Compare commits

..

792 Commits

Author SHA1 Message Date
Matthias
cd6602882c Merge pull request #8076 from freqtrade/new_release
New release 2023.1
2023-01-30 18:11:08 +01:00
Matthias
786f746958 Version bump to 2023.1 2023-01-30 07:16:16 +01:00
Matthias
c4482d56ab Merge branch 'stable' into new_release 2023-01-30 07:10:32 +01:00
Matthias
ede79590da Update ccxt compat tests with kucoin order 2023-01-29 19:56:13 +01:00
Matthias
fee7b792e1 Bump ccxt 2023-01-29 19:33:13 +01:00
Matthias
507d3d6d9b Add ci for binance.us 2023-01-29 15:14:55 +01:00
Matthias
25dfbb5a08 Compare stake amout >= in backtesting
closes #8067
2023-01-29 12:47:16 +01:00
Matthias
9286cbed86 add partial Docstring to backtesting enter_trade 2023-01-29 11:02:31 +01:00
Matthias
c1e528e116 Version bump ccxt
closes #8010
2023-01-28 19:54:28 +01:00
Matthias
adf29fe1d7 Merge pull request #8065 from Shadyzpop/patch-1
Docs typo fix
2023-01-28 18:11:36 +01:00
Shadyzpop
f7f936c14f Typo fix 2023-01-28 03:43:18 +03:00
Matthias
020dc3c6e1 filled-date shouldn't update again 2023-01-27 20:21:29 +01:00
Matthias
aa15837589 Add test for filled_date not updating if it's already set 2023-01-27 20:20:15 +01:00
Matthias
8647c0192c Fix typo 2023-01-26 07:08:38 +01:00
Matthias
2333dbae40 Update reinforcement learning docs to use correct naming 2023-01-26 07:07:49 +01:00
Matthias
bd913bc24d Disable provenance in buildx config for pi image 2023-01-25 14:34:52 +01:00
Matthias
9652c00acb Don't amend docker manifest 2023-01-25 12:20:10 +01:00
Matthias
6c0fa0dc1f Fix typo in docstring 2023-01-24 07:21:43 +01:00
Matthias
078b430828 Add ccxt compat tests for order parsing 2023-01-23 18:22:07 +01:00
Matthias
b0720fdcf5 Bump ccxt to latest version to fix timestamp parsing issues 2023-01-23 18:10:56 +01:00
Matthias
1e43154bc5 Merge pull request #8049 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.6
Bump types-python-dateutil from 2.8.19.5 to 2.8.19.6
2023-01-23 09:31:34 +01:00
Matthias
228fc757e9 Merge pull request #8050 from freqtrade/dependabot/pip/develop/ccxt-2.6.58
Bump ccxt from 2.6.39 to 2.6.58
2023-01-23 09:31:18 +01:00
dependabot[bot]
7fc39eafbd Bump ccxt from 2.6.39 to 2.6.58
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.6.39 to 2.6.58.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.6.39...2.6.58)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-23 07:36:53 +00:00
Matthias
3397225df2 Merge pull request #8051 from freqtrade/dependabot/pip/develop/pandas-1.5.3
Bump pandas from 1.5.2 to 1.5.3
2023-01-23 08:10:48 +01:00
Matthias
14d9789f1e Bump types-dateutil for precommit 2023-01-23 08:04:45 +01:00
dependabot[bot]
d3fbd41f59 Bump types-python-dateutil from 2.8.19.5 to 2.8.19.6
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.5 to 2.8.19.6.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-23 06:18:40 +00:00
Matthias
b80c9dfd1e Merge pull request #8052 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.8
Bump types-requests from 2.28.11.7 to 2.28.11.8
2023-01-23 07:16:41 +01:00
Matthias
5ef6ea4d91 Merge pull request #8048 from freqtrade/dependabot/pip/develop/nbconvert-7.2.8
Bump nbconvert from 7.2.7 to 7.2.8
2023-01-23 06:48:15 +01:00
Matthias
73414e0fbd Bump types-requests in pre-commit 2023-01-23 06:47:27 +01:00
dependabot[bot]
673f5c325c Bump types-requests from 2.28.11.7 to 2.28.11.8
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.7 to 2.28.11.8.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-23 03:08:24 +00:00
dependabot[bot]
b104b54e6a Bump pandas from 1.5.2 to 1.5.3
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.5.2 to 1.5.3.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/main/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.5.2...v1.5.3)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-23 03:08:20 +00:00
dependabot[bot]
13f6529cca Bump nbconvert from 7.2.7 to 7.2.8
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.7 to 7.2.8.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.7...v7.2.8)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-23 03:07:48 +00:00
Matthias
95987663f4 Merge pull request #8040 from xmatthias/mypy_fixes
Enable mypy defaults for Optional typechecking
2023-01-22 11:18:53 +01:00
Matthias
0642a2768e Add missing bracket
closes #8041
2023-01-22 11:17:31 +01:00
Matthias
58ad5a683a Fix wrong import order in script 2023-01-21 22:48:30 +01:00
Matthias
79d0fd937c Update pyright config to align with mypy 2023-01-21 20:05:33 +01:00
Matthias
741d2db334 Enable implicit_optional for telegram 2023-01-21 20:02:16 +01:00
Matthias
795934116d Remove optional_untyped from config 2023-01-21 20:02:12 +01:00
Matthias
2bf4cf7d5a Update scripts to PEP484 2023-01-21 20:02:07 +01:00
Matthias
8108a48f39 Follow PEP 484 - no implicit optionals 2023-01-21 20:01:56 +01:00
Matthias
bb355cfac5 improve naming of backtest function 2023-01-21 19:46:27 +01:00
Matthias
80bb120026 Simplify backtesting by removing now unnecessary private function 2023-01-21 18:01:01 +01:00
Matthias
89eb1b0084 funding-fees need to be recalculated for detailed timeframes, too.
closes #7978
2023-01-21 17:47:37 +01:00
Matthias
1211b72255 Add test to show behavior reported in #7978 2023-01-21 16:23:32 +01:00
Matthias
772800bf74 Fix bug in stake_amount adjustment
This was preventing a DCA order to take the remaining stake
2023-01-21 08:52:10 +01:00
Matthias
865d678304 Add backtest_detail test for futures 2023-01-20 09:45:02 +00:00
Matthias
28e51e2dfb Simplify some test setups 2023-01-20 08:28:50 +00:00
Matthias
58d48e79da Convert tests/datadir to path object - better mirroring an initialized configuration 2023-01-20 08:07:02 +00:00
Matthias
a5d87859dc Refactor test to reuse variable 2023-01-20 07:27:35 +00:00
Matthias
6e22607387 Add 5m futures testdata to support detail-backtest tests 2023-01-20 07:08:38 +00:00
Matthias
dbddc4c8aa Improve wording on adjust_trade_position callback warning 2023-01-20 07:08:15 +01:00
Matthias
20093ea090 Add warning about callback call frequency in backtesting 2023-01-20 07:06:54 +01:00
Matthias
81349c2a03 Remove edge section from config template 2023-01-19 19:57:34 +01:00
Matthias
07c391322e Remove edge from sample configs (except full).
Edge is barely used, but everyone drags it's config around.
2023-01-19 18:26:22 +01:00
Matthias
a398f4730b Add documentation note about RSA exchange keys
part of #8034
2023-01-19 18:15:50 +01:00
Matthias
a27e63a547 Bump ccxt to 2.6.39
closes #8034
2023-01-19 18:15:50 +01:00
Matthias
cd2a41e76e Merge pull request #8035 from freqtrade/enable_plotconfig_wsmode
Enable plotconfig wsmode
2023-01-19 06:55:49 +01:00
Matthias
892fb77ec3 Update mypy pre-commit hook 2023-01-18 19:31:20 +01:00
Matthias
634b80f0e7 Add tests for plotconfig in ws mode 2023-01-18 18:15:35 +01:00
Matthias
2298656e45 Bump api_version to 2.23 2023-01-18 18:15:14 +01:00
Matthias
3216a05a9e Enable plot_config to work in webserver mode
(requires strategy argument)
2023-01-18 18:15:07 +01:00
Matthias
da0992f859 add Config typehint in rpc 2023-01-18 06:45:31 +01:00
Matthias
25f89ac194 Merge pull request #8033 from stash86/bt-metrics
update config-freqai-example to match latest binance futures pair syntax
2023-01-18 06:33:37 +01:00
Stefano Ariestasia
00fa904422 update config-freqai-example to match latest binance futures pair syntax 2023-01-18 09:56:15 +09:00
Matthias
4aaa439221 Merge pull request #7976 from adarkforce/max-open-trades
Hyperopt Max open trades
2023-01-17 20:41:48 +01:00
Matthias
c8ecedf6d5 Clarify a variable via typehint 2023-01-17 20:05:18 +01:00
Matthias
6a4fc33c30 Remove <3.8 bandaid 2023-01-17 19:46:56 +01:00
Matthias
7092212ed5 re-add futures tickers quoteVolume assert 2023-01-17 06:57:48 +01:00
Matthias
7713f343a9 Bump ccxt to 2.6.26
closes #8032
2023-01-17 06:46:49 +01:00
Matthias
98dcab49ab Add fetch_tickers test for futures 2023-01-16 23:06:18 +01:00
Matthias
b4fcda2c11 add aiohttp proxy 2023-01-16 22:37:21 +01:00
Matthias
92a5efad0e Fix set_test_proxy usage 2023-01-16 22:09:53 +01:00
Matthias
b193d8418d Deepcopy config before adding proxies 2023-01-16 21:31:01 +01:00
Matthias
f46b62f1a7 Attempt to use and setup a proxy for CI 2023-01-16 21:15:05 +01:00
Matthias
394a973bbb Revert "Attempt to use and setup a proxy for CI"
This reverts commit 48ae248d2d.
2023-01-16 21:14:46 +01:00
Matthias
48ae248d2d Attempt to use and setup a proxy for CI 2023-01-16 21:14:19 +01:00
Antonio Della Fortuna
5e10bb2cca Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-16 20:19:46 +01:00
Matthias
81eb9ebc6e Merge pull request #8031 from froggleston/eea_grp5
Add a new analysis group to output stats grouped by exit_tag
2023-01-16 15:50:47 +01:00
Matthias
8cfa5934db Catch AttributeError when importing modules
closes #8023
2023-01-16 13:54:25 +00:00
froggleston
813724bd82 Add a new analysis group to output stats grouped by exit_tag 2023-01-16 13:28:40 +00:00
Matthias
05dc29e60b Merge pull request #8021 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.5
Bump mkdocs-material from 9.0.3 to 9.0.5
2023-01-16 13:31:30 +01:00
Matthias
41d4e516f1 Merge pull request #8024 from freqtrade/dependabot/pip/develop/cryptography-39.0.0
Bump cryptography from 38.0.1 to 39.0.0
2023-01-16 13:31:06 +01:00
Matthias
3ab40358a2 Merge pull request #8026 from freqtrade/dependabot/pip/develop/tensorboard-2.11.2
Bump tensorboard from 2.11.0 to 2.11.2
2023-01-16 13:29:04 +01:00
dependabot[bot]
8de10e3746 Bump mkdocs-material from 9.0.3 to 9.0.5
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.3 to 9.0.5.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.3...9.0.5)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 11:34:02 +00:00
Matthias
d7bd9de60e Merge pull request #8025 from freqtrade/dependabot/pip/develop/fastapi-0.89.1
Bump fastapi from 0.89.0 to 0.89.1
2023-01-16 12:28:08 +01:00
Matthias
d0ad822034 Merge pull request #8029 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.9.1
Bump pymdown-extensions from 9.9 to 9.9.1
2023-01-16 12:27:44 +01:00
dependabot[bot]
7f4883008f Bump pymdown-extensions from 9.9 to 9.9.1
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.9 to 9.9.1.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.9...9.9.1)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 08:53:34 +00:00
dependabot[bot]
a4b2dc30b4 Bump tensorboard from 2.11.0 to 2.11.2
Bumps [tensorboard](https://github.com/tensorflow/tensorboard) from 2.11.0 to 2.11.2.
- [Release notes](https://github.com/tensorflow/tensorboard/releases)
- [Changelog](https://github.com/tensorflow/tensorboard/blob/2.11.2/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorboard/compare/2.11.0...2.11.2)

---
updated-dependencies:
- dependency-name: tensorboard
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 08:53:12 +00:00
dependabot[bot]
8dce617ada Bump fastapi from 0.89.0 to 0.89.1
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.89.0 to 0.89.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.89.0...0.89.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 08:53:06 +00:00
dependabot[bot]
283c1968bf Bump cryptography from 38.0.1 to 39.0.0
Bumps [cryptography](https://github.com/pyca/cryptography) from 38.0.1 to 39.0.0.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/38.0.1...39.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 08:52:52 +00:00
Matthias
76c4b2a975 Merge pull request #8019 from freqtrade/dependabot/pip/develop/requests-2.28.2
Bump requests from 2.28.1 to 2.28.2
2023-01-16 09:50:37 +01:00
Matthias
7c2bfae92e Merge pull request #8018 from freqtrade/dependabot/pip/develop/ccxt-2.6.24
Bump ccxt from 2.6.6 to 2.6.24
2023-01-16 08:13:47 +01:00
Matthias
0296061e49 Fix version comparison to use packaging.version 2023-01-16 06:54:29 +01:00
Matthias
d226f9706b Merge pull request #8020 from freqtrade/dependabot/pip/develop/xgboost-1.7.3
Bump xgboost from 1.7.2 to 1.7.3
2023-01-16 06:49:47 +01:00
Matthias
7f61fdd9a3 Merge pull request #8022 from freqtrade/dependabot/pip/develop/pytest-7.2.1
Bump pytest from 7.2.0 to 7.2.1
2023-01-16 06:48:49 +01:00
Matthias
77bb6561d5 Merge pull request #8017 from freqtrade/dependabot/pip/develop/orjson-3.8.5
Bump orjson from 3.8.4 to 3.8.5
2023-01-16 06:46:22 +01:00
dependabot[bot]
178a4c8867 Bump requests from 2.28.1 to 2.28.2
Bumps [requests](https://github.com/psf/requests) from 2.28.1 to 2.28.2.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.28.1...v2.28.2)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 05:32:39 +00:00
Matthias
6fd9690477 Merge pull request #8015 from freqtrade/dependabot/pip/develop/urllib3-1.26.14
Bump urllib3 from 1.26.13 to 1.26.14
2023-01-16 06:31:39 +01:00
dependabot[bot]
7785809f4a Bump pytest from 7.2.0 to 7.2.1
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.2.0 to 7.2.1.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.2.0...7.2.1)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 03:02:08 +00:00
dependabot[bot]
59e6f19dd8 Bump xgboost from 1.7.2 to 1.7.3
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.2 to 1.7.3.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.2...v1.7.3)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 03:01:28 +00:00
dependabot[bot]
dc7b8ac7ba Bump ccxt from 2.6.6 to 2.6.24
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.6.6 to 2.6.24.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.6.6...2.6.24)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 03:01:13 +00:00
dependabot[bot]
d24fce83d2 Bump orjson from 3.8.4 to 3.8.5
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.4 to 3.8.5.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.4...3.8.5)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 03:01:03 +00:00
dependabot[bot]
9b97ddd0f7 Bump urllib3 from 1.26.13 to 1.26.14
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.13 to 1.26.14.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.13...1.26.14)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 03:00:47 +00:00
Matthias
fc9e0ede0b Merge pull request #8014 from freqtrade/binance_mig
Binance futures naming migration
2023-01-15 21:57:21 +01:00
Matthias
270eed7e14 Fail if detecting invalid ccxt version for binance futures 2023-01-15 19:38:50 +01:00
Antonio Della Fortuna
ab12aace5f changed trades_space to max_open_trades_space 2023-01-15 11:50:40 +01:00
Antonio Della Fortuna
5e64980319 Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-15 11:44:35 +01:00
Antonio Della Fortuna
b0f1d914c8 Changed max_open_trades type to int or inf 2023-01-15 11:44:10 +01:00
Matthias
ce323e66ac Remove note about binance futures naming 2023-01-14 21:40:48 +01:00
Matthias
e14f2cc275 Add db migration test 2023-01-14 21:26:00 +01:00
Matthias
5d4a247fa0 Add test for binance data migration 2023-01-14 20:34:04 +01:00
Matthias
cbcee02ded call data migration from backtesting 2023-01-14 20:07:33 +01:00
Matthias
1fc97a8008 use Unified futures naming for futures throughout tests 2023-01-13 21:16:19 +01:00
Matthias
9d1cf040f0 Update test leverage tiers 2023-01-13 20:44:45 +01:00
Matthias
4ea8962ca2 Rename futures test data 2023-01-13 20:44:32 +01:00
Matthias
47b50a8a29 Udpate binance leverage tiers to new pair format 2023-01-13 20:32:25 +01:00
Matthias
c93b265ec8 Run migration commands on certain data commands 2023-01-13 07:27:18 +01:00
Matthias
0be0ef9e77 Remove duplicate binance test
The same test exists in test_exchange, but for most exchanges.
2023-01-13 07:11:44 +01:00
Matthias
0d1172ca43 Update binance future test 2023-01-13 07:04:29 +01:00
Matthias
e43b9b65fa increase minimium ccxt version to 2.6.6 2023-01-13 07:00:13 +01:00
Matthias
b024fafaf8 Use futures_pair in ccxt test correctly 2023-01-12 23:39:02 +01:00
Matthias
5b3304189c trading_mode is not necessarily mandatory 2023-01-12 23:38:53 +01:00
Matthias
183bf6819f Update binance pair naming in ccxt test 2023-01-12 23:35:32 +01:00
Matthias
5ad664aaca Update binance futures name to swap 2023-01-12 23:35:16 +01:00
Matthias
9cb7d6c26e Run binance futures migrations on startup 2023-01-12 23:35:06 +01:00
Matthias
5d45adb37d Merge pull request #8009 from freqtrade/robcaulk-patch-1
Update freqai-reinforcement-learning.md
2023-01-12 23:33:54 +01:00
Robert Caulk
bfd7803fd8 Update freqai-reinforcement-learning.md 2023-01-12 22:18:22 +01:00
Matthias
ee7b505dcb Add data migration method 2023-01-12 20:59:43 +01:00
Matthias
b1bfd76741 Add binance futures db migration 2023-01-12 20:36:06 +01:00
Matthias
518e8d24dc Merge pull request #8007 from TheJoeSchr/fix/version-cwd
fix "--version": needs to change working directory
2023-01-12 20:24:28 +01:00
Joe Schr
1cf69f139c refactor "--version" to use "pathlib" instead of "os" 2023-01-12 19:27:41 +01:00
Matthias
1a533668b5 Merge pull request #8008 from freqtrade/fix/NaT_ser_deser
Fix websockets for dataframes with NaT entries
2023-01-12 08:10:14 +01:00
Antonio Della Fortuna
192f75254f Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-11 22:21:46 +01:00
Matthias
9d647fd193 Fix websockets for dataframes with NaT entreis 2023-01-11 22:07:20 +01:00
Matthias
ec5d464ff2 Merge pull request #8005 from TheJoeSchr/develop
docs: fix broken link to quickstart
2023-01-11 21:37:34 +01:00
Matthias
684de1937a Fix link syntax to actually work 2023-01-11 21:35:18 +01:00
Joe Schr
08748dd021 fix "--version": needs to change working directory
before calling `git`. otherwise it would display git commit id from the
directory where you are calling `freqtrade` from instead of freqtrade's
current commit id
2023-01-11 21:12:06 +01:00
Joe Schr
4abf06119b docs: fix broken link to quickstart 2023-01-11 20:29:40 +01:00
Antonio Della Fortuna
534aa8f7ff Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades
# Conflicts:
#	freqtrade/optimize/backtesting.py
2023-01-11 18:55:57 +01:00
Matthias
00dbc195ac Update huobi ci to use BTC markets 2023-01-11 08:43:07 +00:00
Matthias
f677dea6a4 Merge pull request #7950 from freqtrade/freqai_feature_engineering_functions
FreqAI Strategy - Improve user experience
2023-01-10 20:04:53 +01:00
Wagner Costa
2241f24290 moved deprecated warning to start function 2023-01-10 09:10:30 -03:00
Matthias
a261ee327d Merge pull request #7994 from freqtrade/dependabot/pip/develop/scipy-1.10.0
Bump scipy from 1.9.3 to 1.10.0
2023-01-10 08:07:24 +01:00
Matthias
67495530b7 Add FreqAI migration documentation 2023-01-10 07:22:28 +01:00
Matthias
6fc3d0e5e1 Merge pull request #7995 from freqtrade/dependabot/pip/develop/httpx-0.23.3
Bump httpx from 0.23.1 to 0.23.3
2023-01-09 20:47:32 +01:00
robcaulk
93aff9325e improve deprecation note 2023-01-09 20:15:03 +01:00
robcaulk
a61274ae18 ensure cached corr-pairs works with new framework 2023-01-09 20:04:36 +01:00
Matthias
811f13e09a Merge pull request #7981 from freqtrade/backtest_detail_speed
Improve backtest detail speed
2023-01-09 18:21:54 +01:00
Matthias
30bc45a1ba Merge pull request #7991 from freqtrade/order_amount_price
Separately store Order amount price
2023-01-09 18:15:55 +01:00
Matthias
fbdda8cd15 Always pass Dictionaries to testclient post requests 2023-01-09 18:12:20 +01:00
Matthias
3e5ca0438f Merge pull request #8000 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.3
Bump mkdocs-material from 8.5.11 to 9.0.3
2023-01-09 13:37:04 +01:00
dependabot[bot]
3ca2dfc079 Bump httpx from 0.23.1 to 0.23.3
Bumps [httpx](https://github.com/encode/httpx) from 0.23.1 to 0.23.3.
- [Release notes](https://github.com/encode/httpx/releases)
- [Changelog](https://github.com/encode/httpx/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/httpx/compare/0.23.1...0.23.3)

---
updated-dependencies:
- dependency-name: httpx
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 09:10:30 +00:00
Matthias
d59c48c638 Merge pull request #7996 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.46
Bump sqlalchemy from 1.4.45 to 1.4.46
2023-01-09 09:33:26 +01:00
Matthias
0aca0d20d9 Add some feature flags for mkdocs migration 2023-01-09 07:24:18 +01:00
Matthias
8abe1e1c2e Merge pull request #8001 from freqtrade/dependabot/pip/develop/orjson-3.8.4
Bump orjson from 3.8.3 to 3.8.4
2023-01-09 06:52:02 +01:00
Matthias
bd7eeb8701 Merge pull request #7998 from freqtrade/dependabot/pip/develop/fastapi-0.89.0
Bump fastapi from 0.88.0 to 0.89.0
2023-01-09 06:51:12 +01:00
Matthias
8a5aef20aa Merge pull request #7999 from freqtrade/dependabot/pip/develop/ccxt-2.5.56
Bump ccxt from 2.5.46 to 2.5.56
2023-01-09 06:49:29 +01:00
Matthias
7de72a2425 Merge pull request #7993 from freqtrade/dependabot/pip/develop/lightgbm-3.3.4
Bump lightgbm from 3.3.3 to 3.3.4
2023-01-09 06:47:37 +01:00
dependabot[bot]
43b49fef4f Bump orjson from 3.8.3 to 3.8.4
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.3 to 3.8.4.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.3...3.8.4)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:01:33 +00:00
dependabot[bot]
25fd1ea639 Bump mkdocs-material from 8.5.11 to 9.0.3
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.11 to 9.0.3.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Upgrade guide](https://github.com/squidfunk/mkdocs-material/blob/master/docs/upgrade.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.11...9.0.3)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:01:26 +00:00
dependabot[bot]
3b69745c3b Bump ccxt from 2.5.46 to 2.5.56
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.5.46 to 2.5.56.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.5.46...2.5.56)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:01:18 +00:00
dependabot[bot]
79fe8fd85b Bump fastapi from 0.88.0 to 0.89.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.88.0 to 0.89.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.88.0...0.89.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:01:07 +00:00
dependabot[bot]
d32d70d2ea Bump sqlalchemy from 1.4.45 to 1.4.46
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.45 to 1.4.46.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:00:58 +00:00
dependabot[bot]
c198ca2967 Bump scipy from 1.9.3 to 1.10.0
Bumps [scipy](https://github.com/scipy/scipy) from 1.9.3 to 1.10.0.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.9.3...v1.10.0)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:00:45 +00:00
dependabot[bot]
2f0eb95d03 Bump lightgbm from 3.3.3 to 3.3.4
Bumps [lightgbm](https://github.com/microsoft/LightGBM) from 3.3.3 to 3.3.4.
- [Release notes](https://github.com/microsoft/LightGBM/releases)
- [Commits](https://github.com/microsoft/LightGBM/compare/v3.3.3...v3.3.4)

---
updated-dependencies:
- dependency-name: lightgbm
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-09 03:00:38 +00:00
Antonio Della Fortuna
7d27afd4b8 Fixed test broken due to change in trades_space range 2023-01-08 16:11:41 +01:00
Matthias
ad49541947 Adapt Tests for new mandatory columns 2023-01-08 13:55:52 +01:00
Matthias
305b067e48 Support having no Amount/Price available from the exchange initially 2023-01-08 13:55:09 +01:00
Matthias
fd694f14c2 Add new order columns, ft_amount and ft_price 2023-01-08 13:53:08 +01:00
Antonio Della Fortuna
10d8b016e4 Changed max_open_trades default range for optimization 2023-01-08 12:48:36 +01:00
Antonio Della Fortuna
f77dffc951 align to develop 2023-01-08 12:46:27 +01:00
Antonio Della Fortuna
24ace646c3 Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-08 12:40:01 +01:00
Antonio Della Fortuna
464cb4761c Fixed max_open_trades update from hyperopt
Fixed max_open_trades update from hyperopt + removed max_open_trades as a param to backtesting + refactoring
2023-01-08 12:39:39 +01:00
Matthias
550ab2b8e8 Improve select_order to only consider filled where needed. 2023-01-08 11:24:04 +01:00
Matthias
8d4f7341c9 Merge pull request #7987 from stash86/bt-metrics
update calmar, sharpe, and sortino hyperopt losses to use latest formula
2023-01-08 10:37:24 +01:00
Matthias
34dbe9deaa Improve fixture fake results 2023-01-08 10:08:54 +01:00
Matthias
f958459a84 Merge pull request #7989 from freqtrade/dependabot/pip/develop/ccxt-2.5.46
Bump ccxt from 2.4.60 to 2.5.46
2023-01-07 16:32:11 +01:00
dependabot[bot]
1d5440ff71 Bump ccxt from 2.4.60 to 2.5.46
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.4.60 to 2.5.46.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.4.60...2.5.46)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-07 14:19:48 +00:00
Matthias
c7f485687f Fix ccxt test failure
as identified and analyzed https://github.com/ccxt/ccxt/issues/16335
2023-01-07 15:13:22 +01:00
Antonio Della Fortuna
8c3ac56bc5 Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-07 11:11:59 +01:00
root
7bf531c8b8 isort fix 2023-01-07 09:50:05 +09:00
Stefano Ariestasia
c1042996db flake8 fix 2023-01-07 09:46:46 +09:00
Stefano Ariestasia
6198b21001 update calmar loss 2023-01-07 09:30:16 +09:00
Stefano Ariestasia
d3b1aa7f01 update sortino calc 2023-01-07 09:19:06 +09:00
Stefano Ariestasia
157bf962f7 add missing imports 2023-01-07 09:14:56 +09:00
Stefano Ariestasia
86ba7dae92 change sharpe hyperopt loss 2023-01-07 08:56:40 +09:00
Matthias
8b456441a9 Merge pull request #7971 from paranoidandy/patch-1
Update FreqaiExampleStrategy.py
2023-01-06 15:16:31 +01:00
Matthias
349d67f582 Merge pull request #7983 from stash86/bt-metrics
Fix typo in calculate_expectancy's description
2023-01-06 07:30:09 +01:00
Stefano Ariestasia
329d95366a Merge branch 'freqtrade:develop' into bt-metrics 2023-01-06 08:04:00 +08:00
Matthias
787d292ba0 Move "drop_candle" decision to coroutine 2023-01-05 22:31:32 +01:00
Wagner Costa
d82264ced9 Merge branch 'develop' into freqai_feature_engineering_functions 2023-01-05 17:55:35 -03:00
Wagner Costa
abdeb72eb0 fix tests 2023-01-05 17:54:56 -03:00
robcaulk
d91ac8b669 improve wording in freqai doc 2023-01-05 20:13:48 +01:00
Matthias
bdf6537c60 Remove unused (and pointless) exchange method 2023-01-05 11:45:15 +01:00
Matthias
4bac66ff0e Type ohlcv coroutine 2023-01-05 11:33:47 +01:00
Matthias
75b0a3e63d Use dedicated type for OHLCV response 2023-01-05 11:30:15 +01:00
Matthias
92800930e9 Improve backtest detail speed 2023-01-05 10:14:58 +01:00
Matthias
5257e8b3ed Fix random test failures on 3.8 2023-01-05 09:12:09 +01:00
Wagner Costa
ed99e7f857 fix corr_pairs startup candle count bug 2023-01-04 14:21:37 -03:00
Matthias
8e5b4750d6 Continue in "regular backtest" case (no detail-data available).
link to #7967
2023-01-04 18:08:45 +01:00
Matthias
6470635753 In cases of no losing trade, sortino ratio can't be calculated.
closes #7977
2023-01-04 17:55:24 +01:00
Matthias
7a43f37eb7 Merge pull request #7972 from Undertoned/develop
Fix Backtesting  Analysis Column Wrong
2023-01-04 16:38:29 +01:00
Antonio Della Fortuna
f2fa476dc6 max_open_trades should be an integer
Max open trades will be always an integer in the strategy (-1 for infinity), but in the config -1 will be parsed as infinity
2023-01-04 16:09:27 +01:00
Wagner Costa
ed2b1b1ed1 Merge branch 'develop' into freqai_feature_engineering_functions 2023-01-04 10:40:20 -03:00
Wagner Costa
801ab39a24 fix get dataframe data to include startup_candle 2023-01-04 10:36:19 -03:00
Antonio Della Fortuna
1c5e172683 docs update 2023-01-04 12:54:35 +01:00
Matthias
38a780ef63 Merge pull request #7973 from freqtrade/robcaulk-patch-1
Fix file name in FreqaiExampleStrategy.py
2023-01-04 12:51:14 +01:00
Antonio Della Fortuna
ce661cb58b Merge branch 'develop' of https://github.com/freqtrade/freqtrade into max-open-trades 2023-01-04 10:35:09 +01:00
Antonio Della Fortuna
5fd85368a9 Added support for max_open_trades hyperopting 2023-01-04 10:34:44 +01:00
Robert Caulk
c384d1357e Update FreqaiExampleStrategy.py 2023-01-03 21:52:16 +01:00
Matthias
6f031f005d Fix flake error 2023-01-03 20:29:08 +01:00
zhanglei14
63db1fd894 Fix Backtesting Analysis Column Wrong 2023-01-04 01:38:07 +08:00
Wagner Costa
314c0925bf fix get dataframe data to include startup_candle 2023-01-03 14:02:42 -03:00
paranoidandy
73114b93c2 Update FreqaiExampleStrategy.py
Change can_short to True to enable shorting
2023-01-03 15:11:46 +00:00
Matthias
91d8370909 Merge pull request #7966 from freqtrade/frog-hyper-docs
Fix ROI table comma and spacing
2023-01-02 20:35:05 +01:00
Robert Davey
2c430c806c Fix ROI table comma and spacing
THanks to `@topdollar` in discord for noticing the typos.
2023-01-02 15:54:49 +00:00
Robert Caulk
52dfb0452c Update freqai-feature-engineering.md 2023-01-02 16:06:54 +01:00
Matthias
72f9c248f5 Merge pull request #7961 from freqtrade/dependabot/pip/develop/time-machine-2.9.0
Bump time-machine from 2.8.2 to 2.9.0
2023-01-02 09:21:55 +01:00
Matthias
5bb1f4a845 Merge pull request #7962 from freqtrade/dependabot/pip/develop/pydantic-1.10.4
Bump pydantic from 1.10.2 to 1.10.4
2023-01-02 08:26:14 +01:00
Matthias
d1a0ae45e8 Merge pull request #7960 from freqtrade/dependabot/pip/develop/filelock-3.9.0
Bump filelock from 3.8.2 to 3.9.0
2023-01-02 08:25:11 +01:00
dependabot[bot]
724465c798 Bump pydantic from 1.10.2 to 1.10.4
Bumps [pydantic](https://github.com/pydantic/pydantic) from 1.10.2 to 1.10.4.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/v1.10.4/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v1.10.2...v1.10.4)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-02 03:01:07 +00:00
dependabot[bot]
488b4512e0 Bump time-machine from 2.8.2 to 2.9.0
Bumps [time-machine](https://github.com/adamchainz/time-machine) from 2.8.2 to 2.9.0.
- [Release notes](https://github.com/adamchainz/time-machine/releases)
- [Changelog](https://github.com/adamchainz/time-machine/blob/main/HISTORY.rst)
- [Commits](https://github.com/adamchainz/time-machine/compare/2.8.2...2.9.0)

---
updated-dependencies:
- dependency-name: time-machine
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-02 03:01:00 +00:00
dependabot[bot]
d304f95c13 Bump filelock from 3.8.2 to 3.9.0
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.8.2 to 3.9.0.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.8.2...3.9.0)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-02 03:00:55 +00:00
Matthias
74b924471a type ccxt_compat tests 2022-12-31 10:59:42 +01:00
Matthias
cd7bd9bf9a Update gate liquidation price link 2022-12-31 10:25:21 +01:00
Matthias
6498e352c1 Remove pointless default 2022-12-31 10:23:39 +01:00
Matthias
97e8bb09e8 Update exchange documentation with note about leverage 2022-12-31 10:17:30 +01:00
Stefano Ariestasia
5188464fc0 fix typo 2022-12-31 02:03:02 +09:00
Wagner Costa
c8aa7720a2 added again feature check in BT from pred files 2022-12-30 11:16:35 -03:00
Wagner Costa
b39fc6b924 remove add pair to column from docs, fix keyerror bug and adjust hybrid strategy example 2022-12-30 10:42:31 -03:00
robcaulk
b2bab68fba move price assignment to feature_engineering_standard() to reduce un-requested feature additions in RL. Ensure old method of price assignment still works, add deprecation warning to help users migrate their strategies 2022-12-30 13:02:39 +01:00
Matthias
798438df9d Extract funding-rate call to separate method
this will allow overwriting in subclasses.
2022-12-30 07:32:59 +01:00
Matthias
499cc5bae1 Better visualize downloaded candletype in debug mode 2022-12-30 07:15:24 +01:00
Wagner Costa
2e30bdb9b2 freqai bt - fix tests 2022-12-29 16:35:11 -03:00
Matthias
9a46613975 Merge pull request #7954 from freqtrade/new_release
New release 2022.12
2022-12-29 17:45:08 +01:00
Wagner Costa
2b89f643b7 adjust backtest to new feature engineering functions 2022-12-28 19:03:41 -03:00
Matthias
c78b2080cc Add exception test for interest function 2022-12-28 17:42:35 +01:00
Matthias
6ef15802eb make tables an optional dependency
requirements will still install this though.
2022-12-28 16:04:21 +01:00
Matthias
973cfd0182 Merge pull request #7810 from stash86/bt-metrics
Add more calculations for backtest metrics
2022-12-28 15:57:07 +01:00
Matthias
f0bd6b9589 Merge pull request #7939 from freqtrade/dependabot/pip/develop/tables-3.8.0
Bump tables from 3.7.0 to 3.8.0
2022-12-28 15:55:43 +01:00
Matthias
2805e83c9f Bump Develop version to 2023.1 2022-12-28 15:53:43 +01:00
Matthias
8e8f71ade5 Version bump 2022.12 2022-12-28 15:42:38 +01:00
Matthias
149539d3f9 Merge branch 'stable' into new_release 2022-12-28 15:42:29 +01:00
Matthias
5cb8fe1a50 Add JOSS badge to freqtrade docs and readme.md 2022-12-28 15:40:12 +01:00
Matthias
c52910f28b Improve resiliance against invalid data
closes #7947
2022-12-28 15:30:57 +01:00
Matthias
6434bf6745 Document new backtesting metrics 2022-12-28 15:29:55 +01:00
Matthias
32bbe603cb Fix sortino std calculation 2022-12-28 14:59:49 +01:00
robcaulk
6f7eb71bbb ensure RL works with new naming scheme 2022-12-28 14:52:33 +01:00
Matthias
d5b516842c Fix 2 docstrings 2022-12-28 14:44:23 +01:00
Matthias
f21185d1c4 Add tests for new metrics 2022-12-28 14:05:04 +01:00
Matthias
02eb00fa33 Merge branch 'develop' into pr/stash86/7810 2022-12-28 14:04:54 +01:00
robcaulk
c2936d551b improve doc, update test strats, change function names 2022-12-28 13:25:40 +01:00
Matthias
4d112def17 Remove binance AD from docs page
fixes #7921
2022-12-28 07:10:11 +01:00
Matthias
cd4faa9c59 keep max_stake_amount through backtests 2022-12-27 18:08:20 +01:00
Wagner Costa
8227b4aafe freqAI Strategy - improve user experience 2022-12-27 11:37:01 -03:00
Matthias
62c4675e29 Remove some deprecated fields from the API 2022-12-27 14:28:07 +01:00
Matthias
cb66663fd2 show max_stake_amount in API 2022-12-27 14:28:07 +01:00
Matthias
55001bf321 Keep max_stake_amount (only relevant for DCA orders). 2022-12-27 14:28:07 +01:00
Matthias
6f2c3e2528 Split migration and persistence tests 2022-12-27 14:28:07 +01:00
Matthias
2d6ca5c8bf Merge pull request #7949 from freqtrade/freqai-doc-update
Improve `purge_old_models` explanation
2022-12-27 13:25:58 +01:00
Robert Caulk
20901c833a Improve purge_old_models explanation 2022-12-27 10:08:09 +01:00
Matthias
8a37eba0d9 Merge pull request #7946 from freqtrade/dependabot/pip/develop/numpy-1.24.1
Bump numpy from 1.23.5 to 1.24.1
2022-12-26 20:50:26 +01:00
Matthias
882e68c68b Rename backtest-result from new to "not new". 2022-12-26 15:33:14 +01:00
Matthias
6a15a9b412 Update backtest-result_new
fixing the calculation of profit_abs - which was incorrect previously.
2022-12-26 15:33:14 +01:00
dependabot[bot]
1cef40a134 Bump numpy from 1.23.5 to 1.24.1
Bumps [numpy](https://github.com/numpy/numpy) from 1.23.5 to 1.24.1.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.23.5...v1.24.1)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 14:31:47 +00:00
Matthias
e881175cc4 Merge pull request #7945 from freqtrade/dependabot/pip/develop/ccxt-2.4.60
Bump ccxt from 2.4.27 to 2.4.60
2022-12-26 15:30:51 +01:00
Matthias
63f114395a is_short should be a boolean 2022-12-26 14:02:47 +01:00
dependabot[bot]
aaeeb86622 Bump ccxt from 2.4.27 to 2.4.60
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.4.27 to 2.4.60.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.4.27...2.4.60)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 12:40:26 +00:00
Matthias
19913e8dc5 Merge pull request #7940 from freqtrade/dependabot/pip/develop/isort-5.11.4
Bump isort from 5.11.3 to 5.11.4
2022-12-26 13:39:39 +01:00
dependabot[bot]
d60b38dad2 Bump tables from 3.7.0 to 3.8.0
Bumps [tables](https://github.com/PyTables/PyTables) from 3.7.0 to 3.8.0.
- [Release notes](https://github.com/PyTables/PyTables/releases)
- [Changelog](https://github.com/PyTables/PyTables/blob/master/RELEASE_NOTES.rst)
- [Commits](https://github.com/PyTables/PyTables/compare/v3.7.0...v3.8.0)

---
updated-dependencies:
- dependency-name: tables
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 09:04:53 +00:00
Matthias
d01def3c61 Merge pull request #7941 from freqtrade/dependabot/pip/develop/pre-commit-2.21.0
Bump pre-commit from 2.20.0 to 2.21.0
2022-12-26 10:03:25 +01:00
Matthias
faab4b2342 Merge pull request #7943 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.7
Bump types-requests from 2.28.11.5 to 2.28.11.7
2022-12-26 10:02:49 +01:00
dependabot[bot]
c5b246af80 Bump isort from 5.11.3 to 5.11.4
Bumps [isort](https://github.com/pycqa/isort) from 5.11.3 to 5.11.4.
- [Release notes](https://github.com/pycqa/isort/releases)
- [Changelog](https://github.com/PyCQA/isort/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pycqa/isort/compare/5.11.3...5.11.4)

---
updated-dependencies:
- dependency-name: isort
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 08:24:40 +00:00
Matthias
9296ad23d9 Merge pull request #7938 from freqtrade/dependabot/pip/develop/nbconvert-7.2.7
Bump nbconvert from 7.2.6 to 7.2.7
2022-12-26 09:21:43 +01:00
Matthias
00112d81d2 Bump types-requests pre-commit 2022-12-26 09:21:18 +01:00
Matthias
9a556d2639 Remove all mac conflicts 2022-12-26 08:57:01 +01:00
Matthias
18709406c5 use link overwrite 2022-12-26 08:50:55 +01:00
Matthias
9ea8792d3c Attempt brew fix 2022-12-26 08:45:02 +01:00
dependabot[bot]
3993bd7c1c Bump types-requests from 2.28.11.5 to 2.28.11.7
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.5 to 2.28.11.7.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 03:01:11 +00:00
dependabot[bot]
e0f60e175f Bump pre-commit from 2.20.0 to 2.21.0
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 2.20.0 to 2.21.0.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v2.20.0...v2.21.0)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 03:01:00 +00:00
dependabot[bot]
b1bf6d8dc9 Bump nbconvert from 7.2.6 to 7.2.7
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.6 to 7.2.7.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.6...v7.2.7)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-26 03:00:41 +00:00
Stefano Ariestasia
6353f3ac1a fix formulas and implement new metrics 2022-12-26 08:19:51 +09:00
Matthias
7a5439321c Show new metrics in backtesting 2022-12-25 21:29:37 +01:00
Matthias
ce13ce4b10 Update binance stoploss order types
closes #7927
an update to the most recent ccxt version (>2.4.55) would have the same effect.
2022-12-25 09:05:53 +01:00
Matthias
4601705814 Merge pull request #7923 from freqtrade/freqai_backtest
Freqai backtest
2022-12-23 19:17:12 +01:00
Matthias
524da3c7ab Don't actually load models to avoid random failures 2022-12-23 16:19:12 +01:00
Matthias
ad0d7c9a9e Don't allow DCA trades to go beyond max order size
closes  #7924
2022-12-23 16:09:35 +01:00
Matthias
2a7369b56a fix macos CI 2022-12-23 07:38:33 +01:00
Matthias
73792fd6ce Don't attempt to convert None to dict 2022-12-21 06:28:55 +01:00
Matthias
70531224e6 Allow setting identifier via UI 2022-12-20 19:44:01 +01:00
Matthias
07606a9e23 Simplify APi backtest config merging 2022-12-20 19:32:29 +01:00
Matthias
6d9f1fafb7 allow backtest_cache to be provided via backtest API 2022-12-20 19:20:39 +01:00
Matthias
256fac2a2b Add test for freqaimodels endpoint 2022-12-20 07:24:54 +01:00
Matthias
5dbd5c235a Add endpoint for freqAI models 2022-12-20 07:24:54 +01:00
Matthias
3012c55ec5 Merge pull request #7867 from Bloodhunter4rc/remotepairlist
Add Remotepairlist
2022-12-19 19:28:49 +01:00
Matthias
a119fbd895 Small error-message finetuning 2022-12-19 18:19:55 +01:00
Bloodhunter4rc
ebf60d85da self._init_done placed wrong. fixed 2022-12-19 16:25:22 +01:00
Bloodhunter4rc
43f5a16006 parse exception handling, remove info, cache change 2022-12-19 15:36:28 +01:00
Robert Caulk
cc30210b3f Merge pull request #7908 from freqtrade/add-3action-rl-env
Add 3 Action RL Env
2022-12-19 14:47:57 +01:00
Matthias
095bedf54e Merge pull request #7915 from freqtrade/dependabot/pip/develop/blosc-1.11.1
Bump blosc from 1.10.6 to 1.11.1
2022-12-19 14:12:00 +01:00
Matthias
4bad2b5c04 Apply suggestions from code review
Co-authored-by: Emre <aemr3@users.noreply.github.com>
2022-12-19 13:27:07 +01:00
robcaulk
5b9e3af276 improve wording 2022-12-19 12:22:15 +01:00
robcaulk
5405d8fa6f add discussion and tips for Base3ActionRLEnvironment 2022-12-19 12:14:53 +01:00
robcaulk
a276ef4b06 ensure long only RL is tested 2022-12-19 11:49:31 +01:00
Matthias
ec3d49ce4c Merge pull request #7916 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.5
Bump types-python-dateutil from 2.8.19.4 to 2.8.19.5
2022-12-19 11:20:21 +01:00
Matthias
86b30d2d66 Improve emc test resiliancy 2022-12-19 07:01:32 +01:00
Matthias
2711605df6 Merge pull request #7914 from freqtrade/dependabot/pip/develop/isort-5.11.3
Bump isort from 5.10.1 to 5.11.3
2022-12-19 06:59:28 +01:00
Matthias
daf7653988 Merge pull request #7918 from freqtrade/dependabot/pip/develop/torch-1.13.1
Bump torch from 1.13.0 to 1.13.1
2022-12-19 06:40:27 +01:00
Matthias
cc0d8fa590 Merge pull request #7920 from freqtrade/dependabot/pip/develop/ccxt-2.4.27
Bump ccxt from 2.2.92 to 2.4.27
2022-12-19 06:36:46 +01:00
Matthias
0c8d657d92 update types-dateutil precommit 2022-12-19 06:27:38 +01:00
dependabot[bot]
fa87e08071 Bump ccxt from 2.2.92 to 2.4.27
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.2.92 to 2.4.27.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.2.92...2.4.27)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-19 03:01:26 +00:00
dependabot[bot]
7216d140de Bump torch from 1.13.0 to 1.13.1
Bumps [torch](https://github.com/pytorch/pytorch) from 1.13.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.13.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-19 03:01:09 +00:00
dependabot[bot]
06225b9501 Bump types-python-dateutil from 2.8.19.4 to 2.8.19.5
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.4 to 2.8.19.5.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-19 03:00:54 +00:00
dependabot[bot]
d86885c7f9 Bump blosc from 1.10.6 to 1.11.1
Bumps [blosc](https://github.com/blosc/python-blosc) from 1.10.6 to 1.11.1.
- [Release notes](https://github.com/blosc/python-blosc/releases)
- [Changelog](https://github.com/Blosc/python-blosc/blob/main/RELEASE_NOTES.rst)
- [Commits](https://github.com/blosc/python-blosc/compare/v1.10.6...v1.11.1)

---
updated-dependencies:
- dependency-name: blosc
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-19 03:00:46 +00:00
dependabot[bot]
b61fc161bf Bump isort from 5.10.1 to 5.11.3
Bumps [isort](https://github.com/pycqa/isort) from 5.10.1 to 5.11.3.
- [Release notes](https://github.com/pycqa/isort/releases)
- [Changelog](https://github.com/PyCQA/isort/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pycqa/isort/compare/5.10.1...5.11.3)

---
updated-dependencies:
- dependency-name: isort
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-19 03:00:43 +00:00
Bloodhunter4rc
6380c3d462 reduce duplicate code, fix cache check 2022-12-18 23:37:18 +01:00
Bloodhunter4rc
bb33b96ba7 init cache on first iteration, init checks, limit length and charmap to info replace if invalid, move filter logic 2022-12-18 22:28:12 +01:00
Matthias
1f4cc145c4 Move trade docs to advanced section 2022-12-18 20:02:38 +01:00
Matthias
eda72ef26c Add documentation for Order object 2022-12-18 19:40:49 +01:00
Matthias
a439488b74 Add initial trade_object documentation 2022-12-18 17:42:05 +01:00
Matthias
bad6fe77d3 Remove deprecated trade property 2022-12-18 17:21:50 +01:00
Matthias
cb81613aa5 Merge pull request #7907 from freqtrade/add-joss-citation
Add JOSS citation to freqai doc
2022-12-17 19:22:35 +01:00
Robert Caulk
329a0a3f45 Update docs/freqai.md
Co-authored-by: Matthias <xmatthias@outlook.com>
2022-12-17 18:43:20 +01:00
Emre
c293401b22 Add can_short to freqai base model 2022-12-16 23:19:08 +03:00
Emre
e604047158 Enable RL tests on arm mac 2022-12-16 22:57:55 +03:00
Emre
a8c9aa01fb Add 3ac test 2022-12-16 22:31:44 +03:00
Emre
7727f31507 Add 3 Action RL env 2022-12-16 22:18:49 +03:00
Emre
dde363343c Add can_short param to base env 2022-12-16 22:16:19 +03:00
Robert Caulk
439914caef Merge pull request #7906 from initrv/fix-base-env-done-condition
fix base4 env done condition
2022-12-16 15:25:58 +01:00
robcaulk
e4284f4e7b add citation to freqai doc. Update credits 2022-12-16 15:20:46 +01:00
initrv
36948e2a74 fix base4 env done condition 2022-12-16 14:14:05 +03:00
Matthias
935275010f Remove some unused fixtures 2022-12-16 06:46:54 +01:00
Matthias
bc10bcaf61 Merge pull request #7901 from samgermain/delist-bibox
delisted bibox following ccxt PR https://github.com/ccxt/ccxt/pull/16067
2022-12-15 23:16:33 +01:00
Sam Germain
32d57f624e delisted bibox following ccxt PR https://github.com/ccxt/ccxt/pull/16067 2022-12-15 15:00:27 -05:00
Matthias
2828255435 Merge pull request #7842 from wizrds/feat/refactor-emc
Change to broadcasting single candles in Producer/Consumer
2022-12-15 19:47:29 +01:00
Matthias
6fa3db3a1d Fix failing tests 2022-12-15 19:36:21 +01:00
Matthias
b915872f66 Merge pull request #7899 from freqtrade/fix/multiproc-dp
Ensure data provider is passed to multiproc envs
2022-12-15 19:31:23 +01:00
Bloodhunter4rc
cd1b8b9cee single space removed for the unit test to pass.. 2022-12-15 18:14:37 +01:00
Bloodhunter4rc
9e20d13e50 Merge branch 'freqtrade:develop' into remotepairlist 2022-12-15 17:38:56 +01:00
Bloodhunter4rc
1d5c66da3b + Unit Tests 2022-12-15 17:38:21 +01:00
robcaulk
581a5296cc fix docstrings to reflect new env_info changes 2022-12-15 16:50:08 +01:00
robcaulk
7b4abd5ef5 use a dictionary to make code more readable 2022-12-15 12:25:33 +01:00
Matthias
7a0eadbdf5 Don't recalc profit on closed trades 2022-12-15 07:05:07 +01:00
Matthias
33dce5cf10 Clarify partial exit calculation messaging 2022-12-15 07:05:07 +01:00
Matthias
ca2a878b86 Update test naming 2022-12-14 20:06:55 +01:00
Emre
d3ad5cb722 Merge branch 'fix/multiproc-dp' of https://github.com/freqtrade/freqtrade into fix/multiproc-dp 2022-12-14 22:04:43 +03:00
Emre
3af2251ce8 Fix add_state_info backtesting bug 2022-12-14 22:03:23 +03:00
Emre
2018da0767 Add env_info dict to base environment 2022-12-14 22:03:05 +03:00
Matthias
fa260e6560 Move "replace or append" decision to dataprovider 2022-12-14 19:56:54 +01:00
robcaulk
dac1c8ab89 fix isort 2022-12-14 18:28:52 +01:00
robcaulk
2285ca7d2a add dp to multiproc 2022-12-14 18:22:20 +01:00
Matthias
350cebb0a8 Merge pull request #7898 from initrv/patch-1
fix doc minimal_roi
2022-12-14 12:56:51 +01:00
initrv
de19d1cfbb fix doc minimal_roi 2022-12-14 13:36:07 +03:00
Matthias
97fee37072 Improve emc test 2022-12-14 07:22:51 +01:00
Bloodhunter4rc
7f3524949c - print 2022-12-13 21:00:23 +01:00
Bloodhunter4rc
d52c1c7554 Add unit tests 2022-12-13 20:21:06 +01:00
Matthias
1d92db7805 Change CI to actually run one 2 randomized point. 2022-12-13 19:23:40 +01:00
Matthias
3c2a802ec0 Merge pull request #7897 from freqtrade/revert-7884-dependabot/pip/develop/scikit-learn-1.2.0
Revert "Bump scikit-learn from 1.1.3 to 1.2.0"
2022-12-13 19:23:19 +01:00
Matthias
fed46d330f Revert "Bump scikit-learn from 1.1.3 to 1.2.0" 2022-12-13 18:14:56 +01:00
Matthias
c042d0146e Don't run gc_setup during tests 2022-12-13 17:14:28 +00:00
Robert Caulk
e6da646e2f Merge pull request #7866 from initrv/cleanup-tensorboard-callback
Cleanup tensorboard callback
2022-12-13 09:05:46 +01:00
Timothy Pogue
0dd3836cc7 fix rpc method docstring 2022-12-12 22:47:35 -07:00
Matthias
1c0c4fd420 Improve test 2022-12-12 22:47:35 -07:00
Matthias
a693495a6d Improve external_candle aggregation 2022-12-12 22:47:35 -07:00
Matthias
96edd31458 Test add_external_candle 2022-12-12 22:47:35 -07:00
Timothy Pogue
414c0ce050 change unused var 2022-12-12 22:47:35 -07:00
Timothy Pogue
6717dff19b update overlapping candle handling, move append to misc 2022-12-12 22:47:35 -07:00
Timothy Pogue
0602479f7d minor changes, update candle appending to support overlaps 2022-12-12 22:47:35 -07:00
Timothy Pogue
f1ebaf4730 fix tests 2022-12-12 22:47:35 -07:00
Timothy Pogue
49f6f40662 remove comment 2022-12-12 22:47:35 -07:00
Timothy Pogue
0d5b2eed94 fix same candle handling 2022-12-12 22:47:35 -07:00
Timothy Pogue
d376bf4052 fix indefinite reconnecting 2022-12-12 22:47:35 -07:00
Timothy Pogue
ccd1aa70a2 change log calls to debug, handle already received candle 2022-12-12 22:47:35 -07:00
Timothy Pogue
c050eb8b8b add candle difference calculation to dataprovider 2022-12-12 22:47:35 -07:00
Timothy Pogue
89338fa677 allow specifying channel send throttle 2022-12-12 22:47:35 -07:00
Timothy Pogue
d2c8487ecf update add_external_candle, fix breaking on ping error, handle empty dataframes 2022-12-12 22:47:35 -07:00
Timothy Pogue
fce1e9d6d0 update analyzed df request to allow specifying a single pair 2022-12-12 22:47:35 -07:00
Timothy Pogue
36a00e8de0 update add_external_candle returns 2022-12-12 22:47:35 -07:00
Timothy Pogue
4cbb3341d7 change how missing candles will be handled 2022-12-12 22:47:35 -07:00
Timothy Pogue
9660e445b8 use new channel apis in emc, extend analyzed df to include list of dates for candles 2022-12-12 22:47:35 -07:00
Matthias
3e4e6bb114 Merge pull request #7895 from freqtrade/fix-blosc-error-arm64
Temporarily downgrade blosc for arm64
2022-12-12 20:03:43 +01:00
Matthias
abc3badfb5 Improve shutdown behavior
closes #7882
2022-12-12 20:01:54 +01:00
Emre
5c984bf5c2 Temporarily downgrade blosc for arm64 2022-12-12 21:33:12 +03:00
Matthias
b328a18a97 Merge pull request #7890 from freqtrade/dependabot/pip/develop/xgboost-1.7.2
Bump xgboost from 1.7.1 to 1.7.2
2022-12-12 18:18:45 +01:00
Matthias
ff0577445e Merge pull request #7886 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.36
Bump prompt-toolkit from 3.0.33 to 3.0.36
2022-12-12 14:52:39 +01:00
Bloodhunter4rc
6f92c58e33 add docs, add bearer token. 2022-12-12 13:24:33 +01:00
initrv
f940280d5e Fix tensorboard_log incrementing note 2022-12-12 14:35:44 +03:00
initrv
f9b7d35900 add increment param for tensorboard_log 2022-12-12 14:14:23 +03:00
Bloodhunter4rc
f6b90595fa remove html. change var names. 2022-12-12 11:05:03 +01:00
Matthias
b53b3f435c Merge pull request #7888 from freqtrade/dependabot/pip/develop/ccxt-2.2.92
Bump ccxt from 2.2.67 to 2.2.92
2022-12-12 09:03:26 +01:00
Matthias
a55d0c0d81 Merge pull request #7891 from freqtrade/dependabot/pip/develop/python-telegram-bot-13.15
Bump python-telegram-bot from 13.14 to 13.15
2022-12-12 08:27:50 +01:00
Matthias
dee5b72835 Merge pull request #7892 from freqtrade/dependabot/pip/develop/filelock-3.8.2
Bump filelock from 3.8.0 to 3.8.2
2022-12-12 08:27:29 +01:00
Matthias
39bd6fb2d3 Merge pull request #7894 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.6.4
Bump pypa/gh-action-pypi-publish from 1.6.1 to 1.6.4
2022-12-12 07:11:34 +01:00
dependabot[bot]
de9784267a Bump filelock from 3.8.0 to 3.8.2
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.8.0 to 3.8.2.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.8.0...3.8.2)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:39:16 +00:00
Matthias
61592e76b0 Merge pull request #7884 from freqtrade/dependabot/pip/develop/scikit-learn-1.2.0
Bump scikit-learn from 1.1.3 to 1.2.0
2022-12-12 06:38:29 +01:00
Matthias
dc8f68d410 Merge pull request #7885 from freqtrade/dependabot/pip/develop/blosc-1.11.0
Bump blosc from 1.10.6 to 1.11.0
2022-12-12 06:31:39 +01:00
dependabot[bot]
915e0ac62f Bump ccxt from 2.2.67 to 2.2.92
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.2.67 to 2.2.92.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.2.67...2.2.92)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:31:01 +00:00
dependabot[bot]
bc2b9981d3 Bump python-telegram-bot from 13.14 to 13.15
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.14 to 13.15.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/v13.15/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.14...v13.15)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 05:30:55 +00:00
Matthias
686253e7cd Merge pull request #7887 from freqtrade/dependabot/pip/develop/nbconvert-7.2.6
Bump nbconvert from 7.2.5 to 7.2.6
2022-12-12 06:30:37 +01:00
Matthias
2d68b0f6f6 Merge pull request #7889 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.20.3
Bump pytest-asyncio from 0.20.2 to 0.20.3
2022-12-12 06:30:14 +01:00
Matthias
f7a099f878 Merge pull request #7893 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.45
Bump sqlalchemy from 1.4.44 to 1.4.45
2022-12-12 06:29:49 +01:00
dependabot[bot]
2647c35f48 Bump pypa/gh-action-pypi-publish from 1.6.1 to 1.6.4
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.6.1 to 1.6.4.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.6.1...v1.6.4)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:02:53 +00:00
dependabot[bot]
0344203372 Bump sqlalchemy from 1.4.44 to 1.4.45
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.44 to 1.4.45.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:32 +00:00
dependabot[bot]
5a7b493d3e Bump xgboost from 1.7.1 to 1.7.2
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.1 to 1.7.2.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.1...v1.7.2)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:11 +00:00
dependabot[bot]
5625648011 Bump pytest-asyncio from 0.20.2 to 0.20.3
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.20.2 to 0.20.3.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Changelog](https://github.com/pytest-dev/pytest-asyncio/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.20.2...v0.20.3)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:01:07 +00:00
dependabot[bot]
a35111e55e Bump nbconvert from 7.2.5 to 7.2.6
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.5 to 7.2.6.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.5...v7.2.6)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:54 +00:00
dependabot[bot]
63d3a9ced6 Bump prompt-toolkit from 3.0.33 to 3.0.36
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.33 to 3.0.36.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.33...3.0.36)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:49 +00:00
dependabot[bot]
434eec7334 Bump blosc from 1.10.6 to 1.11.0
Bumps [blosc](https://github.com/blosc/python-blosc) from 1.10.6 to 1.11.0.
- [Release notes](https://github.com/blosc/python-blosc/releases)
- [Changelog](https://github.com/Blosc/python-blosc/blob/main/RELEASE_NOTES.rst)
- [Commits](https://github.com/blosc/python-blosc/compare/v1.10.6...v1.11.0)

---
updated-dependencies:
- dependency-name: blosc
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:46 +00:00
dependabot[bot]
78c40f0535 Bump scikit-learn from 1.1.3 to 1.2.0
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.3 to 1.2.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.3...1.2.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-12 03:00:40 +00:00
Matthias
42afdbb0e5 Merge pull request #7883 from freqtrade/fix/multioutput-bug
fix bug in MultiOutput* with conv_width = 1
2022-12-11 15:52:10 +01:00
robcaulk
0f6b98b69a merge develop into tensorboard cleanup 2022-12-11 15:38:32 +01:00
robcaulk
0fd8e214e4 add documentation for tensorboard_log, change how users interact with tensorboard_log 2022-12-11 15:31:29 +01:00
Matthias
888ba65367 Merge branch 'develop' into fix/multioutput-bug 2022-12-11 15:23:53 +01:00
initrv
cb8fc3c8c7 custom info to tensorboard_metrics 2022-12-11 15:37:45 +03:00
Robert Caulk
0f75ec9c97 Merge pull request #7860 from freqtrade/update-freqai-tf-handling
Ensure base tf to be include_timeframes
2022-12-11 12:50:07 +01:00
robcaulk
8c7ec07951 ensure predict_proba follows suit. Remove all lib specific params from example config 2022-12-11 12:39:31 +01:00
robcaulk
85f22b5c30 fix bug in MultiOutput* with conv_width = 1 2022-12-11 12:15:19 +01:00
Emre
6b9f3f2795 Fix test validation 2022-12-11 13:24:24 +03:00
Emre
272c3302e3 Merge remote-tracking branch 'origin/develop' into update-freqai-tf-handling 2022-12-11 13:12:45 +03:00
Matthias
980a5a9b52 Fix docs typo 2022-12-10 19:54:04 +01:00
Matthias
1da8ad69d9 improve more tests by freezing time 2022-12-08 14:33:16 +01:00
Matthias
da4914513a Merge pull request #7835 from rzhb/patch-1
update strategy_analysis_example.ipynb
2022-12-08 14:17:50 +01:00
Matthias
bbedc4b63e Stop clock to avoid random failures on slow CI runs 2022-12-08 14:15:29 +01:00
Matthias
39e19bd0c9 Merge pull request #7607 from matteoettam09/develop
Docker compose now in docker
2022-12-08 13:34:06 +01:00
Matthias
3d3a7033ed Improve Docker documentation wording 2022-12-08 08:46:16 +01:00
Matthias
fcbc1a8a07 Merge pull request #7868 from freqtrade/fix-add-state-info-bt
Fix add state info bt
2022-12-08 08:34:11 +01:00
Matthias
74e623fe5b Improve kraken test resiliance 2022-12-08 08:33:07 +01:00
Bloodhunter4rc
66412bfa58 Remove unnecessary loop 2022-12-08 01:51:12 +01:00
Bloodhunter4rc
7efcbbb457 Local File Loading 2022-12-08 01:09:17 +01:00
Bloodhunter4rc
da2747d487 Add Local .json file Loading 2022-12-08 00:52:54 +01:00
robcaulk
7b3406914c flip add_state_info 2022-12-07 19:49:39 +01:00
robcaulk
9b4364ddc3 ensure that add_state_info is deactivated during backtesting 2022-12-07 19:49:14 +01:00
Bloodhunter4rc
b144a6357d Remove Duplicate 2022-12-07 18:24:55 +01:00
Bloodhunter4rc
547a75d9c1 Fix Info 2022-12-07 17:49:21 +01:00
Bloodhunter4rc
607d5b2f8f Split to fetch_pairlist function, Info Message 2022-12-07 17:47:38 +01:00
Bloodhunter4rc
48160f3fe9 Flake 8 fix, Json Fetching 2022-12-07 17:01:45 +01:00
Bloodhunter4rc
199fd2d074 +Remote Pairlist 2022-12-07 15:08:33 +01:00
initrv
58604c747e cleanup tensorboard callback 2022-12-07 14:37:55 +03:00
Stefano Ariestasia
89c7c2fec6 isort fix 2022-12-07 18:09:57 +09:00
Stefano Ariestasia
611e35ed81 flake8 fix 2022-12-07 15:47:58 +09:00
Robert Caulk
b9f6911a6a Merge pull request #7843 from smarmau/develop
freqai RL agent info during training
2022-12-06 20:06:41 +01:00
Matthias
e7195b7bfb Merge pull request #7862 from freqtrade/ws_newcandle
New websocket message "new_candle"
2022-12-06 07:07:32 +01:00
Robert Caulk
27b8f462dc Merge pull request #7837 from freqtrade/freqai_bt_from_predictions_improvement
freqAI backtesting - Perfomance improvement
2022-12-05 23:20:55 +01:00
Wagner Costa
c81b00fb37 Merge branch 'develop' into freqai_bt_from_predictions_improvement 2022-12-05 18:00:55 -03:00
Emre
227cdb0938 Change dict update order 2022-12-05 23:58:04 +03:00
Emre
26a61afa15 Move base tf logic to config validation 2022-12-05 23:54:15 +03:00
Emre
bc48099e48 Revert changes 2022-12-05 23:52:48 +03:00
robcaulk
62c69bf2b5 fix custom_info 2022-12-05 20:22:54 +01:00
Matthias
72472587dd Increase test range for api version test 2022-12-05 20:19:01 +01:00
Matthias
7c27eedda5 Bump API version 2022-12-05 19:56:33 +01:00
Matthias
24edc276ea Simplify new_candle message 2022-12-05 19:46:39 +01:00
Matthias
d30a872ed4 Move message-silencing list next to enum 2022-12-05 19:23:03 +01:00
Matthias
687eefa06e Improve emit_df testcase 2022-12-05 18:19:19 +01:00
Matthias
5e533b550f Emit a simple "new candle" message to allow UI's to refresh charts 2022-12-05 18:19:19 +01:00
Matthias
189fa64052 Add more dynamic to directory change 2022-12-05 18:14:16 +01:00
Emre
730fba956b Ensure base tf included in include_timeframes 2022-12-05 16:16:17 +03:00
Emre
e734b39929 Make model_training_parameters optional 2022-12-05 14:54:42 +03:00
Matthias
b0f430b5ac Merge pull request #7850 from freqtrade/dependabot/pip/develop/pytest-random-order-1.1.0
Bump pytest-random-order from 1.0.4 to 1.1.0
2022-12-05 08:50:52 +01:00
Matthias
261f9ac7dc Merge pull request #7851 from freqtrade/dependabot/pip/develop/ccxt-2.2.67
Bump ccxt from 2.2.36 to 2.2.67
2022-12-05 08:06:16 +01:00
Matthias
80f3908626 Merge pull request #7857 from freqtrade/dependabot/pip/develop/mkdocs-material-8.5.11
Bump mkdocs-material from 8.5.10 to 8.5.11
2022-12-05 08:00:23 +01:00
Matthias
4dfb35c165 Merge pull request #7858 from freqtrade/dependabot/pip/develop/orjson-3.8.3
Bump orjson from 3.8.2 to 3.8.3
2022-12-05 08:00:08 +01:00
Matthias
6e657f9911 Merge pull request #7859 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.6.1
Bump pypa/gh-action-pypi-publish from 1.5.1 to 1.6.1
2022-12-05 06:27:37 +01:00
dependabot[bot]
102ab91fa4 Bump orjson from 3.8.2 to 3.8.3
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.2 to 3.8.3.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.2...3.8.3)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:23:02 +00:00
dependabot[bot]
179adea0e2 Bump ccxt from 2.2.36 to 2.2.67
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.2.36 to 2.2.67.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.2.36...2.2.67)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:22:42 +00:00
Matthias
d456ec7d5e Merge pull request #7856 from freqtrade/dependabot/pip/develop/fastapi-0.88.0
Bump fastapi from 0.87.0 to 0.88.0
2022-12-05 06:22:18 +01:00
Matthias
0bb4f108dd Merge pull request #7853 from freqtrade/dependabot/pip/develop/pandas-1.5.2
Bump pandas from 1.5.1 to 1.5.2
2022-12-05 06:21:46 +01:00
dependabot[bot]
82d4dca183 Bump mkdocs-material from 8.5.10 to 8.5.11
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.5.10 to 8.5.11.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.5.10...8.5.11)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 05:21:15 +00:00
Matthias
cf0e5903c5 Merge pull request #7852 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.9
Bump pymdown-extensions from 9.8 to 9.9
2022-12-05 06:20:23 +01:00
Matthias
4d19f98bef Merge pull request #7855 from freqtrade/dependabot/pip/develop/jsonschema-4.17.3
Bump jsonschema from 4.17.1 to 4.17.3
2022-12-05 06:19:43 +01:00
dependabot[bot]
2eb8f9f028 Bump pypa/gh-action-pypi-publish from 1.5.1 to 1.6.1
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.5.1 to 1.6.1.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.5.1...v1.6.1)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:03:47 +00:00
dependabot[bot]
66bb2c5253 Bump fastapi from 0.87.0 to 0.88.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.87.0 to 0.88.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.87.0...0.88.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:16 +00:00
dependabot[bot]
caae4441e5 Bump jsonschema from 4.17.1 to 4.17.3
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.17.1 to 4.17.3.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.17.1...v4.17.3)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:12 +00:00
dependabot[bot]
441069f363 Bump pandas from 1.5.1 to 1.5.2
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.5.1 to 1.5.2.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/main/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.5.1...v1.5.2)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:01:03 +00:00
dependabot[bot]
16bad8dca6 Bump pymdown-extensions from 9.8 to 9.9
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.8 to 9.9.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.8...9.9)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:00:56 +00:00
dependabot[bot]
133a081a39 Bump pytest-random-order from 1.0.4 to 1.1.0
Bumps [pytest-random-order](https://github.com/jbasko/pytest-random-order) from 1.0.4 to 1.1.0.
- [Release notes](https://github.com/jbasko/pytest-random-order/releases)
- [Commits](https://github.com/jbasko/pytest-random-order/compare/v1.0.4...v1.1.0)

---
updated-dependencies:
- dependency-name: pytest-random-order
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-12-05 03:00:39 +00:00
Robert Caulk
f28b314266 Merge pull request #7849 from smarmau/patch-1
Update freqai-reinforcement-learning.md
2022-12-04 15:17:01 +01:00
robcaulk
d8565261e1 ignore initializer type 2022-12-04 14:10:33 +01:00
robcaulk
24766928ba reorganize/generalize tensorboard callback 2022-12-04 13:54:30 +01:00
Matthias
24d8585c33 Merge pull request #7840 from freqtrade/feature-plot-dir
Add plot_feature_importances output dir to docs
2022-12-04 12:53:44 +01:00
smarmau
f7b4fc5bbc Update freqai-reinforcement-learning.md
Change typo of default Tensorboard port to reflect correct port (6006)
2022-12-04 22:22:23 +11:00
robcaulk
38d3b4cab2 add details to doc plot_feature_importance doc 2022-12-04 11:29:21 +01:00
Matthias
310eba5932 Merge pull request #7735 from freqtrade/gc_improvements
Improve python GC behavior
2022-12-03 15:54:59 +01:00
smarmau
b2edc58089 fix flake8 2022-12-03 22:31:02 +11:00
smarmau
d6f45a12ae add multiproc fix flake8 2022-12-03 22:30:04 +11:00
smarmau
469aa0d43f add state/action info to callbacks 2022-12-03 21:16:46 +11:00
smarmau
075c8c23c8 add state/action info to callbacks 2022-12-03 21:16:04 +11:00
Matthias
0be82b4ed1 Merge pull request #7818 from freqtrade/dependabot/pip/develop/torch-1.13.0
Bump torch from 1.12.1 to 1.13.0
2022-12-02 15:52:34 +01:00
Robert Caulk
7ddf7ec0ae Update freqai-parameter-table.md 2022-12-02 11:28:00 +01:00
Matthias
4dc591a170 Merge pull request #7834 from freqtrade/fix-data-drawer-model-load
Fix sb3_contrib loading issue
2022-12-02 06:29:23 +01:00
Matthias
f2624112b0 Merge pull request #7833 from gaugau3000/develop
binance restricted locations and server location
2022-12-02 06:20:35 +01:00
Matthias
8a078a328e Merge pull request #7836 from freqtrade/fix-fees-rl
fix fees RL
2022-12-02 06:15:20 +01:00
Matthias
05424045b0 Temporarily disable since binance blocks US 2022-12-02 06:12:21 +01:00
Wagner Costa
77dc2c92a7 performance improvevemnts - backtest freqai from saved predictions 2022-12-01 12:53:19 -03:00
robcaulk
aceee67e2b Merge remote-tracking branch 'origin/develop' into gc_improvements 2022-12-01 14:32:19 +01:00
robcaulk
2b3e166dc2 fix fees RL 2022-12-01 10:10:28 +01:00
k
eb81cccede add download-data command
change directory
fix relative config path
2022-12-01 16:37:24 +08:00
Emre
396e666e9b Keep old behavior of model loading 2022-12-01 11:03:51 +03:00
Emre
4a9982f86b Fix sb3_contrib loading issue 2022-12-01 10:08:42 +03:00
Matthias
95651fcd5a Improve/simplify telegram exception handling
Move exceptionhandling to the decorator.
2022-12-01 06:27:25 +01:00
gautier pialat
59c7ce02f5 binance restricted locations and server location
Inform end user before he creates server in a binance restricted location
https://github.com/ccxt/ccxt/issues/15872
2022-11-30 21:29:34 +01:00
Matthias
dac4a35be2 Merge pull request #7828 from freqtrade/fix-state-info-rl
bring back market side setting in get_state_info
2022-11-30 19:57:28 +01:00
Robert Caulk
2bcd8e4e21 Merge pull request #7737 from freqtrade/backtest_fitlivepredictions
FreqAI - Backtesting enhancements and bug fix
2022-11-30 16:51:04 +01:00
Wagner Costa
79821ebb33 fix flake8 errors 2022-11-30 08:41:44 -03:00
robcaulk
e7f72d52b8 bring back market side setting in get_state_info 2022-11-30 12:36:26 +01:00
Wagner Costa
26e8a5766f Merge branch 'develop' into backtest_fitlivepredictions 2022-11-30 08:29:28 -03:00
Wagner Costa
17cf3c7e83 bug fixes and removed fillna from fit_live_predictions 2022-11-30 08:28:45 -03:00
Matthias
915524a161 Merge pull request #7827 from rzhb/patch-2
Update data-analysis.md
2022-11-30 06:45:27 +01:00
rzhb
10a45474e8 Update data-analysis.md
fix typo in code
2022-11-30 12:28:21 +08:00
robcaulk
4571aedb33 consolidate and clean code 2022-11-30 00:53:35 +01:00
Matthias
3c322bf7df Improve forceenter validation messages 2022-11-29 18:27:08 +01:00
Matthias
e6b8cb8ea9 Merge pull request #7795 from froggleston/entry_exit_date_print
Add date selection arguments to backtest-analysis printout
2022-11-29 16:56:58 +01:00
Wagner Costa
8ea58ab352 change BT prediction files to feather format 2022-11-29 10:38:35 -03:00
Wagner Costa
df979ece33 Merge branch 'develop' into backtest_fitlivepredictions 2022-11-29 09:39:15 -03:00
dependabot[bot]
b87545cd12 Bump torch from 1.12.1 to 1.13.0
Bumps [torch](https://github.com/pytorch/pytorch) from 1.12.1 to 1.13.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.12.1...v1.13.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-29 07:46:38 +00:00
Robert Caulk
066d040fd3 Merge pull request #7814 from freqtrade/dependabot/pip/develop/sb3-contrib-1.6.2
Bump sb3-contrib from 1.6.1 to 1.6.2
2022-11-29 08:45:50 +01:00
Matthias
c3daddc629 Merge pull request #7809 from richardjozsa/develop
Improve the RL learning process
2022-11-29 06:28:36 +01:00
Matthias
100d65b20b Merge pull request #7822 from eltociear/patch-1
Fix typo in strategy_analysis_example.md
2022-11-29 06:24:36 +01:00
Matthias
5500c10f78 Improve CI file layout 2022-11-28 20:41:26 +01:00
Matthias
2c75b5e027 Extract "live" test from regular tests 2022-11-28 20:41:26 +01:00
Matthias
8efa8bc78a Update stable-baselines3 to 1.6.2 2022-11-28 19:35:17 +01:00
Matthias
e891c41760 Fix typo in ipynb, too. 2022-11-28 18:20:30 +01:00
Robert Caulk
c9cc87b4ac Merge pull request #7823 from freqtrade/fix/rl-model-type
Set model_type in base RL model
2022-11-28 18:07:36 +01:00
Emre
9cbfa12011 Directly set model_type in base RL model 2022-11-28 16:02:17 +03:00
Robert Davey
05a7fca242 Fix utils docs for backtesting-analysis 2022-11-28 12:12:45 +00:00
Matthias
1cdf5e0cfd Merge pull request #7812 from freqtrade/dependabot/pip/develop/jsonschema-4.17.1
Bump jsonschema from 4.17.0 to 4.17.1
2022-11-28 10:06:12 +01:00
Ikko Ashimine
9880e9ab60 Fix typo in strategy_analysis_example.md
seperate -> separate
2022-11-28 17:10:17 +09:00
Matthias
d67ca27f5e Merge pull request #7817 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.33
Bump prompt-toolkit from 3.0.32 to 3.0.33
2022-11-28 08:12:11 +01:00
dependabot[bot]
dc03317cc8 Bump jsonschema from 4.17.0 to 4.17.1
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.17.0 to 4.17.1.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.17.0...v4.17.1)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 07:02:54 +00:00
Matthias
f7ba1a4348 Merge pull request #7819 from freqtrade/dependabot/pip/develop/cryptography-38.0.4
Bump cryptography from 38.0.1 to 38.0.4
2022-11-28 08:02:22 +01:00
Matthias
98883fc909 Merge pull request #7815 from freqtrade/dependabot/pip/develop/urllib3-1.26.13
Bump urllib3 from 1.26.12 to 1.26.13
2022-11-28 08:01:10 +01:00
Matthias
40b274351c Merge pull request #7813 from freqtrade/dependabot/pip/develop/flake8-6.0.0
Bump flake8 from 5.0.4 to 6.0.0
2022-11-28 08:00:45 +01:00
Matthias
868c2061b7 Merge pull request #7816 from freqtrade/dependabot/pip/develop/pyarrow-10.0.1
Bump pyarrow from 10.0.0 to 10.0.1
2022-11-28 06:40:38 +01:00
Matthias
d73fd42769 Fix flake8 error introduced with 6.0 update 2022-11-28 06:38:35 +01:00
dependabot[bot]
9c28cc810d Bump cryptography from 38.0.1 to 38.0.4
Bumps [cryptography](https://github.com/pyca/cryptography) from 38.0.1 to 38.0.4.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/38.0.1...38.0.4)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 05:33:45 +00:00
Matthias
8e60364f0d Merge pull request #7808 from freqtrade/fix-freqai-rl-reward-link
Fix custom reward function link
2022-11-28 06:33:24 +01:00
Matthias
51e773fe37 Merge pull request #7820 from freqtrade/dependabot/pip/develop/ccxt-2.2.36
Bump ccxt from 2.1.96 to 2.2.36
2022-11-28 06:32:17 +01:00
dependabot[bot]
348731598e Bump ccxt from 2.1.96 to 2.2.36
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.1.96 to 2.2.36.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.1.96...2.2.36)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:01:25 +00:00
dependabot[bot]
a46b09d400 Bump prompt-toolkit from 3.0.32 to 3.0.33
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.32 to 3.0.33.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.32...3.0.33)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:01:01 +00:00
dependabot[bot]
924bbad199 Bump pyarrow from 10.0.0 to 10.0.1
Bumps [pyarrow](https://github.com/apache/arrow) from 10.0.0 to 10.0.1.
- [Release notes](https://github.com/apache/arrow/releases)
- [Commits](https://github.com/apache/arrow/compare/go/v10.0.0...go/v10.0.1)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:58 +00:00
dependabot[bot]
5aec51a16c Bump urllib3 from 1.26.12 to 1.26.13
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.12 to 1.26.13.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.13/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.12...1.26.13)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:55 +00:00
dependabot[bot]
7e75bc8fcf Bump sb3-contrib from 1.6.1 to 1.6.2
Bumps [sb3-contrib](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib) from 1.6.1 to 1.6.2.
- [Release notes](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/releases)
- [Commits](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/compare/v1.6.1...v1.6.2)

---
updated-dependencies:
- dependency-name: sb3-contrib
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:48 +00:00
dependabot[bot]
49e41925b0 Bump flake8 from 5.0.4 to 6.0.0
Bumps [flake8](https://github.com/pycqa/flake8) from 5.0.4 to 6.0.0.
- [Release notes](https://github.com/pycqa/flake8/releases)
- [Commits](https://github.com/pycqa/flake8/compare/5.0.4...6.0.0)

---
updated-dependencies:
- dependency-name: flake8
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-11-28 03:00:42 +00:00
Stefano Ariestasia
f410b1b14d Update metrics.py 2022-11-28 08:56:49 +09:00
Emre
f21dbbd8bb Update imports of custom model 2022-11-28 00:06:02 +03:00
robcaulk
56518def42 isort 2022-11-27 21:06:01 +01:00
robcaulk
7fd6bc526e add randomize_starting_position to the rl_config 2022-11-27 21:03:13 +01:00
robcaulk
25e041b98e sneak in small change to FreqaiExampleHybridStrategy docstring and startup count 2022-11-27 20:50:03 +01:00
richardjozsa
64d4a52a56 Improve the RL learning process
Improve the RL learning process by selecting random start point for the agent, it can help to block the agent to only learn on the selected period of time, while improving the quality of the model.
2022-11-27 20:43:50 +01:00
robcaulk
67d9469277 small wording fix 2022-11-27 20:42:04 +01:00
Emre
a02da08065 Fix typo 2022-11-27 22:23:00 +03:00
Matthias
320535a227 improve tests doc wording 2022-11-27 20:07:44 +01:00
Joe Schr
a85602eb9c add "how to run tests" 2022-11-27 20:07:44 +01:00
Emre
5b5859238b Fix typo 2022-11-27 22:06:14 +03:00
Emre
fe00a65163 FIx custom reward link 2022-11-27 21:34:07 +03:00
Matthias
f4025ee5de Merge pull request #7289 from freqtrade/feat/freqai-rl-dev
Add reinforcement learning module to FreqAI
2022-11-27 17:15:21 +01:00
Matthias
2219d2f491 Merge pull request #7707 from freqtrade/bt/full_detail
backtesting - use full detail timeframe
2022-11-27 16:09:23 +01:00
Matthias
cf000a4c00 Bump develop version to 2022.12-dev 2022-11-27 16:08:54 +01:00
Matthias
e4a3efc7d4 Don't use strategy.stoploss too often
discovered in #7760
2022-11-27 15:54:35 +01:00
Matthias
3fc367f536 Merge pull request #7771 from wizrds/feat/refactor-ws
Refactor WebSocket API for performance
2022-11-27 15:49:34 +01:00
froggleston
1a3f88c7b9 Replace separate start/end date option with usual timerange option 2022-11-27 11:30:13 +00:00
Robert Caulk
732757e087 Merge pull request #7801 from initrv/patch-1
Fix 4ac update_total_profit
2022-11-27 12:29:07 +01:00
stm
51d21b413d Fix 4ac update_total_profit
_update_total_profit() must be executed before "self._position = Positions.Neutral" because _update_total_profit() calls get_unrealized_profit(), which returns 0 if position is neutral and total_profit is not updated
2022-11-26 23:35:20 +03:00
froggleston
706bc9ebea Merge branch 'entry_exit_date_print' of github.com:froggleston/freqtrade into entry_exit_date_print 2022-11-26 16:59:27 +00:00
froggleston
4790aaaae1 Implement cli options for backtesting-analysis date filtering 2022-11-26 16:58:56 +00:00
Robert Davey
e1456e407b Merge branch 'freqtrade:develop' into entry_exit_date_print 2022-11-26 16:53:48 +00:00
Timothy Pogue
a26b3a9ca8 change sleep call back to 0.01 2022-11-26 09:40:22 -07:00
robcaulk
b52f05923a fix list to array in constants.py 2022-11-26 13:47:47 +01:00
robcaulk
be890b52fd remove np import 2022-11-26 13:44:58 +01:00
robcaulk
aaaa5a5f64 add documentation for net_arch, other small changes 2022-11-26 13:44:58 +01:00
Matthias
fcf13580f1 Revert "offload initial df computation to thread"
This reverts commit f268187e9b.
2022-11-26 13:33:54 +01:00
Matthias
7b0a76fb70 Improve typehint 2022-11-26 13:33:26 +01:00
Matthias
7ebc8ee169 Fix missing Optional typehint 2022-11-26 13:32:18 +01:00
Matthias
8660ac9aa0 Fix import in docs 2022-11-26 13:12:44 +01:00
Matthias
cf2f12b472 Headers between Tables -> Tables can be jumped to directly 2022-11-26 13:06:21 +01:00
Matthias
bdfedb5fcb Improve typehints / reduce warnings from mypy 2022-11-26 13:03:07 +01:00
robcaulk
81fd2e588f ensure typing, remove unsued code 2022-11-26 12:11:59 +01:00
robcaulk
8dbfd2cacf improve docstring clarity about how to inherit from ReinforcementLearner, demonstrate inherittance with ReinforcementLearner_multiproc 2022-11-26 11:51:08 +01:00
robcaulk
9f13d99b99 improve parameter table, add better documentation for custom calculate_reward, add various helpful notes in docstrings etc 2022-11-26 11:32:39 +01:00
Timothy Pogue
bd95392eea fix formatted string in warning message :) 2022-11-25 13:10:22 -07:00
Timothy Pogue
4aa4c6f49d change sleep in channel send to 0 2022-11-25 13:08:41 -07:00
Timothy Pogue
f268187e9b offload initial df computation to thread 2022-11-25 12:56:33 -07:00
Timothy Pogue
afc00bc30a log warning if channel too far behind, add docstrings to message stream 2022-11-25 12:48:57 -07:00
froggleston
391817243c Tidy up complex functions 2022-11-25 16:12:15 +00:00
Timothy Pogue
bcc8063eeb Merge branch 'develop' into feat/refactor-ws 2022-11-24 13:42:57 -07:00
Timothy Pogue
fc59b02255 prevent ws endpoint from running without valid token 2022-11-24 13:41:10 -07:00
Timothy Pogue
101dec461e close ws channel if can't accept 2022-11-24 11:35:50 -07:00
robcaulk
2e82e6784a move data_provider cleanup to shutdown() 2022-11-24 19:07:38 +01:00
robcaulk
73c458d47b use importlib instead of __import___ 2022-11-24 19:04:35 +01:00
robcaulk
00d2a01bf0 isort 2022-11-24 18:57:01 +01:00
robcaulk
4894d772ed merge develop into feat/freqai-rl-dev 2022-11-24 18:50:11 +01:00
robcaulk
3a07749fcc fix docstring 2022-11-24 18:46:54 +01:00
robcaulk
8855e36f57 reduce freqai testing time by reducing retrain frequency and number of features 2022-11-24 18:16:33 +01:00
robcaulk
44b042ba51 remove unused function 2022-11-24 17:53:26 +01:00
Matthias
8f1a8c752b Add freqairl docker build process 2022-11-24 07:00:12 +01:00
Matthias
e5fc21f577 Fix broken table rendering 2022-11-23 20:59:45 +01:00
Matthias
3d26659d5e Fix some doc typos 2022-11-23 20:09:55 +01:00
Timothy Pogue
48242ca02b update catch block in cancel channel tasks 2022-11-22 12:43:45 -07:00
Wagner Costa
d09157efb8 update code to use one prediction file / pair 2022-11-22 15:15:42 -03:00
Timothy Pogue
a5442772fc ensure only broadcasting to subscribed topics 2022-11-22 09:42:09 -07:00
Wagner Costa
91779bb28b Merge branch 'develop' into backtest_fitlivepredictions 2022-11-22 13:09:48 -03:00
Wagner Costa
c01f25ddc9 update code to freqai_backtest_live_models only from historic predictions 2022-11-22 13:09:09 -03:00
Timothy Pogue
d9d7df70bf fix tests, log unknown errors 2022-11-21 12:21:40 -07:00
Timothy Pogue
d2870d48ea change typing to async iterator 2022-11-20 16:24:44 -07:00
Timothy Pogue
48a1f2418f update typing, remove unneeded try block, readd sleep 2022-11-20 16:18:24 -07:00
Timothy Pogue
60a167bdef add dynamic send timeout 2022-11-20 14:09:45 -07:00
Timothy Pogue
dc79284c54 Merge branch 'develop' into feat/refactor-ws 2022-11-20 10:05:22 -07:00
Wagner Costa Santos
fdc82af883 fix tests - update code to backtest with historic_predictions 2022-11-19 22:27:58 -03:00
Timothy Pogue
3714d7074b smaller throttle in channel send 2022-11-19 13:29:23 -07:00
Timothy Pogue
c1a73a5512 move sleep call in send, minor cleanup 2022-11-19 13:21:26 -07:00
Wagner Costa Santos
80d070e9ee update code to use historic_predictions for freqai_backtest_live_models 2022-11-19 14:15:58 -03:00
robcaulk
d02da279f8 document the simplifications of the training environment 2022-11-19 13:20:20 +01:00
Wagner Costa Santos
3d3195847c Merge branch 'develop' into backtest_fitlivepredictions 2022-11-18 17:53:34 -03:00
Timothy Pogue
98d87b3ba6 Merge branch 'develop' into feat/refactor-ws 2022-11-18 13:41:22 -07:00
Timothy Pogue
0cb6f71c02 better error handling, true async sending, more readable api 2022-11-18 13:32:27 -07:00
robcaulk
61a859ba4c remove tensorboard req from rl reqs 2022-11-18 17:30:03 +01:00
Timothy Pogue
ba493eb7a7 Merge fix/pd-mem-leak 2022-11-17 16:21:12 -07:00
robcaulk
387c905a86 merge develop into RL 2022-11-17 21:59:07 +01:00
robcaulk
60fcd8dce2 fix skipped mac test, fix RL bug in add_state_info, fix use of __import__, revise doc 2022-11-17 21:50:02 +01:00
robcaulk
91df79ff44 merge dev into backtest-live-predictions 2022-11-17 21:20:47 +01:00
Matthias
b929e0bb2b Merge branch 'develop' into gc_improvements 2022-11-17 19:55:03 +01:00
Wagner Costa Santos
3903b04d3f save_live_data_backtest - added docs and tests 2022-11-17 15:20:07 -03:00
Wagner Costa Santos
99bff9cbfa backtesting_from_live_saved_files - code refactoring 2022-11-17 10:30:51 -03:00
Wagner Costa Santos
913749c81b backtesting_from_live_saved_files - code refactoring 2022-11-17 10:30:16 -03:00
Wagner Costa Santos
b01e4e3dbf change default value - save_live_data_backtest as false 2022-11-17 10:14:30 -03:00
Wagner Costa Santos
1a19d90e2e Merge branch 'develop' into backtest_fitlivepredictions 2022-11-17 10:13:11 -03:00
Timothy Pogue
442467e8ae remove old comments and code 2022-11-14 22:26:34 -07:00
Timothy Pogue
d713af045f remove main queue completely 2022-11-14 22:21:40 -07:00
Timothy Pogue
659c8c237f initial revision 2022-11-14 20:27:45 -07:00
robcaulk
bf4d5b432a ensure model_type is defined 2022-11-13 18:50:25 +01:00
robcaulk
6394ef4558 fix docstrings 2022-11-13 17:43:52 +01:00
robcaulk
c8d3e57712 add note that these environments are designed for short-long bots only. 2022-11-13 17:30:56 +01:00
robcaulk
c76afc255a explain how to choose environments, and how to customize them 2022-11-13 17:26:11 +01:00
robcaulk
96fafb7f56 remove limit_ram_use 2022-11-13 17:14:47 +01:00
robcaulk
b421521be3 help default ReinforcementLearner users by assigning the model_type automatically 2022-11-13 17:12:17 +01:00
robcaulk
90f168d1ff remove more user references. cleanup dataprovider 2022-11-13 17:06:06 +01:00
robcaulk
f8f553ec14 remove references to "the user" 2022-11-13 16:58:36 +01:00
robcaulk
388ca21200 update docs, fix bug in environment 2022-11-13 16:56:31 +01:00
robcaulk
3c249ba994 add doc for data_kitchen_thread_count` 2022-11-13 16:11:14 +01:00
robcaulk
af9e400562 add test coverage, fix bug in base environment. Ensure proper fee is used. 2022-11-13 15:31:37 +01:00
robcaulk
81f800a79b switch to using FT calc_profi_pct, reverse entry/exit fees 2022-11-13 13:41:17 +01:00
robcaulk
e45d791c19 Merge remote-tracking branch 'origin/develop' into feat/freqai-rl-dev 2022-11-13 13:00:16 +01:00
robcaulk
259f87bd40 fix rl test; 2022-11-12 19:01:40 +01:00
robcaulk
e71a8b8ac1 add ability to integrate state info or not, and prevent state info integration during backtesting 2022-11-12 18:46:48 +01:00
Wagner Costa Santos
27fa9f1f4e backtest saved dataframe from live 2022-11-12 14:37:23 -03:00
Matthias
7adca97358 Improve python GC behavior 2022-11-12 15:43:02 +01:00
Wagner Costa Santos
f9c6c538be Merge branch 'develop' into backtest_fitlivepredictions 2022-11-12 09:37:45 -03:00
robcaulk
9c6b97c678 ensure normalization acceleration methods are employed in RL 2022-11-12 12:01:59 +01:00
robcaulk
6746868ea7 store dataprovider to self instead of strategy 2022-11-12 11:33:03 +01:00
robcaulk
6ff0e66ddf ensure strat tests are updated 2022-11-12 11:13:31 +01:00
robcaulk
7a4bb040a5 merge develop into feat/freqai-rl-dev 2022-11-12 10:54:34 +01:00
Wagner Costa Santos
4f0f3e5b64 removed unnecessary code 2022-11-09 10:07:24 -03:00
Wagner Costa Santos
8ee95db927 refactoring backtesting_fit_live_predictions function 2022-11-09 09:51:42 -03:00
Wagner Costa Santos
3e57c18ac6 add fix_live_predictions function to backtesting 2022-11-08 18:20:39 -03:00
Wagner Costa Santos
8d9988a942 enforce date column in backtesting freqai predictions files 2022-11-08 11:06:23 -03:00
Wagner Costa Santos
9c5ba0732a save predictions with date and merge by date 2022-11-08 10:32:18 -03:00
Matthias
2c1330a4e2 Update docs to new behavior 2022-11-06 08:32:27 +01:00
Matthias
ded57fb301 Remove no longer valid test part 2022-11-05 20:32:31 +01:00
Matthias
d089fdae34 Fix current-time_det calculation 2022-11-05 20:02:36 +01:00
Matthias
5bd3e54b17 Add test for detail backtesting 2022-11-05 20:01:05 +01:00
Matthias
0888b53b5a Udpate current_time handling for detail loop 2022-11-05 17:02:27 +01:00
Matthias
29ba263c3c Update some test parameters 2022-11-05 17:02:27 +01:00
Matthias
a11d579bc2 Verify order fills on "detail" timeframe 2022-11-05 17:02:27 +01:00
robcaulk
a2843165e1 fix leftovers from merge 2022-10-30 10:31:38 +01:00
robcaulk
52e15b2070 Merge remote-tracking branch 'origin/develop' into feat/freqai-rl-dev 2022-10-30 10:16:39 +01:00
robcaulk
d1a0874683 merge develop into feat/freqai-rl-dev 2022-10-30 10:13:03 +01:00
Matteo Manzi
51b410ac1a Update utils.md 2022-10-18 19:28:29 +02:00
Matteo Manzi
8c39b37223 Update bug_report.md 2022-10-18 19:26:09 +02:00
Matteo Manzi
35cc6aa966 Update data-analysis.md 2022-10-18 19:25:37 +02:00
Matteo Manzi
67850d92af Update question.md 2022-10-18 19:24:46 +02:00
Matteo Manzi
fe3d99b568 Update feature_request.md 2022-10-18 19:22:49 +02:00
Matteo Manzi
11d6d0be9e Update sql_cheatsheet.md 2022-10-18 19:22:07 +02:00
Matteo Manzi
abcbe7a421 Update updating.md 2022-10-18 19:15:59 +02:00
Matteo Manzi
d427226900 Update docker_quickstart.md 2022-10-18 19:15:20 +02:00
robcaulk
8d7adfabe9 clean RL tests to avoid dir pollution and increase speed 2022-10-08 12:10:38 +02:00
Matthias
3e258e000e Don't set use_db without resetting it 2022-10-07 07:05:56 +02:00
Matthias
b9f1872d51 Install RL dependencies as dev dependency 2022-10-06 08:28:15 +02:00
robcaulk
e5204101d9 add tensorboard back to reqs to keep default integration working (and for docker) 2022-10-05 21:34:10 +02:00
robcaulk
488739424d fix reward inconsistency in template 2022-10-05 20:55:50 +02:00
robcaulk
017e476f49 add extras to setup.py for RL 2022-10-05 17:20:40 +02:00
robcaulk
cf10a76a2a bring back Trades.use_db = True 2022-10-05 17:06:18 +02:00
robcaulk
17fb7f7a3b gym needs 0.21 to match stable_baselines3 2022-10-05 16:46:02 +02:00
robcaulk
ab4705efd2 provide background and goals for RL in doc 2022-10-05 16:39:38 +02:00
robcaulk
b5dd92f85a remove RL reqs from general FAI reqs 2022-10-05 16:25:24 +02:00
robcaulk
9cb4832c87 merge feat/freqai into dev-merge-rl 2022-10-05 16:16:07 +02:00
robcaulk
5cfadc689b Merge remote-tracking branch 'origin/develop' into fix-freqai-rl-remote 2022-10-05 16:05:37 +02:00
robcaulk
936ca24482 separate RL install from general FAI install, update docs 2022-10-05 15:58:54 +02:00
robcaulk
9c73411ac2 Merge remote-tracking branch 'origin/develop' into dev-merge-rl 2022-10-05 15:21:45 +02:00
Robert Caulk
8c7f478724 Update requirements-freqai.txt 2022-10-05 10:59:33 +02:00
Robert Caulk
52b774b5eb Merge branch 'develop' into feat/freqai-rl-dev 2022-10-05 09:37:17 +02:00
robcaulk
292d72d593 automatically handle model_save_type for user 2022-10-03 18:42:20 +02:00
robcaulk
cf882fa84e fix tests 2022-10-01 20:26:41 +02:00
robcaulk
ab9d781b06 add reinforcement learning page to docs 2022-10-01 17:50:05 +02:00
robcaulk
048cb95bd6 Merge remote-tracking branch 'origin/develop' into dev-merge-rl 2022-10-01 17:48:47 +02:00
Robert Caulk
09e834fa21 Merge pull request #7492 from wizrds/freqai-rl-dev
Shutdown Subproc Env on signal
2022-09-30 00:19:44 +02:00
Robert Caulk
6e74d46660 Ensure 1 thread available 2022-09-29 14:02:00 +02:00
Robert Caulk
7ef56e3029 Ensure at least 1 thread is available 2022-09-29 14:01:22 +02:00
Robert Caulk
555cc42630 Ensure 1 thread is available (for testing purposes) 2022-09-29 14:00:09 +02:00
Robert Caulk
dcf6ebe273 Update BaseReinforcementLearningModel.py 2022-09-29 00:37:03 +02:00
robcaulk
83343dc2f1 control number of threads, update doc 2022-09-29 00:10:18 +02:00
Timothy Pogue
099137adac remove hasattr calls 2022-09-27 22:35:15 -06:00
Timothy Pogue
9e36b0d2ea fix formatting 2022-09-27 22:02:33 -06:00
Timothy Pogue
caa47a2f47 close subproc env on shutdown 2022-09-28 03:06:05 +00:00
robcaulk
647200e8a7 isort 2022-09-23 19:30:56 +02:00
robcaulk
77c360b264 improve typing, improve docstrings, ensure global tests pass 2022-09-23 19:17:27 +02:00
robcaulk
9c361f4422 increase test coverage for RL and FreqAI 2022-09-23 18:04:43 +02:00
Robert Caulk
95121550ef Remove unnecessary models, add model arg 2022-09-23 10:37:34 +02:00
Robert Caulk
f7dd3045f7 Parameterize backtesting test 2022-09-23 10:30:52 +02:00
Robert Caulk
f5cd8f62c6 Remove unused code from BaseEnv 2022-09-23 10:24:39 +02:00
robcaulk
1c56fa034f add test_models folder 2022-09-23 09:19:16 +02:00
robcaulk
7295ba0fb2 add test for Base4ActionEnv 2022-09-22 23:42:33 +02:00
robcaulk
f6e9753c99 show advanced users how they can customize agent indepth` 2022-09-22 21:18:09 +02:00
robcaulk
eeebb78a5c skip darwin in RL tests, remove example scripts, improve doc 2022-09-22 21:16:21 +02:00
robcaulk
ea8e34e192 Merge branch 'develop' into dev-merge-rl 2022-09-22 19:46:50 +02:00
robcaulk
7b1d409c98 fix mypy/flake8 2022-09-17 17:51:06 +02:00
robcaulk
d056d766ed make tests pass 2022-09-17 17:46:47 +02:00
robcaulk
025b98decd bring back doc sentence 2022-09-15 01:01:33 +02:00
robcaulk
3b97b3d5c8 fix mypy error for strategy 2022-09-15 00:56:51 +02:00
robcaulk
8aac644009 add tests. add guardrails. 2022-09-15 00:46:35 +02:00
robcaulk
48140bff91 fix bug in 4ActRLEnv 2022-09-14 22:53:53 +02:00
robcaulk
81417cb795 Merge branch 'develop' into dev-merge-rl 2022-09-14 22:49:11 +02:00
robcaulk
69b3fcfd32 Merge branch 'develop' into dev-merge-rl 2022-09-04 11:23:25 +02:00
robcaulk
27dce20b29 fix bug in Base4ActionRLEnv, improve example strats 2022-09-04 11:21:54 +02:00
robcaulk
240b529533 fix tensorboard path so that users can track all historical models 2022-08-31 16:50:39 +02:00
Richard Jozsa
2493e0c8a5 Unnecessary lines in Base4, and changes for box space, to fit better for our needs (#7324) 2022-08-31 16:37:02 +02:00
Richard Jozsa
1a8e1362a1 There was an error in the docs around continual learning and thread count (#7314)
* Error in the docs
2022-08-29 11:15:06 +02:00
robcaulk
67cddae756 fix tensorboard image 2022-08-28 21:00:26 +02:00
robcaulk
af8f308584 start the reinforcement learning doc 2022-08-28 20:52:03 +02:00
robcaulk
7766350c15 refactor environment inheritence tree to accommodate flexible action types/counts. fix bug in train profit handling 2022-08-28 19:21:57 +02:00
robcaulk
8c313b431d remove whitespace from Dockerfile 2022-08-26 11:14:01 +02:00
robcaulk
baa4f8e3d0 remove Base3ActionEnv in favor of Base4Action 2022-08-26 11:04:25 +02:00
richardjozsa
cdc550da9a Revert the docker changes to be inline with the original freqtrade image
Reverted the changes, and added a new way of doing, Dockerfile.freqai with that file the users can make their own dockerimage.
2022-08-26 11:04:25 +02:00
richardjozsa
d31926efdf Added Base4Action 2022-08-26 11:04:25 +02:00
robcaulk
3199eb453b reduce code for base use-case, ensure multiproc inherits custom env, add ability to limit ram use. 2022-08-25 19:05:51 +02:00
robcaulk
05ccebf9a1 automate eval freq in multiproc 2022-08-25 12:29:48 +02:00
robcaulk
94cfc8e63f fix multiproc callback, add continual learning to multiproc, fix totalprofit bug in env, set eval_freq automatically, improve default reward 2022-08-25 11:46:18 +02:00
robcaulk
d1bee29b1e improve default reward, fix bugs in environment 2022-08-24 18:32:40 +02:00
robcaulk
a61821e1c6 remove monitor log 2022-08-24 16:33:13 +02:00
robcaulk
bd870e2331 fix monitor bug, set default values in case user doesnt set params 2022-08-24 16:32:14 +02:00
robcaulk
c0cee5df07 add continual retraining feature, handly mypy typing reqs, improve docstrings 2022-08-24 13:00:55 +02:00
robcaulk
b708134c1a switch multiproc thread count to rl_config definition 2022-08-24 13:00:55 +02:00
robcaulk
b26ed7dea4 fix generic reward, add time duration to reward 2022-08-24 13:00:55 +02:00
robcaulk
280a1dc3f8 add live rate, add trade duration 2022-08-24 13:00:55 +02:00
robcaulk
f9a49744e6 add strategy to the freqai object 2022-08-24 13:00:55 +02:00
richardjozsa
a2a4bc05db Fix the state profit calculation logic 2022-08-24 13:00:55 +02:00
robcaulk
29f0e01c4a expose environment reward parameters to the user config 2022-08-24 13:00:55 +02:00
robcaulk
d88a0dbf82 add sb3_contrib models to the available agents. include sb3_contrib in requirements. 2022-08-24 13:00:55 +02:00
robcaulk
8b3a8234ac fix env bug, allow example strat to short 2022-08-24 13:00:55 +02:00
mrzdev
8cd4daad0a Feat/freqai rl dev (#7)
* access trades through get_trades_proxy method to allow backtesting
2022-08-24 13:00:55 +02:00
robcaulk
3eb897c2f8 reuse callback, allow user to acces all stable_baselines3 agents via config 2022-08-24 13:00:55 +02:00
robcaulk
4b9499e321 improve nomenclature and fix short exit bug 2022-08-24 13:00:55 +02:00
sonnhfit
4baa36bdcf fix persist a single training environment for PPO 2022-08-24 13:00:55 +02:00
robcaulk
f95602f6bd persist a single training environment. 2022-08-24 13:00:55 +02:00
robcaulk
5d4e5e69fe reinforce training with state info, reinforce prediction with state info, restructure config to accommodate all parameters from any user imported model type. Set 5Act to default env on TDQN. Clean example config. 2022-08-24 13:00:55 +02:00
sonnhfit
7962a1439b remove keep low profit 2022-08-24 13:00:55 +02:00
sonnhfit
81b5aa66e8 make env keep current position when low profit 2022-08-24 13:00:55 +02:00
sonnhfit
45218faeb0 fix coding convention 2022-08-24 13:00:55 +02:00
richardjozsa
d55092ff17 Docker building update, and TDQN repair with the newer release of SB+ 2022-08-24 13:00:55 +02:00
robcaulk
74e4fd0633 ensure config example can work with backtesting RL 2022-08-24 13:00:55 +02:00
robcaulk
b90da46b1b improve price df handling to enable backtesting 2022-08-24 13:00:55 +02:00
MukavaValkku
2080ff86ed 5ac base fixes in logic 2022-08-24 13:00:55 +02:00
robcaulk
16cec7dfbd fix save/reload functionality for stablebaselines 2022-08-24 13:00:55 +02:00
sonnhfit
0475b7cb18 remove unuse code and fix coding conventions 2022-08-24 13:00:55 +02:00
MukavaValkku
d60a166fbf multiproc TDQN with xtra callbacks 2022-08-24 13:00:55 +02:00
robcaulk
dd382dd370 add monitor to eval env so that multiproc can save best_model 2022-08-24 13:00:55 +02:00
robcaulk
69d542d3e2 match config and strats to upstream freqai 2022-08-24 13:00:55 +02:00
robcaulk
e5df39e891 ensuring best_model is placed in ram and saved to disk and loaded from disk 2022-08-24 13:00:55 +02:00
robcaulk
bf7ceba958 set cpu threads in config 2022-08-24 13:00:55 +02:00
MukavaValkku
57c488a6f1 learning_rate + multicpu changes 2022-08-24 13:00:55 +02:00
MukavaValkku
48bb51b458 example config added 2022-08-24 13:00:55 +02:00
MukavaValkku
b1fc5a06ca example config added 2022-08-24 13:00:55 +02:00
sonnhfit
6d8e838a8f update tensorboard dependency 2022-08-24 13:00:55 +02:00
robcaulk
acf3484e88 add multiprocessing variant of ReinforcementLearningPPO 2022-08-24 13:00:55 +02:00
MukavaValkku
cf0731095f type fix 2022-08-24 13:00:55 +02:00
MukavaValkku
1c81ec6016 3ac and 5ac example strategies 2022-08-24 13:00:55 +02:00
MukavaValkku
13cd18dc9a PPO policy change + verbose=1 2022-08-24 13:00:55 +02:00
robcaulk
926023935f make base 3ac and base 5ac environments. TDQN defaults to 3AC. 2022-08-24 13:00:55 +02:00
MukavaValkku
096533bcb9 3ac to 5ac 2022-08-24 13:00:55 +02:00
MukavaValkku
718c9d0440 action fix 2022-08-24 13:00:55 +02:00
robcaulk
9c78e6c26f base PPO model only customizes reward for 3AC 2022-08-24 13:00:55 +02:00
robcaulk
6048f60f13 get TDQN working with 5 action environment 2022-08-24 13:00:55 +02:00
robcaulk
d4db5c3281 ensure TDQN class is properly named 2022-08-24 13:00:55 +02:00
robcaulk
91683e1dca restructure RL so that user can customize environment 2022-08-24 13:00:55 +02:00
sonnhfit
ecd1f55abc add rl module 2022-08-24 13:00:55 +02:00
sonnhfit
70b25461f0 add rl dependency 2022-08-24 13:00:55 +02:00
MukavaValkku
9b895500b3 initial commit - new dev branch 2022-08-24 13:00:55 +02:00
MukavaValkku
cd3fe44424 callback function and TDQN model added 2022-08-24 13:00:55 +02:00
MukavaValkku
01232e9a1f callback function and TDQN model added 2022-08-24 13:00:55 +02:00
MukavaValkku
8eeaab2746 add reward function 2022-08-24 13:00:55 +02:00
MukavaValkku
ec813434f5 ReinforcementLearningModel 2022-08-24 13:00:55 +02:00
MukavaValkku
2f4d73eb06 Revert "ReinforcementLearningModel"
This reverts commit 4d8dfe1ff1daa47276eda77118ddf39c13512a85.
2022-08-24 13:00:55 +02:00
MukavaValkku
c1e7db3130 ReinforcementLearningModel 2022-08-24 13:00:55 +02:00
robcaulk
05ed1b544f Working base for reinforcement learning model 2022-08-24 13:00:40 +02:00
202 changed files with 14524 additions and 9086 deletions

View File

@@ -20,7 +20,7 @@ Please do not use bug reports to request new features.
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.

View File

@@ -18,7 +18,7 @@ Have you search for this feature before requesting it? It's highly likely that a
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Describe the enhancement

View File

@@ -18,7 +18,7 @@ Please do not use the question template to report bugs or to request new feature
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Your question

View File

@@ -66,12 +66,6 @@ jobs:
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
if: matrix.python-version != '3.9' || matrix.os != 'ubuntu-22.04'
- name: Tests incl. ccxt compatibility tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04'
- name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
@@ -94,7 +88,7 @@ jobs:
run: |
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
freqtrade hyperopt --datadir tests/testdata -e 6 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Flake8
run: |
@@ -154,6 +148,19 @@ jobs:
if: runner.os == 'macOS'
run: |
brew update
# homebrew fails to update python due to unlinking failures
# https://github.com/actions/runner-images/issues/6817
rm /usr/local/bin/2to3 || true
rm /usr/local/bin/2to3-3.11 || true
rm /usr/local/bin/idle3 || true
rm /usr/local/bin/idle3.11 || true
rm /usr/local/bin/pydoc3 || true
rm /usr/local/bin/pydoc3.11 || true
rm /usr/local/bin/python3 || true
rm /usr/local/bin/python3.11 || true
rm /usr/local/bin/python3-config || true
rm /usr/local/bin/python3.11-config || true
brew install hdf5 c-blosc
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
@@ -310,9 +317,66 @@ jobs:
details: Freqtrade doc test failed!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.9"
- name: Cache_dependencies
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@v3
if: runner.os == 'Linux'
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: TA binary *nix
if: steps.cache.outputs.cache-hit != 'true'
run: |
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e .
- name: Tests incl. ccxt compatibility tests
env:
CI_WEB_PROXY: http://152.67.78.211:13128
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
# Notify only once - when CI completes (and after deploy) in case it's successfull
notify-complete:
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ]
needs: [
build_linux,
build_macos,
build_windows,
docs_check,
mypy_version_check,
pre-commit,
build_linux_online
]
runs-on: ubuntu-22.04
# Discord notification can't handle schedule events
if: (github.event_name != 'schedule')
@@ -361,7 +425,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
@@ -369,7 +433,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__

View File

@@ -8,16 +8,16 @@ repos:
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v0.942"
rev: "v0.991"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.2.1
- types-filelock==3.2.7
- types-requests==2.28.11.5
- types-requests==2.28.11.8
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.4
- types-python-dateutil==2.8.19.6
# stages: [push]
- repo: https://github.com/pycqa/isort

View File

@@ -1,6 +1,7 @@
# ![freqtrade](https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docs/assets/freqtrade_poweredby.svg)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04864/status.svg)](https://doi.org/10.21105/joss.04864)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Documentation](https://readthedocs.org/projects/freqtrade/badge/)](https://www.freqtrade.io)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)

View File

@@ -7,11 +7,13 @@ export DOCKER_BUILDKIT=1
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
TAG_FREQAI_RL_ARM=${TAG_FREQAI_RL}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@@ -41,9 +43,11 @@ docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker tag freqtrade:$TAG_FREQAI_RL_ARM ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -58,6 +62,7 @@ docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
docker push ${CACHE_IMAGE}:$TAG_ARM
# Create multi-arch image
@@ -65,17 +70,21 @@ docker push ${CACHE_IMAGE}:$TAG_ARM
# Otherwise installation might fail.
echo "create manifests"
docker manifest create --amend ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest create ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI}
docker manifest push -p ${IMAGE_NAME}:${TAG}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM} ${CACHE_IMAGE}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
echo 'Tagging image as latest'
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:latest
fi

View File

@@ -6,6 +6,7 @@
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
@@ -25,7 +26,10 @@ if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} --push .
-t ${IMAGE_NAME}:${TAG_PI} \
--push \
--provenance=false \
.
else
echo "event ${GITHUB_EVENT_NAME}: building with cache"
# Build regular image
@@ -34,12 +38,16 @@ else
# Pull last build to avoid rebuilding the whole image
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
# disable provenance due to https://github.com/docker/buildx/issues/1509
docker buildx build \
--cache-from=type=registry,ref=${CACHE_TAG} \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} --push .
-t ${IMAGE_NAME}:${TAG_PI} \
--push \
--provenance=false \
.
fi
if [ $? -ne 0 ]; then
@@ -51,9 +59,11 @@ docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_FREQAI} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI
docker tag freqtrade:$TAG_FREQAI_RL ${CACHE_IMAGE}:$TAG_FREQAI_RL
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -65,11 +75,10 @@ fi
docker images
docker push ${CACHE_IMAGE}
docker push ${CACHE_IMAGE}:$TAG
docker push ${CACHE_IMAGE}:$TAG_PLOT
docker push ${CACHE_IMAGE}:$TAG_FREQAI
docker push ${CACHE_IMAGE}:$TAG
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL
docker images

View File

@@ -59,20 +59,6 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -56,20 +56,6 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -21,8 +21,8 @@
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
"1INCH/USDT",
"ALGO/USDT"
"1INCH/USDT:USDT",
"ALGO/USDT:USDT"
],
"pair_blacklist": []
},
@@ -60,8 +60,8 @@
"1h"
],
"include_corr_pairlist": [
"BTC/USDT",
"ETH/USDT"
"BTC/USDT:USDT",
"ETH/USDT:USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,
@@ -79,9 +79,7 @@
"test_size": 0.33,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 1000
}
"model_training_parameters": {}
},
"bot_name": "",
"force_entry_enable": true,

View File

@@ -64,20 +64,6 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -0,0 +1,8 @@
ARG sourceimage=freqtradeorg/freqtrade
ARG sourcetag=develop_freqai
FROM ${sourceimage}:${sourcetag}
# Install dependencies
COPY requirements-freqai.txt requirements-freqai-rl.txt /freqtrade/
RUN pip install -r requirements-freqai-rl.txt --user --no-cache-dir

View File

@@ -32,7 +32,7 @@ To analyze the entry/exit tags, we now need to use the `freqtrade backtesting-an
with `--analysis-groups` option provided with space-separated arguments (default `0 1 2`):
``` bash
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4 5
```
This command will read from the last backtesting results. The `--analysis-groups` option is
@@ -43,6 +43,7 @@ ranging from the simplest (0) to the most detailed per pair, per buy and per sel
* 2: profit summaries grouped by enter_tag and exit_tag
* 3: profit summaries grouped by pair and enter_tag
* 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
* 5: profit summaries grouped by exit_tag
More options are available by running with the `-h` option.
@@ -100,3 +101,17 @@ freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 2 --enter-re
The indicators have to be present in your strategy's main DataFrame (either for your main
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.
### Filtering the trade output by date
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
```
--timerange : Timerange to filter output trades, start date inclusive, end date exclusive. e.g. 20220101-20221231
```
For example, if your backtest timerange was `20220101-20221231` but you only want to output trades in January:
```bash
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```

View File

@@ -75,7 +75,7 @@ This function needs to return a floating point number (`float`). Smaller numbers
## Overriding pre-defined spaces
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`, `max_open_trades_space`), define a nested class called Hyperopt and define the required spaces as follows:
```python
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
@@ -123,6 +123,12 @@ class MyAwesomeStrategy(IStrategy):
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
# Define a custom max_open_trades space
def max_open_trades_space(self) -> List[Dimension]:
return [
Integer(-1, 10, name='max_open_trades'),
]
```
!!! Note

View File

@@ -300,7 +300,11 @@ A backtesting result will look like that:
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy | -0.15 |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -400,7 +404,11 @@ It contains some useful key metrics about performance of your strategy on backte
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy | -0.15 |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -447,6 +455,9 @@ It contains some useful key metrics about performance of your strategy on backte
- `Absolute profit`: Profit made in stake currency.
- `Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital Starting capital) / Starting capital`.
- `CAGR %`: Compound annual growth rate.
- `Sortino`: Annualized Sortino ratio.
- `Sharpe`: Annualized Sharpe ratio.
- `Calmar`: Annualized Calmar ratio.
- `Profit factor`: profit / loss.
- `Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
- `Total trade volume`: Volume generated on the exchange to reach the above profit.
@@ -583,7 +594,8 @@ To utilize this, you can append `--timeframe-detail 5m` to your regular backtest
freqtrade backtesting --strategy AwesomeStrategy --timeframe 1h --timeframe-detail 5m
```
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe - and for every "open trade candle" (candles where a trade is open) the 5m data will be used to simulate intra-candle movements.
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe, and Entry orders will only be placed at the main timeframe, however Order fills and exit signals will be evaluated at the 5m candle, simulating intra-candle movements.
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.

View File

@@ -75,3 +75,7 @@ This loop will be repeated again and again until the bot is stopped.
!!! Note
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
!!! Warning "Callback call frequency"
Backtesting will call each callback at max. once per candle (`--timeframe-detail` modifies this behavior to once per detailed candle).
Most callbacks will be called once per iteration in live (usually every ~5s) - which can cause backtesting mismatches.

View File

@@ -11,7 +11,7 @@ Per default, the bot loads the configuration from the `config.json` file, locate
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
If you used the [Quick start](installation.md/#quick-start) method for installing
If you used the [Quick start](docker_quickstart.md#docker-quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
@@ -134,7 +134,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| Parameter | Description |
|------------|-------------|
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
@@ -263,6 +263,7 @@ Values set in the configuration file always overwrite values set in the strategy
* `minimal_roi`
* `timeframe`
* `stoploss`
* `max_open_trades`
* `trailing_stop`
* `trailing_stop_positive`
* `trailing_stop_positive_offset`

View File

@@ -5,7 +5,7 @@ You can analyze the results of backtests and trading history easily using Jupyte
## Quick start with docker
Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command: `docker-compose -f docker/docker-compose-jupyter.yml up`
You can run this server using the following command: `docker compose -f docker/docker-compose-jupyter.yml up`
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
Please use the link that's printed in the console after startup for simplified login.
@@ -83,7 +83,7 @@ from pathlib import Path
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
os.chdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):

View File

@@ -49,6 +49,13 @@ For more information about the [Remote container extension](https://code.visuals
New code should be covered by basic unittests. Depending on the complexity of the feature, Reviewers may request more in-depth unittests.
If necessary, the Freqtrade team can assist and give guidance with writing good tests (however please don't expect anyone to write the tests for you).
#### How to run tests
Use `pytest` in root folder to run all available testcases and confirm your local environment is setup correctly
!!! Note "feature branches"
Tests are expected to pass on the `develop` and `stable` branches. Other branches may be work in progress with tests not working yet.
#### Checking log content in tests
Freqtrade uses 2 main methods to check log content in tests, `log_has()` and `log_has_re()` (to check using regex, in case of dynamic log-messages).

View File

@@ -4,20 +4,22 @@ This page explains how to run the bot with Docker. It is not meant to work out o
## Install Docker
Start by downloading and installing Docker CE for your platform:
Start by downloading and installing Docker / Docker Desktop for your platform:
* [Mac](https://docs.docker.com/docker-for-mac/install/)
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
!!! Info "Docker compose install"
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
## Freqtrade with docker-compose
## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
!!! Note
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user.
- The following section assumes that `docker` is installed and available to the logged in user.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start
@@ -31,13 +33,13 @@ cd ft_userdata/
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image
docker-compose pull
docker compose pull
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
docker compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
docker compose run --rm freqtrade new-config --config user_data/config.json
```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
@@ -64,7 +66,7 @@ The `SampleStrategy` is run by default.
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
docker-compose up -d
docker compose up -d
```
!!! Warning "Default configuration"
@@ -84,27 +86,27 @@ You can now access the UI by typing localhost:8080 in your browser.
#### Monitoring the bot
You can check for running instances with `docker-compose ps`.
You can check for running instances with `docker compose ps`.
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
#### Docker-compose logs
#### Docker compose logs
Logs will be written to: `user_data/logs/freqtrade.log`.
You can also check the latest log with the command `docker-compose logs -f`.
You can also check the latest log with the command `docker compose logs -f`.
#### Database
The database will be located at: `user_data/tradesv3.sqlite`
#### Updating freqtrade with docker-compose
#### Updating freqtrade with docker
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands:
Updating freqtrade when using `docker` is as simple as running the following 2 commands:
``` bash
# Download the latest image
docker-compose pull
docker compose pull
# Restart the image
docker-compose up -d
docker compose up -d
```
This will first pull the latest image, and will then restart the container with the just pulled version.
@@ -116,43 +118,43 @@ This will first pull the latest image, and will then restart the container with
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
All freqtrade arguments will be available by running `docker compose run --rm freqtrade <command> <optional arguments>`.
!!! Warning "`docker-compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead.
!!! Warning "`docker compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker compose run` - but should use `docker compose up -d` instead.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
!!! Note "`docker-compose run --rm`"
!!! Note "`docker compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose"
"`docker-compose run --rm`" will require a compose file to be provided.
??? Note "Using docker without docker"
"`docker compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose
#### Example: Download data with docker
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
docker compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
#### Example: Backtest with docker-compose
#### Example: Backtest with docker
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
docker compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
```
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
### Additional dependencies with docker-compose
### Additional dependencies with docker
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
@@ -166,15 +168,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
dockerfile: "./Dockerfile.<yourextension>"
```
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above.
You can then run `docker compose build --pull` to build the docker image, and run it using the commands described above.
### Plotting with docker-compose
### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
You can then use these commands as follows:
``` bash
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
docker compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
```
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
@@ -185,7 +187,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command:
``` bash
docker-compose -f docker/docker-compose-jupyter.yml up
docker compose -f docker/docker-compose-jupyter.yml up
```
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
@@ -194,7 +196,7 @@ Please use the link that's printed in the console after startup for simplified l
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
``` bash
docker-compose -f docker/docker-compose-jupyter.yml build --no-cache
docker compose -f docker/docker-compose-jupyter.yml build --no-cache
```
## Troubleshooting

View File

@@ -54,6 +54,9 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
!!! Tip "Stoploss on Exchange"
@@ -72,6 +75,25 @@ Binance has been split into 2, and users must use the correct ccxt exchange ID f
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
### Binance RSA keys
Freqtrade supports binance RSA API keys.
We recommend to use them as environment variable.
``` bash
export FREQTRADE__EXCHANGE__SECRET="$(cat ./rsa_binance.private)"
```
They can however also be configured via configuration file. Since json doesn't support multi-line strings, you'll have to replace all newlines with `\n` to have a valid json file.
``` json
// ...
"key": "<someapikey>",
"secret": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBABACAFQA<...>s8KX8=\n-----END PRIVATE KEY-----"
// ...
```
### Binance Futures
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.

View File

@@ -26,10 +26,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
},
"data_split_parameters" : {
"test_size": 0.25
},
"model_training_parameters" : {
"n_estimators": 100
},
}
}
```
@@ -46,116 +43,113 @@ The FreqAI strategy requires including the following lines of code in the standa
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the model will return all labels created by user in `populate_any_indicators`
# the model will return all labels created by user in `set_freqai_labels()`
# (& appended targets), an indication of whether or not the prediction should be accepted,
# the target mean/std values for each of the labels created by user in
# `populate_any_indicators()` for each training period.
# `feature_engineering_*` for each training period.
dataframe = self.freqai.start(dataframe, metadata, self)
return dataframe
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e. user should not prepend any supporting metrics
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
return dataframe
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
def feature_engineering_expand_basic(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
All features must be prepended with `%` to be recognized by FreqAI internals.
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
:param df: strategy dataframe which will receive the features
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
)
return df
```
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice also the location of the labels under `if set_generalized_indicators:` at the bottom of the example. This is where single features and labels/targets should be added to the feature set to avoid duplication of them from various configuration parameters that multiply the feature set, such as `include_timeframes`.
Notice how the `feature_engineering_*()` is where [features](freqai-feature-engineering.md#feature-engineering) are added. Meanwhile `set_freqai_targets()` adds the labels/targets. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
!!! Note
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
!!! Note
Features **must** be defined in `populate_any_indicators()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, the following structure inside `populate_any_indicators()` should be used
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
```python
def populate_any_indicators(self, pair, df, tf, informative=None, set_generalized_indicators=False):
...
# Add generalized indicators here (because in live, it will call only this function to populate
# indicators for retraining). Notice how we ensure not to add them multiple times by associating
# these generalized indicators to the basepair/timeframe
if set_generalized_indicators:
df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7
df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
```
Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`.
Features **must** be defined in `feature_engineering_*()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, you should use `feature_engineering_standard()`
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`).
## Important dataframe key patterns
@@ -163,11 +157,11 @@ Below are the values you can expect to include/use inside a typical strategy dat
| DataFrame Key | Description |
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
## Setting the `startup_candle_count`
@@ -182,7 +176,7 @@ The `startup_candle_count` in the FreqAI strategy needs to be set up in the same
## Creating a dynamic target threshold
Deciding when to enter or exit a trade can be done in a dynamic way to reflect current market conditions. FreqAI allows you to return additional information from the training of a model (more info [here](freqai-feature-engineering.md#returning-additional-info-from-training)). For example, the `&*_std/mean` return values describe the statistical distribution of the target/label *during the most recent training*. Comparing a given prediction to these values allows you to know the rarity of the prediction. In `templates/FreqaiExampleStrategy.py`, the `target_roi` and `sell_roi` are defined to be 1.25 z-scores away from the mean which causes predictions that are closer to the mean to be filtered out.
Deciding when to enter or exit a trade can be done in a dynamic way to reflect current market conditions. FreqAI allows you to return additional information from the training of a model (more info [here](freqai-feature-engineering.md#returning-additional-info-from-training)). For example, the `&*_std/mean` return values describe the statistical distribution of the target/label *during the most recent training*. Comparing a given prediction to these values allows you to know the rarity of the prediction. In `templates/FreqaiExampleStrategy.py`, the `target_roi` and `sell_roi` are defined to be 1.25 z-scores away from the mean which causes predictions that are closer to the mean to be filtered out.
```python
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
@@ -230,7 +224,7 @@ If you want to predict multiple targets, you need to define multiple labels usin
#### Classifiers
If you are using a classifier, you need to specify a target that has discrete values. FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example, if you want to predict if the price 100 candles into the future goes up or down you would set
If you are using a classifier, you need to specify a target that has discrete values. FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example, if you want to predict if the price 100 candles into the future goes up or down you would set
```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')

View File

@@ -2,96 +2,130 @@
## Defining the features
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%-{pair}`, while labels/targets are prepended with `&`.
Low level feature engineering is performed in the user strategy within a set of functions called `feature_engineering_*`. These function set the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. FreqAI is equipped with a set of functions to simplify rapid large-scale feature engineering:
!!! Note
Adding the full pair string, e.g. XYZ/USD, in the feature name enables improved performance for dataframe caching on the backend. If you decide *not* to add the full pair string in the feature string, FreqAI will operate in a reduced performance mode.
| Function | Description |
|---------------|-------------|
| `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g. day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
It is advisable to start from the template `populate_any_indicators()` in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
It is advisable to start from the template `feature_engineering_*` functions in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
```python
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
"""
Function designed to automatically generate, name, and merge features
from user-indicated timeframes in the configuration file. The user controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e., the user should not prepend any supporting metrics
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"]
- dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = (
dataframe["close"] / dataframe["bb_lowerband-period"]
)
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
def feature_engineering_expand_basic(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
)
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{pair}bb_width-period_{t}"] = (
informative[f"{pair}bb_upperband-period_{t}"]
- informative[f"{pair}bb_lowerband-period_{t}"]
) / informative[f"{pair}bb_middleband-period_{t}"]
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
)
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
return df
return dataframe
```
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
@@ -118,13 +152,13 @@ After having defined the `base features`, the next step is to expand upon them u
}
```
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `populate_any_indicators()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `feature_engineering_expand_*()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `feature_engineering_expand_*()` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
### Returning additional info from training

View File

@@ -4,32 +4,40 @@ The table below will list all configuration parameters available for FreqAI. Som
Mandatory parameters are marked as **Required** and have to be set in one of the suggested ways.
### General configuration parameters
| Parameter | Description |
|------------|-------------|
| | **General configuration parameters**
| | **General configuration parameters within the `config.freqai` tree**
| `freqai` | **Required.** <br> The parent dictionary containing all the parameters for controlling FreqAI. <br> **Datatype:** Dictionary.
| `train_period_days` | **Required.** <br> Number of days to use for the training data (width of the sliding window). <br> **Datatype:** Positive integer.
| `backtest_period_days` | **Required.** <br> Number of days to inference from the trained model before sliding the `train_period_days` window defined above, and retraining the model during backtesting (more info [here](freqai-running.md#backtesting)). This can be fractional days, but beware that the provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br> **Datatype:** Float.
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Delete obsolete models. <br> **Datatype:** Boolean. <br> Default: `False` (all historic models remain on disk).
| `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
| | **Feature parameters**
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
### Feature parameters
| Parameter | Description |
|------------|-------------|
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br> **Datatype:** Dictionary.
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
| `include_timeframes` | A list of timeframes that all indicators in `feature_engineering_expand_*()` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `feature_engineering_expand_*()` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `feature_engineering_expand_all()` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br> **Datatype:** Positive float (typically < 1).
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `feature_engineering_*()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. <br> **Datatype:** Integer. <br> Default: `0`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
@@ -38,16 +46,49 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| | **Data split parameters**
### Data split parameters
| Parameter | Description |
|------------|-------------|
| | **Data split parameters within the `freqai.data_split_parameters` sub dictionary**
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`.
| | **Model training parameters**
### Model training parameters
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. A list of the currently available models can be found [here](freqai-configuration.md#using-different-prediction-models). <br> **Datatype:** Dictionary.
| `n_estimators` | The number of boosted trees to fit in the training of the model. <br> **Datatype:** Integer.
| `learning_rate` | Boosting learning rate during training of the model. <br> **Datatype:** Float.
| `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br> **Datatype:** Float.
### Reinforcement Learning parameters
| Parameter | Description |
|------------|-------------|
| | **Reinforcement Learning Parameters within the `freqai.rl_config` sub dictionary**
| `rl_config` | A dictionary containing the control parameters for a Reinforcement Learning model. <br> **Datatype:** Dictionary.
| `train_cycles` | Training time steps will be set based on the `train_cycles * number of training data points. <br> **Datatype:** Integer.
| `cpu_count` | Number of processors to dedicate to the Reinforcement Learning training process. <br> **Datatype:** int.
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the customizable `calculate_reward()` function. <br> **Datatype:** int.
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentaiton. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). Recommended to leave this untouched, by default, this value is set to the total number of physical cores minus 1. <br> **Datatype:** int.
| `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
### Additional parameters
| Parameter | Description |
|------------|-------------|
| | **Extraneous parameters**
| `keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.

View File

@@ -0,0 +1,256 @@
# Reinforcement Learning
!!! Note "Installation size"
Reinforcement learning dependencies include large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqairl`.
## Background and terminology
### What is RL and why does FreqAI need it?
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-a-custom-reward-function)). The reward is used to train weights in a neural network.
A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.*
Reinforcement learning is a natural progression for FreqAI, since it adds a new layer of adaptivity and market reactivity that Classifiers and Regressors cannot match. However, Classifiers and Regressors have strengths that RL does not have such as robust predictions. Improperly trained RL agents may find "cheats" and "tricks" to maximize reward without actually winning any trades. For this reason, RL is more complex and demands a higher level of understanding than typical Classifiers and Regressors.
### The RL interface
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-a-custom-reward-function).
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
```bash
freqtrade trade --freqaimodel ReinforcementLearner --strategy MyRLStrategy --config config.json
```
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `feature_engineering_*` as a typical Regressor. The difference lies in the creation of the targets, Reinforcement Learning doesn't require them. However, FreqAI requires a default (neutral) value to be set in the action column:
```python
def set_freqai_targets(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
# For RL, there are no direct targets to set. This is filler (neutral)
# until the agent sends an action.
dataframe["&-action"] = 0
```
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
```python
def feature_engineering_standard(self, dataframe, **kwargs):
# The following features are necessary for RL models
dataframe[f"%-raw_close"] = dataframe["close"]
dataframe[f"%-raw_open"] = dataframe["open"]
dataframe[f"%-raw_high"] = dataframe["high"]
dataframe[f"%-raw_low"] = dataframe["low"]
```
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
```python
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3]
if enter_short_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
] = (1, "short")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2]
if exit_long_conditions:
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4]
if exit_short_conditions:
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
return df
```
It is important to consider that `&-action` depends on which environment they choose to use. The example above shows 5 actions, where 0 is neutral, 1 is enter long, 2 is exit long, 3 is enter short and 4 is exit short.
## Configuring the Reinforcement Learner
In order to configure the `Reinforcement Learner` the following dictionary must exist in the `freqai` config:
```json
"rl_config": {
"train_cycles": 25,
"add_state_info": true,
"max_trade_duration_candles": 300,
"max_training_drawdown_pct": 0.02,
"cpu_count": 8,
"model_type": "PPO",
"policy_type": "MlpPolicy",
"model_reward_parameters": {
"rr": 1,
"profit_aim": 0.025
}
}
```
Parameter details can be found [here](freqai-parameter-table.md), but in general the `train_cycles` decides how many times the agent should cycle through the candle data in its artificial environment to train weights in the model. `model_type` is a string which selects one of the available models in [stable_baselines](https://stable-baselines3.readthedocs.io/en/master/)(external link).
!!! Note
If you would like to experiment with `continual_learning`, then you should set that value to `true` in the main `freqai` configuration dictionary. This will tell the Reinforcement Learning library to continue training new models from the final state of previous models, instead of retraining new models from scratch each time a retrain is initiated.
!!! Note
Remember that the general `model_training_parameters` dictionary should contain all the model hyperparameter customizations for the particular `model_type`. For example, `PPO` parameters can be found [here](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html).
## Creating a custom reward function
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but users are encouraged to create their own custom reinforcement learning model class (see below) and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
```python
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
class MyCoolRLModel(ReinforcementLearner):
"""
User created RL prediction model.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100
# reward agent for entering trades
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
and self._position == Positions.Neutral:
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
```
### Using Tensorboard
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
### Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```py
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
### Choosing a base environment
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
* the actions available in the `calculate_reward`
* the actions consumed by the user strategy
All of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
!!! Note
Only the `Base3ActionRLEnv` can do long-only training/trading (set the user strategy attribute `can_short = False`).

View File

@@ -67,6 +67,10 @@ Backtesting mode requires [downloading the necessary data](#downloading-data-to-
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
This way, you can return to using any model you wish by simply specifying the `identifier`.
!!! Note
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire backtest timerange. This means that you should be sure that features do look-ahead into the future.
More details about look-ahead bias can be found in [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies).
---
### Saving prediction data
@@ -79,16 +83,11 @@ To change your **features**, you **must** set a new `identifier` in the config t
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
### Backtest live models
### Backtest live collected predictions
FreqAI allow you to reuse ready models through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse models generated in dry/run for comparison or other study. For that, you must set `"purge_old_models"` to `True` in the config.
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the training end dates of the models.
Each model has an identifier derived from the training end date. If you have only 1 model trained, FreqAI will backtest from the training end date until the current date. If you have more than 1 model, each model will perform the backtesting according to the training end date until the training end date of the next model and so on. For the last model, the period of the previous model will be used for the execution.
!!! Note
Currently, there is no checking for expired models, even if the `expired_hours` parameter is set.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
### Downloading data to cover the full backtest period
@@ -140,7 +139,7 @@ freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy FreqaiExampleSt
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
- It's not possible to hyperopt indicators in the `populate_any_indicators()` function. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- It's not possible to hyperopt indicators in the `feature_engineering_*()` and `set_freqai_targets()` functions. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- The backtesting instructions also apply to hyperopt.
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.

View File

@@ -72,11 +72,25 @@ pip install -r requirements-freqai.txt
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
### Citing FreqAI
FreqAI is [published in the Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.04864). If you find FreqAI useful in your research, please use the following citation:
```bibtex
@article{Caulk2022,
doi = {10.21105/joss.04864},
url = {https://doi.org/10.21105/joss.04864},
year = {2022}, publisher = {The Open Journal},
volume = {7}, number = {80}, pages = {4864},
author = {Robert A. Caulk and Elin Törnquist and Matthias Voppichler and Andrew R. Lawless and Ryan McMullan and Wagner Costa Santos and Timothy C. Pogue and Johan van der Vlugt and Stefan P. Gehring and Pascal Schmidt},
title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts},
journal = {Journal of Open Source Software} }
```
## Common pitfalls
FreqAI cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
@@ -99,6 +113,8 @@ Code review and software architecture brainstorming:
Software development:
Wagner Costa @wagnercosta
Emre Suzen @aemr3
Timothy Pogue @wizrds
Beta testing and bug reporting:
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza

View File

@@ -50,7 +50,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--eps] [--dmmp] [--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]]
[--print-all] [--no-color] [--print-json] [-j JOBS]
[--random-state INT] [--min-trades INT]
[--hyperopt-loss NAME] [--disable-param-export]
@@ -96,7 +96,7 @@ optional arguments:
Specify detail timeframe for backtesting (`1m`, `5m`,
`30m`, `1h`, `1d`).
-e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]
--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]
Specify which parameters to hyperopt. Space-separated
list.
--print-all Print all results, not only the best ones.
@@ -180,6 +180,7 @@ Rarely you may also need to create a [nested class](advanced-hyperopt.md#overrid
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
* `max_open_trades_space` - for custom max_open_trades optimization (if you need the ranges for the max_open_trades parameter in the optimization hyperspace that differ from default)
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
@@ -365,7 +366,7 @@ class MyAwesomeStrategy(IStrategy):
timeframe = '15m'
minimal_roi = {
"0": 0.10
},
}
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
@@ -400,7 +401,7 @@ class MyAwesomeStrategy(IStrategy):
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions = []
conditions.append(qtpylib.crossed_above(
dataframe[f'ema_long_{self.buy_ema_long.value}'], dataframe[f'ema_short_{self.buy_ema_short.value}']
))
@@ -643,6 +644,7 @@ Legal values are:
* `roi`: just optimize the minimal profit table for your strategy
* `stoploss`: search for the best stoploss value
* `trailing`: search for the best trailing stop values
* `trades`: search for the best max open trades values
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
* `default`: `all` except `trailing` and `protection`
* space-separated list of any of the above values for example `--spaces roi stoploss`
@@ -916,5 +918,5 @@ Once the optimized strategy has been implemented into your strategy, you should
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
Should results not match, please double-check to make sure you transferred all conditions correctly.
Pay special care to the stoploss (and trailing stoploss) parameters, as these are often set in configuration files, which override changes to the strategy.
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss` or `trailing_stop`).
Pay special care to the stoploss, max_open_trades and trailing stoploss parameters, as these are often set in configuration files, which override changes to the strategy.
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss`, `max_open_trades` or `trailing_stop`).

View File

@@ -23,6 +23,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list)
* [`ProducerPairList`](#producerpairlist)
* [`RemotePairList`](#remotepairlist)
* [`AgeFilter`](#agefilter)
* [`OffsetFilter`](#offsetfilter)
* [`PerformanceFilter`](#performancefilter)
@@ -173,6 +174,48 @@ You can limit the length of the pairlist with the optional parameter `number_ass
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
#### RemotePairList
It allows the user to fetch a pairlist from a remote server or a locally stored json file within the freqtrade directory, enabling dynamic updates and customization of the trading pairlist.
The RemotePairList is defined in the pairlists section of the configuration settings. It uses the following configuration options:
```json
"pairlists": [
{
"method": "RemotePairList",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"bearer_token": "my-bearer-token"
}
]
```
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
```json
{
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
"refresh_period": 1800,
}
```
The `pairs` property should contain a list of strings with the trading pairs to be used by the bot. The `refresh_period` property is optional and specifies the number of seconds that the pairlist should be cached before being refreshed.
The optional `keep_pairlist_on_failure` specifies whether the previous received pairlist should be used if the remote server is not reachable or returns an error. The default value is true.
The optional `read_timeout` specifies the maximum amount of time (in seconds) to wait for a response from the remote source, The default value is 60.
The optional `bearer_token` will be included in the requests Authorization Header.
!!! Note
In case of a server error the last received pairlist will be kept if `keep_pairlist_on_failure` is set to true, when set to false a empty pairlist is returned.
#### AgeFilter
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).

View File

@@ -1,6 +1,7 @@
![freqtrade](assets/freqtrade_poweredby.svg)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04864/status.svg)](https://doi.org/10.21105/joss.04864)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)

View File

@@ -67,8 +67,6 @@ You will also have to pick a "margin mode" (explanation below) - with freqtrade
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/en/latest/manual.html?#perpetual-swap-perpetual-future).
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
Binance is currently still an exception to this naming scheme, where pairs are named `ETH/USDT` also for futures markets, but will be aligned as soon as CCXT is ready.
### Margin mode
On top of `trading_mode` - you will also have to configure your `margin_mode`.
@@ -92,6 +90,8 @@ One account is used to share collateral between markets (trading pairs). Margin
"margin_mode": "cross"
```
Please read the [exchange specific notes](exchanges.md) for exchanges that support this mode and how they differ.
## Set leverage to use
Different strategies and risk profiles will require different levels of leverage.

View File

@@ -11,9 +11,6 @@
{% endif %}
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" {{ hidden }}>
<div class="md-sidebar__scrollwrap">
<div id="widget-wrapper">
</div>
<div class="md-sidebar__inner">
{% include "partials/nav.html" %}
</div>
@@ -44,25 +41,4 @@
<script src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Load binance SDK -->
<script async defer src="https://public.bnbstatic.com/static/js/broker-sdk/broker-sdk@1.0.0.min.js"></script>
<script>
window.onload = function () {
var sidebar = document.getElementById('widget-wrapper')
var newDiv = document.createElement("div");
newDiv.id = "widget";
try {
sidebar.prepend(newDiv);
window.binanceBrokerPortalSdk.initBrokerSDK('#widget', {
apiHost: 'https://www.binance.com',
brokerId: 'R4BD3S82',
slideTime: 4e4,
});
} catch(err) {
console.log(err)
}
}
</script>
{% endblock %}

View File

@@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==8.5.10
mkdocs-material==9.0.5
mdx_truly_sane_lists==1.3
pymdown-extensions==9.8
pymdown-extensions==9.9.1
jinja2==3.1.2

View File

@@ -13,12 +13,12 @@ Feel free to use a visual Database editor like SqliteBrowser if you feel more co
sudo apt-get install sqlite3
```
### Using sqlite3 via docker-compose
### Using sqlite3 via docker
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
``` bash
docker-compose exec freqtrade /bin/bash
docker compose exec freqtrade /bin/bash
sqlite3 <database-file>.sqlite
```

View File

@@ -80,7 +80,7 @@ class AwesomeStrategy(IStrategy):
## Enter Tag
When your strategy has multiple buy signals, you can name the signal that triggered.
Then you can access you buy signal on `custom_exit`
Then you can access your buy signal on `custom_exit`
```python
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:

View File

@@ -659,6 +659,7 @@ Position adjustments will always be applied in the direction of the trade, so a
!!! Warning "Backtesting"
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
This can also cause deviating results between live and backtesting, since backtesting can adjust the trade only once per candle, whereas live could adjust the trade multiple times per candle.
``` python
from freqtrade.persistence import Trade
@@ -773,7 +774,7 @@ class DigDeeperStrategy(IStrategy):
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% <- *This will be the last "Exit" message*
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).
@@ -827,7 +828,7 @@ class AwesomeStrategy(IStrategy):
"""
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10) > trade.open_date_utc:
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10)) > trade.open_date_utc:
# just cancel the order if it has been filled more than half of the amount
if order.filled > order.remaining:
return None

View File

@@ -363,9 +363,9 @@ class AwesomeStrategy(IStrategy):
timeframe = "1d"
timeframe_mins = timeframe_to_minutes(timeframe)
minimal_roi = {
"0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles
"0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3): 0.02, # 2% after 3 candles
str(timeframe_mins * 6): 0.01, # 1% After 6 candles
}
```
@@ -989,38 +989,18 @@ from freqtrade.persistence import Trade
The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=1),
Trade.is_open.is_(False),
]).order_by(Trade.close_date).all()
# Summarize profit for this pair.
curdayprofit = sum(trade.close_profit for trade in trades)
trades = Trade.get_trades_proxy(pair=metadata['pair'],
open_date=datetime.now(timezone.utc) - timedelta(days=1),
is_open=False,
]).order_by(Trade.close_date).all()
# Summarize profit for this pair.
curdayprofit = sum(trade.close_profit for trade in trades)
```
Get amount of stake_currency currently invested in Trades:
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
total_stakes = Trade.total_open_trades_stakes()
```
Retrieve performance per pair.
Returns a List of dicts per pair.
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
``` json
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
```
For a full list of available methods, please consult the [Trade object](trade-object.md) documentation.
!!! Warning
Trade history is not available during backtesting or hyperopt.
Trade history is not available in `populate_*` methods during backtesting or hyperopt, and will result in empty results.
## Prevent trades from happening for a specific pair

View File

@@ -2,12 +2,37 @@
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
## Setup
### Change Working directory to repository root
```python
import os
from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
### Configure Freqtrade environment
```python
from freqtrade.configuration import Configuration
# Customize these according to your needs.
@@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally (recommended), use existing configuration file
# config = Configuration.from_files(["config.json"])
# config = Configuration.from_files(["user_data/config.json"])
# Define some constants
config["timeframe"] = "5m"
# Name of the strategy class
config["strategy"] = "SampleStrategy"
# Location of the data
data_location = config['datadir']
data_location = config["datadir"]
# Pair to analyze - Only use one pair here
pair = "BTC/USDT"
```
@@ -36,12 +61,12 @@ from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "hdf5",
data_format = "json", # Make sure to update this to your data
candle_type=CandleType.SPOT,
)
# Confirm success
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}")
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
candles.head()
```
@@ -232,7 +257,7 @@ graph = generate_candlestick_graph(pair=pair,
# Show graph inline
# graph.show()
# Render graph in a seperate window
# Render graph in a separate window
graph.show(renderer="browser")
```

View File

@@ -477,3 +477,254 @@ after:
"ignore_buying_expired_candle_after": 120
}
```
## FreqAI strategy
The `populate_any_indicators()` method has been split into `feature_engineering_expand_all()`, `feature_engineering_expand_basic()`, `feature_engineering_standard()` and`set_freqai_targets()`.
For each new function, the pair (and timeframe where necessary) will be automatically added to the column.
As such, the definition of features becomes much simpler with the new logic.
For a full explanation of each method, please go to the corresponding [freqAI documentation page](freqai-feature-engineering.md#defining-the-features)
``` python linenums="1" hl_lines="12-37 39-42 63-65 67-75"
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
)
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{pair}bb_width-period_{t}"] = (
informative[f"{pair}bb_upperband-period_{t}"]
- informative[f"{pair}bb_lowerband-period_{t}"]
) / informative[f"{pair}bb_middleband-period_{t}"]
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
)
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
) # (1)
informative[f"%-{pair}pct-change"] = informative["close"].pct_change()
informative[f"%-{pair}raw_volume"] = informative["volume"]
informative[f"%-{pair}raw_price"] = informative["close"]
# (2)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# (3)
# user adds targets here by prepending them with &- (see convention below)
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
) # (4)
return df
```
1. Features - Move to `feature_engineering_expand_all`
2. Basic features, not expanded across `include_periods_candles` - move to`feature_engineering_expand_basic()`.
3. Standard features which should not be expanded - move to `feature_engineering_standard()`.
4. Targets - Move this part to `set_freqai_targets()`.
### freqai - feature engineering expand all
Features will now expand automatically. As such, the expansion loops, as well as the `{pair}` / `{timeframe}` parts will need to be removed.
``` python linenums="1"
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"]
- dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = (
dataframe["close"] / dataframe["bb_lowerband-period"]
)
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
```
### Freqai - feature engineering basic
Basic features. Make sure to remove the `{pair}` part from your features.
``` python linenums="1"
def feature_engineering_expand_basic(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
```
### FreqAI - feature engineering standard
``` python linenums="1"
def feature_engineering_standard(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the features
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
```
### FreqAI - set Targets
Targets now get their own, dedicated method.
``` python linenums="1"
def set_freqai_targets(self, dataframe, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
)
return dataframe
```

View File

@@ -11,18 +11,3 @@
.rst-versions .rst-other-versions {
color: white;
}
#widget-wrapper {
height: calc(220px * 0.5625 + 18px);
width: 220px;
margin: 0 auto 16px auto;
border-style: solid;
border-color: var(--md-code-bg-color);
border-width: 1px;
border-radius: 5px;
}
@media screen and (max-width: calc(76.25em - 1px)) {
#widget-wrapper { display: none; }
}

148
docs/trade-object.md Normal file
View File

@@ -0,0 +1,148 @@
# Trade Object
## Trade
A position freqtrade enters is stored in a `Trade` object - which is persisted to the database.
It's a core concept of freqtrade - and something you'll come across in many sections of the documentation, which will most likely point you to this location.
It will be passed to the strategy in many [strategy callbacks](strategy-callbacks.md). The object passed to the strategy cannot be modified directly. Indirect modifications may occur based on callback results.
## Trade - Available attributes
The following attributes / properties are available for each individual trade - and can be used with `trade.<property>` (e.g. `trade.pair`).
| Attribute | DataType | Description |
|------------|-------------|-------------|
`pair`| string | Pair of this trade
`is_open`| boolean | Is the trade currently open, or has it been concluded
`open_rate`| float | Rate this trade was entered at (Avg. entry rate in case of trade-adjustments)
`close_rate`| float | Close rate - only set when is_open = False
`stake_amount`| float | Amount in Stake (or Quote) currency.
`amount`| float | Amount in Asset / Base currency that is currently owned.
`open_date`| datetime | Timestamp when trade was opened **use `open_date_utc` instead**
`open_date_utc`| datetime | Timestamp when trade was opened - in UTC
`close_date`| datetime | Timestamp when trade was closed **use `close_date_utc` instead**
`close_date_utc`| datetime | Timestamp when trade was closed - in UTC
`close_profit`| float | Relative profit at the time of trade closure. `0.01` == 1%
`close_profit_abs`| float | Absolute profit (in stake currency) at the time of trade closure.
`leverage` | float | Leverage used for this trade - defaults to 1.0 in spot markets.
`enter_tag`| string | Tag provided on entry via the `enter_tag` column in the dataframe
`is_short` | boolean | True for short trades, False otherwise
`orders` | Order[] | List of order objects attached to this trade (includes both filled and cancelled orders)
`date_last_filled_utc` | datetime | Time of the last filled order
`entry_side` | "buy" / "sell" | Order Side the trade was entered
`exit_side` | "buy" / "sell" | Order Side that will result in a trade exit / position reduction.
`trade_direction` | "long" / "short" | Trade direction in text - long or short.
`nr_of_successful_entries` | int | Number of successful (filled) entry orders
`nr_of_successful_exits` | int | Number of successful (filled) exit orders
## Class methods
The following are class methods - which return generic information, and usually result in an explicit query against the database.
They can be used as `Trade.<method>` - e.g. `open_trades = Trade.get_open_trade_count()`
!!! Warning "Backtesting/hyperopt"
Most methods will work in both backtesting / hyperopt and live/dry modes.
During backtesting, it's limited to usage in [strategy callbacks](strategy-callbacks.md). Usage in `populate_*()` methods is not supported and will result in wrong results.
### get_trades_proxy
When your strategy needs some information on existing (open or close) trades - it's best to use `Trade.get_trades_proxy()`.
Usage:
``` python
from freqtrade.persistence import Trade
from datetime import timedelta
# ...
trade_hist = Trade.get_trades_proxy(pair='ETH/USDT', is_open=False, open_date=current_date - timedelta(days=2))
```
`get_trades_proxy()` supports the following keyword arguments. All arguments are optional - calling `get_trades_proxy()` without arguments will return a list of all trades in the database.
* `pair` e.g. `pair='ETH/USDT'`
* `is_open` e.g. `is_open=False`
* `open_date` e.g. `open_date=current_date - timedelta(days=2)`
* `close_date` e.g. `close_date=current_date - timedelta(days=5)`
### get_open_trade_count
Get the number of currently open trades
``` python
from freqtrade.persistence import Trade
# ...
open_trades = Trade.get_open_trade_count()
```
### get_total_closed_profit
Retrieve the total profit the bot has generated so far.
Aggregates `close_profit_abs` for all closed trades.
``` python
from freqtrade.persistence import Trade
# ...
profit = Trade.get_total_closed_profit()
```
### total_open_trades_stakes
Retrieve the total stake_amount that's currently in trades.
``` python
from freqtrade.persistence import Trade
# ...
profit = Trade.total_open_trades_stakes()
```
### get_overall_performance
Retrieve the overall performance - similar to the `/performance` telegram command.
``` python
from freqtrade.persistence import Trade
# ...
if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
``` json
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
```
## Order Object
An `Order` object represents an order on the exchange (or a simulated order in dry-run mode).
An `Order` object will always be tied to it's corresponding [`Trade`](#trade-object), and only really makes sense in the context of a trade.
### Order - Available attributes
an Order object is typically attached to a trade.
Most properties here can be None as they are dependant on the exchange response.
| Attribute | DataType | Description |
|------------|-------------|-------------|
`trade` | Trade | Trade object this order is attached to
`ft_pair` | string | Pair this order is for
`ft_is_open` | boolean | is the order filled?
`order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss
`status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled
`side` | string | Buy or Sell
`price` | float | Price the order was placed at
`average` | float | Average price the order filled at
`amount` | float | Amount in base currency
`filled` | float | Filled amount (in base currency)
`remaining` | float | Remaining amount
`cost` | float | Cost of the order - usually average * filled
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
`order_date_utc` | datetime | Order creation date (in UTC)
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
`order_fill_date_utc` | datetime | Order fill date

View File

@@ -6,14 +6,14 @@ To update your freqtrade installation, please use one of the below methods, corr
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
For the develop branch, please follow PR's to avoid being surprised by changes.
## docker-compose
## docker
!!! Note "Legacy installations using the `master` image"
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
``` bash
docker-compose pull
docker-compose up -d
docker compose pull
docker compose up -d
```
## Installation via setup script

View File

@@ -652,7 +652,7 @@ Common arguments:
You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
You can use `docker compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated:
@@ -662,7 +662,7 @@ Alternatively, you can reconfigure the docker-compose file to have the command u
--config /freqtrade/user_data/config.json
```
You can now use `docker-compose up` to start the webserver.
You can now use `docker compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip
@@ -722,6 +722,7 @@ usage: freqtrade backtesting-analysis [-h] [-v] [--logfile FILE] [-V]
[--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]]
[--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]]
[--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]]
[--timerange YYYYMMDD-[YYYYMMDD]]
optional arguments:
-h, --help show this help message and exit
@@ -744,6 +745,10 @@ optional arguments:
--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]
Comma separated list of indicators to analyse. e.g.
'close,rsi,bb_lowerband,profit_abs'
--timerange YYYYMMDD-[YYYYMMDD]
Timerange to filter trades for analysis,
start inclusive, end exclusive. e.g.
20220101-20220201
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@@ -1,19 +1,20 @@
""" Freqtrade bot """
__version__ = '2022.11'
__version__ = '2023.1'
if 'dev' in __version__:
from pathlib import Path
try:
import subprocess
freqtrade_basedir = Path(__file__).parent
__version__ = __version__ + '-' + subprocess.check_output(
['git', 'log', '--format="%h"', '-n 1'],
stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
stderr=subprocess.DEVNULL, cwd=freqtrade_basedir).decode("utf-8").rstrip().strip('"')
except Exception: # pragma: no cover
# git not available, ignore
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
from pathlib import Path
versionfile = Path('./freqtrade_commit')
if versionfile.is_file():
__version__ = f"docker-{__version__}-{versionfile.read_text()[:8]}"

View File

@@ -60,10 +60,4 @@ def start_analysis_entries_exits(args: Dict[str, Any]) -> None:
logger.info('Starting freqtrade in analysis mode')
process_entry_exit_reasons(config['exportfilename'],
config['exchange']['pair_whitelist'],
config['analysis_groups'],
config['enter_reason_list'],
config['exit_reason_list'],
config['indicator_list']
)
process_entry_exit_reasons(config)

View File

@@ -106,7 +106,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
"disableparamexport", "backtest_breakdown"]
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list"]
"exit_reason_list", "indicator_list", "timerange"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",

View File

@@ -251,7 +251,8 @@ AVAILABLE_CLI_OPTIONS = {
"spaces": Arg(
'--spaces',
help='Specify which parameters to hyperopt. Space-separated list.',
choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'protection', 'default'],
choices=['all', 'buy', 'sell', 'roi', 'stoploss',
'trailing', 'protection', 'trades', 'default'],
nargs='+',
default='default',
),
@@ -632,10 +633,11 @@ AVAILABLE_CLI_OPTIONS = {
"1: by enter_tag, "
"2: by enter_tag and exit_tag, "
"3: by pair and enter_tag, "
"4: by pair, enter_ and exit_tag (this can get quite large)"),
"4: by pair, enter_ and exit_tag (this can get quite large), "
"5: by exit_tag"),
nargs='+',
default=['0', '1', '2'],
choices=['0', '1', '2', '3', '4'],
choices=['0', '1', '2', '3', '4', '5'],
),
"enter_reason_list": Arg(
"--enter-reason-list",

View File

@@ -14,6 +14,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, timeframe_to_minutes
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
from freqtrade.resolvers import ExchangeResolver
from freqtrade.util.binance_mig import migrate_binance_futures_data
logger = logging.getLogger(__name__)
@@ -86,6 +87,7 @@ def start_download_data(args: Dict[str, Any]) -> None:
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
)
migrate_binance_futures_data(config)
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
@@ -145,6 +147,7 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
migrate_binance_futures_data(config)
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
for candle_type in candle_types:
convert_ohlcv_format(config,

View File

@@ -355,6 +355,13 @@ def _validate_freqai_include_timeframes(conf: Dict[str, Any]) -> None:
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
# Ensure that the base timeframe is included in the include_timeframes list
if main_tf not in freqai_include_timeframes:
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
include_timeframes = [main_tf] + freqai_include_timeframes
conf.get('freqai', {}).get('feature_parameters', {}) \
.update({**feature_parameters, 'include_timeframes': include_timeframes})
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:

View File

@@ -28,7 +28,7 @@ class Configuration:
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
"""
def __init__(self, args: Dict[str, Any], runmode: RunMode = None) -> None:
def __init__(self, args: Dict[str, Any], runmode: Optional[RunMode] = None) -> None:
self.args = args
self.config: Optional[Config] = None
self.runmode = runmode
@@ -462,6 +462,9 @@ class Configuration:
self._args_to_config(config, argname='indicator_list',
logstring='Analysis indicator list: {}')
self._args_to_config(config, argname='timerange',
logstring='Filter trades by timerange: {}')
def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run',

View File

@@ -6,7 +6,7 @@ import re
import sys
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import rapidjson
@@ -75,7 +75,8 @@ def load_config_file(path: str) -> Dict[str, Any]:
return config
def load_from_files(files: List[str], base_path: Path = None, level: int = 0) -> Dict[str, Any]:
def load_from_files(
files: List[str], base_path: Optional[Path] = None, level: int = 0) -> Dict[str, Any]:
"""
Recursively load configuration files if specified.
Sub-files are assumed to be relative to the initial config.

View File

@@ -31,7 +31,7 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss',
'ProfitDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList',
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', 'RemotePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
@@ -61,6 +61,7 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
ENV_VAR_PREFIX = 'FREQTRADE__'
@@ -578,9 +579,27 @@ CONF_SCHEMA = {
},
},
"model_training_parameters": {
"type": "object"
},
"rl_config": {
"type": "object",
"properties": {
"n_estimators": {"type": "integer", "default": 1000}
"train_cycles": {"type": "integer"},
"max_trade_duration_candles": {"type": "integer"},
"add_state_info": {"type": "boolean", "default": False},
"max_training_drawdown_pct": {"type": "number", "default": 0.02},
"cpu_count": {"type": "integer", "default": 1},
"model_type": {"type": "string", "default": "PPO"},
"policy_type": {"type": "string", "default": "MlpPolicy"},
"net_arch": {"type": "array", "default": [128, 128]},
"randomize_startinng_position": {"type": "boolean", "default": False},
"model_reward_parameters": {
"type": "object",
"properties": {
"rr": {"type": "number", "default": 1},
"profit_aim": {"type": "number", "default": 0.025}
}
}
},
},
},
@@ -590,9 +609,8 @@ CONF_SCHEMA = {
"backtest_period_days",
"identifier",
"feature_parameters",
"data_split_parameters",
"model_training_parameters"
]
"data_split_parameters"
]
},
},
}
@@ -618,7 +636,6 @@ SCHEMA_TRADE_REQUIRED = [
SCHEMA_BACKTEST_REQUIRED = [
'exchange',
'max_open_trades',
'stake_currency',
'stake_amount',
'dry_run_wallet',
@@ -628,6 +645,7 @@ SCHEMA_BACKTEST_REQUIRED = [
SCHEMA_BACKTEST_REQUIRED_FINAL = SCHEMA_BACKTEST_REQUIRED + [
'stoploss',
'minimal_roi',
'max_open_trades'
]
SCHEMA_MINIMAL_REQUIRED = [
@@ -663,3 +681,4 @@ MakerTaker = Literal['maker', 'taker']
BidAsk = Literal['bid', 'ask']
Config = Dict[str, Any]
IntOrInf = float

View File

@@ -10,7 +10,7 @@ from typing import Any, Dict, List, Optional, Union
import numpy as np
import pandas as pd
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.constants import LAST_BT_RESULT_FN, IntOrInf
from freqtrade.exceptions import OperationalException
from freqtrade.misc import json_load
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
@@ -20,8 +20,8 @@ from freqtrade.persistence import LocalTrade, Trade, init_db
logger = logging.getLogger(__name__)
# Newest format
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'open_rate', 'close_rate',
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'max_stake_amount', 'amount',
'open_date', 'close_date', 'open_rate', 'close_rate',
'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
@@ -90,7 +90,8 @@ def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
return 'hyperopt_results.pickle'
def get_latest_hyperopt_file(directory: Union[Path, str], predef_filename: str = None) -> Path:
def get_latest_hyperopt_file(
directory: Union[Path, str], predef_filename: Optional[str] = None) -> Path:
"""
Get latest hyperopt export based on '.last_result.json'.
:param directory: Directory to search for last result
@@ -193,7 +194,7 @@ def get_backtest_resultlist(dirname: Path):
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: datetime = None) -> Dict[str, Any]:
min_backtest_date: Optional[datetime] = None) -> Dict[str, Any]:
"""
Find existing backtest stats that match specified run IDs and load them.
:param dirname: pathlib.Path object, or string pointing to the file.
@@ -241,6 +242,33 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
return results
def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
"""
Compatibility support for older backtest data.
"""
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = False
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
if 'max_stake_amount' not in df.columns:
df['max_stake_amount'] = df['stake_amount']
if 'orders' not in df.columns:
df['orders'] = None
return df
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
"""
Load backtest data file.
@@ -269,24 +297,7 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
data = data['strategy'][strategy]['trades']
df = pd.DataFrame(data)
if not df.empty:
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = 0
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
if 'orders' not in df.columns:
df['orders'] = None
df = _load_backtest_data_df_compatibility(df)
else:
# old format - only with lists.
@@ -322,7 +333,7 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
max_open_trades: int) -> pd.DataFrame:
max_open_trades: IntOrInf) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps

View File

@@ -9,14 +9,16 @@ from collections import deque
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from pandas import DataFrame, to_timedelta
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
PairWithTimeframe)
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RPCMessageType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager
from freqtrade.util import PeriodicCache
@@ -104,13 +106,15 @@ class DataProvider:
def _emit_df(
self,
pair_key: PairWithTimeframe,
dataframe: DataFrame
dataframe: DataFrame,
new_candle: bool
) -> None:
"""
Send this dataframe as an ANALYZED_DF message to RPC
:param pair_key: PairWithTimeframe tuple
:param data: Tuple containing the DataFrame and the datetime it was cached
:param dataframe: Dataframe to emit
:param new_candle: This is a new candle
"""
if self.__rpc:
self.__rpc.send_msg(
@@ -118,13 +122,18 @@ class DataProvider:
'type': RPCMessageType.ANALYZED_DF,
'data': {
'key': pair_key,
'df': dataframe,
'df': dataframe.tail(1),
'la': datetime.now(timezone.utc)
}
}
)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,
'data': pair_key,
})
def _add_external_df(
def _replace_external_df(
self,
pair: str,
dataframe: DataFrame,
@@ -150,6 +159,85 @@ class DataProvider:
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
def _add_external_df(
self,
pair: str,
dataframe: DataFrame,
last_analyzed: datetime,
timeframe: str,
candle_type: CandleType,
producer_name: str = "default"
) -> Tuple[bool, int]:
"""
Append a candle to the existing external dataframe. The incoming dataframe
must have at least 1 candle.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:returns: False if the candle could not be appended, or the int number of missing candles.
"""
pair_key = (pair, timeframe, candle_type)
if dataframe.empty:
# The incoming dataframe must have at least 1 candle
return (False, 0)
if len(dataframe) >= FULL_DATAFRAME_THRESHOLD:
# This is likely a full dataframe
# Add the dataframe to the dataprovider
self._replace_external_df(
pair,
dataframe,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
if (producer_name not in self.__producer_pairs_df
or pair_key not in self.__producer_pairs_df[producer_name]):
# We don't have data from this producer yet,
# or we don't have data for this pair_key
# return False and 1000 for the full df
return (False, 1000)
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
# CHECK FOR MISSING CANDLES
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
# Remove existing candles that are newer than the incoming first candle
existing_df1 = existing_df[existing_df['date'] < incoming_first]
candle_difference = (incoming_first - local_last) / timeframe_delta
# If the difference divided by the timeframe is 1, then this
# is the candle we want and the incoming data isn't missing any.
# If the candle_difference is more than 1, that means
# we missed some candles between our data and the incoming
# so return False and candle_difference.
if candle_difference > 1:
return (False, candle_difference)
if existing_df1.empty:
appended_df = dataframe
else:
appended_df = append_candles_to_dataframe(existing_df1, dataframe)
# Everything is good, we appended
self._replace_external_df(
pair,
appended_df,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
def get_producer_df(
self,
pair: str,
@@ -193,7 +281,7 @@ class DataProvider:
def historic_ohlcv(
self,
pair: str,
timeframe: str = None,
timeframe: Optional[str] = None,
candle_type: str = ''
) -> DataFrame:
"""
@@ -245,7 +333,7 @@ class DataProvider:
def get_pair_dataframe(
self,
pair: str,
timeframe: str = None,
timeframe: Optional[str] = None,
candle_type: str = ''
) -> DataFrame:
"""
@@ -327,7 +415,7 @@ class DataProvider:
def refresh(self,
pairlist: ListPairsWithTimeframes,
helping_pairs: ListPairsWithTimeframes = None) -> None:
helping_pairs: Optional[ListPairsWithTimeframes] = None) -> None:
"""
Refresh data, called with each cycle
"""
@@ -351,7 +439,7 @@ class DataProvider:
def ohlcv(
self,
pair: str,
timeframe: str = None,
timeframe: Optional[str] = None,
copy: bool = True,
candle_type: str = ''
) -> DataFrame:

View File

@@ -1,11 +1,12 @@
import logging
from pathlib import Path
from typing import List, Optional
import joblib
import pandas as pd
from tabulate import tabulate
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
load_backtest_stats)
from freqtrade.exceptions import OperationalException
@@ -51,7 +52,7 @@ def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_cand
return analysed_trades_dict
def _analyze_candles_and_indicators(pair, trades, signal_candles):
def _analyze_candles_and_indicators(pair, trades: pd.DataFrame, signal_candles: pd.DataFrame):
buyf = signal_candles
if len(buyf) > 0:
@@ -119,7 +120,7 @@ def _do_group_table_output(bigdf, glist):
else:
agg_mask = {'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
'profit_ratio': ['median', 'mean', 'sum']}
agg_cols = ['num_buys', 'profit_abs_sum', 'profit_abs_median',
'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct',
'total_profit_pct']
@@ -140,6 +141,12 @@ def _do_group_table_output(bigdf, glist):
# 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
if g == "4":
group_mask = ['pair', 'enter_reason', 'exit_reason']
# 5: profit summaries grouped by exit_tag
if g == "5":
group_mask = ['exit_reason']
sortcols = ['exit_reason']
if group_mask:
new = bigdf.groupby(group_mask).agg(agg_mask).reset_index()
new.columns = group_mask + agg_cols
@@ -152,37 +159,55 @@ def _do_group_table_output(bigdf, glist):
logger.warning("Invalid group mask specified.")
def _print_results(analysed_trades, stratname, analysis_groups,
enter_reason_list, exit_reason_list,
indicator_list, columns=None):
if columns is None:
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
if timerange:
if timerange.starttype == 'date':
df = df.loc[(df[df_date_col] >= timerange.startdt)]
if timerange.stoptype == 'date':
df = df.loc[(df[df_date_col] < timerange.stopdt)]
return df
bigdf = pd.DataFrame()
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
if enter_reason_list and "all" not in enter_reason_list:
df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list:
df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
return df
def prepare_results(analysed_trades, stratname,
enter_reason_list, exit_reason_list,
timerange=None):
res_df = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
bigdf = pd.concat([bigdf, trades], ignore_index=True)
res_df = pd.concat([res_df, trades], ignore_index=True)
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
res_df = _select_rows_within_dates(res_df, timerange)
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
return res_df
def print_results(res_df, analysis_groups, indicator_list):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(bigdf, analysis_groups)
if enter_reason_list and "all" not in enter_reason_list:
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list:
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
_do_group_table_output(res_df, analysis_groups)
if "all" in indicator_list:
print(bigdf)
print(res_df)
elif indicator_list is not None:
available_inds = []
for ind in indicator_list:
if ind in bigdf:
if ind in res_df:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False)
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
else:
print("\\_ No trades to show")
print("\\No trades to show")
def _print_table(df, sortcols=None, show_index=False):
@@ -201,27 +226,34 @@ def _print_table(df, sortcols=None, show_index=False):
)
def process_entry_exit_reasons(backtest_dir: Path,
pairlist: List[str],
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
enter_reason_list: Optional[List[str]] = ["all"],
exit_reason_list: Optional[List[str]] = ["all"],
indicator_list: Optional[List[str]] = []):
def process_entry_exit_reasons(config: Config):
try:
backtest_stats = load_backtest_stats(backtest_dir)
analysis_groups = config.get('analysis_groups', [])
enter_reason_list = config.get('enter_reason_list', ["all"])
exit_reason_list = config.get('exit_reason_list', ["all"])
indicator_list = config.get('indicator_list', [])
timerange = TimeRange.parse_timerange(None if config.get(
'timerange') is None else str(config.get('timerange')))
backtest_stats = load_backtest_stats(config['exportfilename'])
for strategy_name, results in backtest_stats['strategy'].items():
trades = load_backtest_data(backtest_dir, strategy_name)
trades = load_backtest_data(config['exportfilename'], strategy_name)
if not trades.empty:
signal_candles = _load_signal_candles(backtest_dir)
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
trades, signal_candles)
_print_results(analysed_trades_dict,
strategy_name,
analysis_groups,
enter_reason_list,
exit_reason_list,
indicator_list)
signal_candles = _load_signal_candles(config['exportfilename'])
analysed_trades_dict = _process_candles_and_indicators(
config['exchange']['pair_whitelist'], strategy_name,
trades, signal_candles)
res_df = prepare_results(analysed_trades_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
print_results(res_df,
analysis_groups,
indicator_list)
except ValueError as e:
raise OperationalException(e) from e

View File

@@ -28,8 +28,8 @@ def load_pair_history(pair: str,
fill_up_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
data_format: Optional[str] = None,
data_handler: Optional[IDataHandler] = None,
candle_type: CandleType = CandleType.SPOT
) -> DataFrame:
"""
@@ -69,7 +69,7 @@ def load_data(datadir: Path,
fail_without_data: bool = False,
data_format: str = 'json',
candle_type: CandleType = CandleType.SPOT,
user_futures_funding_rate: int = None,
user_futures_funding_rate: Optional[int] = None,
) -> Dict[str, DataFrame]:
"""
Load ohlcv history data for a list of pairs.
@@ -116,7 +116,7 @@ def refresh_data(*, datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: str = None,
data_format: Optional[str] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
) -> None:
@@ -189,7 +189,7 @@ def _download_pair_history(pair: str, *,
timeframe: str = '5m',
process: str = '',
new_pairs_days: int = 30,
data_handler: IDataHandler = None,
data_handler: Optional[IDataHandler] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
erase: bool = False,
@@ -272,7 +272,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
datadir: Path, trading_mode: str,
timerange: Optional[TimeRange] = None,
new_pairs_days: int = 30, erase: bool = False,
data_format: str = None,
data_format: Optional[str] = None,
prepend: bool = False,
) -> List[str]:
"""

View File

@@ -374,6 +374,21 @@ class IDataHandler(ABC):
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def rename_futures_data(
self, pair: str, new_pair: str, timeframe: str, candle_type: CandleType):
"""
Temporary method to migrate data from old naming to new naming (BTC/USDT -> BTC/USDT:USDT)
Only used for binance to support the binance futures naming unification.
"""
file_old = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
file_new = self._pair_data_filename(self._datadir, new_pair, timeframe, candle_type)
# print(file_old, file_new)
if file_new.exists():
logger.warning(f"{file_new} exists already, can't migrate {pair}.")
return
file_old.rename(file_new)
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
@@ -403,8 +418,8 @@ def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
def get_datahandler(datadir: Path, data_format: Optional[str] = None,
data_handler: Optional[IDataHandler] = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:param data_format: dataformat to use

View File

@@ -1,4 +1,6 @@
import logging
import math
from datetime import datetime
from typing import Dict, Tuple
import numpy as np
@@ -190,3 +192,119 @@ def calculate_cagr(days_passed: int, starting_balance: float, final_balance: flo
:return: CAGR
"""
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
def calculate_expectancy(trades: pd.DataFrame) -> float:
"""
Calculate expectancy
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: expectancy
"""
if len(trades) == 0:
return 0
expectancy = 1
profit_sum = trades.loc[trades['profit_abs'] > 0, 'profit_abs'].sum()
loss_sum = abs(trades.loc[trades['profit_abs'] < 0, 'profit_abs'].sum())
nb_win_trades = len(trades.loc[trades['profit_abs'] > 0])
nb_loss_trades = len(trades.loc[trades['profit_abs'] < 0])
if (nb_win_trades > 0) and (nb_loss_trades > 0):
average_win = profit_sum / nb_win_trades
average_loss = loss_sum / nb_loss_trades
risk_reward_ratio = average_win / average_loss
winrate = nb_win_trades / len(trades)
expectancy = ((1 + risk_reward_ratio) * winrate) - 1
elif nb_win_trades == 0:
expectancy = 0
return expectancy
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
"""
Calculate sortino
:param trades: DataFrame containing trades (requires columns profit_abs)
:return: sortino
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
down_stdev = np.std(trades.loc[trades['profit_abs'] < 0, 'profit_abs'] / starting_balance)
if down_stdev != 0 and not np.isnan(down_stdev):
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -100
# print(expected_returns_mean, down_stdev, sortino_ratio)
return sortino_ratio
def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
"""
Calculate sharpe
:param trades: DataFrame containing trades (requires column profit_abs)
:return: sharpe
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -100
# print(expected_returns_mean, up_stdev, sharp_ratio)
return sharp_ratio
def calculate_calmar(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
"""
Calculate calmar
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: calmar
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'].sum() / starting_balance
days_period = max(1, (max_date - min_date).days)
# adding slippage of 0.1% per trade
# total_profit = total_profit - 0.0005
expected_returns_mean = total_profit / days_period * 100
# calculate max drawdown
try:
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
trades, value_col="profit_abs", starting_balance=starting_balance
)
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * math.sqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -100
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return calmar_ratio

View File

@@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
from freqtrade.enums.state import State

View File

@@ -21,6 +21,7 @@ class RPCMessageType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NEW_CANDLE = 'new_candle'
def __repr__(self):
return self.value
@@ -35,3 +36,6 @@ class RPCRequestType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NO_ECHO_MESSAGES = (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST, RPCMessageType.NEW_CANDLE)

View File

@@ -3,7 +3,6 @@
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex

View File

@@ -1,28 +0,0 @@
""" Bibox exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Bibox(Exchange):
"""
Bibox exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
# fetchCurrencies API point requires authentication for Bibox,
# so switch it off for Freqtrade load_markets()
@property
def _ccxt_config(self) -> Dict:
# Parameters to add directly to ccxt sync/async initialization.
config = {"has": {"fetchCurrencies": False}}
config.update(super()._ccxt_config)
return config

View File

@@ -11,7 +11,7 @@ from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.types import Tickers
from freqtrade.exchange.types import OHLCVResponse, Tickers
from freqtrade.misc import deep_merge_dicts, json_load
@@ -28,10 +28,10 @@ class Binance(Exchange):
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
"l2_limit_range": [5, 10, 20, 50, 100, 500, 1000],
"ccxt_futures_name": "future"
"ccxt_futures_name": "swap"
}
_ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "limit", "market": "market"},
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
"tickers_have_price": False,
}
@@ -112,7 +112,7 @@ class Binance(Exchange):
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
until_ms: Optional[int] = None
) -> Tuple[str, str, str, List]:
) -> OHLCVResponse:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
Does not work for other exchanges, which don't return the earliest data when called with "0"

File diff suppressed because it is too large Load Diff

View File

@@ -3,7 +3,6 @@
Cryptocurrency Exchanges support
"""
import asyncio
import http
import inspect
import logging
from copy import deepcopy
@@ -36,7 +35,7 @@ from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contrac
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.exchange.types import Ticker, Tickers
from freqtrade.exchange.types import OHLCVResponse, Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@@ -45,12 +44,6 @@ from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
logger = logging.getLogger(__name__)
# Workaround for adding samesite support to pre 3.8 python
# Only applies to python3.7, and only on certain exchanges (kraken)
# Replicates the fix from starlette (which is actually causing this problem)
http.cookies.Morsel._reserved["samesite"] = "SameSite" # type: ignore
class Exchange:
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
@@ -474,7 +467,7 @@ class Exchange:
try:
if self._api_async:
self.loop.run_until_complete(
self._api_async.load_markets(reload=reload))
self._api_async.load_markets(reload=reload, params={}))
except (asyncio.TimeoutError, ccxt.BaseError) as e:
logger.warning('Could not load async markets. Reason: %s', e)
@@ -483,7 +476,7 @@ class Exchange:
def _load_markets(self) -> None:
""" Initialize markets both sync and async """
try:
self._markets = self._api.load_markets()
self._markets = self._api.load_markets(params={})
self._load_async_markets()
self._last_markets_refresh = arrow.utcnow().int_timestamp
if self._ft_has['needs_trading_fees']:
@@ -501,7 +494,7 @@ class Exchange:
return None
logger.debug("Performing scheduled market reload..")
try:
self._markets = self._api.load_markets(reload=True)
self._markets = self._api.load_markets(reload=True, params={})
# Also reload async markets to avoid issues with newly listed pairs
self._load_async_markets(reload=True)
self._last_markets_refresh = arrow.utcnow().int_timestamp
@@ -682,7 +675,7 @@ class Exchange:
f"Freqtrade does not support {mm_value} {trading_mode.value} on {self.name}"
)
def get_option(self, param: str, default: Any = None) -> Any:
def get_option(self, param: str, default: Optional[Any] = None) -> Any:
"""
Get parameter value from _ft_has
"""
@@ -1357,7 +1350,7 @@ class Exchange:
raise OperationalException(e) from e
@retrier
def fetch_positions(self, pair: str = None) -> List[Dict]:
def fetch_positions(self, pair: Optional[str] = None) -> List[Dict]:
"""
Fetch positions from the exchange.
If no pair is given, all positions are returned.
@@ -1705,7 +1698,7 @@ class Exchange:
return self._config['fee']
# validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0:
self._api.load_markets()
self._api.load_markets(params={})
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
price=price, takerOrMaker=taker_or_maker)['rate']
@@ -1801,7 +1794,7 @@ class Exchange:
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False,
until_ms: int = None) -> List:
until_ms: Optional[int] = None) -> List:
"""
Get candle history using asyncio and returns the list of candles.
Handles all async work for this.
@@ -1813,32 +1806,18 @@ class Exchange:
:param candle_type: '', mark, index, premiumIndex, or funding_rate
:return: List with candle (OHLCV) data
"""
pair, _, _, data = self.loop.run_until_complete(
pair, _, _, data, _ = self.loop.run_until_complete(
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms, until_ms=until_ms,
is_new_pair=is_new_pair, candle_type=candle_type))
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
return data
def get_historic_ohlcv_as_df(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType) -> DataFrame:
"""
Minimal wrapper around get_historic_ohlcv - converting the result into a dataframe
:param pair: Pair to download
:param timeframe: Timeframe to get data for
:param since_ms: Timestamp in milliseconds to get history from
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: OHLCV DataFrame
"""
ticks = self.get_historic_ohlcv(pair, timeframe, since_ms=since_ms, candle_type=candle_type)
return ohlcv_to_dataframe(ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle)
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
until_ms: Optional[int] = None
) -> Tuple[str, str, str, List]:
) -> OHLCVResponse:
"""
Download historic ohlcv
:param is_new_pair: used by binance subclass to allow "fast" new pair downloading
@@ -1869,15 +1848,16 @@ class Exchange:
continue
else:
# Deconstruct tuple if it's not an exception
p, _, c, new_data = res
p, _, c, new_data, _ = res
if p == pair and c == candle_type:
data.extend(new_data)
# Sort data again after extending the result - above calls return in "async order"
data = sorted(data, key=lambda x: x[0])
return pair, timeframe, candle_type, data
return pair, timeframe, candle_type, data, self._ohlcv_partial_candle
def _build_coroutine(self, pair: str, timeframe: str, candle_type: CandleType,
since_ms: Optional[int], cache: bool) -> Coroutine:
def _build_coroutine(
self, pair: str, timeframe: str, candle_type: CandleType,
since_ms: Optional[int], cache: bool) -> Coroutine[Any, Any, OHLCVResponse]:
not_all_data = cache and self.required_candle_call_count > 1
if cache and (pair, timeframe, candle_type) in self._klines:
candle_limit = self.ohlcv_candle_limit(timeframe, candle_type)
@@ -1914,7 +1894,7 @@ class Exchange:
"""
Build Coroutines to execute as part of refresh_latest_ohlcv
"""
input_coroutines = []
input_coroutines: List[Coroutine[Any, Any, OHLCVResponse]] = []
cached_pairs = []
for pair, timeframe, candle_type in set(pair_list):
if (timeframe not in self.timeframes
@@ -1978,7 +1958,6 @@ class Exchange:
:return: Dict of [{(pair, timeframe): Dataframe}]
"""
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
drop_incomplete = self._ohlcv_partial_candle if drop_incomplete is None else drop_incomplete
# Gather coroutines to run
input_coroutines, cached_pairs = self._build_ohlcv_dl_jobs(pair_list, since_ms, cache)
@@ -1996,8 +1975,9 @@ class Exchange:
if isinstance(res, Exception):
logger.warning(f"Async code raised an exception: {repr(res)}")
continue
# Deconstruct tuple (has 4 elements)
pair, timeframe, c_type, ticks = res
# Deconstruct tuple (has 5 elements)
pair, timeframe, c_type, ticks, drop_hint = res
drop_incomplete = drop_hint if drop_incomplete is None else drop_incomplete
ohlcv_df = self._process_ohlcv_df(
pair, timeframe, c_type, ticks, cache, drop_incomplete)
@@ -2025,7 +2005,7 @@ class Exchange:
timeframe: str,
candle_type: CandleType,
since_ms: Optional[int] = None,
) -> Tuple[str, str, str, List]:
) -> OHLCVResponse:
"""
Asynchronously get candle history data using fetch_ohlcv
:param candle_type: '', mark, index, premiumIndex, or funding_rate
@@ -2035,8 +2015,8 @@ class Exchange:
# Fetch OHLCV asynchronously
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
logger.debug(
"Fetching pair %s, interval %s, since %s %s...",
pair, timeframe, since_ms, s
"Fetching pair %s, %s, interval %s, since %s %s...",
pair, candle_type, timeframe, since_ms, s
)
params = deepcopy(self._ft_has.get('ohlcv_params', {}))
candle_limit = self.ohlcv_candle_limit(
@@ -2050,11 +2030,12 @@ class Exchange:
limit=candle_limit, params=params)
else:
# Funding rate
data = await self._api_async.fetch_funding_rate_history(
pair, since=since_ms,
limit=candle_limit)
# Convert funding rate to candle pattern
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
data = await self._fetch_funding_rate_history(
pair=pair,
timeframe=timeframe,
limit=candle_limit,
since_ms=since_ms,
)
# Some exchanges sort OHLCV in ASC order and others in DESC.
# Ex: Bittrex returns the list of OHLCV in ASC order (oldest first, newest last)
# while GDAX returns the list of OHLCV in DESC order (newest first, oldest last)
@@ -2064,9 +2045,9 @@ class Exchange:
data = sorted(data, key=lambda x: x[0])
except IndexError:
logger.exception("Error loading %s. Result was %s.", pair, data)
return pair, timeframe, candle_type, []
return pair, timeframe, candle_type, [], self._ohlcv_partial_candle
logger.debug("Done fetching pair %s, interval %s ...", pair, timeframe)
return pair, timeframe, candle_type, data
return pair, timeframe, candle_type, data, self._ohlcv_partial_candle
except ccxt.NotSupported as e:
raise OperationalException(
@@ -2082,6 +2063,24 @@ class Exchange:
raise OperationalException(f'Could not fetch historical candle (OHLCV) data '
f'for pair {pair}. Message: {e}') from e
async def _fetch_funding_rate_history(
self,
pair: str,
timeframe: str,
limit: int,
since_ms: Optional[int] = None,
) -> List[List]:
"""
Fetch funding rate history - used to selectively override this by subclasses.
"""
# Funding rate
data = await self._api_async.fetch_funding_rate_history(
pair, since=since_ms,
limit=limit)
# Convert funding rate to candle pattern
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
return data
# Fetch historic trades
@retrier_async
@@ -2668,7 +2667,7 @@ class Exchange:
:param amount: Trade amount
:param open_date: Open date of the trade
:return: funding fee since open_date
:raies: ExchangeError if something goes wrong.
:raises: ExchangeError if something goes wrong.
"""
if self.trading_mode == TradingMode.FUTURES:
if self._config['dry_run']:
@@ -2745,11 +2744,16 @@ class Exchange:
"""
Important: Must be fetching data from cached values as this is used by backtesting!
PERPETUAL:
gateio: https://www.gate.io/help/futures/perpetual/22160/calculation-of-liquidation-price
gateio: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
> Liquidation Price = (Entry Price ± Margin / Contract Multiplier / Size) /
[ 1 ± (Maintenance Margin Ratio + Taker Rate)]
Wherein, "+" or "-" depends on whether the contract goes long or short:
"-" for long, and "+" for short.
okex: https://www.okex.com/support/hc/en-us/articles/
360053909592-VI-Introduction-to-the-isolated-mode-of-Single-Multi-currency-Portfolio-margin
:param exchange_name:
:param pair: Pair to calculate liquidation price for
:param open_rate: Entry price of position
:param is_short: True if the trade is a short, false otherwise
:param amount: Absolute value of position size incl. leverage (in base currency)
@@ -2789,7 +2793,7 @@ class Exchange:
def get_maintenance_ratio_and_amt(
self,
pair: str,
nominal_value: float = 0.0,
nominal_value: float,
) -> Tuple[float, Optional[float]]:
"""
Important: Must be fetching data from cached values as this is used by backtesting!

View File

@@ -15,18 +15,19 @@ from freqtrade.util import FtPrecise
CcxtModuleType = Any
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
def is_exchange_known_ccxt(
exchange_name: str, ccxt_module: Optional[CcxtModuleType] = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
def ccxt_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> List[str]:
"""
Return the list of all exchanges known to ccxt
"""
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
def available_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> List[str]:
"""
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
"""
@@ -86,7 +87,7 @@ def timeframe_to_msecs(timeframe: str) -> int:
return ccxt.Exchange.parse_timeframe(timeframe) * 1000
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
"""
Use Timeframe and determine the candle start date for this date.
Does not round when given a candle start date.
@@ -102,7 +103,7 @@ def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
"""
Use Timeframe and determine next candle.
:param timeframe: timeframe in string format (e.g. "5m")

View File

@@ -1,4 +1,6 @@
from typing import Dict, Optional, TypedDict
from typing import Dict, List, Optional, Tuple, TypedDict
from freqtrade.enums import CandleType
class Ticker(TypedDict):
@@ -14,3 +16,6 @@ class Ticker(TypedDict):
Tickers = Dict[str, Ticker]
# pair, timeframe, candleType, OHLCV, drop last?,
OHLCVResponse = Tuple[str, str, CandleType, List, bool]

View File

@@ -0,0 +1,125 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Buy = 1
Sell = 2
class Base3ActionRLEnv(BaseEnvironment):
"""
Base class for a 3 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
if action == Actions.Buy.value:
if self._position == Positions.Short:
self._update_total_profit()
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Sell.value and self.can_short:
if self._position == Positions.Long:
self._update_total_profit()
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Sell.value and not self.can_short:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Buy while it is in a Positions.short
"""
return (
(action == Actions.Buy.value and self._position == Positions.Neutral)
or (action == Actions.Sell.value and self._position == Positions.Long)
or (action == Actions.Sell.value and self._position == Positions.Neutral
and self.can_short)
or (action == Actions.Buy.value and self._position == Positions.Short
and self.can_short)
)
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Sell while it is in a Positions.Long
"""
if self.can_short:
return action in [Actions.Buy.value, Actions.Sell.value, Actions.Neutral.value]
else:
if action == Actions.Sell.value and self._position != Positions.Long:
return False
return True

View File

@@ -0,0 +1,142 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Exit = 1
Long_enter = 2
Short_enter = 3
class Base4ActionRLEnv(BaseEnvironment):
"""
Base class for a 4 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short))
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
# Agent should only try to exit if it is in position
if action == Actions.Exit.value:
if self._position not in (Positions.Short, Positions.Long):
return False
# Agent should only try to enter if it is not in position
if action in (Actions.Short_enter.value, Actions.Long_enter.value):
if self._position != Positions.Neutral:
return False
return True

View File

@@ -0,0 +1,152 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Base5ActionRLEnv(BaseEnvironment):
"""
Base class for a 5 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Long_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Short_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Neutral))
def _is_valid(self, action: int) -> bool:
# trade signal
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
# Agent should only try to exit if it is in position
if action in (Actions.Short_exit.value, Actions.Long_exit.value):
if self._position not in (Positions.Short, Positions.Long):
return False
# Agent should only try to enter if it is not in position
if action in (Actions.Short_enter.value, Actions.Long_enter.value):
if self._position != Positions.Neutral:
return False
return True

View File

@@ -0,0 +1,363 @@
import logging
import random
from abc import abstractmethod
from enum import Enum
from typing import Optional, Type, Union
import gym
import numpy as np
import pandas as pd
from gym import spaces
from gym.utils import seeding
from pandas import DataFrame
logger = logging.getLogger(__name__)
class BaseActions(Enum):
"""
Default action space, mostly used for type handling.
"""
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Positions(Enum):
Short = 0
Long = 1
Neutral = 0.5
def opposite(self):
return Positions.Short if self == Positions.Long else Positions.Long
class BaseEnvironment(gym.Env):
"""
Base class for environments. This class is agnostic to action count.
Inherited classes customize this to include varying action counts/types,
See RL/Base5ActionRLEnv.py and RL/Base4ActionRLEnv.py
"""
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
fee: float = 0.0015, can_short: bool = False):
"""
Initializes the training/eval environment.
:param df: dataframe of features
:param prices: dataframe of prices to be used in the training environment
:param window_size: size of window (temporal) to pass to the agent
:param reward_kwargs: extra config settings assigned by user in `rl_config`
:param starting_point: start at edge of window or not
:param id: string id of the environment (used in backend for multiprocessed env)
:param seed: Sets the seed of the environment higher in the gym.Env object
:param config: Typical user configuration file
:param live: Whether or not this environment is active in dry/live/backtesting
:param fee: The fee to use for environmental interactions.
:param can_short: Whether or not the environment can short
"""
self.config = config
self.rl_config = config['freqai']['rl_config']
self.add_state_info = self.rl_config.get('add_state_info', False)
self.id = id
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades = config['stake_amount'] == 'unlimited'
if self.config.get('fee', None) is not None:
self.fee = self.config['fee']
else:
self.fee = fee
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.tensorboard_metrics: dict = {}
self.can_short = can_short
self.live = live
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
"""
Resets the environment when the agent fails (in our case, if the drawdown
exceeds the user set max_training_drawdown_pct)
:param df: dataframe of features
:param prices: dataframe of prices to be used in the training environment
:param window_size: size of window (temporal) to pass to the agent
:param reward_kwargs: extra config settings assigned by user in `rl_config`
:param starting_point: start at edge of window or not
"""
self.df = df
self.signal_features = self.df
self.prices = prices
self.window_size = window_size
self.starting_point = starting_point
self.rr = reward_kwargs["rr"]
self.profit_aim = reward_kwargs["profit_aim"]
# # spaces
if self.add_state_info:
self.total_features = self.signal_features.shape[1] + 3
else:
self.total_features = self.signal_features.shape[1]
self.shape = (window_size, self.total_features)
self.set_action_space()
self.observation_space = spaces.Box(
low=-1, high=1, shape=self.shape, dtype=np.float32)
# episode
self._start_tick: int = self.window_size
self._end_tick: int = len(self.prices) - 1
self._done: bool = False
self._current_tick: int = self._start_tick
self._last_trade_tick: Optional[int] = None
self._position = Positions.Neutral
self._position_history: list = [None]
self.total_reward: float = 0
self._total_profit: float = 1
self._total_unrealized_profit: float = 1
self.history: dict = {}
self.trade_history: list = []
@abstractmethod
def set_action_space(self):
"""
Unique to the environment action count. Must be inherited.
"""
def seed(self, seed: int = 1):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
function is designed for tracking incremented objects,
events, actions inside the training environment.
For example, a user can call this to track the
frequency of occurence of an `is_valid` call in
their `calculate_reward()`:
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
:param metric: metric to be tracked and incremented
:param value: value to increment `metric` by
:param inc: sets whether the `value` is incremented or not
"""
if not inc or metric not in self.tensorboard_metrics:
self.tensorboard_metrics[metric] = value
else:
self.tensorboard_metrics[metric] += value
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}
def reset(self):
"""
Reset is called at the beginning of every episode
"""
self.reset_tensorboard_log()
self._done = False
if self.starting_point is True:
if self.rl_config.get('randomize_starting_position', False):
length_of_data = int(self._end_tick / 4)
start_tick = random.randint(self.window_size + 1, length_of_data)
self._start_tick = start_tick
self._position_history = (self._start_tick * [None]) + [self._position]
else:
self._position_history = (self.window_size * [None]) + [self._position]
self._current_tick = self._start_tick
self._last_trade_tick = None
self._position = Positions.Neutral
self.total_reward = 0.
self._total_profit = 1. # unit
self.history = {}
self.trade_history = []
self.portfolio_log_returns = np.zeros(len(self.prices))
self._profits = [(self._start_tick, 1)]
self.close_trade_profit = []
self._total_unrealized_profit = 1
return self._get_observation()
@abstractmethod
def step(self, action: int):
"""
Step depeneds on action types, this must be inherited.
"""
return
def _get_observation(self):
"""
This may or may not be independent of action types, user can inherit
this in their custom "MyRLEnv"
"""
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
if self.add_state_info:
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct',
'position',
'trade_duration'],
index=features_window.index)
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
features_and_state['position'] = self._position.value
features_and_state['trade_duration'] = self.get_trade_duration()
features_and_state = pd.concat([features_window, features_and_state], axis=1)
return features_and_state
else:
return features_window
def get_trade_duration(self):
"""
Get the trade duration if the agent is in a trade
"""
if self._last_trade_tick is None:
return 0
else:
return self._current_tick - self._last_trade_tick
def get_unrealized_profit(self):
"""
Get the unrealized profit if the agent is in a trade
"""
if self._last_trade_tick is None:
return 0.
if self._position == Positions.Neutral:
return 0.
elif self._position == Positions.Short:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price
else:
return 0.
@abstractmethod
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal. This is
unique to the actions in the environment, and therefore must be
inherited.
"""
return True
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.This is
unique to the actions in the environment, and therefore must be
inherited.
"""
return True
def add_entry_fee(self, price):
return price * (1 + self.fee)
def add_exit_fee(self, price):
return price / (1 + self.fee)
def _update_history(self, info):
if not self.history:
self.history = {key: [] for key in info.keys()}
for key, value in info.items():
self.history[key].append(value)
@abstractmethod
def calculate_reward(self, action: int) -> float:
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
of weights in NN)
"""
def _update_unrealized_total_profit(self):
"""
Update the unrealized total profit incase of episode end.
"""
if self._position in (Positions.Long, Positions.Short):
pnl = self.get_unrealized_profit()
if self.compound_trades:
# assumes unit stake and compounding
unrl_profit = self._total_profit * (1 + pnl)
else:
# assumes unit stake and no compounding
unrl_profit = self._total_profit + pnl
self._total_unrealized_profit = unrl_profit
def _update_total_profit(self):
pnl = self.get_unrealized_profit()
if self.compound_trades:
# assumes unit stake and compounding
self._total_profit = self._total_profit * (1 + pnl)
else:
# assumes unit stake and no compounding
self._total_profit += pnl
def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open
def get_actions(self) -> Type[Enum]:
"""
Used by SubprocVecEnv to get actions from
initialized env for tensorboard callback
"""
return self.actions
# Keeping around incase we want to start building more complex environment
# templates in the future.
# def most_recent_return(self):
# """
# Calculate the tick to tick return if in a trade.
# Return is generated from rising prices in Long
# and falling prices in Short positions.
# The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
# """
# # Long positions
# if self._position == Positions.Long:
# current_price = self.prices.iloc[self._current_tick].open
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Short
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_entry_fee(previous_price)
# return np.log(current_price) - np.log(previous_price)
# # Short positions
# if self._position == Positions.Short:
# current_price = self.prices.iloc[self._current_tick].open
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Long
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_exit_fee(previous_price)
# return np.log(previous_price) - np.log(current_price)
# return 0
# def update_portfolio_log_returns(self, action):
# self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)

View File

@@ -0,0 +1,428 @@
import importlib
import logging
from abc import abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
import gym
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch as th
import torch.multiprocessing
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
torch.multiprocessing.set_sharing_strategy('file_system')
SB3_MODELS = ['PPO', 'A2C', 'DQN']
SB3_CONTRIB_MODELS = ['TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO']
class BaseReinforcementLearningModel(IFreqaiModel):
"""
User created Reinforcement Learning Model prediction class
"""
def __init__(self, **kwargs) -> None:
super().__init__(config=kwargs['config'])
self.max_threads = min(self.freqai_info['rl_config'].get(
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
self.continual_learning = self.freqai_info.get('continual_learning', False)
if self.model_type in SB3_MODELS:
import_str = 'stable_baselines3'
elif self.model_type in SB3_CONTRIB_MODELS:
import_str = 'sb3_contrib'
else:
raise OperationalException(f'{self.model_type} not available in stable_baselines3 or '
f'sb3_contrib. please choose one of {SB3_MODELS} or '
f'{SB3_CONTRIB_MODELS}')
mod = importlib.import_module(import_str, self.model_type)
self.MODELCLASS = getattr(mod, self.model_type)
self.policy_type = self.freqai_info['rl_config']['policy_type']
self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.dd.model_type = import_str
self.tensorboard_callback: TensorboardCallback = \
TensorboardCallback(verbose=1, actions=BaseActions)
def unset_outlier_removal(self):
"""
If user has activated any function that may remove training points, this
function will set them to false and warn them
"""
if self.ft_params.get('use_SVM_to_remove_outliers', False):
self.ft_params.update({'use_SVM_to_remove_outliers': False})
logger.warning('User tried to use SVM with RL. Deactivating SVM.')
if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
if self.freqai_info['data_split_parameters'].get('shuffle', False):
self.freqai_info['data_split_parameters'].update({'shuffle': False})
logger.warning('User tried to shuffle training data. Setting shuffle to False')
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
features_filtered, labels_filtered)
dk.fit_labels() # FIXME useless for now, but just satiating append methods
# normalize all data based on train_dataset only
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
data_dictionary = dk.normalize_data(data_dictionary)
# data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
f' features and {len(data_dictionary["train_features"])} data points'
)
self.set_train_and_eval_environments(data_dictionary, prices_train, prices_test, dk)
model = self.fit(data_dictionary, dk)
logger.info(f"--------------------done training {pair}--------------------")
return model
def set_train_and_eval_environments(self, data_dictionary: Dict[str, DataFrame],
prices_train: DataFrame, prices_test: DataFrame,
dk: FreqaiDataKitchen):
"""
User can override this if they are using a custom MyRLEnv
:param data_dictionary: dict = common data dictionary containing train and test
features/labels/weights.
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in the
environment during training or testing
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train,
**env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df,
prices=prices_test,
**env_info))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
def pack_env_dict(self) -> Dict[str, Any]:
"""
Create dictionary of environment arguments
"""
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live,
"can_short": self.can_short}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
return env_info
@abstractmethod
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
"""
Agent customizations and abstract Reinforcement Learning customizations
go in here. Abstract method, so this function must be overridden by
user class.
"""
return
def get_state_info(self, pair: str) -> Tuple[float, float, int]:
"""
State info during dry/live (not backtesting) which is fed back
into the model.
:param pair: str = COIN/STAKE to get the environment information for
:return:
:market_side: float = representing short, long, or neutral for
pair
:current_profit: float = unrealized profit of the current trade
:trade_duration: int = the number of candles that the trade has
been open for
"""
open_trades = Trade.get_trades_proxy(is_open=True)
market_side = 0.5
current_profit: float = 0
trade_duration = 0
for trade in open_trades:
if trade.pair == pair:
if self.data_provider._exchange is None: # type: ignore
logger.error('No exchange available.')
return 0, 0, 0
else:
current_rate = self.data_provider._exchange.get_rate( # type: ignore
pair, refresh=False, side="exit", is_short=trade.is_short)
now = datetime.now(timezone.utc).timestamp()
trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
current_profit = trade.calc_profit_ratio(current_rate)
if trade.is_short:
market_side = 0
else:
market_side = 1
return market_side, current_profit, int(trade_duration)
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_dataframe, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk)
pred_df = self.rl_model_predict(
dk.data_dictionary["prediction_features"], dk, self.model)
pred_df.fillna(0, inplace=True)
return (pred_df, dk.do_predict)
def rl_model_predict(self, dataframe: DataFrame,
dk: FreqaiDataKitchen, model: Any) -> DataFrame:
"""
A helper function to make predictions in the Reinforcement learning module.
:param dataframe: DataFrame = the dataframe of features to make the predictions on
:param dk: FreqaiDatakitchen = data kitchen for the current pair
:param model: Any = the trained model used to inference the features.
"""
output = pd.DataFrame(np.zeros(len(dataframe)), columns=dk.label_list)
def _predict(window):
observations = dataframe.iloc[window.index]
if self.live and self.rl_config.get('add_state_info', False):
market_side, current_profit, trade_duration = self.get_state_info(dk.pair)
observations['current_profit_pct'] = current_profit
observations['position'] = market_side
observations['trade_duration'] = trade_duration
res, _ = model.predict(observations, deterministic=True)
return res
output = output.rolling(window=self.CONV_WIDTH).apply(_predict)
return output
def build_ohlc_price_dataframes(self, data_dictionary: dict,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame,
DataFrame]:
"""
Builds the train prices and test prices for the environment.
"""
pair = pair.replace(':', '')
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# %-raw_volume_gen_shift-2_ETH/USDT_1h
# price data for model training and evaluation
tf = self.config['timeframe']
rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
'%-raw_high': ' high', '%-raw_close': 'close'}
rename_dict_old = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}
prices_train = train_df.filter(rename_dict.keys(), axis=1)
prices_train_old = train_df.filter(rename_dict_old.keys(), axis=1)
if prices_train.empty or not prices_train_old.empty:
if not prices_train_old.empty:
prices_train = prices_train_old
rename_dict = rename_dict_old
logger.warning('Reinforcement learning module didnt find the correct raw prices '
'assigned in feature_engineering_standard(). '
'Please assign them with:\n'
'dataframe["%-raw_close"] = dataframe["close"]\n'
'dataframe["%-raw_open"] = dataframe["open"]\n'
'dataframe["%-raw_high"] = dataframe["high"]\n'
'dataframe["%-raw_low"] = dataframe["low"]\n'
'inside `feature_engineering_standard()')
elif prices_train.empty:
raise OperationalException("No prices found, please follow log warning "
"instructions to correct the strategy.")
prices_train.rename(columns=rename_dict, inplace=True)
prices_train.reset_index(drop=True)
prices_test = test_df.filter(rename_dict.keys(), axis=1)
prices_test.rename(columns=rename_dict, inplace=True)
prices_test.reset_index(drop=True)
return prices_train, prices_test
def load_model_from_disk(self, dk: FreqaiDataKitchen) -> Any:
"""
Can be used by user if they are trying to limit_ram_usage *and*
perform continual learning.
For now, this is unused.
"""
exists = Path(dk.data_path / f"{dk.model_filename}_model").is_file()
if exists:
model = self.MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
else:
logger.info('No model file on disk to continue learning from.')
return model
def _on_stop(self):
"""
Hook called on bot shutdown. Close SubprocVecEnv subprocesses for clean shutdown.
"""
if self.train_env:
self.train_env.close()
if self.eval_env:
self.eval_env.close()
# Nested class which can be overridden by user to customize further
class MyRLEnv(Base5ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
sets a custom reward based on profit and trade duration.
"""
def calculate_reward(self, action: int) -> float:
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
of weights in NN)
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100.
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
if self._last_trade_tick:
trade_duration = self._current_tick - self._last_trade_tick
else:
trade_duration = 0
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if (self._position in (Positions.Short, Positions.Long) and
action == Actions.Neutral.value):
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
seed: int, train_df: DataFrame, price: DataFrame,
monitor: bool = False,
env_info: Dict[str, Any] = {}) -> Callable:
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
:param env_info: (dict) all required arguments to instantiate the environment.
:return: (Callable)
"""
def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
**env_info)
if monitor:
env = Monitor(env)
return env
set_random_seed(seed)
return _init

View File

@@ -0,0 +1,59 @@
from enum import Enum
from typing import Any, Dict, Type, Union
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard and
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super(TensorboardCallback, self).__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
self.actions: Type[Enum] = actions
def _on_training_start(self) -> None:
hparam_dict = {
"algorithm": self.model.__class__.__name__,
"learning_rate": self.model.learning_rate,
# "gamma": self.model.gamma,
# "gae_lambda": self.model.gae_lambda,
# "batch_size": self.model.batch_size,
# "n_steps": self.model.n_steps,
}
metric_dict: Dict[str, Union[float, int]] = {
"eval/mean_reward": 0,
"rollout/ep_rew_mean": 0,
"rollout/ep_len_mean": 0,
"train/value_loss": 0,
"train/explained_variance": 0,
}
self.logger.record(
"hparams",
HParam(hparam_dict, metric_dict),
exclude=("stdout", "log", "json", "csv"),
)
def _on_step(self) -> bool:
local_info = self.locals["infos"][0]
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for info in local_info:
if info not in ["episode", "terminal_observation"]:
self.logger.record(f"_info/{info}", local_info[info])
for info in tensorboard_metrics:
if info in [action.name for action in self.actions]:
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
else:
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
return True

View File

View File

@@ -95,9 +95,14 @@ class BaseClassifierModel(IFreqaiModel):
self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list)
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions_prob = np.reshape(predictions_prob, (-1, len(self.model.classes_)))
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)

View File

@@ -95,6 +95,9 @@ class BaseRegressionModel(IFreqaiModel):
self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)

View File

@@ -1,9 +1,10 @@
import collections
import importlib
import logging
import re
import shutil
import threading
from datetime import datetime, timezone
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, Tuple, TypedDict
@@ -81,6 +82,7 @@ class FreqaiDataDrawer:
self.historic_predictions_bkp_path = Path(
self.full_path / "historic_predictions.backup.pkl")
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
self.follow_mode = follow_mode
if follow_mode:
@@ -98,6 +100,7 @@ class FreqaiDataDrawer:
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"data_path": "", "extras": {}}
self.model_type = self.freqai_info.get('model_save_type', 'joblib')
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
"""
@@ -125,6 +128,17 @@ class FreqaiDataDrawer:
self.update_metric_tracker('cpu_load5min', load5 / cpus, pair)
self.update_metric_tracker('cpu_load15min', load15 / cpus, pair)
def load_global_metadata_from_disk(self):
"""
Locate and load a previously saved global metadata in present model folder.
"""
exists = self.global_metadata_path.is_file()
if exists:
with open(self.global_metadata_path, "r") as fp:
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
return metatada_dict
return {}
def load_drawer_from_disk(self):
"""
Locate and load a previously saved data drawer full of all pair model metadata in
@@ -225,6 +239,15 @@ class FreqaiDataDrawer:
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
"""
Save global metadata json to disk
"""
with self.save_lock:
with open(self.global_metadata_path, 'w') as fp:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
@@ -476,10 +499,12 @@ class FreqaiDataDrawer:
save_path = Path(dk.data_path)
# Save the trained model
if not dk.keras:
if self.model_type == 'joblib':
dump(model, save_path / f"{dk.model_filename}_model.joblib")
else:
elif self.model_type == 'keras':
model.save(save_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None:
dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib")
@@ -506,11 +531,10 @@ class FreqaiDataDrawer:
dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb")
)
# if self.live:
# store as much in ram as possible to increase performance
self.model_dictionary[coin] = model
self.pair_dict[coin]["model_filename"] = dk.model_filename
self.pair_dict[coin]["data_path"] = str(dk.data_path)
if coin not in self.meta_data_dictionary:
self.meta_data_dictionary[coin] = {}
self.meta_data_dictionary[coin]["train_df"] = dk.data_dictionary["train_features"]
@@ -542,14 +566,6 @@ class FreqaiDataDrawer:
if dk.live:
dk.model_filename = self.pair_dict[coin]["model_filename"]
dk.data_path = Path(self.pair_dict[coin]["data_path"])
if self.freqai_info.get("follow_mode", False):
# follower can be on a different system which is rsynced from the leader:
dk.data_path = Path(
self.config["user_data_dir"]
/ "models"
/ dk.data_path.parts[-2]
/ dk.data_path.parts[-1]
)
if coin in self.meta_data_dictionary:
dk.data = self.meta_data_dictionary[coin]["meta_data"]
@@ -568,12 +584,16 @@ class FreqaiDataDrawer:
# try to access model in memory instead of loading object from disk to save time
if dk.live and coin in self.model_dictionary:
model = self.model_dictionary[coin]
elif not dk.keras:
elif self.model_type == 'joblib':
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
else:
elif self.model_type == 'keras':
from tensorflow import keras
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
mod = importlib.import_module(
self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
@@ -583,6 +603,10 @@ class FreqaiDataDrawer:
f"Unable to load model, ensure model exists at " f"{dk.data_path} "
)
# load it into ram if it was loaded from disk
if coin not in self.model_dictionary:
self.model_dictionary[coin] = model
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
dk.pca = cloudpickle.load(
open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb")
@@ -693,3 +717,31 @@ class FreqaiDataDrawer:
).reset_index(drop=True)
return corr_dataframes, base_dataframes
def get_timerange_from_live_historic_predictions(self) -> TimeRange:
"""
Returns timerange information based on historic predictions file
:return: timerange calculated from saved live data
"""
if not self.historic_predictions_path.is_file():
raise OperationalException(
'Historic predictions not found. Historic predictions data is required '
'to run backtest with the freqai-backtest-live-models option '
)
self.load_historic_predictions_from_disk()
all_pairs_end_dates = []
for pair in self.historic_predictions:
pair_historic_data = self.historic_predictions[pair]
all_pairs_end_dates.append(pair_historic_data.date_pred.max())
global_metadata = self.load_global_metadata_from_disk()
start_date = datetime.fromtimestamp(int(global_metadata["start_dry_live_date"]))
end_date = max(all_pairs_end_dates)
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange

View File

@@ -1,14 +1,16 @@
import copy
import inspect
import logging
import shutil
from datetime import datetime, timedelta, timezone
from datetime import datetime, timezone
from math import cos, sin
from pathlib import Path
from typing import Any, Dict, List, Tuple
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
import psutil
from pandas import DataFrame
from scipy import stats
from sklearn import linear_model
@@ -22,6 +24,7 @@ from freqtrade.constants import Config
from freqtrade.data.converter import reduce_dataframe_footprint
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.strategy import merge_informative_pair
from freqtrade.strategy.interface import IStrategy
@@ -86,12 +89,7 @@ class FreqaiDataKitchen:
if not self.live:
self.full_path = self.get_full_models_path(self.config)
if self.backtest_live_models:
if self.pair:
self.set_timerange_from_ready_models()
(self.training_timeranges,
self.backtesting_timeranges) = self.split_timerange_live_models()
else:
if not self.backtest_live_models:
self.full_timerange = self.create_fulltimerange(
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
)
@@ -102,7 +100,10 @@ class FreqaiDataKitchen:
)
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
self.thread_count = self.freqai_config.get("data_kitchen_thread_count", -1)
if not self.freqai_config.get("data_kitchen_thread_count", 0):
self.thread_count = max(int(psutil.cpu_count() * 2 - 2), 1)
else:
self.thread_count = self.freqai_config["data_kitchen_thread_count"]
self.train_dates: DataFrame = pd.DataFrame()
self.unique_classes: Dict[str, list] = {}
self.unique_class_list: list = []
@@ -111,7 +112,7 @@ class FreqaiDataKitchen:
def set_paths(
self,
pair: str,
trained_timestamp: int = None,
trained_timestamp: Optional[int] = None,
) -> None:
"""
Set the paths to the data for the present coin/botloop
@@ -456,29 +457,6 @@ class FreqaiDataKitchen:
# print(tr_training_list, tr_backtesting_list)
return tr_training_list_timerange, tr_backtesting_list_timerange
def split_timerange_live_models(
self
) -> Tuple[list, list]:
tr_backtesting_list_timerange = []
asset = self.pair.split("/")[0]
if asset not in self.backtest_live_models_data["assets_end_dates"]:
raise OperationalException(
f"Model not available for pair {self.pair}. "
"Please, try again after removing this pair from the configuration file."
)
asset_data = self.backtest_live_models_data["assets_end_dates"][asset]
backtesting_timerange = self.backtest_live_models_data["backtesting_timerange"]
model_end_dates = [x for x in asset_data]
model_end_dates.append(backtesting_timerange.stopts)
model_end_dates.sort()
for index, item in enumerate(model_end_dates):
if len(model_end_dates) > (index + 1):
tr_to_add = TimeRange("date", "date", item, model_end_dates[index + 1])
tr_backtesting_list_timerange.append(tr_to_add)
return tr_backtesting_list_timerange, tr_backtesting_list_timerange
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
"""
Given a full dataframe, extract the user desired window
@@ -486,10 +464,10 @@ class FreqaiDataKitchen:
:param df: Dataframe containing all candles to run the entire backtest. Here
it is sliced down to just the present training period.
"""
df = df.loc[df["date"] >= timerange.startdt, :]
if not self.live:
df = df.loc[df["date"] < timerange.stopdt, :]
df = df.loc[(df["date"] >= timerange.startdt) & (df["date"] < timerange.stopdt), :]
else:
df = df.loc[df["date"] >= timerange.startdt, :]
return df
@@ -974,7 +952,8 @@ class FreqaiDataKitchen:
return weights
def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike) -> DataFrame:
do_predict: npt.ArrayLike,
dataframe_backtest: DataFrame) -> DataFrame:
"""
Get backtest prediction from current backtest period
"""
@@ -996,7 +975,9 @@ class FreqaiDataKitchen:
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values
return append_df
dataframe_backtest.reset_index(drop=True, inplace=True)
merged_df = pd.concat([dataframe_backtest["date"], append_df], axis=1)
return merged_df
def append_predictions(self, append_df: DataFrame) -> None:
"""
@@ -1006,23 +987,18 @@ class FreqaiDataKitchen:
if self.full_df.empty:
self.full_df = append_df
else:
self.full_df = pd.concat([self.full_df, append_df], axis=0)
self.full_df = pd.concat([self.full_df, append_df], axis=0, ignore_index=True)
def fill_predictions(self, dataframe):
"""
Back fill values to before the backtesting range so that the dataframe matches size
when it goes back to the strategy. These rows are not included in the backtest.
"""
len_filler = len(dataframe) - len(self.full_df.index) # startup_candle_count
filler_df = pd.DataFrame(
np.zeros((len_filler, len(self.full_df.columns))), columns=self.full_df.columns
)
self.full_df = pd.concat([filler_df, self.full_df], axis=0, ignore_index=True)
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
self.return_dataframe = pd.merge(dataframe[to_keep],
self.full_df, how='left', on='date')
self.return_dataframe[self.full_df.columns] = (
self.return_dataframe[self.full_df.columns].fillna(value=0))
self.full_df = DataFrame()
return
@@ -1171,9 +1147,9 @@ class FreqaiDataKitchen:
for pair in pairs:
pair = pair.replace(':', '') # lightgbm doesnt like colons
valid_strs = [f"%-{pair}", f"%{pair}", f"%_{pair}"]
pair_cols = [col for col in dataframe.columns if
any(substr in col for substr in valid_strs)]
pair_cols = [col for col in dataframe.columns if col.startswith("%")
and f"{pair}_" in col]
if pair_cols:
pair_cols.insert(0, 'date')
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
@@ -1202,6 +1178,103 @@ class FreqaiDataKitchen:
return dataframe
def get_pair_data_for_features(self,
pair: str,
tf: str,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
is_corr_pairs: bool = False) -> DataFrame:
"""
Get the data for the pair. If it's not in the dictionary, get it from the data provider
:param pair: str = pair to get data for
:param tf: str = timeframe to get data for
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the df pair dataframes
(for user defined timeframes)
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
:param is_corr_pairs: bool = whether the pair is a corr pair or not
:return: dataframe = dataframe containing the pair data
"""
if is_corr_pairs:
dataframe = corr_dataframes[pair][tf]
if not dataframe.empty:
return dataframe
else:
dataframe = strategy.dp.get_pair_dataframe(pair=pair, timeframe=tf)
return dataframe
else:
dataframe = base_dataframes[tf]
if not dataframe.empty:
return dataframe
else:
dataframe = strategy.dp.get_pair_dataframe(pair=pair, timeframe=tf)
return dataframe
def merge_features(self, df_main: DataFrame, df_to_merge: DataFrame,
tf: str, timeframe_inf: str, suffix: str) -> DataFrame:
"""
Merge the features of the dataframe and remove HLCV and date added columns
:param df_main: DataFrame = main dataframe
:param df_to_merge: DataFrame = dataframe to merge
:param tf: str = timeframe of the main dataframe
:param timeframe_inf: str = timeframe of the dataframe to merge
:param suffix: str = suffix to add to the columns of the dataframe to merge
:return: dataframe = merged dataframe
"""
dataframe = merge_informative_pair(df_main, df_to_merge, tf, timeframe_inf=timeframe_inf,
append_timeframe=False, suffix=suffix, ffill=True)
skip_columns = [
(f"{s}_{suffix}") for s in ["date", "open", "high", "low", "close", "volume"]
]
dataframe = dataframe.drop(columns=skip_columns)
return dataframe
def populate_features(self, dataframe: DataFrame, pair: str, strategy: IStrategy,
corr_dataframes: dict, base_dataframes: dict,
is_corr_pairs: bool = False) -> DataFrame:
"""
Use the user defined strategy functions for populating features
:param dataframe: DataFrame = dataframe to populate
:param pair: str = pair to populate
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the df pair dataframes
:param base_dataframes: dict = dict containing the current pair dataframes
:param is_corr_pairs: bool = whether the pair is a corr pair or not
:return: dataframe = populated dataframe
"""
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
for tf in tfs:
informative_df = self.get_pair_data_for_features(
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
informative_copy = informative_df.copy()
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
df_features = strategy.feature_engineering_expand_all(
informative_copy.copy(), t)
suffix = f"{t}"
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
generic_df = strategy.feature_engineering_expand_basic(informative_copy.copy())
suffix = "gen"
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
indicators = [col for col in informative_df if col.startswith("%")]
for n in range(self.freqai_config["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
df_shift = informative_df[indicators].shift(n)
df_shift = df_shift.add_suffix("_shift-" + str(n))
informative_df = pd.concat((informative_df, df_shift), axis=1)
dataframe = self.merge_features(dataframe.copy(), informative_df,
self.config["timeframe"], tf, f'{pair}_{tf}')
return dataframe
def use_strategy_to_populate_indicators(
self,
strategy: IStrategy,
@@ -1214,7 +1287,87 @@ class FreqaiDataKitchen:
"""
Use the user defined strategy for populating indicators during retrain
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the informative pair dataframes
:param corr_dataframes: dict = dict containing the df pair dataframes
(for user defined timeframes)
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
:param pair: str = pair to populate
:param prediction_dataframe: DataFrame = dataframe containing the pair data
used for prediction
:param do_corr_pairs: bool = whether to populate corr pairs or not
:return:
dataframe: DataFrame = dataframe containing populated indicators
"""
# this is a hack to check if the user is using the populate_any_indicators function
new_version = inspect.getsource(strategy.populate_any_indicators) == (
inspect.getsource(IStrategy.populate_any_indicators))
if new_version:
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
for tf in tfs:
if tf not in base_dataframes:
base_dataframes[tf] = pd.DataFrame()
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
dataframe = strategy.feature_engineering_standard(dataframe.copy())
# ensure corr pairs are always last
for corr_pair in corr_pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
dataframe = strategy.set_freqai_targets(dataframe.copy())
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)
return dataframe
else:
# the user is using the populate_any_indicators functions which is deprecated
df = self.use_strategy_to_populate_indicators_old_version(
strategy, corr_dataframes, base_dataframes, pair,
prediction_dataframe, do_corr_pairs)
return df
def use_strategy_to_populate_indicators_old_version(
self,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
pair: str = "",
prediction_dataframe: DataFrame = pd.DataFrame(),
do_corr_pairs: bool = True,
) -> DataFrame:
"""
Use the user defined strategy for populating indicators during retrain
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the df pair dataframes
(for user defined timeframes)
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
@@ -1319,22 +1472,22 @@ class FreqaiDataKitchen:
self, append_df: DataFrame
) -> None:
"""
Save prediction dataframe from backtesting to h5 file format
Save prediction dataframe from backtesting to feather file format
:param append_df: dataframe for backtesting period
"""
full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder)
if not full_predictions_folder.is_dir():
full_predictions_folder.mkdir(parents=True, exist_ok=True)
append_df.to_hdf(self.backtesting_results_path, key='append_df', mode='w')
append_df.to_feather(self.backtesting_results_path)
def get_backtesting_prediction(
self
) -> DataFrame:
"""
Get prediction dataframe from h5 file format
Get prediction dataframe from feather file format
"""
append_df = pd.read_hdf(self.backtesting_results_path)
append_df = pd.read_feather(self.backtesting_results_path)
return append_df
def check_if_backtest_prediction_is_valid(
@@ -1350,19 +1503,20 @@ class FreqaiDataKitchen:
"""
path_to_predictionfile = Path(self.full_path /
self.backtest_predictions_folder /
f"{self.model_filename}_prediction.h5")
f"{self.model_filename}_prediction.feather")
self.backtesting_results_path = path_to_predictionfile
file_exists = path_to_predictionfile.is_file()
if file_exists:
append_df = self.get_backtesting_prediction()
if len(append_df) == len_backtest_df:
if len(append_df) == len_backtest_df and 'date' in append_df:
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
return True
else:
logger.info("A new backtesting prediction file is required. "
"(Number of predictions is different from dataframe length).")
"(Number of predictions is different from dataframe length or "
"old prediction file version).")
return False
else:
logger.info(
@@ -1370,17 +1524,6 @@ class FreqaiDataKitchen:
)
return False
def set_timerange_from_ready_models(self):
backtesting_timerange, \
assets_end_dates = (
self.get_timerange_and_assets_end_dates_from_ready_models(self.full_path))
self.backtest_live_models_data = {
"backtesting_timerange": backtesting_timerange,
"assets_end_dates": assets_end_dates
}
return
def get_full_models_path(self, config: Config) -> Path:
"""
Returns default FreqAI model path
@@ -1391,88 +1534,6 @@ class FreqaiDataKitchen:
config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
)
def get_timerange_and_assets_end_dates_from_ready_models(
self, models_path: Path) -> Tuple[TimeRange, Dict[str, Any]]:
"""
Returns timerange information based on a FreqAI model directory
:param models_path: FreqAI model path
:return: a Tuple with (Timerange calculated from directory and
a Dict with pair and model end training dates info)
"""
all_models_end_dates = []
assets_end_dates: Dict[str, Any] = self.get_assets_timestamps_training_from_ready_models(
models_path)
for key in assets_end_dates:
for model_end_date in assets_end_dates[key]:
if model_end_date not in all_models_end_dates:
all_models_end_dates.append(model_end_date)
if len(all_models_end_dates) == 0:
raise OperationalException(
'At least 1 saved model is required to '
'run backtest with the freqai-backtest-live-models option'
)
if len(all_models_end_dates) == 1:
logger.warning(
"Only 1 model was found. Backtesting will run with the "
"timerange from the end of the training date to the current date"
)
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
if len(all_models_end_dates) > 1:
# After last model end date, use the same period from previous model
# to finish the backtest
all_models_end_dates.sort(reverse=True)
finish_timestamp = all_models_end_dates[0] + \
(all_models_end_dates[0] - all_models_end_dates[1])
all_models_end_dates.append(finish_timestamp)
all_models_end_dates.sort()
start_date = (datetime(*datetime.fromtimestamp(min(all_models_end_dates),
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
end_date = (datetime(*datetime.fromtimestamp(max(all_models_end_dates),
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange, assets_end_dates
def get_assets_timestamps_training_from_ready_models(
self, models_path: Path) -> Dict[str, Any]:
"""
Scan the models path and returns all assets end training dates (timestamp)
:param models_path: FreqAI model path
:return: a Dict with asset and model end training dates info
"""
assets_end_dates: Dict[str, Any] = {}
if not models_path.is_dir():
raise OperationalException(
'Model folders not found. Saved models are required '
'to run backtest with the freqai-backtest-live-models option'
)
for model_dir in models_path.iterdir():
if str(model_dir.name).startswith("sub-train"):
model_end_date = int(model_dir.name.split("_")[1])
asset = model_dir.name.split("_")[0].replace("sub-train-", "")
model_file_name = (
f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}"
"_model.joblib"
)
model_path_file = Path(model_dir / model_file_name)
if model_path_file.is_file():
if asset not in assets_end_dates:
assets_end_dates[asset] = []
assets_end_dates[asset].append(model_end_date)
return assets_end_dates
def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Remove all special characters from feature strings (:)

View File

@@ -1,3 +1,4 @@
import inspect
import logging
import threading
import time
@@ -5,15 +6,17 @@ from abc import ABC, abstractmethod
from collections import deque
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Literal, Tuple
from typing import Any, Dict, List, Literal, Optional, Tuple
import numpy as np
import pandas as pd
import psutil
from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
@@ -67,6 +70,7 @@ class IFreqaiModel(ABC):
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.')
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
# set current candle to arbitrary historical date
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
@@ -98,6 +102,12 @@ class IFreqaiModel(ABC):
self.get_corr_dataframes: bool = True
self._threads: List[threading.Thread] = []
self._stop_event = threading.Event()
self.metadata: Dict[str, Any] = self.dd.load_global_metadata_from_disk()
self.data_provider: Optional[DataProvider] = None
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
self.can_short = True # overridden in start() with strategy.can_short
self.warned_deprecated_populate_any_indicators = False
record_params(config, self.full_path)
@@ -126,11 +136,17 @@ class IFreqaiModel(ABC):
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.dd.set_pair_dict_info(metadata)
self.data_provider = strategy.dp
self.can_short = strategy.can_short
# check if the strategy has deprecated populate_any_indicators function
self.check_deprecated_populate_any_indicators(strategy)
if self.live:
self.inference_timer('start')
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
# For backtesting, each pair enters and then gets trained for each window along the
# sliding window defined by "train_period_days" (training window) and "live_retrain_hours"
@@ -139,20 +155,21 @@ class IFreqaiModel(ABC):
# the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
if self.dk.backtest_live_models:
logger.info(
f"Backtesting {len(self.dk.backtesting_timeranges)} timeranges (live models)")
else:
if not self.config.get("freqai_backtest_live_models", False):
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
dk = self.start_backtesting(dataframe, metadata, self.dk)
dk = self.start_backtesting(dataframe, metadata, self.dk, strategy)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
else:
logger.info(
"Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk)
dataframe = dk.return_dataframe
dataframe = dk.remove_features_from_df(dk.return_dataframe)
self.clean_up()
if self.live:
self.inference_timer('stop', metadata["pair"])
return dataframe
def clean_up(self):
@@ -164,6 +181,13 @@ class IFreqaiModel(ABC):
self.model = None
self.dk = None
def _on_stop(self):
"""
Callback for Subclasses to override to include logic for shutting down resources
when SIGINT is sent.
"""
return
def shutdown(self):
"""
Cleans up threads on Shutdown, set stop event. Join threads to wait
@@ -172,6 +196,9 @@ class IFreqaiModel(ABC):
logger.info("Stopping FreqAI")
self._stop_event.set()
self.data_provider = None
self._on_stop()
logger.info("Waiting on Training iteration")
for _thread in self._threads:
_thread.join()
@@ -231,7 +258,7 @@ class IFreqaiModel(ABC):
self.dd.save_metric_tracker_to_disk()
def start_backtesting(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen, strategy: IStrategy
) -> FreqaiDataKitchen:
"""
The main broad execution for backtesting. For backtesting, each pair enters and then gets
@@ -243,27 +270,30 @@ class IFreqaiModel(ABC):
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:param strategy: Strategy to train on
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
self.pair_it += 1
train_it = 0
pair = metadata["pair"]
populate_indicators = True
check_features = True
# Loop enforcing the sliding window training/backtesting paradigm
# tr_train is the training time range e.g. 1 historical month
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
pair = metadata["pair"]
(_, _, _) = self.dd.get_pair_dict_info(pair)
train_it += 1
total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
len_backtest_df = len(dataframe.loc[(dataframe["date"] >= tr_backtest.startdt) & (
dataframe["date"] < tr_backtest.stopdt), :])
if not self.ensure_data_exists(dataframe_backtest, tr_backtest, pair):
if not self.ensure_data_exists(len_backtest_df, tr_backtest, pair):
continue
self.log_backtesting_progress(tr_train, pair, train_it, total_trains)
@@ -276,17 +306,43 @@ class IFreqaiModel(ABC):
dk.set_new_model_names(pair, timestamp_model_id)
if dk.check_if_backtest_prediction_is_valid(len(dataframe_backtest)):
self.dd.load_metadata(dk)
dk.find_features(dataframe_train)
self.check_if_feature_list_matches_strategy(dk)
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
if check_features:
self.dd.load_metadata(dk)
dataframe_dummy_features = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe.tail(1), pair=metadata["pair"]
)
dk.find_features(dataframe_dummy_features)
self.check_if_feature_list_matches_strategy(dk)
check_features = False
append_df = dk.get_backtesting_prediction()
dk.append_predictions(append_df)
else:
if populate_indicators:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
populate_indicators = False
dataframe_base_train = dataframe.loc[dataframe["date"] < tr_train.stopdt, :]
dataframe_base_train = strategy.set_freqai_targets(dataframe_base_train)
dataframe_base_backtest = dataframe.loc[dataframe["date"] < tr_backtest.stopdt, :]
dataframe_base_backtest = strategy.set_freqai_targets(dataframe_base_backtest)
dataframe_train = dk.slice_dataframe(tr_train, dataframe_base_train)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe_base_backtest)
if not self.model_exists(dk):
dk.find_features(dataframe_train)
dk.find_labels(dataframe_train)
self.model = self.train(dataframe_train, pair, dk)
try:
self.model = self.train(dataframe_train, pair, dk)
except Exception as msg:
logger.warning(
f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.")
self.dd.pair_dict[pair]["trained_timestamp"] = int(
tr_train.stopts)
if self.plot_features:
@@ -301,10 +357,11 @@ class IFreqaiModel(ABC):
self.model = self.dd.load_data(pair, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
append_df = dk.get_predictions_to_append(pred_df, do_preds)
append_df = dk.get_predictions_to_append(pred_df, do_preds, dataframe_backtest)
dk.append_predictions(append_df)
dk.save_backtesting_prediction(append_df)
self.backtesting_fit_live_predictions(dk)
dk.fill_predictions(dataframe)
return dk
@@ -322,7 +379,6 @@ class IFreqaiModel(ABC):
:returns:
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
# update follower
if self.follow_mode:
self.dd.update_follower_metadata()
@@ -617,6 +673,8 @@ class IFreqaiModel(ABC):
self.dd.historic_predictions[pair] = pred_df
hist_preds_df = self.dd.historic_predictions[pair]
self.set_start_dry_live_date(strat_df)
for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object:
continue
@@ -657,7 +715,8 @@ class IFreqaiModel(ABC):
for label in full_labels:
if self.dd.historic_predictions[dk.pair][label].dtype == object:
continue
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
f = spy.stats.norm.fit(
self.dd.historic_predictions[dk.pair][label].tail(num_candles))
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
return
@@ -778,16 +837,16 @@ class IFreqaiModel(ABC):
self.pair_it = 1
self.current_candle = self.dd.current_candle
def ensure_data_exists(self, dataframe_backtest: DataFrame,
def ensure_data_exists(self, len_dataframe_backtest: int,
tr_backtest: TimeRange, pair: str) -> bool:
"""
Check if the dataframe is empty, if not, report useful information to user.
:param dataframe_backtest: the backtesting dataframe, maybe empty.
:param len_dataframe_backtest: the len of backtesting dataframe
:param tr_backtest: current backtesting timerange.
:param pair: current pair
:return: if the data exists or not
"""
if self.config.get("freqai_backtest_live_models", False) and len(dataframe_backtest) == 0:
if self.config.get("freqai_backtest_live_models", False) and len_dataframe_backtest == 0:
logger.info(f"No data found for pair {pair} from "
f"from { tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
"Probably more than one training within the same candle period.")
@@ -811,6 +870,100 @@ class IFreqaiModel(ABC):
f"to {tr_train.stop_fmt}, {train_it}/{total_trains} "
"trains"
)
def backtesting_fit_live_predictions(self, dk: FreqaiDataKitchen):
"""
Apply fit_live_predictions function in backtesting with a dummy historic_predictions
The loop is required to simulate dry/live operation, as it is not possible to predict
the type of logic implemented by the user.
:param dk: datakitchen object
"""
fit_live_predictions_candles = self.freqai_info.get("fit_live_predictions_candles", 0)
if fit_live_predictions_candles:
logger.info("Applying fit_live_predictions in backtesting")
label_columns = [col for col in dk.full_df.columns if (
col.startswith("&") and
not (col.startswith("&") and col.endswith("_mean")) and
not (col.startswith("&") and col.endswith("_std")) and
col not in self.dk.data["extra_returns_per_train"])
]
for index in range(len(dk.full_df)):
if index >= fit_live_predictions_candles:
self.dd.historic_predictions[self.dk.pair] = (
dk.full_df.iloc[index - fit_live_predictions_candles:index])
self.fit_live_predictions(self.dk, self.dk.pair)
for label in label_columns:
if dk.full_df[label].dtype == object:
continue
if "labels_mean" in self.dk.data:
dk.full_df.at[index, f"{label}_mean"] = (
self.dk.data["labels_mean"][label])
if "labels_std" in self.dk.data:
dk.full_df.at[index, f"{label}_std"] = self.dk.data["labels_std"][label]
for extra_col in self.dk.data["extra_returns_per_train"]:
dk.full_df.at[index, f"{extra_col}"] = (
self.dk.data["extra_returns_per_train"][extra_col])
return
def update_metadata(self, metadata: Dict[str, Any]):
"""
Update global metadata and save the updated json file
:param metadata: new global metadata dict
"""
self.dd.save_global_metadata_to_disk(metadata)
self.metadata = metadata
def set_start_dry_live_date(self, live_dataframe: DataFrame):
key_name = "start_dry_live_date"
if key_name not in self.metadata:
metadata = self.metadata
metadata[key_name] = int(
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp())
self.update_metadata(metadata)
def start_backtesting_from_historic_predictions(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
pair = metadata["pair"]
dk.return_dataframe = dataframe
saved_dataframe = self.dd.historic_predictions[pair]
columns_to_drop = list(set(saved_dataframe.columns).intersection(
dk.return_dataframe.columns))
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
dk.return_dataframe = pd.merge(
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
return dk
def check_deprecated_populate_any_indicators(self, strategy: IStrategy):
"""
Check and warn if the deprecated populate_any_indicators function is used.
:param strategy: strategy object
"""
if not self.warned_deprecated_populate_any_indicators:
self.warned_deprecated_populate_any_indicators = True
old_version = inspect.getsource(strategy.populate_any_indicators) != (
inspect.getsource(IStrategy.populate_any_indicators))
if old_version:
logger.warning("DEPRECATION WARNING: "
"You are using the deprecated populate_any_indicators function. "
"This function will raise an error on March 1 2023. "
"Please update your strategy by using "
"the new feature_engineering functions. See \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
"for details.")
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.

View File

@@ -0,0 +1,145 @@
import logging
from pathlib import Path
from typing import Any, Dict
import torch as th
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
logger = logging.getLogger(__name__)
class ReinforcementLearner(BaseReinforcementLearningModel):
"""
Reinforcement Learning Model prediction model.
Users can inherit from this class to make their own RL model with custom
environment/training controls. Define the file as follows:
```
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
class MyCoolRLModel(ReinforcementLearner):
```
Save the file to `user_data/freqaimodels`, then run it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
"""
User customizable fit method
:param data_dictionary: dict = common data dictionary containing all train/test
features/labels/weights.
:param dk: FreqaiDatakitchen = data kitchen for current pair.
:return:
model Any = trained model to be used for inference in dry/live/backtesting
"""
train_df = data_dictionary["train_features"]
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=self.net_arch)
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path(
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
**self.freqai_info.get('model_training_parameters', {})
)
else:
logger.info('Continual training activated - starting training from previously '
'trained agent.')
model = self.dd.model_dictionary[dk.pair]
model.set_env(self.train_env)
model.learn(
total_timesteps=int(total_timesteps),
callback=[self.eval_callback, self.tensorboard_callback]
)
if Path(dk.data_path / "best_model.zip").is_file():
logger.info('Callback found a best model.')
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
return best_model
logger.info('Couldnt find best model, using final model instead.')
return model
class MyRLEnv(Base5ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
sets a custom reward based on profit and trade duration.
"""
def calculate_reward(self, action: int) -> float:
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
of weights in NN)
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
pnl = self.get_unrealized_profit()
factor = 100.
# reward agent for entering trades
if (action == Actions.Long_enter.value
and self._position == Positions.Neutral):
return 25
if (action == Actions.Short_enter.value
and self._position == Positions.Neutral):
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick # type: ignore
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if (self._position in (Positions.Short, Positions.Long) and
action == Actions.Neutral.value):
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.

View File

@@ -0,0 +1,57 @@
import logging
from typing import Any, Dict
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
logger = logging.getLogger(__name__)
class ReinforcementLearner_multiproc(ReinforcementLearner):
"""
Demonstration of how to build vectorized environments
"""
def set_train_and_eval_environments(self, data_dictionary: Dict[str, Any],
prices_train: DataFrame, prices_test: DataFrame,
dk: FreqaiDataKitchen):
"""
User can override this if they are using a custom MyRLEnv
:param data_dictionary: dict = common data dictionary containing train and test
features/labels/weights.
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in
the environment during training
or testing
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
env_id = "train_env"
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
train_df, prices_train,
monitor=True,
env_info=env_info) for i
in range(self.max_threads)])
eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
test_df, prices_test,
monitor=True,
env_info=env_info) for i
in range(self.max_threads)])
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
actions = self.train_env.env_method("get_actions")[0]
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)

View File

@@ -14,6 +14,7 @@ from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.exchange.exchange import market_is_active
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
@@ -229,5 +230,6 @@ def get_timerange_backtest_live_models(config: Config) -> str:
"""
dk = FreqaiDataKitchen(config)
models_path = dk.get_full_models_path(config)
timerange, _ = dk.get_timerange_and_assets_end_dates_from_ready_models(models_path)
dd = FreqaiDataDrawer(models_path, config)
timerange = dd.get_timerange_from_live_historic_predictions()
return timerange.timerange_str

View File

@@ -33,6 +33,7 @@ from freqtrade.rpc.external_message_consumer import ExternalMessageConsumer
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import FtPrecise
from freqtrade.util.binance_mig import migrate_binance_futures_names
from freqtrade.wallets import Wallets
@@ -155,6 +156,8 @@ class FreqtradeBot(LoggingMixin):
self.cancel_all_open_orders()
self.check_for_open_trades()
except Exception as e:
logger.warning(f'Exception during cleanup: {e.__class__.__name__} {e}')
finally:
self.strategy.ft_bot_cleanup()
@@ -162,14 +165,21 @@ class FreqtradeBot(LoggingMixin):
self.rpc.cleanup()
if self.emc:
self.emc.shutdown()
Trade.commit()
self.exchange.close()
try:
Trade.commit()
except Exception:
# Exeptions here will be happening if the db disappeared.
# At which point we can no longer commit anyway.
pass
def startup(self) -> None:
"""
Called on startup and after reloading the bot - triggers notifications and
performs startup tasks
"""
migrate_binance_futures_names(self.config)
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
# Update older trades with precision and precision mode
self.startup_backpopulate_precision()
@@ -367,7 +377,7 @@ class FreqtradeBot(LoggingMixin):
for trade in trades:
if not trade.is_open and not trade.fee_updated(trade.exit_side):
# Get sell fee
order = trade.select_order(trade.exit_side, False)
order = trade.select_order(trade.exit_side, False, only_filled=True)
if not order:
order = trade.select_order('stoploss', False)
if order:
@@ -383,7 +393,7 @@ class FreqtradeBot(LoggingMixin):
for trade in trades:
with self._exit_lock:
if trade.is_open and not trade.fee_updated(trade.entry_side):
order = trade.select_order(trade.entry_side, False)
order = trade.select_order(trade.entry_side, False, only_filled=True)
open_order = trade.select_order(trade.entry_side, True)
if order and open_order is None:
logger.info(
@@ -713,7 +723,7 @@ class FreqtradeBot(LoggingMixin):
time_in_force=time_in_force,
leverage=leverage
)
order_obj = Order.parse_from_ccxt_object(order, pair, side)
order_obj = Order.parse_from_ccxt_object(order, pair, side, amount, enter_limit_requested)
order_id = order['id']
order_status = order.get('status')
logger.info(f"Order #{order_id} was created for {pair} and status is {order_status}.")
@@ -905,6 +915,7 @@ class FreqtradeBot(LoggingMixin):
stake_amount=stake_amount,
min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount,
trade_amount=trade.stake_amount if trade else None,
)
return enter_limit_requested, stake_amount, leverage
@@ -1086,7 +1097,8 @@ class FreqtradeBot(LoggingMixin):
leverage=trade.leverage
)
order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss')
order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss',
trade.amount, stop_price)
trade.orders.append(order_obj)
trade.stoploss_order_id = str(stoploss_order['id'])
trade.stoploss_last_update = datetime.now(timezone.utc)
@@ -1151,7 +1163,7 @@ class FreqtradeBot(LoggingMixin):
stoploss = (
self.edge.stoploss(pair=trade.pair)
if self.edge else
self.strategy.stoploss / trade.leverage
trade.stop_loss_pct / trade.leverage
)
if trade.is_short:
stop_price = trade.open_rate * (1 - stoploss)
@@ -1510,7 +1522,7 @@ class FreqtradeBot(LoggingMixin):
*,
exit_tag: Optional[str] = None,
ordertype: Optional[str] = None,
sub_trade_amt: float = None,
sub_trade_amt: Optional[float] = None,
) -> bool:
"""
Executes a trade exit for the given trade and limit
@@ -1587,7 +1599,7 @@ class FreqtradeBot(LoggingMixin):
self.handle_insufficient_funds(trade)
return False
order_obj = Order.parse_from_ccxt_object(order, trade.pair, trade.exit_side)
order_obj = Order.parse_from_ccxt_object(order, trade.pair, trade.exit_side, amount, limit)
trade.orders.append(order_obj)
trade.open_order_id = order['id']
@@ -1604,7 +1616,7 @@ class FreqtradeBot(LoggingMixin):
return True
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False,
sub_trade: bool = False, order: Order = None) -> None:
sub_trade: bool = False, order: Optional[Order] = None) -> None:
"""
Sends rpc notification when a sell occurred.
"""
@@ -1717,8 +1729,9 @@ class FreqtradeBot(LoggingMixin):
# Common update trade state methods
#
def update_trade_state(self, trade: Trade, order_id: str, action_order: Dict[str, Any] = None,
stoploss_order: bool = False, send_msg: bool = True) -> bool:
def update_trade_state(
self, trade: Trade, order_id: str, action_order: Optional[Dict[str, Any]] = None,
stoploss_order: bool = False, send_msg: bool = True) -> bool:
"""
Checks trades with open orders and updates the amount if necessary
Handles closing both buy and sell orders.

View File

@@ -5,7 +5,9 @@ Read the documentation to know what cli arguments you need.
"""
import logging
import sys
from typing import Any, List
from typing import Any, List, Optional
from freqtrade.util.gc_setup import gc_set_threshold
# check min. python version
@@ -21,7 +23,7 @@ from freqtrade.loggers import setup_logging_pre
logger = logging.getLogger('freqtrade')
def main(sysargv: List[str] = None) -> None:
def main(sysargv: Optional[List[str]] = None) -> None:
"""
This function will initiate the bot and start the trading loop.
:return: None
@@ -36,6 +38,7 @@ def main(sysargv: List[str] = None) -> None:
# Call subcommand.
if 'func' in args:
logger.info(f'freqtrade {__version__}')
gc_set_threshold()
return_code = args['func'](args)
else:
# No subcommand was issued.

View File

@@ -6,7 +6,7 @@ import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterator, List, Mapping, Union
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
from typing.io import IO
from urllib.parse import urlparse
@@ -205,7 +205,7 @@ def safe_value_fallback2(dict1: dictMap, dict2: dictMap, key1: str, key2: str, d
return default_value
def plural(num: float, singular: str, plural: str = None) -> str:
def plural(num: float, singular: str, plural: Optional[str] = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'
@@ -269,6 +269,8 @@ def dataframe_to_json(dataframe: pd.DataFrame) -> str:
def default(z):
if isinstance(z, pd.Timestamp):
return z.timestamp() * 1e3
if z is pd.NaT:
return 'NaT'
raise TypeError
return str(orjson.dumps(dataframe.to_dict(orient='split'), default=default), 'utf-8')
@@ -301,3 +303,21 @@ def remove_entry_exit_signals(dataframe: pd.DataFrame):
dataframe[SignalTagType.EXIT_TAG.value] = None
return dataframe
def append_candles_to_dataframe(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
"""
Append the `right` dataframe to the `left` dataframe
:param left: The full dataframe you want appended to
:param right: The new dataframe containing the data you want appended
:returns: The dataframe with the right data in it
"""
if left.iloc[-1]['date'] != right.iloc[-1]['date']:
left = pd.concat([left, right])
# Only keep the last 1500 candles in memory
left = left[-1500:] if len(left) > 1500 else left
left.reset_index(drop=True, inplace=True)
return left

View File

@@ -15,7 +15,7 @@ from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, LongShort
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, IntOrInf, LongShort
from freqtrade.data import history
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe, trim_dataframes
@@ -37,6 +37,7 @@ from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util.binance_mig import migrate_binance_futures_data
from freqtrade.wallets import Wallets
@@ -157,6 +158,7 @@ class Backtesting:
self._can_short = self.trading_mode != TradingMode.SPOT
self._position_stacking: bool = self.config.get('position_stacking', False)
self.enable_protections: bool = self.config.get('enable_protections', False)
migrate_binance_futures_data(config)
self.init_backtest()
@@ -573,26 +575,6 @@ class Backtesting:
""" Rate is within candle, therefore filled"""
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
def _get_exit_trade_entry_for_candle(self, trade: LocalTrade,
row: Tuple) -> Optional[LocalTrade]:
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exits = self.strategy.should_exit(
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
for exit_ in exits:
t = self._get_exit_for_signal(trade, row, exit_)
if t:
return t
return None
def _get_exit_for_signal(
self, trade: LocalTrade, row: Tuple, exit_: ExitCheckTuple,
amount: Optional[float] = None) -> Optional[LocalTrade]:
@@ -662,7 +644,7 @@ class Backtesting:
return None
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
close_rate: float, amount: float = None) -> Optional[LocalTrade]:
close_rate: float, amount: Optional[float] = None) -> Optional[LocalTrade]:
self.order_id_counter += 1
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
order_type = self.strategy.order_types['exit']
@@ -692,7 +674,7 @@ class Backtesting:
trade.orders.append(order)
return trade
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
def _check_trade_exit(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
if self.trading_mode == TradingMode.FUTURES:
@@ -704,32 +686,22 @@ class Backtesting:
close_date=exit_candle_time,
)
if self.timeframe_detail and trade.pair in self.detail_data:
exit_candle_end = exit_candle_time + timedelta(minutes=self.timeframe_min)
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
detail_data = self.detail_data[trade.pair]
detail_data = detail_data.loc[
(detail_data['date'] >= exit_candle_time) &
(detail_data['date'] < exit_candle_end)
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
return self._get_exit_trade_entry_for_candle(trade, row)
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
for det_row in detail_data[HEADERS].values.tolist():
res = self._get_exit_trade_entry_for_candle(trade, det_row)
if res:
return res
return None
else:
return self._get_exit_trade_entry_for_candle(trade, row)
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exits = self.strategy.should_exit(
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
for exit_ in exits:
t = self._get_exit_for_signal(trade, row, exit_)
if t:
return t
return None
def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
@@ -793,6 +765,7 @@ class Backtesting:
stake_amount=stake_amount,
min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount,
trade_amount=trade.stake_amount if trade else None
)
return propose_rate, stake_amount_val, leverage, min_stake_amount
@@ -802,6 +775,11 @@ class Backtesting:
trade: Optional[LocalTrade] = None,
requested_rate: Optional[float] = None,
requested_stake: Optional[float] = None) -> Optional[LocalTrade]:
"""
:param trade: Trade to adjust - initial entry if None
:param requested_rate: Adjusted entry rate
:param requested_stake: Stake amount for adjusted orders (`adjust_entry_price`).
"""
current_time = row[DATE_IDX].to_pydatetime()
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
@@ -827,7 +805,7 @@ class Backtesting:
return trade
time_in_force = self.strategy.order_time_in_force['entry']
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
if stake_amount and (not min_stake_amount or stake_amount >= min_stake_amount):
self.order_id_counter += 1
base_currency = self.exchange.get_pair_base_currency(pair)
amount_p = (stake_amount / propose_rate) * leverage
@@ -943,8 +921,9 @@ class Backtesting:
trade.close(exit_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool:
def trade_slot_available(self, open_trade_count: int) -> bool:
# Always allow trades when max_open_trades is enabled.
max_open_trades: IntOrInf = self.config['max_open_trades']
if max_open_trades <= 0 or open_trade_count < max_open_trades:
return True
# Rejected trade
@@ -1074,7 +1053,8 @@ class Backtesting:
def backtest_loop(
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
max_open_trades: int, open_trade_count_start: int) -> int:
open_trade_count_start: int, trade_dir: Optional[LongShort],
is_first: bool = True) -> int:
"""
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
@@ -1092,10 +1072,11 @@ class Backtesting:
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
# don't open on the last row
trade_dir = self.check_for_trade_entry(row)
# We only open trades on the main candle, not on detail candles
if (
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
and self.trade_slot_available(max_open_trades, open_trade_count_start)
and is_first
and self.trade_slot_available(open_trade_count_start)
and current_time != end_date
and trade_dir is not None
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
@@ -1120,7 +1101,7 @@ class Backtesting:
# 4. Create exit orders (if any)
if not trade.open_order_id:
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
self._check_trade_exit(trade, row) # Place exit order if necessary
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
@@ -1142,8 +1123,7 @@ class Backtesting:
return open_trade_count_start
def backtest(self, processed: Dict,
start_date: datetime, end_date: datetime,
max_open_trades: int = 0) -> Dict[str, Any]:
start_date: datetime, end_date: datetime) -> Dict[str, Any]:
"""
Implement backtesting functionality
@@ -1155,7 +1135,6 @@ class Backtesting:
optimize memory usage!
:param start_date: backtesting timerange start datetime
:param end_date: backtesting timerange end datetime
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
:return: DataFrame with trades (results of backtesting)
"""
self.prepare_backtest(self.enable_protections)
@@ -1171,7 +1150,6 @@ class Backtesting:
self.progress.init_step(BacktestState.BACKTEST, int(
(end_date - start_date) / timedelta(minutes=self.timeframe_min)))
# Loop timerange and get candle for each pair at that point in time
while current_time <= end_date:
open_trade_count_start = LocalTrade.bt_open_open_trade_count
@@ -1185,9 +1163,47 @@ class Backtesting:
row_index += 1
indexes[pair] = row_index
self.dataprovider._set_dataframe_max_index(row_index)
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
trade_dir: Optional[LongShort] = self.check_for_trade_entry(row)
open_trade_count_start = self.backtest_loop(
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
if (
(trade_dir is not None or len(LocalTrade.bt_trades_open_pp[pair]) > 0)
and self.timeframe_detail and pair in self.detail_data
):
# Spread out into detail timeframe.
# Should only happen when we are either in a trade for this pair
# or when we got the signal for a new trade.
exit_candle_end = current_detail_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[pair]
detail_data = detail_data.loc[
(detail_data['date'] >= current_detail_time) &
(detail_data['date'] < exit_candle_end)
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
open_trade_count_start = self.backtest_loop(
row, pair, current_time, end_date,
open_trade_count_start, trade_dir)
continue
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
is_first = True
current_time_det = current_time
for det_row in detail_data[HEADERS].values.tolist():
open_trade_count_start = self.backtest_loop(
det_row, pair, current_time_det, end_date,
open_trade_count_start, trade_dir, is_first)
current_time_det += timedelta(minutes=self.timeframe_detail_min)
is_first = False
else:
open_trade_count_start = self.backtest_loop(
row, pair, current_time, end_date,
open_trade_count_start, trade_dir)
# Move time one configured time_interval ahead.
self.progress.increment()
@@ -1219,13 +1235,11 @@ class Backtesting:
self._set_strategy(strat)
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
# Must come from strategy config, as the strategy may modify this setting.
max_open_trades = self.strategy.config['max_open_trades']
else:
if not self.config.get('use_max_market_positions', True):
logger.info(
'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0
self.strategy.max_open_trades = float('inf')
self.config.update({'max_open_trades': self.strategy.max_open_trades})
# need to reprocess data every time to populate signals
preprocessed = self.strategy.advise_all_indicators(data)
@@ -1248,7 +1262,6 @@ class Backtesting:
processed=preprocessed,
start_date=min_date,
end_date=max_date,
max_open_trades=max_open_trades,
)
backtest_end_time = datetime.now(timezone.utc)
results.update({

View File

@@ -74,6 +74,7 @@ class Hyperopt:
self.roi_space: List[Dimension] = []
self.stoploss_space: List[Dimension] = []
self.trailing_space: List[Dimension] = []
self.max_open_trades_space: List[Dimension] = []
self.dimensions: List[Dimension] = []
self.config = config
@@ -117,11 +118,10 @@ class Hyperopt:
self.current_best_epoch: Optional[Dict[str, Any]] = None
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
else:
if not self.config.get('use_max_market_positions', True):
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
self.max_open_trades = 0
self.backtesting.strategy.max_open_trades = float('inf')
config.update({'max_open_trades': self.backtesting.strategy.max_open_trades})
if HyperoptTools.has_space(self.config, 'sell'):
# Make sure use_exit_signal is enabled
@@ -209,6 +209,10 @@ class Hyperopt:
result['stoploss'] = {p.name: params.get(p.name) for p in self.stoploss_space}
if HyperoptTools.has_space(self.config, 'trailing'):
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
if HyperoptTools.has_space(self.config, 'trades'):
result['max_open_trades'] = {
'max_open_trades': self.backtesting.strategy.max_open_trades
if self.backtesting.strategy.max_open_trades != float('inf') else -1}
return result
@@ -229,6 +233,8 @@ class Hyperopt:
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
}
if not HyperoptTools.has_space(self.config, 'trades'):
result['max_open_trades'] = {'max_open_trades': strategy.max_open_trades}
return result
def print_results(self, results) -> None:
@@ -280,8 +286,13 @@ class Hyperopt:
logger.debug("Hyperopt has 'trailing' space")
self.trailing_space = self.custom_hyperopt.trailing_space()
if HyperoptTools.has_space(self.config, 'trades'):
logger.debug("Hyperopt has 'trades' space")
self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space()
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
+ self.roi_space + self.stoploss_space + self.trailing_space)
+ self.roi_space + self.stoploss_space + self.trailing_space
+ self.max_open_trades_space)
def assign_params(self, params_dict: Dict, category: str) -> None:
"""
@@ -328,6 +339,20 @@ class Hyperopt:
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
if HyperoptTools.has_space(self.config, 'trades'):
if self.config["stake_amount"] == "unlimited" and \
(params_dict['max_open_trades'] == -1 or params_dict['max_open_trades'] == 0):
# Ignore unlimited max open trades if stake amount is unlimited
params_dict.update({'max_open_trades': self.config['max_open_trades']})
updated_max_open_trades = int(params_dict['max_open_trades']) \
if (params_dict['max_open_trades'] != -1
and params_dict['max_open_trades'] != 0) else float('inf')
self.config.update({'max_open_trades': updated_max_open_trades})
self.backtesting.strategy.max_open_trades = updated_max_open_trades
with self.data_pickle_file.open('rb') as f:
processed = load(f, mmap_mode='r')
if self.analyze_per_epoch:
@@ -337,8 +362,7 @@ class Hyperopt:
bt_results = self.backtesting.backtest(
processed=processed,
start_date=self.min_date,
end_date=self.max_date,
max_open_trades=self.max_open_trades,
end_date=self.max_date
)
backtest_end_time = datetime.now(timezone.utc)
bt_results.update({

View File

@@ -91,5 +91,8 @@ class HyperOptAuto(IHyperOpt):
def trailing_space(self) -> List['Dimension']:
return self._get_func('trailing_space')()
def max_open_trades_space(self) -> List['Dimension']:
return self._get_func('max_open_trades_space')()
def generate_estimator(self, dimensions: List['Dimension'], **kwargs) -> EstimatorType:
return self._get_func('generate_estimator')(dimensions=dimensions, **kwargs)

View File

@@ -191,6 +191,16 @@ class IHyperOpt(ABC):
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
def max_open_trades_space(self) -> List[Dimension]:
"""
Create a max open trades space.
You may override it in your custom Hyperopt class.
"""
return [
Integer(-1, 10, name='max_open_trades'),
]
# This is needed for proper unpickling the class attribute timeframe
# which is set to the actual value by the resolver.
# Why do I still need such shamanic mantras in modern python?

View File

@@ -5,13 +5,11 @@ This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from math import sqrt as msqrt
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_max_drawdown
from freqtrade.data.metrics import calculate_calmar
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -23,42 +21,15 @@ class CalmarHyperOptLoss(IHyperOptLoss):
"""
@staticmethod
def hyperopt_loss_function(
results: DataFrame,
trade_count: int,
min_date: datetime,
max_date: datetime,
config: Config,
processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args,
**kwargs
) -> float:
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Calmar Ratio calculation.
"""
total_profit = backtest_stats["profit_total"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period * 100
# calculate max drawdown
try:
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
results, value_col="profit_abs"
)
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -20.0
starting_balance = config['dry_run_wallet']
calmar_ratio = calculate_calmar(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return -calmar_ratio

View File

@@ -6,9 +6,10 @@ Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_sharpe
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -22,25 +23,13 @@ class SharpeHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
starting_balance = config['dry_run_wallet']
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -6,9 +6,10 @@ Hyperoptimization.
"""
from datetime import datetime
import numpy as np
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.data.metrics import calculate_sortino
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -22,28 +23,13 @@ class SortinoHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
config: Config, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
"""
total_profit = results["profit_ratio"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
down_stdev = np.std(results['downside_returns'])
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
starting_balance = config['dry_run_wallet']
sortino_ratio = calculate_sortino(results, min_date, max_date, starting_balance)
# print(expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio

View File

@@ -96,7 +96,7 @@ class HyperoptTools():
Tell if the space value is contained in the configuration
"""
# 'trailing' and 'protection spaces are not included in the 'default' set of spaces
if space in ('trailing', 'protection'):
if space in ('trailing', 'protection', 'trades'):
return any(s in config['spaces'] for s in [space, 'all'])
else:
return any(s in config['spaces'] for s in [space, 'all', 'default'])
@@ -170,7 +170,7 @@ class HyperoptTools():
@staticmethod
def show_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
no_header: bool = False, header_str: Optional[str] = None) -> None:
"""
Display details of the hyperopt result
"""
@@ -187,7 +187,8 @@ class HyperoptTools():
if print_json:
result_dict: Dict = {}
for s in ['buy', 'sell', 'protection', 'roi', 'stoploss', 'trailing']:
for s in ['buy', 'sell', 'protection',
'roi', 'stoploss', 'trailing', 'max_open_trades']:
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
@@ -201,6 +202,8 @@ class HyperoptTools():
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
HyperoptTools._params_pretty_print(
params, 'max_open_trades', "Max Open Trades:", non_optimized)
@staticmethod
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
@@ -239,7 +242,9 @@ class HyperoptTools():
if space == "stoploss":
stoploss = safe_value_fallback2(space_params, no_params, space, space)
result += (f"stoploss = {stoploss}{appendix}")
elif space == "max_open_trades":
max_open_trades = safe_value_fallback2(space_params, no_params, space, space)
result += (f"max_open_trades = {max_open_trades}{appendix}")
elif space == "roi":
result = result[:-1] + f'{appendix}\n'
minimal_roi_result = rapidjson.dumps({
@@ -259,7 +264,7 @@ class HyperoptTools():
print(result)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
def _space_params(params, space: str, r: Optional[int] = None) -> Dict:
d = params.get(space)
if d:
# Round floats to `r` digits after the decimal point if requested

View File

@@ -8,9 +8,10 @@ from pandas import DataFrame, to_datetime
from tabulate import tabulate
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
Config)
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown)
Config, IntOrInf)
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
calculate_expectancy, calculate_market_change,
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
@@ -190,7 +191,7 @@ def generate_tag_metrics(tag_type: str,
return []
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
def generate_exit_reason_stats(max_open_trades: IntOrInf, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
:param max_open_trades: Max_open_trades parameter
@@ -448,6 +449,10 @@ def generate_strategy_stats(pairlist: List[str],
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
'expectancy': calculate_expectancy(results),
'sortino': calculate_sortino(results, min_date, max_date, start_balance),
'sharpe': calculate_sharpe(results, min_date, max_date, start_balance),
'calmar': calculate_calmar(results, min_date, max_date, start_balance),
'profit_factor': profit_factor,
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
@@ -785,8 +790,13 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
in strat_results else 'N/A'),
('Expectancy', f"{strat_results['expectancy']:.2f}" if 'expectancy'
in strat_results else 'N/A'),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),

View File

@@ -109,11 +109,10 @@ def migrate_trades_and_orders_table(
else:
is_short = get_column_def(cols, 'is_short', '0')
# Margin Properties
# Futures Properties
interest_rate = get_column_def(cols, 'interest_rate', '0.0')
# Futures properties
funding_fees = get_column_def(cols, 'funding_fees', '0.0')
max_stake_amount = get_column_def(cols, 'max_stake_amount', 'stake_amount')
# If ticker-interval existed use that, else null.
if has_column(cols, 'ticker_interval'):
@@ -162,7 +161,8 @@ def migrate_trades_and_orders_table(
timeframe, open_trade_value, close_profit_abs,
trading_mode, leverage, liquidation_price, is_short,
interest_rate, funding_fees, realized_profit,
amount_precision, price_precision, precision_mode, contract_size
amount_precision, price_precision, precision_mode, contract_size,
max_stake_amount
)
select id, lower(exchange), pair, {base_currency} base_currency,
{stake_currency} stake_currency,
@@ -190,7 +190,8 @@ def migrate_trades_and_orders_table(
{is_short} is_short, {interest_rate} interest_rate,
{funding_fees} funding_fees, {realized_profit} realized_profit,
{amount_precision} amount_precision, {price_precision} price_precision,
{precision_mode} precision_mode, {contract_size} contract_size
{precision_mode} precision_mode, {contract_size} contract_size,
{max_stake_amount} max_stake_amount
from {trade_back_name}
"""))
@@ -213,17 +214,22 @@ def migrate_orders_table(engine, table_back_name: str, cols_order: List):
average = get_column_def(cols_order, 'average', 'null')
stop_price = get_column_def(cols_order, 'stop_price', 'null')
funding_fee = get_column_def(cols_order, 'funding_fee', '0.0')
ft_amount = get_column_def(cols_order, 'ft_amount', 'coalesce(amount, 0.0)')
ft_price = get_column_def(cols_order, 'ft_price', 'coalesce(price, 0.0)')
# sqlite does not support literals for booleans
with engine.begin() as connection:
connection.execute(text(f"""
insert into orders (id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
stop_price, order_date, order_filled_date, order_update_date, ft_fee_base, funding_fee)
stop_price, order_date, order_filled_date, order_update_date, ft_fee_base, funding_fee,
ft_amount, ft_price
)
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, {average} average, remaining,
cost, {stop_price} stop_price, order_date, order_filled_date,
order_update_date, {ft_fee_base} ft_fee_base, {funding_fee} funding_fee
order_update_date, {ft_fee_base} ft_fee_base, {funding_fee} funding_fee,
{ft_amount} ft_amount, {ft_price} ft_price
from {table_back_name}
"""))
@@ -310,8 +316,8 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
# if ('orders' not in previous_tables
# or not has_column(cols_orders, 'funding_fee')):
migrating = False
# if not has_column(cols_trades, 'contract_size'):
if not has_column(cols_orders, 'funding_fee'):
# if not has_column(cols_trades, 'max_stake_amount'):
if not has_column(cols_orders, 'ft_price'):
migrating = True
logger.info(f"Running database migration for trades - "
f"backup: {table_back_name}, {order_table_bak_name}")

View File

@@ -30,8 +30,8 @@ class PairLocks():
PairLocks.locks = []
@staticmethod
def lock_pair(pair: str, until: datetime, reason: str = None, *,
now: datetime = None, side: str = '*') -> PairLock:
def lock_pair(pair: str, until: datetime, reason: Optional[str] = None, *,
now: Optional[datetime] = None, side: str = '*') -> PairLock:
"""
Create PairLock from now to "until".
Uses database by default, unless PairLocks.use_db is set to False,
@@ -87,7 +87,7 @@ class PairLocks():
Get the lock that expires the latest for the pair given.
"""
locks = PairLocks.get_pair_locks(pair, now, side=side)
locks = sorted(locks, key=lambda l: l.lock_end_time, reverse=True)
locks = sorted(locks, key=lambda lock: lock.lock_end_time, reverse=True)
return locks[0] if locks else None
@staticmethod

View File

@@ -49,6 +49,8 @@ class Order(_DECL_BASE):
ft_order_side: str = Column(String(25), nullable=False)
ft_pair: str = Column(String(25), nullable=False)
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
ft_amount = Column(Float, nullable=False)
ft_price = Column(Float, nullable=False)
order_id: str = Column(String(255), nullable=False, index=True)
status = Column(String(255), nullable=True)
@@ -82,9 +84,13 @@ class Order(_DECL_BASE):
self.order_filled_date.replace(tzinfo=timezone.utc) if self.order_filled_date else None
)
@property
def safe_amount(self) -> float:
return self.amount or self.ft_amount
@property
def safe_price(self) -> float:
return self.average or self.price or self.stop_price
return self.average or self.price or self.stop_price or self.ft_price
@property
def safe_filled(self) -> float:
@@ -94,7 +100,7 @@ class Order(_DECL_BASE):
def safe_remaining(self) -> float:
return (
self.remaining if self.remaining is not None else
self.amount - (self.filled or 0.0)
self.safe_amount - (self.filled or 0.0)
)
@property
@@ -140,7 +146,7 @@ class Order(_DECL_BASE):
# Assign funding fee up to this point
# (represents the funding fee since the last order)
self.funding_fee = self.trade.funding_fees
if (order.get('filled', 0.0) or 0.0) > 0:
if (order.get('filled', 0.0) or 0.0) > 0 and not self.order_filled_date:
self.order_filled_date = datetime.now(timezone.utc)
self.order_update_date = datetime.now(timezone.utc)
@@ -227,11 +233,20 @@ class Order(_DECL_BASE):
logger.warning(f"Did not find order for {order}.")
@staticmethod
def parse_from_ccxt_object(order: Dict[str, Any], pair: str, side: str) -> 'Order':
def parse_from_ccxt_object(
order: Dict[str, Any], pair: str, side: str,
amount: Optional[float] = None, price: Optional[float] = None) -> 'Order':
"""
Parse an order from a ccxt object and return a new order Object.
Optional support for overriding amount and price is only used for test simplification.
"""
o = Order(order_id=str(order['id']), ft_order_side=side, ft_pair=pair)
o = Order(
order_id=str(order['id']),
ft_order_side=side,
ft_pair=pair,
ft_amount=amount if amount else order['amount'],
ft_price=price if price else order['price'],
)
o.update_from_ccxt_object(order)
return o
@@ -293,6 +308,7 @@ class LocalTrade():
close_profit: Optional[float] = None
close_profit_abs: Optional[float] = None
stake_amount: float = 0.0
max_stake_amount: float = 0.0
amount: float = 0.0
amount_requested: Optional[float] = None
open_date: datetime
@@ -397,12 +413,6 @@ class LocalTrade():
def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc)
@property
def enter_side(self) -> str:
""" DEPRECATED, please use entry_side instead"""
# TODO: Please remove me after 2022.5
return self.entry_side
@property
def entry_side(self) -> str:
if self.is_short:
@@ -475,8 +485,8 @@ class LocalTrade():
'amount': round(self.amount, 8),
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8),
'max_stake_amount': round(self.max_stake_amount, 8) if self.max_stake_amount else None,
'strategy': self.strategy,
'buy_tag': self.enter_tag,
'enter_tag': self.enter_tag,
'timeframe': self.timeframe,
@@ -513,7 +523,6 @@ class LocalTrade():
'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
'profit_abs': self.close_profit_abs,
'sell_reason': self.exit_reason, # Deprecated
'exit_reason': self.exit_reason,
'exit_order_status': self.exit_order_status,
'stop_loss_abs': self.stop_loss,
@@ -790,7 +799,7 @@ class LocalTrade():
else:
return close_trade - fees
def calc_close_trade_value(self, rate: float, amount: float = None) -> float:
def calc_close_trade_value(self, rate: float, amount: Optional[float] = None) -> float:
"""
Calculate the Trade's close value including fees
:param rate: rate to compare with.
@@ -828,7 +837,8 @@ class LocalTrade():
raise OperationalException(
f"{self.trading_mode.value} trading is not yet available using freqtrade")
def calc_profit(self, rate: float, amount: float = None, open_rate: float = None) -> float:
def calc_profit(self, rate: float, amount: Optional[float] = None,
open_rate: Optional[float] = None) -> float:
"""
Calculate the absolute profit in stake currency between Close and Open trade
:param rate: close rate to compare with.
@@ -849,7 +859,8 @@ class LocalTrade():
return float(f"{profit:.8f}")
def calc_profit_ratio(
self, rate: float, amount: float = None, open_rate: float = None) -> float:
self, rate: float, amount: Optional[float] = None,
open_rate: Optional[float] = None) -> float:
"""
Calculates the profit as ratio (including fee).
:param rate: rate to compare with.
@@ -882,6 +893,7 @@ class LocalTrade():
ZERO = FtPrecise(0.0)
current_amount = FtPrecise(0.0)
current_stake = FtPrecise(0.0)
max_stake_amount = FtPrecise(0.0)
total_stake = 0.0 # Total stake after all buy orders (does not subtract!)
avg_price = FtPrecise(0.0)
close_profit = 0.0
@@ -923,7 +935,9 @@ class LocalTrade():
exit_rate, amount=exit_amount, open_rate=avg_price)
else:
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
max_stake_amount += (tmp_amount * price)
self.funding_fees = funding_fees
self.max_stake_amount = float(max_stake_amount)
if close_profit:
self.close_profit = close_profit
@@ -959,11 +973,12 @@ class LocalTrade():
return None
def select_order(self, order_side: Optional[str] = None,
is_open: Optional[bool] = None) -> Optional[Order]:
is_open: Optional[bool] = None, only_filled: bool = False) -> Optional[Order]:
"""
Finds latest order for this orderside and status
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
:param is_open: Only search for open orders?
:param only_filled: Only search for Filled orders (only valid with is_open=False).
:return: latest Order object if it exists, else None
"""
orders = self.orders
@@ -971,6 +986,8 @@ class LocalTrade():
orders = [o for o in orders if o.ft_order_side == order_side]
if is_open is not None:
orders = [o for o in orders if o.ft_is_open == is_open]
if is_open is False and only_filled:
orders = [o for o in orders if o.filled and o.status in NON_OPEN_EXCHANGE_STATES]
if len(orders) > 0:
return orders[-1]
else:
@@ -1044,8 +1061,9 @@ class LocalTrade():
return self.exit_reason
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
def get_trades_proxy(*, pair: Optional[str] = None, is_open: Optional[bool] = None,
open_date: Optional[datetime] = None,
close_date: Optional[datetime] = None,
) -> List['LocalTrade']:
"""
Helper function to query Trades.
@@ -1175,6 +1193,7 @@ class Trade(_DECL_BASE, LocalTrade):
close_profit = Column(Float)
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
max_stake_amount = Column(Float)
amount = Column(Float)
amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
@@ -1241,8 +1260,9 @@ class Trade(_DECL_BASE, LocalTrade):
Trade.query.session.rollback()
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
def get_trades_proxy(*, pair: Optional[str] = None, is_open: Optional[bool] = None,
open_date: Optional[datetime] = None,
close_date: Optional[datetime] = None,
) -> List['LocalTrade']:
"""
Helper function to query Trades.j

View File

@@ -436,11 +436,11 @@ def create_scatter(
return None
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
indicators1: List[str] = [],
indicators2: List[str] = [],
plot_config: Dict[str, Dict] = {},
) -> go.Figure:
def generate_candlestick_graph(
pair: str, data: pd.DataFrame, trades: Optional[pd.DataFrame] = None, *,
indicators1: List[str] = [], indicators2: List[str] = [],
plot_config: Dict[str, Dict] = {},
) -> go.Figure:
"""
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators

View File

@@ -0,0 +1,206 @@
"""
Remote PairList provider
Provides pair list fetched from a remote source
"""
import json
import logging
from pathlib import Path
from typing import Any, Dict, List, Tuple
import requests
from cachetools import TTLCache
from freqtrade import __version__
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class RemotePairList(IPairList):
def __init__(self, exchange, pairlistmanager,
config: Config, pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
if 'number_assets' not in self._pairlistconfig:
raise OperationalException(
'`number_assets` not specified. Please check your configuration '
'for "pairlist.config.number_assets"')
if 'pairlist_url' not in self._pairlistconfig:
raise OperationalException(
'`pairlist_url` not specified. Please check your configuration '
'for "pairlist.config.pairlist_url"')
self._number_pairs = self._pairlistconfig['number_assets']
self._refresh_period: int = self._pairlistconfig.get('refresh_period', 1800)
self._keep_pairlist_on_failure = self._pairlistconfig.get('keep_pairlist_on_failure', True)
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
self._pairlist_url = self._pairlistconfig.get('pairlist_url', '')
self._read_timeout = self._pairlistconfig.get('read_timeout', 60)
self._bearer_token = self._pairlistconfig.get('bearer_token', '')
self._init_done = False
self._last_pairlist: List[Any] = list()
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requires tickers, an empty Dict is passed
as tickers argument to filter_pairlist
"""
return False
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return f"{self.name} - {self._pairlistconfig['number_assets']} pairs from RemotePairlist."
def process_json(self, jsonparse) -> List[str]:
pairlist = jsonparse.get('pairs', [])
remote_refresh_period = int(jsonparse.get('refresh_period', self._refresh_period))
if self._refresh_period < remote_refresh_period:
self.log_once(f'Refresh Period has been increased from {self._refresh_period}'
f' to minimum allowed: {remote_refresh_period} from Remote.', logger.info)
self._refresh_period = remote_refresh_period
self._pair_cache = TTLCache(maxsize=1, ttl=remote_refresh_period)
self._init_done = True
return pairlist
def return_last_pairlist(self) -> List[str]:
if self._keep_pairlist_on_failure:
pairlist = self._last_pairlist
self.log_once('Keeping last fetched pairlist', logger.info)
else:
pairlist = []
return pairlist
def fetch_pairlist(self) -> Tuple[List[str], float]:
headers = {
'User-Agent': 'Freqtrade/' + __version__ + ' Remotepairlist'
}
if self._bearer_token:
headers['Authorization'] = f'Bearer {self._bearer_token}'
try:
response = requests.get(self._pairlist_url, headers=headers,
timeout=self._read_timeout)
content_type = response.headers.get('content-type')
time_elapsed = response.elapsed.total_seconds()
if "application/json" in str(content_type):
jsonparse = response.json()
try:
pairlist = self.process_json(jsonparse)
except Exception as e:
if self._init_done:
pairlist = self.return_last_pairlist()
logger.warning(f'Error while processing JSON data: {type(e)}')
else:
raise OperationalException(f'Error while processing JSON data: {type(e)}')
else:
if self._init_done:
self.log_once(f'Error: RemotePairList is not of type JSON: '
f' {self._pairlist_url}', logger.info)
pairlist = self.return_last_pairlist()
else:
raise OperationalException('RemotePairList is not of type JSON, abort.')
except requests.exceptions.RequestException:
self.log_once(f'Was not able to fetch pairlist from:'
f' {self._pairlist_url}', logger.info)
pairlist = self.return_last_pairlist()
time_elapsed = 0
return pairlist, time_elapsed
def gen_pairlist(self, tickers: Tickers) -> List[str]:
"""
Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs
"""
if self._init_done:
pairlist = self._pair_cache.get('pairlist')
else:
pairlist = []
time_elapsed = 0.0
if pairlist:
# Item found - no refresh necessary
return pairlist.copy()
else:
if self._pairlist_url.startswith("file:///"):
filename = self._pairlist_url.split("file:///", 1)[1]
file_path = Path(filename)
if file_path.exists():
with open(filename) as json_file:
# Load the JSON data into a dictionary
jsonparse = json.load(json_file)
try:
pairlist = self.process_json(jsonparse)
except Exception as e:
if self._init_done:
pairlist = self.return_last_pairlist()
logger.warning(f'Error while processing JSON data: {type(e)}')
else:
raise OperationalException('Error while processing'
f'JSON data: {type(e)}')
else:
raise ValueError(f"{self._pairlist_url} does not exist.")
else:
# Fetch Pairlist from Remote URL
pairlist, time_elapsed = self.fetch_pairlist()
self.log_once(f"Fetched pairs: {pairlist}", logger.debug)
pairlist = self._whitelist_for_active_markets(pairlist)
pairlist = pairlist[:self._number_pairs]
self._pair_cache['pairlist'] = pairlist.copy()
if time_elapsed != 0.0:
self.log_once(f'Pairlist Fetched in {time_elapsed} seconds.', logger.info)
else:
self.log_once('Fetched Pairlist.', logger.info)
self._last_pairlist = list(pairlist)
return pairlist
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist
"""
rpl_pairlist = self.gen_pairlist(tickers)
merged_list = pairlist + rpl_pairlist
merged_list = sorted(set(merged_list), key=merged_list.index)
return merged_list

Some files were not shown because too many files have changed in this diff Show More