set cpu threads in config
This commit is contained in:
parent
57c488a6f1
commit
bf7ceba958
1
.gitignore
vendored
1
.gitignore
vendored
@ -113,3 +113,4 @@ target/
|
||||
!config_examples/config_full.example.json
|
||||
!config_examples/config_kraken.example.json
|
||||
!config_examples/config_freqai.example.json
|
||||
!config_examples/config_freqai-rl.example.json
|
||||
|
110
config_examples/config_freqai-rl.example.json
Normal file
110
config_examples/config_freqai-rl.example.json
Normal file
@ -0,0 +1,110 @@
|
||||
{
|
||||
"trading_mode": "futures",
|
||||
"new_pairs_days": 30,
|
||||
"margin_mode": "isolated",
|
||||
"max_open_trades": 8,
|
||||
"stake_currency": "USDT",
|
||||
"stake_amount": 1000,
|
||||
"tradable_balance_ratio": 1,
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": true,
|
||||
"timeframe": "5m",
|
||||
"dataformat_ohlcv": "json",
|
||||
"dry_run_wallet": 12000,
|
||||
"cancel_open_orders_on_exit": true,
|
||||
"unfilledtimeout": {
|
||||
"entry": 10,
|
||||
"exit": 30
|
||||
},
|
||||
"exchange": {
|
||||
"name": "binance",
|
||||
"key": "",
|
||||
"secret": "",
|
||||
"ccxt_config": {
|
||||
"enableRateLimit": true
|
||||
},
|
||||
"ccxt_async_config": {
|
||||
"enableRateLimit": true,
|
||||
"rateLimit": 200
|
||||
},
|
||||
"pair_whitelist": [
|
||||
"1INCH/USDT",
|
||||
"AAVE/USDT"
|
||||
],
|
||||
"pair_blacklist": []
|
||||
},
|
||||
"entry_pricing": {
|
||||
"price_side": "same",
|
||||
"purge_old_models": true,
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1,
|
||||
"price_last_balance": 0.0,
|
||||
"check_depth_of_market": {
|
||||
"enabled": false,
|
||||
"bids_to_ask_delta": 1
|
||||
}
|
||||
},
|
||||
"exit_pricing": {
|
||||
"price_side": "other",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1
|
||||
},
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "StaticPairList"
|
||||
}
|
||||
],
|
||||
"freqai": {
|
||||
"model_save_type": "stable_baselines_ppo",
|
||||
"conv_width": 10,
|
||||
"follow_mode": false,
|
||||
"purge_old_models": true,
|
||||
"train_period_days": 10,
|
||||
"backtest_period_days": 2,
|
||||
"identifier": "unique-id",
|
||||
"data_kitchen_thread_count": 4,
|
||||
"feature_parameters": {
|
||||
"include_corr_pairlist": [
|
||||
"BTC/USDT",
|
||||
"ETH/USDT"
|
||||
],
|
||||
"include_timeframes": [
|
||||
"5m",
|
||||
"30m"
|
||||
],
|
||||
"label_period_candles": 80,
|
||||
"include_shifted_candles": 0,
|
||||
"DI_threshold": 0,
|
||||
"weight_factor": 0.9,
|
||||
"principal_component_analysis": false,
|
||||
"use_SVM_to_remove_outliers": false,
|
||||
"svm_params": {"shuffle": true, "nu": 0.1},
|
||||
"stratify_training_data": 0,
|
||||
"indicator_max_period_candles": 10,
|
||||
"indicator_periods_candles": [5]
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.5,
|
||||
"random_state": 1,
|
||||
"shuffle": false
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_steps": 2048,
|
||||
"ent_coef": 0.005,
|
||||
"learning_rate": 0.000025,
|
||||
"batch_size": 256,
|
||||
"eval_cycles" : 5,
|
||||
"train_cycles" : 15
|
||||
},
|
||||
"model_reward_parameters": {
|
||||
"rr": 1,
|
||||
"profit_aim": 0.01
|
||||
}
|
||||
},
|
||||
"bot_name": "RL_test",
|
||||
"force_entry_enable": true,
|
||||
"initial_state": "running",
|
||||
"internals": {
|
||||
"process_throttle_secs": 5
|
||||
}
|
||||
}
|
@ -56,7 +56,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary, pair)
|
||||
model = self.fit_rl(data_dictionary, pair, dk)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
@ -69,7 +69,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
return model
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
"""
|
||||
Agent customizations and abstract Reinforcement Learning customizations
|
||||
go in here. Abstract method, so this function must be overridden by
|
||||
@ -164,6 +164,21 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
# TODO take care of this appendage. Right now it needs to be called because FreqAI enforces it.
|
||||
# But FreqaiRL needs more objects passed to fit() (like DK) and we dont want to go refactor
|
||||
# all the other existing fit() functions to include dk argument. For now we instantiate and
|
||||
# leave it.
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
management will be properly handled by Freqai.
|
||||
:param data_dictionary: Dict = the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
return
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
||||
|
@ -471,11 +471,12 @@ class FreqaiDataDrawer:
|
||||
elif model_type == 'keras':
|
||||
from tensorflow import keras
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
elif model_type == 'stable_baselines':
|
||||
elif model_type == 'stable_baselines_ppo':
|
||||
from stable_baselines3.ppo.ppo import PPO
|
||||
model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
elif model_type == 'stable_baselines_dqn':
|
||||
from stable_baselines3 import DQN
|
||||
#model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
model = DQN.load(dk.data_path / f"best_model.zip")
|
||||
model = DQN.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
@ -16,7 +16,7 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
|
@ -17,7 +17,7 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
|
@ -9,9 +9,9 @@ import torch as th
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -22,7 +22,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@ -44,7 +44,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@ -54,7 +54,8 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025, gamma=0.9, verbose=1
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025,
|
||||
gamma=0.9, verbose=1
|
||||
)
|
||||
|
||||
model.learn(
|
||||
@ -62,9 +63,11 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
return best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
@ -13,7 +13,9 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines3.common.utils import set_random_seed
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
import gym
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -42,7 +44,7 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@ -58,16 +60,15 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
len(test_df.index))
|
||||
|
||||
env_id = "train_env"
|
||||
train_num_cpu = 6
|
||||
num_cpu = int(dk.thread_count / 2)
|
||||
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, price, reward_params,
|
||||
self.CONV_WIDTH) for i in range(train_num_cpu)])
|
||||
|
||||
eval_num_cpu = 6
|
||||
eval_env_id = 'eval_env'
|
||||
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, price_test, reward_params,
|
||||
self.CONV_WIDTH) for i in range(eval_num_cpu)])
|
||||
self.CONV_WIDTH) for i in range(num_cpu)])
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@ -85,10 +86,12 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
# TODO get callback working so the best model is saved. For now we save last model
|
||||
# best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||
print('Training finished!')
|
||||
eval_env.close()
|
||||
|
||||
return model
|
||||
return model # best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
@ -7,9 +7,12 @@ from stable_baselines3.common.monitor import Monitor
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||
from stable_baselines3 import DQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -18,7 +21,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@ -40,7 +43,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@ -63,9 +66,11 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
best_model = DQN.load(dk.data_path / "best_model.zip")
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
return best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
Loading…
Reference in New Issue
Block a user