotting."""
|
||||
result = getattr(self, "_example", None)
|
||||
if result is None:
|
||||
# No example batch was found, so get one from the `.train` dataset
|
||||
result = next(iter(self.train))
|
||||
# And cache it for next time
|
||||
self._example = result
|
||||
return result
|
@ -1,273 +0,0 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
import torch as th
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_TDQN import TDQN
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env_TDQN_5ac import DEnv
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_env_TDQN_3ac import DEnv
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class ReinforcementLearning(IFreqaiModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:returns:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info("--------------------Starting training " f"{pair} --------------------")
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
|
||||
features_filtered, labels_filtered)
|
||||
dk.fit_labels() # useless for now, but just satiating append methods
|
||||
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary, pair)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
data_dictionary['train_features'], model, dk, pair)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
|
||||
# train_df = data_dictionary["train_features"]
|
||||
# # train_labels = data_dictionary["train_labels"]
|
||||
# test_df = data_dictionary["test_features"]
|
||||
# # test_labels = data_dictionary["test_labels"]
|
||||
# # sep = '/'
|
||||
# # coin = pair.split(sep, 1)[0]
|
||||
# # price = train_df[f"%-{coin}raw_price_{self.config['timeframe']}"]
|
||||
# # price.reset_index(inplace=True, drop=True)
|
||||
# # price = price.to_frame()
|
||||
# price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
# price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
# #train_env = GymAnytrading(train_df, price, self.CONV_WIDTH)
|
||||
# agent_params = self.freqai_info['model_training_parameters']
|
||||
# reward_params = self.freqai_info['model_reward_parameters']
|
||||
# train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
# #eval_env = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
# #env_instance = SubprocVecEnv([DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)])
|
||||
# #train_env.reset()
|
||||
# #eval_env.reset()
|
||||
# # model
|
||||
# #policy_kwargs = dict(net_arch=[512, 512, 512])
|
||||
# policy_kwargs = dict(activation_fn=th.nn.Tanh,
|
||||
# net_arch=[256, 256, 256])
|
||||
# agent = RLPrediction_agent(train_env)
|
||||
# #eval_agent = RLPrediction_agent(eval_env)
|
||||
|
||||
# # PPO
|
||||
# model_name = 'ppo'
|
||||
# model = agent.get_model(model_name, model_kwargs=agent_params, policy_kwargs=policy_kwargs)
|
||||
# trained_model = agent.train_model(model=model,
|
||||
# tb_log_name=model_name,
|
||||
# model_kwargs=agent_params,
|
||||
# train_df=train_df,
|
||||
# test_df=test_df,
|
||||
# price=price,
|
||||
# price_test=price_test,
|
||||
# window_size=self.CONV_WIDTH)
|
||||
# # best_model = eval_agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params,
|
||||
# # eval=eval_env)
|
||||
# # TDQN
|
||||
# # model_name = 'TDQN'
|
||||
# # model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log='./tensorboard_log/',
|
||||
# # learning_rate=agent_params["learning_rate"], gamma=0.9,
|
||||
# # target_update_interval=5000, buffer_size=50000,
|
||||
# # exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
# # replay_buffer_class=ReplayBuffer
|
||||
# # )
|
||||
# # trained_model = agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params)
|
||||
# #model.learn(
|
||||
# # total_timesteps=5000,
|
||||
# # callback=callback
|
||||
# # )
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
||||
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
||||
|
||||
# price data for model training and evaluation
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
# environments
|
||||
train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
# this should be in config - TODO
|
||||
agent_type = 'tdqn'
|
||||
|
||||
path = self.dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/{agent_type}/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
if agent_type == 'tdqn':
|
||||
model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9,
|
||||
target_update_interval=5000, buffer_size=50000,
|
||||
exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
replay_buffer_class=ReplayBuffer
|
||||
)
|
||||
elif agent_type == 'ppo':
|
||||
model = PPO('MultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9
|
||||
)
|
||||
|
||||
model.learn(
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
|
||||
|
||||
|
||||
def get_state_info(self, pair):
|
||||
open_trades = Trade.get_trades(trade_filter=Trade.is_open.is_(True))
|
||||
market_side = 0.5
|
||||
current_profit = 0
|
||||
for trade in open_trades:
|
||||
if trade.pair == pair:
|
||||
current_value = trade.open_trade_value
|
||||
openrate = trade.open_rate
|
||||
if 'long' in trade.enter_tag:
|
||||
market_side = 1
|
||||
else:
|
||||
market_side = 0
|
||||
current_profit = current_value / openrate -1
|
||||
|
||||
total_profit = 0
|
||||
closed_trades = Trade.get_trades(trade_filter=[Trade.is_open.is_(False), Trade.pair == pair])
|
||||
for trade in closed_trades:
|
||||
total_profit += trade.close_profit
|
||||
|
||||
return market_side, current_profit, total_profit
|
||||
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
|
||||
pred_df = self.rl_model_predict(dk.data_dictionary["prediction_features"], dk, self.model)
|
||||
pred_df.fillna(0, inplace=True)
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def rl_model_predict(self, dataframe: DataFrame,
|
||||
dk: FreqaiDataKitchen, model: Any) -> DataFrame:
|
||||
|
||||
output = pd.DataFrame(np.full((len(dataframe), 1), 2), columns=dk.label_list)
|
||||
|
||||
def _predict(window):
|
||||
observations = dataframe.iloc[window.index]
|
||||
res, _ = model.predict(observations, deterministic=True)
|
||||
return res
|
||||
|
||||
output = output.rolling(window=self.CONV_WIDTH).apply(_predict)
|
||||
|
||||
return output
|
||||
|
||||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
|
||||
pred_df = self.rl_model_predict(df, dk, model)
|
||||
pred_df.fillna(0, inplace=True)
|
||||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
for label in hist_preds_df.columns:
|
||||
if hist_preds_df[label].dtype == object:
|
||||
continue
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
hist_preds_df['do_predict'] = 0
|
||||
|
||||
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
|
||||
hist_preds_df['DI_values'] = 0
|
||||
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
155
freqtrade/freqai/prediction_models/ReinforcementLearningPPO.py
Normal file
155
freqtrade/freqai/prediction_models/ReinforcementLearningPPO.py
Normal file
@ -0,0 +1,155 @@
|
||||
import logging
|
||||
from typing import Any, Dict # , Tuple
|
||||
|
||||
import numpy as np
|
||||
# import numpy.typing as npt
|
||||
# import pandas as pd
|
||||
import torch as th
|
||||
# from pandas import DataFrame
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
||||
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
||||
|
||||
# price data for model training and evaluation
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(
|
||||
len(test_df.index))
|
||||
|
||||
# environments
|
||||
train_env = MyRLEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=reward_params)
|
||||
eval = MyRLEnv(df=test_df, prices=price_test,
|
||||
window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
model = PPO('MultiInputPolicy', train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025, gamma=0.9
|
||||
)
|
||||
|
||||
model.learn(
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class MyRLEnv(BaseRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env
|
||||
"""
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action):
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
def calculate_reward(self, action):
|
||||
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or
|
||||
action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or
|
||||
action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
168
freqtrade/freqai/prediction_models/ReinforcementLearningTDQN.py
Normal file
168
freqtrade/freqai/prediction_models/ReinforcementLearningTDQN.py
Normal file
@ -0,0 +1,168 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
||||
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
||||
|
||||
# price data for model training and evaluation
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(
|
||||
len(test_df.index))
|
||||
|
||||
# environments
|
||||
train_env = MyRLEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=reward_params)
|
||||
eval = MyRLEnv(df=test_df, prices=price_test,
|
||||
window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
model = TDQN('TMultiInputPolicy', train_env,
|
||||
policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/tdqn/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9,
|
||||
target_update_interval=5000, buffer_size=50000,
|
||||
exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
replay_buffer_class=Optional(ReplayBuffer)
|
||||
)
|
||||
|
||||
model.learn(
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class MyRLEnv(BaseRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env
|
||||
"""
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action):
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
def calculate_reward(self, action):
|
||||
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
Loading…
Reference in New Issue
Block a user