refactoring backtesting_fit_live_predictions function
This commit is contained in:
parent
3e57c18ac6
commit
8ee95db927
@ -827,37 +827,31 @@ class IFreqaiModel(ABC):
|
||||
)
|
||||
|
||||
def backtesting_fit_live_predictions(self, dk: FreqaiDataKitchen):
|
||||
start_time = time.perf_counter()
|
||||
"""
|
||||
Apply fit_live_predictions function in backtesting with a dummy historic_predictions
|
||||
:param dk: datakitchen object
|
||||
"""
|
||||
fit_live_predictions_candles = self.freqai_info.get("fit_live_predictions_candles", 0)
|
||||
if fit_live_predictions_candles:
|
||||
predictions_columns = [col for col in dk.full_df.columns if (
|
||||
label_columns = [col for col in dk.full_df.columns if (
|
||||
col.startswith("&") and
|
||||
'_mean' not in col and
|
||||
'_std' not in col and
|
||||
not (col.startswith("&") and col.endswith("_mean")) and
|
||||
not (col.startswith("&") and col.endswith("_std")) and
|
||||
col not in self.dk.data["extra_returns_per_train"])
|
||||
]
|
||||
self.dd.historic_predictions[self.dk.pair] = pd.DataFrame(
|
||||
columns=dk.full_df.columns).astype(dk.full_df.dtypes)
|
||||
|
||||
# for index, row in dk.full_df.iterrows():
|
||||
for index in range(len(dk.full_df)):
|
||||
if index > fit_live_predictions_candles:
|
||||
if index >= fit_live_predictions_candles:
|
||||
self.dd.historic_predictions[self.dk.pair] = (
|
||||
dk.full_df.iloc[index - fit_live_predictions_candles + 1:index + 1])
|
||||
dk.full_df.iloc[index - fit_live_predictions_candles:index])
|
||||
else:
|
||||
self.dd.historic_predictions[self.dk.pair] = dk.full_df.iloc[:index + 1]
|
||||
# self.dd.historic_predictions[self.dk.pair].loc[index] = row.values.tolist()
|
||||
# pd.concat(self.dd.historic_predictions[self.dk.pair], row.values)
|
||||
self.dd.historic_predictions[self.dk.pair] = dk.full_df.iloc[:index]
|
||||
|
||||
self.fit_live_predictions(self.dk, self.dk.pair)
|
||||
if index > fit_live_predictions_candles:
|
||||
print(index)
|
||||
|
||||
if index <= fit_live_predictions_candles:
|
||||
dk.full_df.at[index, "warmed_up"] = 0
|
||||
else:
|
||||
dk.full_df.at[index, "warmed_up"] = 1
|
||||
|
||||
for label in predictions_columns:
|
||||
if index >= fit_live_predictions_candles:
|
||||
for label in label_columns:
|
||||
if dk.full_df[label].dtype == object:
|
||||
continue
|
||||
if "labels_mean" in self.dk.data:
|
||||
@ -869,13 +863,8 @@ class IFreqaiModel(ABC):
|
||||
for extra_col in self.dk.data["extra_returns_per_train"]:
|
||||
dk.full_df.at[index, f"{extra_col}"] = (
|
||||
self.dk.data["extra_returns_per_train"][extra_col])
|
||||
|
||||
end_time = time.perf_counter()
|
||||
logger.info(f"Downloaded the tutorial in {start_time - end_time:0.4f} seconds")
|
||||
|
||||
# print(f"Downloaded the tutorial in {start_time - end_time:0.4f} seconds")
|
||||
|
||||
return
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user