initial commit - new dev branch
This commit is contained in:
parent
cd3fe44424
commit
9b895500b3
@ -1,11 +1,15 @@
|
||||
# common library
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
from stable_baselines3 import A2C, DDPG, PPO, SAC, TD3
|
||||
from stable_baselines3.common.callbacks import BaseCallback, EvalCallback
|
||||
from stable_baselines3.common.callbacks import (BaseCallback, CallbackList, CheckpointCallback,
|
||||
EvalCallback, StopTrainingOnRewardThreshold)
|
||||
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
|
||||
|
||||
from freqtrade.freqai.prediction_models.RL import config
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_v2 import TDQN
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env import DEnv
|
||||
|
||||
|
||||
# from stable_baselines3.common.vec_env import DummyVecEnv
|
||||
@ -106,12 +110,30 @@ class RLPrediction_agent:
|
||||
|
||||
return model
|
||||
|
||||
def train_model(self, model, tb_log_name, model_kwargs):
|
||||
def train_model(self, model, tb_log_name, model_kwargs, train_df, test_df, price, price_test, window_size):
|
||||
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_env = DEnv(df=train_df, prices=price, window_size=window_size, reward_kwargs=reward_params)
|
||||
eval_env = DEnv(df=test_df, prices=price_test, window_size=window_size, reward_kwargs=reward_params)
|
||||
|
||||
# checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/',
|
||||
# name_prefix='rl_model')
|
||||
|
||||
checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/')
|
||||
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path='./logs/best_model', log_path='./logs/results', eval_freq=500)
|
||||
#callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=1)
|
||||
|
||||
# Create the callback list
|
||||
callback = CallbackList([checkpoint_callback, eval_callback])
|
||||
|
||||
|
||||
model = model.learn(
|
||||
total_timesteps=model_kwargs["total_timesteps"],
|
||||
tb_log_name=tb_log_name,
|
||||
#callback=eval_callback,
|
||||
callback=TensorboardCallback(),
|
||||
callback=callback,
|
||||
#callback=TensorboardCallback(),
|
||||
)
|
||||
return model
|
||||
|
@ -1,23 +1,18 @@
|
||||
import torch as th
|
||||
from torch import nn
|
||||
from typing import Dict, List, Tuple, Type, Optional, Any, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
from stable_baselines3.common.type_aliases import GymEnv, Schedule
|
||||
from stable_baselines3.common.torch_layers import (
|
||||
BaseFeaturesExtractor,
|
||||
FlattenExtractor,
|
||||
CombinedExtractor
|
||||
)
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3 import DQN
|
||||
|
||||
|
||||
from stable_baselines3.common.policies import BasePolicy
|
||||
#from stable_baselines3.common.policies import register_policy
|
||||
from stable_baselines3.dqn.policies import (
|
||||
QNetwork, DQNPolicy, MultiInputPolicy,
|
||||
CnnPolicy, DQNPolicy, MlpPolicy)
|
||||
import torch
|
||||
import torch as th
|
||||
from stable_baselines3 import DQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3.common.policies import BasePolicy
|
||||
from stable_baselines3.common.torch_layers import (BaseFeaturesExtractor, CombinedExtractor,
|
||||
FlattenExtractor)
|
||||
from stable_baselines3.common.type_aliases import GymEnv, Schedule
|
||||
#from stable_baselines3.common.policies import register_policy
|
||||
from stable_baselines3.dqn.policies import (CnnPolicy, DQNPolicy, MlpPolicy, MultiInputPolicy,
|
||||
QNetwork)
|
||||
from torch import nn
|
||||
|
||||
|
||||
def create_mlp_(
|
||||
@ -30,7 +25,7 @@ def create_mlp_(
|
||||
dropout = 0.2
|
||||
if len(net_arch) > 0:
|
||||
number_of_neural = net_arch[0]
|
||||
|
||||
|
||||
modules = [
|
||||
nn.Linear(input_dim, number_of_neural),
|
||||
nn.BatchNorm1d(number_of_neural),
|
||||
@ -69,19 +64,19 @@ class TDQNetwork(QNetwork):
|
||||
features_dim=features_dim,
|
||||
net_arch=net_arch,
|
||||
activation_fn=activation_fn,
|
||||
normalize_images=normalize_images
|
||||
normalize_images=normalize_images
|
||||
)
|
||||
action_dim = self.action_space.n
|
||||
q_net = create_mlp_(self.features_dim, action_dim, self.net_arch, self.activation_fn)
|
||||
self.q_net = nn.Sequential(*q_net).apply(self.init_weights)
|
||||
|
||||
|
||||
def init_weights(self, m):
|
||||
if type(m) == nn.Linear:
|
||||
torch.nn.init.kaiming_uniform_(m.weight)
|
||||
|
||||
|
||||
|
||||
|
||||
class TDQNPolicy(DQNPolicy):
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
observation_space: gym.spaces.Space,
|
||||
@ -107,7 +102,7 @@ class TDQNPolicy(DQNPolicy):
|
||||
optimizer_class=optimizer_class,
|
||||
optimizer_kwargs=optimizer_kwargs
|
||||
)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def init_weights(module: nn.Module, gain: float = 1) -> None:
|
||||
"""
|
||||
@ -117,13 +112,13 @@ class TDQNPolicy(DQNPolicy):
|
||||
nn.init.kaiming_uniform_(module.weight)
|
||||
if module.bias is not None:
|
||||
module.bias.data.fill_(0.0)
|
||||
|
||||
|
||||
def make_q_net(self) -> TDQNetwork:
|
||||
# Make sure we always have separate networks for features extractors etc
|
||||
net_args = self._update_features_extractor(self.net_args, features_extractor=None)
|
||||
return TDQNetwork(**net_args).to(self.device)
|
||||
|
||||
|
||||
|
||||
class TMultiInputPolicy(TDQNPolicy):
|
||||
def __init__(
|
||||
self,
|
||||
@ -150,8 +145,8 @@ class TMultiInputPolicy(TDQNPolicy):
|
||||
optimizer_class,
|
||||
optimizer_kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
class TDQN(DQN):
|
||||
|
||||
policy_aliases: Dict[str, Type[BasePolicy]] = {
|
||||
@ -216,10 +211,10 @@ class TDQN(DQN):
|
||||
device=device,
|
||||
_init_setup_model=_init_setup_model
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# try:
|
||||
# register_policy("TMultiInputPolicy", TMultiInputPolicy)
|
||||
# except:
|
||||
# print("already registered")
|
||||
# print("already registered")
|
@ -0,0 +1,513 @@
|
||||
import logging
|
||||
import random
|
||||
from collections import deque
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Actions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 2
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 0.5
|
||||
|
||||
def opposite(self):
|
||||
return Positions.Short if self == Positions.Long else Positions.Long
|
||||
|
||||
def mean_over_std(x):
|
||||
std = np.std(x, ddof=1)
|
||||
mean = np.mean(x)
|
||||
return mean / std if std > 0 else 0
|
||||
|
||||
class DEnv(gym.Env):
|
||||
|
||||
metadata = {'render.modes': ['human']}
|
||||
|
||||
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||
assert df.ndim == 2
|
||||
|
||||
self.seed()
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
self.window_size = window_size
|
||||
self.starting_point = starting_point
|
||||
self.rr = reward_kwargs["rr"]
|
||||
self.profit_aim = reward_kwargs["profit_aim"]
|
||||
|
||||
self.fee=0.0015
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
self._start_tick = self.window_size
|
||||
self._end_tick = len(self.prices) - 1
|
||||
self._done = None
|
||||
self._current_tick = None
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history = None
|
||||
self.total_reward = None
|
||||
self._total_profit = None
|
||||
self._first_rendering = None
|
||||
self.history = None
|
||||
self.trade_history = []
|
||||
|
||||
# self.A_t, self.B_t = 0.000639, 0.00001954
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def reset(self):
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point == True:
|
||||
self._position_history = (self._start_tick* [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
|
||||
self._current_tick = self._start_tick
|
||||
self._last_trade_tick = None
|
||||
#self._last_trade_tick = self._current_tick - 1
|
||||
self._position = Positions.Neutral
|
||||
|
||||
self.total_reward = 0.
|
||||
self._total_profit = 1. # unit
|
||||
self._first_rendering = True
|
||||
self.history = {}
|
||||
self.trade_history = []
|
||||
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||
|
||||
self._profits = [(self._start_tick, 1)]
|
||||
self.close_trade_profit = []
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
temp_position = self._position
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type != None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick = self._current_tick,
|
||||
total_reward = self.total_reward,
|
||||
total_profit = self._total_profit,
|
||||
position = self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
# def processState(self, state):
|
||||
# return state.to_numpy()
|
||||
|
||||
# def convert_mlp_Policy(self, obs_):
|
||||
# pass
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price)/last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price)/last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
|
||||
def is_tradesignal(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
def is_hold(self, action):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
return price * (1 + self.fee)
|
||||
|
||||
def add_sell_fee(self, price):
|
||||
return price / (1 + self.fee)
|
||||
|
||||
def _update_history(self, info):
|
||||
if not self.history:
|
||||
self.history = {key: [] for key in info.keys()}
|
||||
|
||||
for key, value in info.items():
|
||||
self.history[key].append(value)
|
||||
|
||||
|
||||
# def render(self, mode='human'):
|
||||
# def _plot_position(position, tick):
|
||||
# color = None
|
||||
# if position == Positions.Short:
|
||||
# color = 'red'
|
||||
# elif position == Positions.Long:
|
||||
# color = 'green'
|
||||
# if color:
|
||||
# plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
# if self._first_rendering:
|
||||
# self._first_rendering = False
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# start_position = self._position_history[self._start_tick]
|
||||
# _plot_position(start_position, self._start_tick)
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# _plot_position(self._position, self._current_tick)
|
||||
# plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
# plt.pause(0.01)
|
||||
|
||||
# def render_all(self):
|
||||
# plt.figure()
|
||||
# window_ticks = np.arange(len(self._position_history))
|
||||
# plt.plot(self.prices['open'], alpha=0.5)
|
||||
# short_ticks = []
|
||||
# long_ticks = []
|
||||
# neutral_ticks = []
|
||||
# for i, tick in enumerate(window_ticks):
|
||||
# if self._position_history[i] == Positions.Short:
|
||||
# short_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Long:
|
||||
# long_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Neutral:
|
||||
# neutral_ticks.append(tick - 1)
|
||||
# plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
# 'o', color='grey', ms=3, alpha=0.1)
|
||||
# plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
# 'o', color='r', ms=3, alpha=0.8)
|
||||
# plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
# 'o', color='g', ms=3, alpha=0.8)
|
||||
# plt.suptitle("Generalising")
|
||||
# fig = plt.gcf()
|
||||
# fig.set_size_inches(15, 10)
|
||||
|
||||
# def close_trade_report(self):
|
||||
# small_trade = 0
|
||||
# positive_big_trade = 0
|
||||
# negative_big_trade = 0
|
||||
# small_profit = 0.003
|
||||
# for i in self.close_trade_profit:
|
||||
# if i < small_profit and i > -small_profit:
|
||||
# small_trade+=1
|
||||
# elif i > small_profit:
|
||||
# positive_big_trade += 1
|
||||
# elif i < -small_profit:
|
||||
# negative_big_trade += 1
|
||||
# print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
|
||||
# def report(self):
|
||||
# # get total trade
|
||||
# long_trade = 0
|
||||
# short_trade = 0
|
||||
# neutral_trade = 0
|
||||
# for trade in self.trade_history:
|
||||
# if trade['type'] == 'long':
|
||||
# long_trade += 1
|
||||
# elif trade['type'] == 'short':
|
||||
# short_trade += 1
|
||||
# else:
|
||||
# neutral_trade += 1
|
||||
# negative_trade = 0
|
||||
# positive_trade = 0
|
||||
# for tr in self.close_trade_profit:
|
||||
# if tr < 0.:
|
||||
# negative_trade += 1
|
||||
# if tr > 0.:
|
||||
# positive_trade += 1
|
||||
# total_trade_lr = negative_trade+positive_trade
|
||||
# total_trade = long_trade + short_trade
|
||||
# sharp_ratio = self.sharpe_ratio()
|
||||
# sharp_log = self.get_sharpe_ratio()
|
||||
# from tabulate import tabulate
|
||||
# headers = ["Performance", ""]
|
||||
# performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
# ["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
# ["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
# ["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
# ["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
# ["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# # ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
# ["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
# ]
|
||||
# tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
# print(tabulation)
|
||||
# result = {
|
||||
# "Start": "{0:.2f}".format(1.),
|
||||
# "End": "{0:.2f}".format(self._total_profit),
|
||||
# "Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
# "Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
# }
|
||||
# return result
|
||||
|
||||
# def close(self):
|
||||
# plt.close()
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
# def save_rendering(self, filepath):
|
||||
# plt.savefig(filepath)
|
||||
|
||||
# def pause_rendering(self):
|
||||
# plt.show()
|
||||
|
||||
def _calculate_reward(self, action):
|
||||
# rw = self.transaction_profit_reward(action)
|
||||
#rw = self.reward_rr_profit_config(action)
|
||||
rw = self.profit_only_when_close_reward(action)
|
||||
#rw = self.profit_only_when_close_reward_aim(action)
|
||||
return rw
|
||||
|
||||
def _update_profit(self, action):
|
||||
if self._is_trade(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
if self._position == Positions.Short:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
def most_recent_return(self, action):
|
||||
"""
|
||||
We support Long, Neutral and Short positions.
|
||||
Return is generated from rising prices in Long
|
||||
and falling prices in Short positions.
|
||||
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
||||
"""
|
||||
# Long positions
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Short
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_buy_fee(previous_price)
|
||||
|
||||
return np.log(current_price) - np.log(previous_price)
|
||||
|
||||
# Short positions
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Long
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_sell_fee(previous_price)
|
||||
|
||||
return np.log(previous_price) - np.log(current_price)
|
||||
|
||||
return 0
|
||||
|
||||
def get_portfolio_log_returns(self):
|
||||
return self.portfolio_log_returns[1:self._current_tick + 1]
|
||||
|
||||
# def get_trading_log_return(self):
|
||||
# return self.portfolio_log_returns[self._start_tick:]
|
||||
|
||||
def update_portfolio_log_returns(self, action):
|
||||
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
||||
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def prev_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick-1].open
|
||||
|
||||
def sharpe_ratio(self):
|
||||
if len(self.close_trade_profit) == 0:
|
||||
return 0.
|
||||
returns = np.array(self.close_trade_profit)
|
||||
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
||||
return reward
|
||||
|
||||
# def get_bnh_log_return(self):
|
||||
# return np.diff(np.log(self.prices['open'][self._start_tick:]))
|
||||
|
||||
def transaction_profit_reward(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt = self.prev_price()
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if self._position == Positions.Long:
|
||||
a_t = 1
|
||||
elif self._position == Positions.Short:
|
||||
a_t = -1
|
||||
else:
|
||||
a_t = 0
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
# close short
|
||||
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
pt_1 = self.add_buy_fee(self.current_price())
|
||||
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
else:
|
||||
rw = a_t*(pt_1 - pt)/pt
|
||||
|
||||
return np.clip(rw, 0, 1)
|
||||
|
||||
def profit_only_when_close_reward_aim(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
||||
|
||||
def profit_only_when_close_reward(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
@ -2,6 +2,7 @@ import logging
|
||||
import random
|
||||
from collections import deque
|
||||
from enum import Enum
|
||||
#from sklearn.decomposition import PCA, KernelPCA
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import gym
|
||||
@ -10,7 +11,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from sklearn.decomposition import PCA, KernelPCA
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -29,12 +29,8 @@ logger = logging.getLogger(__name__)
|
||||
# Label, LabelSet
|
||||
# )
|
||||
|
||||
class Actions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 2
|
||||
|
||||
class Actions_v2(Enum):
|
||||
class Actions(Enum):
|
||||
Neutral = 0
|
||||
Long_buy = 1
|
||||
Long_sell = 2
|
||||
@ -75,7 +71,7 @@ class DEnv(gym.Env):
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions_v2))
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
@ -152,7 +148,7 @@ class DEnv(gym.Env):
|
||||
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal_v2(action): # exclude 3 case not trade
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
@ -167,19 +163,19 @@ class DEnv(gym.Env):
|
||||
|
||||
|
||||
temp_position = self._position
|
||||
if action == Actions_v2.Neutral.value:
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions_v2.Long_buy.value:
|
||||
elif action == Actions.Long_buy.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions_v2.Short_buy.value:
|
||||
elif action == Actions.Short_buy.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
elif action == Actions_v2.Long_sell.value:
|
||||
elif action == Actions.Long_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions_v2.Short_sell.value:
|
||||
elif action == Actions.Short_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
else:
|
||||
@ -208,11 +204,11 @@ class DEnv(gym.Env):
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
|
||||
def processState(self, state):
|
||||
return state.to_numpy()
|
||||
# def processState(self, state):
|
||||
# return state.to_numpy()
|
||||
|
||||
def convert_mlp_Policy(self, obs_):
|
||||
pass
|
||||
# def convert_mlp_Policy(self, obs_):
|
||||
# pass
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
@ -245,46 +241,26 @@ class DEnv(gym.Env):
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def is_tradesignal_v2(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions_v2.Neutral.value and self._position == Positions.Neutral) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_sell.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Short_sell.value and self._position == Positions.Long) or
|
||||
|
||||
(action == Actions_v2.Long_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Long_sell.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Long_sell.value and self._position == Positions.Short))
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_sell.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Short_sell.value and self._position == Positions.Long) or
|
||||
|
||||
(action == Actions.Long_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Long_sell.value and self._position == Positions.Long) or
|
||||
(action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Long_sell.value and self._position == Positions.Short))
|
||||
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short.value and self._position == Positions.Long) or
|
||||
return ((action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short)
|
||||
)
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short) or
|
||||
|
||||
def _is_trade_v2(self, action: Actions_v2):
|
||||
return ((action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.value and self._position == Positions.Short) or
|
||||
|
||||
(action == Actions_v2.Neutral.Short_sell and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.Long_sell and self._position == Positions.Short)
|
||||
(action == Actions.Neutral.Short_sell and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.Long_sell and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
|
||||
@ -292,9 +268,6 @@ class DEnv(gym.Env):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def is_hold_v2(self, action):
|
||||
return ((action == Actions_v2.Short_buy.value and self._position == Positions.Short)
|
||||
or (action == Actions_v2.Long_buy.value and self._position == Positions.Long))
|
||||
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
@ -311,156 +284,158 @@ class DEnv(gym.Env):
|
||||
self.history[key].append(value)
|
||||
|
||||
|
||||
def render(self, mode='human'):
|
||||
# def render(self, mode='human'):
|
||||
|
||||
def _plot_position(position, tick):
|
||||
color = None
|
||||
if position == Positions.Short:
|
||||
color = 'red'
|
||||
elif position == Positions.Long:
|
||||
color = 'green'
|
||||
if color:
|
||||
plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
# def _plot_position(position, tick):
|
||||
# color = None
|
||||
# if position == Positions.Short:
|
||||
# color = 'red'
|
||||
# elif position == Positions.Long:
|
||||
# color = 'green'
|
||||
# if color:
|
||||
# plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
|
||||
if self._first_rendering:
|
||||
self._first_rendering = False
|
||||
plt.cla()
|
||||
plt.plot(self.prices)
|
||||
start_position = self._position_history[self._start_tick]
|
||||
_plot_position(start_position, self._start_tick)
|
||||
# if self._first_rendering:
|
||||
# self._first_rendering = False
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# start_position = self._position_history[self._start_tick]
|
||||
# _plot_position(start_position, self._start_tick)
|
||||
|
||||
plt.cla()
|
||||
plt.plot(self.prices)
|
||||
_plot_position(self._position, self._current_tick)
|
||||
# plt.cla()
|
||||
# plt.plot(self.prices)
|
||||
# _plot_position(self._position, self._current_tick)
|
||||
|
||||
plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
plt.pause(0.01)
|
||||
# plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
# plt.pause(0.01)
|
||||
|
||||
|
||||
def render_all(self):
|
||||
plt.figure()
|
||||
window_ticks = np.arange(len(self._position_history))
|
||||
plt.plot(self.prices['open'], alpha=0.5)
|
||||
# def render_all(self):
|
||||
# plt.figure()
|
||||
# window_ticks = np.arange(len(self._position_history))
|
||||
# plt.plot(self.prices['open'], alpha=0.5)
|
||||
|
||||
short_ticks = []
|
||||
long_ticks = []
|
||||
neutral_ticks = []
|
||||
for i, tick in enumerate(window_ticks):
|
||||
if self._position_history[i] == Positions.Short:
|
||||
short_ticks.append(tick - 1)
|
||||
elif self._position_history[i] == Positions.Long:
|
||||
long_ticks.append(tick - 1)
|
||||
elif self._position_history[i] == Positions.Neutral:
|
||||
neutral_ticks.append(tick - 1)
|
||||
# short_ticks = []
|
||||
# long_ticks = []
|
||||
# neutral_ticks = []
|
||||
# for i, tick in enumerate(window_ticks):
|
||||
# if self._position_history[i] == Positions.Short:
|
||||
# short_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Long:
|
||||
# long_ticks.append(tick - 1)
|
||||
# elif self._position_history[i] == Positions.Neutral:
|
||||
# neutral_ticks.append(tick - 1)
|
||||
|
||||
plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
'o', color='grey', ms=3, alpha=0.1)
|
||||
plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
'o', color='r', ms=3, alpha=0.8)
|
||||
plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
'o', color='g', ms=3, alpha=0.8)
|
||||
# plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
# 'o', color='grey', ms=3, alpha=0.1)
|
||||
# plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
# 'o', color='r', ms=3, alpha=0.8)
|
||||
# plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
# 'o', color='g', ms=3, alpha=0.8)
|
||||
|
||||
plt.suptitle("Generalising")
|
||||
fig = plt.gcf()
|
||||
fig.set_size_inches(15, 10)
|
||||
# plt.suptitle("Generalising")
|
||||
# fig = plt.gcf()
|
||||
# fig.set_size_inches(15, 10)
|
||||
|
||||
|
||||
|
||||
|
||||
def close_trade_report(self):
|
||||
small_trade = 0
|
||||
positive_big_trade = 0
|
||||
negative_big_trade = 0
|
||||
small_profit = 0.003
|
||||
for i in self.close_trade_profit:
|
||||
if i < small_profit and i > -small_profit:
|
||||
small_trade+=1
|
||||
elif i > small_profit:
|
||||
positive_big_trade += 1
|
||||
elif i < -small_profit:
|
||||
negative_big_trade += 1
|
||||
print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
# def close_trade_report(self):
|
||||
# small_trade = 0
|
||||
# positive_big_trade = 0
|
||||
# negative_big_trade = 0
|
||||
# small_profit = 0.003
|
||||
# for i in self.close_trade_profit:
|
||||
# if i < small_profit and i > -small_profit:
|
||||
# small_trade+=1
|
||||
# elif i > small_profit:
|
||||
# positive_big_trade += 1
|
||||
# elif i < -small_profit:
|
||||
# negative_big_trade += 1
|
||||
# print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
|
||||
|
||||
def report(self):
|
||||
# def report(self):
|
||||
|
||||
# get total trade
|
||||
long_trade = 0
|
||||
short_trade = 0
|
||||
neutral_trade = 0
|
||||
for trade in self.trade_history:
|
||||
if trade['type'] == 'long':
|
||||
long_trade += 1
|
||||
# # get total trade
|
||||
# long_trade = 0
|
||||
# short_trade = 0
|
||||
# neutral_trade = 0
|
||||
# for trade in self.trade_history:
|
||||
# if trade['type'] == 'long':
|
||||
# long_trade += 1
|
||||
|
||||
elif trade['type'] == 'short':
|
||||
short_trade += 1
|
||||
else:
|
||||
neutral_trade += 1
|
||||
# elif trade['type'] == 'short':
|
||||
# short_trade += 1
|
||||
# else:
|
||||
# neutral_trade += 1
|
||||
|
||||
negative_trade = 0
|
||||
positive_trade = 0
|
||||
for tr in self.close_trade_profit:
|
||||
if tr < 0.:
|
||||
negative_trade += 1
|
||||
# negative_trade = 0
|
||||
# positive_trade = 0
|
||||
# for tr in self.close_trade_profit:
|
||||
# if tr < 0.:
|
||||
# negative_trade += 1
|
||||
|
||||
if tr > 0.:
|
||||
positive_trade += 1
|
||||
# if tr > 0.:
|
||||
# positive_trade += 1
|
||||
|
||||
total_trade_lr = negative_trade+positive_trade
|
||||
# total_trade_lr = negative_trade+positive_trade
|
||||
|
||||
|
||||
total_trade = long_trade + short_trade
|
||||
sharp_ratio = self.sharpe_ratio()
|
||||
sharp_log = self.get_sharpe_ratio()
|
||||
# total_trade = long_trade + short_trade
|
||||
# sharp_ratio = self.sharpe_ratio()
|
||||
# sharp_log = self.get_sharpe_ratio()
|
||||
|
||||
from tabulate import tabulate
|
||||
# from tabulate import tabulate
|
||||
|
||||
headers = ["Performance", ""]
|
||||
performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
]
|
||||
tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
print(tabulation)
|
||||
# headers = ["Performance", ""]
|
||||
# performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
# ["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
# ["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
# ["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
# ["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
# ["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# # ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
# ["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
# ]
|
||||
# tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
# print(tabulation)
|
||||
|
||||
result = {
|
||||
"Start": "{0:.2f}".format(1.),
|
||||
"End": "{0:.2f}".format(self._total_profit),
|
||||
"Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
"Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
}
|
||||
return result
|
||||
# result = {
|
||||
# "Start": "{0:.2f}".format(1.),
|
||||
# "End": "{0:.2f}".format(self._total_profit),
|
||||
# "Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
# "Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
# }
|
||||
# return result
|
||||
|
||||
def close(self):
|
||||
plt.close()
|
||||
# def close(self):
|
||||
# plt.close()
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
|
||||
def save_rendering(self, filepath):
|
||||
plt.savefig(filepath)
|
||||
# def save_rendering(self, filepath):
|
||||
# plt.savefig(filepath)
|
||||
|
||||
|
||||
def pause_rendering(self):
|
||||
plt.show()
|
||||
# def pause_rendering(self):
|
||||
# plt.show()
|
||||
|
||||
|
||||
def _calculate_reward(self, action):
|
||||
# rw = self.transaction_profit_reward(action)
|
||||
#rw = self.reward_rr_profit_config(action)
|
||||
rw = self.reward_rr_profit_config_v2(action)
|
||||
#rw = self.reward_rr_profit_config(action) # main
|
||||
#rw = self.profit_only_when_close_reward(action)
|
||||
rw = self.profit_only_when_close_reward_aim(action)
|
||||
return rw
|
||||
|
||||
|
||||
def _update_profit(self, action):
|
||||
#if self._is_trade(action) or self._done:
|
||||
if self._is_trade_v2(action) or self._done:
|
||||
if self._is_trade(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
@ -485,7 +460,7 @@ class DEnv(gym.Env):
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
if action == Actions_v2.Short_buy.value or action == Actions_v2.Neutral.value:
|
||||
if action == Actions.Short_buy.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
@ -500,7 +475,7 @@ class DEnv(gym.Env):
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
if action == Actions_v2.Long_buy.value or action == Actions_v2.Neutral.value:
|
||||
if action == Actions.Long_buy.value or action == Actions.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
@ -574,8 +549,57 @@ class DEnv(gym.Env):
|
||||
return np.clip(rw, 0, 1)
|
||||
|
||||
|
||||
def profit_only_when_close_reward(self, action):
|
||||
|
||||
def reward_rr_profit_config_v2(self, action):
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return 0.
|
||||
|
||||
def profit_only_when_close_reward_aim(self, action):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
||||
|
||||
def reward_rr_profit_config(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt_1 = self.current_price()
|
||||
@ -587,61 +611,61 @@ class DEnv(gym.Env):
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions_v2.Short_buy.value:
|
||||
if action == Actions.Short_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 2
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = 10 * 1 * 1
|
||||
rw = 15
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
rw = -10
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
rw = -15
|
||||
|
||||
if action == Actions_v2.Long_sell.value:
|
||||
if action == Actions.Long_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 5
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = 10 * 1 * 3
|
||||
rw = 20
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
rw = -15
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
rw = -25
|
||||
|
||||
if action == Actions_v2.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0:
|
||||
rw = 2
|
||||
if action == Actions.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0.005:
|
||||
rw = 0
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 2 * -1
|
||||
rw = 0
|
||||
|
||||
# short
|
||||
if self._position == Positions.Short:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions_v2.Long_buy.value:
|
||||
if action == Actions.Long_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 2
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 1 * 1
|
||||
rw = 15
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
rw = -10
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
rw =- -25
|
||||
|
||||
if action == Actions_v2.Short_sell.value:
|
||||
if action == Actions.Short_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 5
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 1 * 3
|
||||
rw = 20
|
||||
elif self.close_trade_profit[-1] > 0.01 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = -1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
rw = -15
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
rw = -25
|
||||
|
||||
if action == Actions_v2.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0:
|
||||
rw = 2
|
||||
if action == Actions.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0.005:
|
||||
rw = 0
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 2 * -1
|
||||
rw = 0
|
||||
|
||||
return np.clip(rw, 0, 1)
|
@ -1,645 +0,0 @@
|
||||
import gym
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from enum import Enum
|
||||
from sklearn.decomposition import PCA, KernelPCA
|
||||
import random
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from collections import deque
|
||||
import matplotlib.pylab as plt
|
||||
from typing import Dict, List, Tuple, Type, Optional, Any, Union, Callable
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# from bokeh.io import output_notebook
|
||||
# from bokeh.plotting import figure, show
|
||||
# from bokeh.models import (
|
||||
# CustomJS,
|
||||
# ColumnDataSource,
|
||||
# NumeralTickFormatter,
|
||||
# Span,
|
||||
# HoverTool,
|
||||
# Range1d,
|
||||
# DatetimeTickFormatter,
|
||||
# Scatter,
|
||||
# Label, LabelSet
|
||||
# )
|
||||
|
||||
class Actions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 2
|
||||
|
||||
class Actions_v2(Enum):
|
||||
Neutral = 0
|
||||
Long_buy = 1
|
||||
Long_sell = 2
|
||||
Short_buy = 3
|
||||
Short_sell = 4
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
Neutral = 0.5
|
||||
|
||||
def opposite(self):
|
||||
return Positions.Short if self == Positions.Long else Positions.Long
|
||||
|
||||
def mean_over_std(x):
|
||||
std = np.std(x, ddof=1)
|
||||
mean = np.mean(x)
|
||||
return mean / std if std > 0 else 0
|
||||
|
||||
class DEnv(gym.Env):
|
||||
|
||||
metadata = {'render.modes': ['human']}
|
||||
|
||||
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||
assert df.ndim == 2
|
||||
|
||||
self.seed()
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
self.window_size = window_size
|
||||
self.starting_point = starting_point
|
||||
self.rr = reward_kwargs["rr"]
|
||||
self.profit_aim = reward_kwargs["profit_aim"]
|
||||
|
||||
self.fee=0.0015
|
||||
|
||||
# # spaces
|
||||
self.shape = (window_size, self.signal_features.shape[1])
|
||||
self.action_space = spaces.Discrete(len(Actions_v2))
|
||||
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||
|
||||
# episode
|
||||
self._start_tick = self.window_size
|
||||
self._end_tick = len(self.prices) - 1
|
||||
self._done = None
|
||||
self._current_tick = None
|
||||
self._last_trade_tick = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history = None
|
||||
self.total_reward = None
|
||||
self._total_profit = None
|
||||
self._first_rendering = None
|
||||
self.history = None
|
||||
self.trade_history = []
|
||||
|
||||
# self.A_t, self.B_t = 0.000639, 0.00001954
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
|
||||
def reset(self):
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point == True:
|
||||
self._position_history = (self._start_tick* [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
|
||||
self._current_tick = self._start_tick
|
||||
self._last_trade_tick = None
|
||||
#self._last_trade_tick = self._current_tick - 1
|
||||
self._position = Positions.Neutral
|
||||
|
||||
self.total_reward = 0.
|
||||
self._total_profit = 1. # unit
|
||||
self._first_rendering = True
|
||||
self.history = {}
|
||||
self.trade_history = []
|
||||
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||
|
||||
|
||||
self._profits = [(self._start_tick, 1)]
|
||||
self.close_trade_profit = []
|
||||
self.r_t_change = 0.
|
||||
|
||||
self.returns_report = []
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal_v2(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
"""
|
||||
|
||||
|
||||
temp_position = self._position
|
||||
if action == Actions_v2.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions_v2.Long_buy.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions_v2.Short_buy.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
elif action == Actions_v2.Long_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions_v2.Short_sell.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
|
||||
if trade_type != None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick = self._current_tick,
|
||||
total_reward = self.total_reward,
|
||||
total_profit = self._total_profit,
|
||||
position = self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
|
||||
def processState(self, state):
|
||||
return state.to_numpy()
|
||||
|
||||
def convert_mlp_Policy(self, obs_):
|
||||
pass
|
||||
|
||||
def _get_observation(self):
|
||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
||||
if self._last_trade_tick == None:
|
||||
return 0.
|
||||
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price)/last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price)/last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
|
||||
|
||||
def is_tradesignal(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def is_tradesignal_v2(self, action):
|
||||
# trade signal
|
||||
"""
|
||||
not trade signal is :
|
||||
Action: Neutral, position: Neutral -> Nothing
|
||||
Action: Long, position: Long -> Hold Long
|
||||
Action: Short, position: Short -> Hold Short
|
||||
"""
|
||||
return not ((action == Actions_v2.Neutral.value and self._position == Positions.Neutral) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_sell.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Short_sell.value and self._position == Positions.Long) or
|
||||
|
||||
(action == Actions_v2.Long_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Long_sell.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Long_sell.value and self._position == Positions.Short))
|
||||
|
||||
|
||||
|
||||
def _is_trade(self, action: Actions):
|
||||
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
||||
(action == Actions.Short.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions.Neutral.value and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
def _is_trade_v2(self, action: Actions_v2):
|
||||
return ((action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
||||
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.value and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.value and self._position == Positions.Short) or
|
||||
|
||||
(action == Actions_v2.Neutral.Short_sell and self._position == Positions.Long) or
|
||||
(action == Actions_v2.Neutral.Long_sell and self._position == Positions.Short)
|
||||
)
|
||||
|
||||
|
||||
def is_hold(self, action):
|
||||
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||
|
||||
def is_hold_v2(self, action):
|
||||
return ((action == Actions_v2.Short_buy.value and self._position == Positions.Short)
|
||||
or (action == Actions_v2.Long_buy.value and self._position == Positions.Long))
|
||||
|
||||
|
||||
def add_buy_fee(self, price):
|
||||
return price * (1 + self.fee)
|
||||
|
||||
def add_sell_fee(self, price):
|
||||
return price / (1 + self.fee)
|
||||
|
||||
def _update_history(self, info):
|
||||
if not self.history:
|
||||
self.history = {key: [] for key in info.keys()}
|
||||
|
||||
for key, value in info.items():
|
||||
self.history[key].append(value)
|
||||
|
||||
|
||||
def render(self, mode='human'):
|
||||
|
||||
def _plot_position(position, tick):
|
||||
color = None
|
||||
if position == Positions.Short:
|
||||
color = 'red'
|
||||
elif position == Positions.Long:
|
||||
color = 'green'
|
||||
if color:
|
||||
plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
||||
|
||||
if self._first_rendering:
|
||||
self._first_rendering = False
|
||||
plt.cla()
|
||||
plt.plot(self.prices)
|
||||
start_position = self._position_history[self._start_tick]
|
||||
_plot_position(start_position, self._start_tick)
|
||||
|
||||
plt.cla()
|
||||
plt.plot(self.prices)
|
||||
_plot_position(self._position, self._current_tick)
|
||||
|
||||
plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
||||
plt.pause(0.01)
|
||||
|
||||
|
||||
def render_all(self):
|
||||
plt.figure()
|
||||
window_ticks = np.arange(len(self._position_history))
|
||||
plt.plot(self.prices['open'], alpha=0.5)
|
||||
|
||||
short_ticks = []
|
||||
long_ticks = []
|
||||
neutral_ticks = []
|
||||
for i, tick in enumerate(window_ticks):
|
||||
if self._position_history[i] == Positions.Short:
|
||||
short_ticks.append(tick - 1)
|
||||
elif self._position_history[i] == Positions.Long:
|
||||
long_ticks.append(tick - 1)
|
||||
elif self._position_history[i] == Positions.Neutral:
|
||||
neutral_ticks.append(tick - 1)
|
||||
|
||||
plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
||||
'o', color='grey', ms=3, alpha=0.1)
|
||||
plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
||||
'o', color='r', ms=3, alpha=0.8)
|
||||
plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
||||
'o', color='g', ms=3, alpha=0.8)
|
||||
|
||||
plt.suptitle("Generalising")
|
||||
fig = plt.gcf()
|
||||
fig.set_size_inches(15, 10)
|
||||
|
||||
|
||||
|
||||
|
||||
def close_trade_report(self):
|
||||
small_trade = 0
|
||||
positive_big_trade = 0
|
||||
negative_big_trade = 0
|
||||
small_profit = 0.003
|
||||
for i in self.close_trade_profit:
|
||||
if i < small_profit and i > -small_profit:
|
||||
small_trade+=1
|
||||
elif i > small_profit:
|
||||
positive_big_trade += 1
|
||||
elif i < -small_profit:
|
||||
negative_big_trade += 1
|
||||
print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
||||
|
||||
|
||||
def report(self):
|
||||
|
||||
# get total trade
|
||||
long_trade = 0
|
||||
short_trade = 0
|
||||
neutral_trade = 0
|
||||
for trade in self.trade_history:
|
||||
if trade['type'] == 'long':
|
||||
long_trade += 1
|
||||
|
||||
elif trade['type'] == 'short':
|
||||
short_trade += 1
|
||||
else:
|
||||
neutral_trade += 1
|
||||
|
||||
negative_trade = 0
|
||||
positive_trade = 0
|
||||
for tr in self.close_trade_profit:
|
||||
if tr < 0.:
|
||||
negative_trade += 1
|
||||
|
||||
if tr > 0.:
|
||||
positive_trade += 1
|
||||
|
||||
total_trade_lr = negative_trade+positive_trade
|
||||
|
||||
|
||||
total_trade = long_trade + short_trade
|
||||
sharp_ratio = self.sharpe_ratio()
|
||||
sharp_log = self.get_sharpe_ratio()
|
||||
|
||||
from tabulate import tabulate
|
||||
|
||||
headers = ["Performance", ""]
|
||||
performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
||||
["Total reward", "{0:.3f}".format(self.total_reward)],
|
||||
["Start profit(unit)", "{0:.2f}".format(1.)],
|
||||
["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
||||
["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
||||
["Sharp log", "{0:.3f}".format(sharp_log)],
|
||||
# ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
||||
["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
||||
]
|
||||
tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
||||
print(tabulation)
|
||||
|
||||
result = {
|
||||
"Start": "{0:.2f}".format(1.),
|
||||
"End": "{0:.2f}".format(self._total_profit),
|
||||
"Sharp": "{0:.3f}".format(sharp_ratio),
|
||||
"Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
||||
}
|
||||
return result
|
||||
|
||||
def close(self):
|
||||
plt.close()
|
||||
|
||||
def get_sharpe_ratio(self):
|
||||
return mean_over_std(self.get_portfolio_log_returns())
|
||||
|
||||
|
||||
def save_rendering(self, filepath):
|
||||
plt.savefig(filepath)
|
||||
|
||||
|
||||
def pause_rendering(self):
|
||||
plt.show()
|
||||
|
||||
|
||||
def _calculate_reward(self, action):
|
||||
# rw = self.transaction_profit_reward(action)
|
||||
#rw = self.reward_rr_profit_config(action)
|
||||
rw = self.reward_rr_profit_config_v2(action)
|
||||
return rw
|
||||
|
||||
|
||||
def _update_profit(self, action):
|
||||
#if self._is_trade(action) or self._done:
|
||||
if self._is_trade_v2(action) or self._done:
|
||||
pnl = self.get_unrealized_profit()
|
||||
|
||||
if self._position == Positions.Long:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
if self._position == Positions.Short:
|
||||
self._total_profit = self._total_profit + self._total_profit*pnl
|
||||
self._profits.append((self._current_tick, self._total_profit))
|
||||
self.close_trade_profit.append(pnl)
|
||||
|
||||
|
||||
def most_recent_return(self, action):
|
||||
"""
|
||||
We support Long, Neutral and Short positions.
|
||||
Return is generated from rising prices in Long
|
||||
and falling prices in Short positions.
|
||||
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
||||
"""
|
||||
# Long positions
|
||||
if self._position == Positions.Long:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Short.value or action == Actions.Neutral.value:
|
||||
if action == Actions_v2.Short_buy.value or action == Actions_v2.Neutral.value:
|
||||
current_price = self.add_sell_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Short
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_buy_fee(previous_price)
|
||||
|
||||
return np.log(current_price) - np.log(previous_price)
|
||||
|
||||
# Short positions
|
||||
if self._position == Positions.Short:
|
||||
current_price = self.prices.iloc[self._current_tick].open
|
||||
#if action == Actions.Long.value or action == Actions.Neutral.value:
|
||||
if action == Actions_v2.Long_buy.value or action == Actions_v2.Neutral.value:
|
||||
current_price = self.add_buy_fee(current_price)
|
||||
|
||||
previous_price = self.prices.iloc[self._current_tick - 1].open
|
||||
if (self._position_history[self._current_tick - 1] == Positions.Long
|
||||
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
||||
previous_price = self.add_sell_fee(previous_price)
|
||||
|
||||
return np.log(previous_price) - np.log(current_price)
|
||||
|
||||
return 0
|
||||
|
||||
def get_portfolio_log_returns(self):
|
||||
return self.portfolio_log_returns[1:self._current_tick + 1]
|
||||
|
||||
|
||||
def get_trading_log_return(self):
|
||||
return self.portfolio_log_returns[self._start_tick:]
|
||||
|
||||
def update_portfolio_log_returns(self, action):
|
||||
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
||||
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def prev_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick-1].open
|
||||
|
||||
|
||||
|
||||
def sharpe_ratio(self):
|
||||
if len(self.close_trade_profit) == 0:
|
||||
return 0.
|
||||
returns = np.array(self.close_trade_profit)
|
||||
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
||||
return reward
|
||||
|
||||
def get_bnh_log_return(self):
|
||||
return np.diff(np.log(self.prices['open'][self._start_tick:]))
|
||||
|
||||
|
||||
def transaction_profit_reward(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt = self.prev_price()
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if self._position == Positions.Long:
|
||||
a_t = 1
|
||||
elif self._position == Positions.Short:
|
||||
a_t = -1
|
||||
else:
|
||||
a_t = 0
|
||||
|
||||
# close long
|
||||
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
# close short
|
||||
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
||||
pt_1 = self.add_buy_fee(self.current_price())
|
||||
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
rw = a_t*(pt_1 - po)/po
|
||||
#rw = rw*2
|
||||
else:
|
||||
rw = a_t*(pt_1 - pt)/pt
|
||||
|
||||
return np.clip(rw, 0, 1)
|
||||
|
||||
|
||||
|
||||
def reward_rr_profit_config_v2(self, action):
|
||||
rw = 0.
|
||||
|
||||
pt_1 = self.current_price()
|
||||
|
||||
|
||||
if len(self.close_trade_profit) > 0:
|
||||
# long
|
||||
if self._position == Positions.Long:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions_v2.Short_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 2
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = 10 * 1 * 1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
|
||||
if action == Actions_v2.Long_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 5
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
||||
rw = 10 * 1 * 3
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
|
||||
if action == Actions_v2.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0:
|
||||
rw = 2
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 2 * -1
|
||||
|
||||
# short
|
||||
if self._position == Positions.Short:
|
||||
pt_1 = self.add_sell_fee(self.current_price())
|
||||
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
|
||||
if action == Actions_v2.Long_buy.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 2
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 1 * 1
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
|
||||
if action == Actions_v2.Short_sell.value:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
rw = 10 * 5
|
||||
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 1 * 3
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 10 * -1
|
||||
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
||||
rw = 10 * 3 * -1
|
||||
|
||||
if action == Actions_v2.Neutral.value:
|
||||
if self.close_trade_profit[-1] > 0:
|
||||
rw = 2
|
||||
elif self.close_trade_profit[-1] < 0:
|
||||
rw = 2 * -1
|
||||
|
||||
return np.clip(rw, 0, 1)
|
@ -4,29 +4,23 @@ from typing import Any, Dict, Tuple
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
import torch as th
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent import RLPrediction_agent
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_v2 import TDQN
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_env import GymAnytrading
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env import DEnv
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_TDQN import TDQN
|
||||
from freqtrade.freqai.prediction_models.RL.RLPrediction_env_TDQN_5ac import DEnv
|
||||
#from freqtrade.freqai.prediction_models.RL.RLPrediction_env_TDQN_3ac import DEnv
|
||||
from freqtrade.persistence import Trade
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
|
||||
import torch as th
|
||||
from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback, EvalCallback, StopTrainingOnRewardThreshold
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from stable_baselines3 import PPO
|
||||
|
||||
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReinforcementLearningModel(IFreqaiModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
@ -87,30 +81,22 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
# # train_labels = data_dictionary["train_labels"]
|
||||
# test_df = data_dictionary["test_features"]
|
||||
# # test_labels = data_dictionary["test_labels"]
|
||||
|
||||
# # sep = '/'
|
||||
# # coin = pair.split(sep, 1)[0]
|
||||
# # price = train_df[f"%-{coin}raw_price_{self.config['timeframe']}"]
|
||||
# # price.reset_index(inplace=True, drop=True)
|
||||
# # price = price.to_frame()
|
||||
# price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
# price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
# price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
# #train_env = GymAnytrading(train_df, price, self.CONV_WIDTH)
|
||||
|
||||
# agent_params = self.freqai_info['model_training_parameters']
|
||||
# reward_params = self.freqai_info['model_reward_parameters']
|
||||
|
||||
|
||||
# train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
# #eval_env = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
|
||||
# #env_instance = SubprocVecEnv([DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)])
|
||||
# #train_env.reset()
|
||||
# #eval_env.reset()
|
||||
|
||||
# # model
|
||||
|
||||
# #policy_kwargs = dict(net_arch=[512, 512, 512])
|
||||
# policy_kwargs = dict(activation_fn=th.nn.Tanh,
|
||||
# net_arch=[256, 256, 256])
|
||||
@ -124,27 +110,22 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
# tb_log_name=model_name,
|
||||
# model_kwargs=agent_params,
|
||||
# train_df=train_df,
|
||||
# test_df=test_df,
|
||||
# price=price,
|
||||
# price_test=price_test,
|
||||
# test_df=test_df,
|
||||
# price=price,
|
||||
# price_test=price_test,
|
||||
# window_size=self.CONV_WIDTH)
|
||||
|
||||
|
||||
# # best_model = eval_agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params,
|
||||
# # eval=eval_env)
|
||||
|
||||
|
||||
# # TDQN
|
||||
# # model_name = 'TDQN'
|
||||
# # model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log='./tensorboard_log/',
|
||||
# # learning_rate=agent_params["learning_rate"], gamma=0.9,
|
||||
# # target_update_interval=5000, buffer_size=50000,
|
||||
# # target_update_interval=5000, buffer_size=50000,
|
||||
# # exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
# # replay_buffer_class=ReplayBuffer
|
||||
# # )
|
||||
|
||||
# # trained_model = agent.train_model(model=model,
|
||||
# # tb_log_name=model_name,
|
||||
# # model_kwargs=agent_params)
|
||||
@ -157,11 +138,13 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
||||
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
||||
|
||||
# price data for model training and evaluation
|
||||
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(test_df.index))
|
||||
|
||||
# environments
|
||||
train_env = DEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
eval = DEnv(df=test_df, prices=price_test, window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
||||
@ -173,19 +156,17 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
|
||||
path = self.dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/{agent_type}/logs/", eval_freq=10000,
|
||||
log_path=f"{path}/{agent_type}/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.Tanh,
|
||||
net_arch=[512, 512, 512])
|
||||
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
if agent_type == 'tdqn':
|
||||
model = TDQN('TMultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9,
|
||||
target_update_interval=5000, buffer_size=50000,
|
||||
target_update_interval=5000, buffer_size=50000,
|
||||
exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||
replay_buffer_class=ReplayBuffer
|
||||
)
|
||||
@ -193,9 +174,9 @@ class ReinforcementLearningModel(IFreqaiModel):
|
||||
model = PPO('MultiInputPolicy', train_env, policy_kwargs=policy_kwargs, tensorboard_log=f"{path}/{agent_type}/tensorboard/",
|
||||
learning_rate=0.00025, gamma=0.9
|
||||
)
|
||||
|
||||
|
||||
model.learn(
|
||||
total_timesteps=agent_params["total_timesteps"],
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user