139 lines
5.9 KiB
Python
139 lines
5.9 KiB
Python
import logging
|
|
from typing import Any, Dict # Optional
|
|
import torch as th
|
|
from stable_baselines3.common.callbacks import EvalCallback
|
|
from stable_baselines3.common.monitor import Monitor
|
|
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
|
from freqtrade.freqai.RL.TDQNagent import TDQN
|
|
from stable_baselines3 import DQN
|
|
from stable_baselines3.common.buffers import ReplayBuffer
|
|
import numpy as np
|
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
|
"""
|
|
User created Reinforcement Learning Model prediction model.
|
|
"""
|
|
|
|
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
|
|
|
agent_params = self.freqai_info['model_training_parameters']
|
|
reward_params = self.freqai_info['model_reward_parameters']
|
|
train_df = data_dictionary["train_features"]
|
|
test_df = data_dictionary["test_features"]
|
|
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
|
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
|
|
|
# price data for model training and evaluation
|
|
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
|
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(
|
|
len(test_df.index))
|
|
|
|
# environments
|
|
train_env = MyRLEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH,
|
|
reward_kwargs=reward_params)
|
|
eval = MyRLEnv(df=test_df, prices=price_test,
|
|
window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
|
eval_env = Monitor(eval, ".")
|
|
eval_env.reset()
|
|
|
|
path = dk.data_path
|
|
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
|
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
|
deterministic=True, render=False)
|
|
|
|
# model arch
|
|
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
|
net_arch=[256, 256, 128])
|
|
|
|
model = TDQN('TMultiInputPolicy', train_env,
|
|
policy_kwargs=policy_kwargs,
|
|
tensorboard_log=f"{path}/tdqn/tensorboard/",
|
|
learning_rate=0.00025, gamma=0.9,
|
|
target_update_interval=5000, buffer_size=50000,
|
|
exploration_initial_eps=1, exploration_final_eps=0.1,
|
|
replay_buffer_class=ReplayBuffer
|
|
)
|
|
|
|
model.learn(
|
|
total_timesteps=int(total_timesteps),
|
|
callback=eval_callback
|
|
)
|
|
|
|
best_model = DQN.load(dk.data_path / "best_model.zip")
|
|
|
|
print('Training finished!')
|
|
|
|
return best_model
|
|
|
|
|
|
class MyRLEnv(Base3ActionRLEnv):
|
|
"""
|
|
User can override any function in BaseRLEnv and gym.Env
|
|
"""
|
|
|
|
def calculate_reward(self, action):
|
|
|
|
if self._last_trade_tick is None:
|
|
return 0.
|
|
|
|
# close long
|
|
if (action == Actions.Short.value or
|
|
action == Actions.Neutral.value) and self._position == Positions.Long:
|
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
return float(np.log(current_price) - np.log(last_trade_price))
|
|
|
|
# close short
|
|
if (action == Actions.Long.value or
|
|
action == Actions.Neutral.value) and self._position == Positions.Short:
|
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
return float(np.log(last_trade_price) - np.log(current_price))
|
|
|
|
return 0.
|
|
|
|
# User can inherit and customize 5 action environment
|
|
# class MyRLEnv(Base5ActionRLEnv):
|
|
# """
|
|
# User can override any function in BaseRLEnv and gym.Env. Here the user
|
|
# Adds 5 actions.
|
|
# """
|
|
|
|
# def calculate_reward(self, action):
|
|
|
|
# if self._last_trade_tick is None:
|
|
# return 0.
|
|
|
|
# # close long
|
|
# if action == Actions.Long_sell.value and self._position == Positions.Long:
|
|
# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
# return float(np.log(current_price) - np.log(last_trade_price))
|
|
|
|
# if action == Actions.Long_sell.value and self._position == Positions.Long:
|
|
# if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
# return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
|
|
|
# # close short
|
|
# if action == Actions.Short_buy.value and self._position == Positions.Short:
|
|
# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
# return float(np.log(last_trade_price) - np.log(current_price))
|
|
|
|
# if action == Actions.Short_buy.value and self._position == Positions.Short:
|
|
# if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
# return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
|
|
|
# return 0.
|