add dp to multiproc
This commit is contained in:
parent
350cebb0a8
commit
2285ca7d2a
@ -24,6 +24,7 @@ from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
|
||||
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
|
||||
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -384,7 +385,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
|
||||
seed: int, train_df: DataFrame, price: DataFrame,
|
||||
reward_params: Dict[str, int], window_size: int, monitor: bool = False,
|
||||
config: Dict[str, Any] = {}) -> Callable:
|
||||
config: Dict[str, Any] = {}, dp: DataProvider = None) -> Callable:
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
@ -398,7 +399,8 @@ def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
|
||||
def _init() -> gym.Env:
|
||||
|
||||
env = MyRLEnv(df=train_df, prices=price, window_size=window_size,
|
||||
reward_kwargs=reward_params, id=env_id, seed=seed + rank, config=config)
|
||||
reward_kwargs=reward_params, id=env_id, seed=seed + rank,
|
||||
config=config, dp=dp)
|
||||
if monitor:
|
||||
env = Monitor(env)
|
||||
return env
|
||||
|
@ -37,14 +37,14 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
|
||||
env_id = "train_env"
|
||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
config=self.config, dp=self.data_provider) for i
|
||||
in range(self.max_threads)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
|
||||
test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
config=self.config, dp=self.data_provider) for i
|
||||
in range(self.max_threads)])
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
|
Loading…
Reference in New Issue
Block a user