Compare commits

..

921 Commits

Author SHA1 Message Date
Samuel Husso
e1322b75a9 Freqtrade 0.16.1 release
Note. This is the last release that uses our own bittrex implementation
      for trading. After this ccxt library will be taken into use which
      will offer the needed exchanges (bittrex/binance)
2018-05-12 09:50:01 +03:00
Samuel Husso
4ce927d455 merge develop to master for 0.16.1 release (pre-work for ccxt into use) 2018-05-12 09:48:40 +03:00
Samuel Husso
20ebd744c3 Freqtrade 0.16.0 release 2018-05-12 09:43:22 +03:00
Samuel Husso
89180adb35 Merge pull request #646 from gcarq/pyup-update-coinmarketcap-4.2.1-to-5.0.1
Update coinmarketcap to 5.0.1
2018-05-09 08:28:29 +03:00
pyup-bot
6b008d2237 Update coinmarketcap from 4.2.1 to 5.0.1 2018-05-08 15:41:10 +02:00
Michael Egger
33ce904f41 Merge pull request #643 from xmatthias/adjust_dockerignore
exclude unnecessary files from Docker image
2018-05-07 17:20:49 +02:00
Michael Egger
ed34c4f199 Merge pull request #641 from gcarq/pyup-update-scipy-1.0.1-to-1.1.0
Update scipy to 1.1.0
2018-05-07 17:01:09 +02:00
Matthias Voppichler
394ef35a45 Add unnecessary files to .dockerignore
these files are not needed to run the bot - therefore should not be
added to the docker container
2018-05-06 20:23:20 +02:00
pyup-bot
490cbde652 Update scipy from 1.0.1 to 1.1.0 2018-05-05 21:31:05 +02:00
Samuel Husso
2c49231fcd Merge pull request #638 from gcarq/pyup-update-python-telegram-bot-10.0.2-to-10.1.0
Update python-telegram-bot to 10.1.0
2018-05-05 09:10:50 +03:00
pyup-bot
3d4019d8b7 Update python-telegram-bot from 10.0.2 to 10.1.0 2018-05-05 00:14:03 +02:00
Gert Wohlgemuth
6d2afdb146 added support for showing the exposed real value on the count table (#634) 2018-05-03 11:18:35 +02:00
Samuel Husso
bddf009a2b Merge pull request #630 from gcarq/pyup-update-pytest-mock-1.9.0-to-1.10.0
Update pytest-mock to 1.10.0
2018-05-02 07:50:36 +03:00
pyup-bot
bc13b7901f Update pytest-mock from 1.9.0 to 1.10.0 2018-05-01 20:12:57 +02:00
Samuel Husso
743a1f1604 Merge pull request #626 from gcarq/pyup-update-numpy-1.14.2-to-1.14.3
Update numpy to 1.14.3
2018-04-28 20:33:24 +03:00
pyup-bot
cec58323d4 Update numpy from 1.14.2 to 1.14.3 2018-04-28 19:19:50 +02:00
Samuel Husso
9cbd0df644 Merge pull request #624 from gcarq/pyup-update-pytest-3.5.0-to-3.5.1
Update pytest to 3.5.1
2018-04-25 07:59:27 +03:00
pyup-bot
6adab0cf6b Update pytest from 3.5.0 to 3.5.1 2018-04-25 04:54:46 +02:00
Samuel Husso
aa104f86e8 Merge pull request #621 from xmatthias/update_docker_image
update Docker image to python-3.6.5-slim-stretch
2018-04-22 11:06:06 +03:00
Matthias Voppichler
710c7daec5 update Docker image to python-3.6.5-slim 2018-04-22 09:21:09 +02:00
Luis Felipe Díaz Chica
954c6e8c15 Write log when trying to sell opened trades (#608) 2018-04-21 18:44:57 +02:00
Samuel Husso
6d327658ea docs: Add note about using telegram proxy (#611) 2018-04-21 18:24:53 +02:00
Samuel Husso
27003c447d Merge pull request #612 from gcarq/pyup-update-sqlalchemy-1.2.6-to-1.2.7
Update sqlalchemy to 1.2.7
2018-04-21 10:05:31 +03:00
pyup-bot
bb07ad38d3 Update sqlalchemy from 1.2.6 to 1.2.7 2018-04-20 23:35:34 +02:00
Samuel Husso
49f2c24698 Merge pull request #605 from pan-long/fix-typo-setup
Fix a typo in setup.sh
2018-04-18 15:09:41 +03:00
Pan Long
0fab7f0880 Fix a typo in setup.sh 2018-04-18 19:11:37 +08:00
Samuel Husso
81020b3612 Merge pull request #604 from gcarq/pyup-update-python-telegram-bot-10.0.1-to-10.0.2
Update python-telegram-bot to 10.0.2
2018-04-17 10:46:03 +03:00
pyup-bot
4b78bedddd Update python-telegram-bot from 10.0.1 to 10.0.2 2018-04-17 09:27:27 +02:00
Samuel Husso
ce142496b1 Merge pull request #601 from gcarq/pyup-update-pytest-mock-1.8.0-to-1.9.0
Update pytest-mock to 1.9.0
2018-04-10 07:47:31 +03:00
pyup-bot
53690c5ece Update pytest-mock from 1.8.0 to 1.9.0 2018-04-10 05:57:16 +02:00
Matthias
a26cdceb4b Fix tests run in random order (#599)
* allow tests to run in random mode

* Fix random test mode for fiat-convert

* allow random test execution in persistence

* fix pep8 styling

* use "usefixtures" to prevent pylint "unused parameter" message

* add pytest-random-order to travis
2018-04-07 20:06:53 +02:00
Samuel Husso
248ff3349b Merge pull request #598 from gcarq/pyup-update-pytest-mock-1.7.1-to-1.8.0
Update pytest-mock to 1.8.0
2018-04-07 07:51:17 +03:00
pyup-bot
55dc699d45 Update pytest-mock from 1.7.1 to 1.8.0 2018-04-07 06:42:10 +02:00
Michael Egger
9019f6492f define constants on module level (#596) 2018-04-02 16:42:53 +02:00
Samuel Husso
9cb5591007 Merge pull request #592 from xmatthias/develop_fix_dyn_wl
Disable dynamic whitelist if not specified
2018-03-31 12:14:06 +03:00
Samuel Husso
eac89c244d Merge pull request #593 from gcarq/pyup-update-sqlalchemy-1.2.5-to-1.2.6
Update sqlalchemy to 1.2.6
2018-03-31 00:59:49 +03:00
pyup-bot
84bbe7728d Update sqlalchemy from 1.2.5 to 1.2.6 2018-03-30 22:52:47 +02:00
Matthias Voppichler
5bd79546ab Disable dynamic whitelist
Revert regression introduced in refactoring for objectify
2018-03-30 22:38:09 +02:00
Janne Sinivirta
2efc0113fe Merge pull request #591 from gcarq/feature/remove-duplicate-ticks
Aggregate ticks in parse_ticker_dataframe
2018-03-30 10:55:51 +03:00
gcarq
24aa6a1679 adapt test_download_backtesting_testdata 2018-03-29 20:17:11 +02:00
gcarq
3775fdf9c7 change column order assertions 2018-03-29 20:16:46 +02:00
gcarq
fee8d0a2e1 refactor get_timeframe 2018-03-29 20:16:25 +02:00
gcarq
702402e1fe simplify download_backtesting_testdata 2018-03-29 20:15:32 +02:00
gcarq
4f2d3dbb41 parse_ticker_dataframe: use as_index=False to keep date column 2018-03-29 20:14:43 +02:00
gcarq
02aacdd0c8 parse_ticker_dataframe: group dataframe by date 2018-03-29 17:12:49 +02:00
Janne Sinivirta
131dfaf263 Merge pull request #588 from gcarq/feature/enhance-strategy-resolving-2
Add --strategy-path parameter and simplify StrategyResolver
2018-03-28 10:54:24 +03:00
gcarq
004e0bb9a3 bot-usage.md: add strategy-path 2018-03-27 18:46:42 +02:00
gcarq
06276e1d24 bot-optimization.md: add strategy-path 2018-03-27 18:39:49 +02:00
gcarq
ba5cbcbb3f configuration.md: add strategy and strategy_path 2018-03-27 18:38:43 +02:00
gcarq
872bbadded add test_load_custom_strategy() 2018-03-27 18:29:51 +02:00
gcarq
6a12591248 change strategy override condition 2018-03-27 18:20:15 +02:00
gcarq
e7399b5046 add strategy and strategy_path to config_full.json.example 2018-03-27 18:16:21 +02:00
gcarq
df57c32076 only override strategy if other than DEFAULT 2018-03-27 18:15:49 +02:00
gcarq
f78044da6d fix method docs 2018-03-27 16:32:58 +02:00
gcarq
157f7da8ce remove obsolete assertions 2018-03-27 16:32:58 +02:00
gcarq
a356edb117 implement '--strategy-path' argument 2018-03-27 16:32:58 +02:00
gcarq
5fb6fa38aa apply __slots__ to resolver and reintroduce type conversations 2018-03-27 16:32:58 +02:00
gcarq
99e890bc99 simplify resolver constructor 2018-03-27 16:32:58 +02:00
gcarq
280886104c strategy: remove unneeded population methods in resolver 2018-03-27 16:32:58 +02:00
Janne Sinivirta
1cec06f808 Merge pull request #578 from gcarq/feature/enhance-strategy-resolving
enhance strategy resolving
2018-03-27 12:44:33 +03:00
Janne Sinivirta
85a81b18a3 Merge pull request #586 from xmatthias/obj_backtest_pr2
fix backtest --export format
2018-03-27 12:43:52 +03:00
Matthias Voppichler
a182cab27f fix backtest --export format
reverts regression introduced in c623564
2018-03-26 20:28:51 +02:00
gcarq
b254ff9b41 Merge 'develop' into feature/enhance-strategy-resolving 2018-03-26 16:23:25 +02:00
Janne Sinivirta
586f49cafd Merge pull request #584 from gcarq/feature/fix-loglevel
Drop Logger class and ensure parent logger detection
2018-03-26 06:49:44 +03:00
gcarq
611bb52d1f log hyperopt progress to stdout instead to the logger 2018-03-25 22:57:40 +02:00
gcarq
f374a062e1 remove freqtrade/logger.py 2018-03-25 21:43:00 +02:00
gcarq
fa7f74b4bc use native python logger 2018-03-25 21:43:00 +02:00
gcarq
3f8d7dae39 make name a required argument and add fallback to getEffectiveLevel 2018-03-25 21:42:03 +02:00
gcarq
7edbae893d docs: fix typos 2018-03-25 16:42:20 +02:00
gcarq
7fe0ec5407 adapt docs/bot-usage to reflect changes 2018-03-25 16:39:31 +02:00
gcarq
6b47c39103 remove invalid mock 2018-03-25 15:12:39 +02:00
gcarq
bd2a6467fe adapt argument description and metavar 2018-03-25 15:12:39 +02:00
gcarq
4fac61387f adapt docs/bot-optimization 2018-03-25 15:12:39 +02:00
gcarq
3cee94226f fix flake8 warnings 2018-03-25 15:12:39 +02:00
gcarq
a38c2121cc adapt tests 2018-03-25 15:12:39 +02:00
gcarq
b4d2a3f495 refactor StrategyResolver to work with class names 2018-03-25 15:12:39 +02:00
gcarq
6e5c14a95b fix mutable default argument 2018-03-25 15:12:39 +02:00
gcarq
ca9c5edd39 rename Strategy into StrategyResolver 2018-03-25 15:12:39 +02:00
Samuel Husso
a2c3df3ac5 Merge pull request #577 from gcarq/feature/fix-reference-before-assignment
fix reference before assignment error during shutdown
2018-03-25 10:15:43 +03:00
Samuel Husso
d393aa0f87 Merge pull request #575 from gcarq/pyup-update-scipy-1.0.0-to-1.0.1
Update scipy to 1.0.1
2018-03-24 21:58:15 +02:00
gcarq
3f4261ad1e use correct return_code if an error occured 2018-03-24 20:56:27 +01:00
gcarq
4c97ee45dd return None if subcommand has been executed 2018-03-24 20:55:10 +01:00
gcarq
9d443b8bd8 fix reference before assignment 2018-03-24 20:54:46 +01:00
pyup-bot
71025fd374 Update scipy from 1.0.0 to 1.0.1 2018-03-24 20:40:57 +01:00
Samuel Husso
0893431fde Merge pull request #572 from gcarq/pyup-update-pytest-3.4.2-to-3.5.0
Update pytest to 3.5.0
2018-03-23 07:07:06 +02:00
pyup-bot
e5abc15c53 Update pytest from 3.4.2 to 3.5.0 2018-03-23 05:30:54 +01:00
Janne Sinivirta
8d65452631 Merge pull request #569 from gcarq/feature/state-public-attr
Make state a public property on FreqtradeBot
2018-03-22 15:46:18 +02:00
gcarq
b8f322d8f6 revert worker() changes 2018-03-21 19:27:30 +01:00
gcarq
9df5e09a82 remove function assertions 2018-03-21 18:50:18 +01:00
gcarq
9559f50eec remove obsolete helper functions and make _state a public member. 2018-03-21 18:50:18 +01:00
Janne Sinivirta
62a3366fbf Merge pull request #537 from gcarq/feature/objectify
Switch from procedural code to object + Code coverage 99.09%
2018-03-21 08:59:28 +02:00
Janne Sinivirta
04c6474dd0 Merge pull request #563 from gcarq/feature/typehints
Set correct typehints and minor code cleanups
2018-03-21 08:53:38 +02:00
gcarq
3553686e50 plot_dataframe: set missing typehints 2018-03-20 19:50:04 +01:00
gcarq
bc554faffb plot_profit: add missing typehints and fix mutable argument issue 2018-03-20 19:50:04 +01:00
gcarq
a5c62b5c10 rpc/rpc.py: fix indentation 2018-03-20 19:50:04 +01:00
gcarq
f6df7df9bf modify args typehints 2018-03-20 19:50:04 +01:00
gcarq
33ddc540cf don't shadow built-in name tuple 2018-03-20 19:50:04 +01:00
gcarq
7078bc00bd rpc: apply correct typehints; remove redundant parentheses 2018-03-20 19:50:04 +01:00
gcarq
d2aea7bdc1 optimize imports 2018-03-20 19:50:04 +01:00
gcarq
d8689e5045 set correct typehint; remove unused argument 2018-03-20 19:48:03 +01:00
gcarq
5327533188 optimize: set correct typehints 2018-03-20 19:48:03 +01:00
gcarq
5532cedcdd get_signal: remove redundant parentheses 2018-03-20 19:48:03 +01:00
gcarq
ed71340a90 arguments: apply missing typehints 2018-03-20 19:48:03 +01:00
gcarq
1074415d30 remove invalid typehint from ctor 2018-03-20 19:48:03 +01:00
gcarq
90be78b283 CryptoFiat: inherit from object explicitly 2018-03-20 19:48:03 +01:00
gcarq
2de63133ae indicator_helpers: apply correct typehints 2018-03-20 19:48:03 +01:00
gcarq
31e2aa0f38 misc: apply missing typehints 2018-03-20 19:48:03 +01:00
gcarq
cae7be4447 add fee param to function doc 2018-03-20 19:48:03 +01:00
gcarq
a6a38735b1 backtesting: only respect max_open_trades with realistic_simulation 2018-03-20 19:38:33 +01:00
gcarq
93931eb32b fix typo in _generate_text_table 2018-03-19 23:05:12 +01:00
gcarq
967bf417df Merge branch 'develop' into feature/objectify 2018-03-19 19:10:19 +01:00
Matthias
b67257db35 replace pymarketcap with coinmarketcap (#562)
* replace pymarketcap with coinmarketcap

* fix tests to use coinmarketcap instead of pymarketcap

* use arraypos 0

* update setup.py from pymarketcap to coinmarketcap

* Add test to check for unsupported Crypto currency
2018-03-19 18:40:40 +01:00
Matthias
94caf82ab2 Fix test_dataframe when ran standalone (#546)
* Fix dataframe test when ran standalone

* Fix standalone tests in hyperopt and optimize tests
2018-03-19 18:30:14 +01:00
gcarq
eb8503c547 README: add codeclimate badge 2018-03-18 18:59:13 +01:00
Samuel Husso
89e8286cbc Merge pull request #565 from gcarq/feature/adapt-bin-wrapper
adapt bin/freqtrade to pass required parameters
2018-03-18 09:41:45 +02:00
gcarq
ebe1d3647f .gitignore: add .pytest_cache/ 2018-03-18 02:04:30 +01:00
gcarq
5ed6f70010 call set_loggers() and pass sys.argv to main 2018-03-18 01:55:43 +01:00
Matthias
a99c8c4046 replace pymarketcap with coinmarketcap (#562)
* replace pymarketcap with coinmarketcap

* fix tests to use coinmarketcap instead of pymarketcap

* use arraypos 0

* update setup.py from pymarketcap to coinmarketcap

* Add test to check for unsupported Crypto currency
2018-03-18 00:42:24 +01:00
Michael Egger
fd44c0e59e allow max_open_trades to be zero (#561) 2018-03-17 10:40:50 +01:00
Gérald LONLAS
e6732e01e1 Use ticker_interval defined in Strategy() instead of a mix between strategy and config file (#540) 2018-03-15 23:48:22 +01:00
Matthias
e907c48438 Fix test_dataframe when ran standalone (#546)
* Fix dataframe test when ran standalone

* Fix standalone tests in hyperopt and optimize tests
2018-03-15 23:37:34 +01:00
Matthias
480d3876b8 Align calling of freqtrade in backtesting and plotting docu (#554) 2018-03-15 23:34:13 +01:00
Samuel Husso
ab93a61066 Merge pull request #550 from gcarq/pyup-update-numpy-1.14.1-to-1.14.2
Update numpy to 1.14.2
2018-03-13 10:52:36 +02:00
pyup-bot
5f68a445cf Update numpy from 1.14.1 to 1.14.2 2018-03-12 19:53:35 +01:00
Samuel Husso
de454924a3 Merge pull request #549 from gcarq/pyup-update-ta-lib-0.4.16-to-0.4.17
Update ta-lib to 0.4.17
2018-03-12 19:15:33 +02:00
pyup-bot
4be75d862f Update ta-lib from 0.4.16 to 0.4.17 2018-03-12 16:24:35 +01:00
Samuel Husso
61d5e265f5 Merge pull request #548 from ElanHasson/patch-2
Should be Telegram, not Instagram
2018-03-12 08:30:34 +02:00
Elan Hasson
e172bc134b Should be Telegram, not Instagram 2018-03-11 16:07:57 -04:00
Samuel Husso
0dbc0ffb6b Merge pull request #543 from xmatthias/docker-readme
Update documentation for docker
2018-03-10 12:31:47 +02:00
Matthias Voppichler
215dea0411 Fix wrong whitespace character 2018-03-10 09:53:38 +01:00
Matthias Voppichler
4cfa3be69e add /etc/localtime to container to syncronize time 2018-03-09 20:51:28 +01:00
Samuel Husso
d081f6afe7 Merge pull request #542 from xmatthias/update_dockerfile
Update dockerfile to python:3.6.4-slim-stretch
2018-03-09 09:23:11 +02:00
Matthias Voppichler
adf6244eda Update dockerfile to python:3.6.4-slim-stretch 2018-03-08 19:25:42 +01:00
Janne Sinivirta
1bdbe09b6b Merge pull request #538 from gcarq/pyup-update-python-telegram-bot-9.0.0-to-10.0.1
Update python-telegram-bot to 10.0.1
2018-03-08 11:24:20 +02:00
Gérald LONLAS
a10cd23990 Merge branch 'develop' into pyup-update-python-telegram-bot-9.0.0-to-10.0.1 2018-03-07 19:40:19 -08:00
Janne Sinivirta
7c393080ff Merge pull request #541 from gcarq/pyup-update-sqlalchemy-1.2.4-to-1.2.5
Update sqlalchemy to 1.2.5
2018-03-07 08:34:14 +02:00
pyup-bot
d1dbefa376 Update sqlalchemy from 1.2.4 to 1.2.5 2018-03-06 20:50:25 +01:00
Gerald Lonlas
c94f55807b Merge branch 'develop' into feature/objectify 2018-03-06 03:33:00 -08:00
Samuel Husso
f8e81dde9e Merge pull request #539 from gcarq/pyup-update-pytest-3.4.1-to-3.4.2
Update pytest to 3.4.2
2018-03-06 09:51:21 +02:00
Gerald Lonlas
173b640b34 Increase Hyperopt() code coverage 2018-03-05 22:36:15 -08:00
Gerald Lonlas
0bb7cc8ab5 Hyperopt: fix 'Ran out of input' error 2018-03-05 20:49:45 -08:00
Gerald Lonlas
a8fd7a69ab Increase Configuration._load_config_file() code coverage 2018-03-05 19:57:45 -08:00
pyup-bot
b986ed5613 Update pytest from 3.4.1 to 3.4.2 2018-03-06 04:37:20 +01:00
pyup-bot
96ad74cd51 Update python-telegram-bot from 9.0.0 to 10.0.1 2018-03-05 12:55:22 +01:00
Gerald Lonlas
ea7b25766b Increase Hyperopt() code coverage 2018-03-05 00:35:42 -08:00
Gerald Lonlas
1d43e04725 Increase FreqtradeBot() code coverage 2018-03-05 00:11:13 -08:00
Gerald Lonlas
ba664c4341 Increase Configuration._load_hyperopt_config() code coverage 2018-03-04 23:12:34 -08:00
Gerald Lonlas
aa22585d40 Add unit test for misc.common_datearray() 2018-03-04 23:05:44 -08:00
Gerald Lonlas
cf78da5fae Plot_profit.py: Fix Flake8 warnings 2018-03-04 20:24:01 -08:00
Gerald Lonlas
152c4483c8 Configuration() sends a msg to user when config file not found 2018-03-04 20:22:40 -08:00
Gerald Lonlas
45341bb246 Plot_profit.py: fix it and make it works with the new object model 2018-03-04 20:21:49 -08:00
Gerald Lonlas
9ae2491b1e Plot_dataframe.py: make it works with the new object model 2018-03-04 18:12:43 -08:00
Gerald Lonlas
d685646446 Arguments(): Change private methods to public 2018-03-04 17:51:57 -08:00
Gerald Lonlas
de468c6fc8 Fix wrong realistic_simulation implementation in Hyperopt 2018-03-04 02:31:25 -08:00
Gerald Lonlas
6f3949bb6d Merge commit 'b799445b1a690a3773cb4b0ab73947c382285f95' into feature/objectify 2018-03-04 02:07:08 -08:00
Gerald Lonlas
25d0e5f942 Merge commit '4dca84817eb1b62047a9e4d282254392ea978e44' into feature/objectify 2018-03-04 02:06:40 -08:00
Gerald Lonlas
4abb7e22ac Merge commit 'cd28693726d4034e0332076803930ee0b6a0ae1d' into feature/objectify 2018-03-04 01:34:35 -08:00
Gerald Lonlas
f8781bc193 Merge commit '293dc4da8025461c67d191981604e3c4da7137bf' into feature/objectify 2018-03-04 01:34:23 -08:00
Gerald Lonlas
d7e9d8c6cc Merge commit 'df13a6f3338e94b2f49e62f776e0fe94b2e08d6b' into feature/objectify 2018-03-04 01:34:07 -08:00
Gerald Lonlas
6fcc173489 Merge commit '35c51c73f713bfdb81bd84721f3dceab0c19e819' into feature/objectify 2018-03-04 01:33:39 -08:00
Gerald Lonlas
bb1e38f584 Merge commit '8eed9c08a6cffdd7c6b43fa3db2c3e08d1657f43' into feature/objectify 2018-03-04 01:01:19 -08:00
Gerald Lonlas
c52e688979 Fix unit tests in test_arguments.py and test_configuration.py 2018-03-04 00:58:20 -08:00
Gerald Lonlas
2001c20426 Merge commit '028700d86f130d5c3cbfef4e422dc701340f58c9' into feature/objectify 2018-03-04 00:53:27 -08:00
Gerald Lonlas
5a6f6c7138 Merge commit 'd13d6736b92ebfed1e172b60c77029e6c10b29a6' into feature/objectify 2018-03-04 00:51:49 -08:00
Gerald Lonlas
722ed48d9d Merge commit 'e3d222912dfd775b7456a44d6d6055430711f251' into feature/objectify 2018-03-04 00:51:22 -08:00
Gerald Lonlas
38510d4b03 Merge commit '1134c81aad049d4357c8f299ffc801218f3d9574' into feature/objectify 2018-03-03 17:26:06 -08:00
Gerald Lonlas
96a343fb29 Merge commit '53b1f7ac4d0449d54711d1f406d1c0a79dc5d8ee' into feature/objectify 2018-03-03 14:59:01 -08:00
Gerald Lonlas
84759073d9 Refactor Configuration() to apply common configurations all the time and to remove show_info 2018-03-03 13:43:14 -08:00
Gerald Lonlas
0632cf0f44 Merge commit 'aa7aeb046ef72412cadd094666efc8e4c503ef2d' into feature/objectify 2018-03-02 23:28:36 -08:00
Gerald Lonlas
bbb1a31fda Merge commit 'c5400b6c37c7de64a86c9db39a4d0fa9169b35f6' into feature/objectify 2018-03-03 10:01:06 +08:00
Gerald Lonlas
6158de3729 Merge commit '192521523f3894d40a8d1d77308504912618e375' into feature/objectify 2018-03-03 09:41:08 +08:00
Gerald Lonlas
3ba365ceb2 Merge commit 'fecd9f830ec4e8e9d5d1f3a70310d42bbe3f274a' into feature/objectify 2018-03-03 09:39:27 +08:00
Gerald Lonlas
5b314e2f7a Port commit "Remove Strategy fallback to default strategy (#490)"
Hash: d24cd89304
2018-03-03 09:33:54 +08:00
Gerald Lonlas
390501bac0 Make Pylint Happy chapter 1 2018-03-03 09:33:54 +08:00
Gerald Lonlas
d274f13480 Remove Memory profiler in Backtesting 2018-03-03 09:33:54 +08:00
Gerald Lonlas
6148f98980 Fix Telegram unit test when using an internet connection 2018-03-03 09:33:54 +08:00
Gerald Lonlas
8bd0f4d0d7 Remove ugly pprints 2018-03-03 09:33:54 +08:00
Gerald Lonlas
bc8ca491cd Minor updates 2018-03-03 09:33:54 +08:00
Gerald Lonlas
6ef7b7d93d Complete Backtesting and Hyperopt unit tests 2018-03-03 09:33:54 +08:00
Gerald Lonlas
f4ec073099 Move RPC and Telegram to classes 2018-03-03 09:33:54 +08:00
Gerald Lonlas
766ec5ad0f Update unit tests to be compatible with this refactoring
Updated:
- test_acl_pair to be compatible with FreqtradeBot() class
- test_default_strategy.py to be compatible with Analyze() class
2018-03-03 09:33:54 +08:00
Gerald Lonlas
383fb6d20e Add a class Arguments to manage cli arguments passed to the bot 2018-03-03 09:33:54 +08:00
Gerald Lonlas
1d251d6151 Move Backtesting to a class and add unit tests 2018-03-03 09:33:54 +08:00
Gerald Lonlas
db67b10605 Remove Singleton from Strategy() 2018-03-03 09:33:54 +08:00
Gerald Lonlas
4da033c7a2 Refactor main.py
- Update, clean, and improve code coverage on main.py
- Move bot trading logic into Freqtradebot() class
- Move unit tests to test_freqtradebot, add more coverage tests
2018-03-03 09:33:54 +08:00
Gerald Lonlas
a8b8ab20b7 Move Analyze to a class 2018-03-03 09:33:54 +08:00
Gerald Lonlas
e025dc0dba Keep in misc file only tool functions 2018-03-03 09:33:54 +08:00
Gerald Lonlas
89e3729955 Add a Configuration class that generate the Bot config from Arguments 2018-03-03 09:33:54 +08:00
Gerald Lonlas
3b9e828fa4 Add a class Logger to manage the logging messages
This class will evolve later to support color logging. For now
it is used to not repeat the logging configuration everywhere.
2018-03-03 09:33:54 +08:00
Gerald Lonlas
cf753d5c40 Add a Enum class State that contains Bot running states 2018-03-03 09:33:54 +08:00
Gerald Lonlas
314ab0a84f Add a Constants class that contains Bot constants 2018-03-03 09:33:54 +08:00
Samuel Husso
b799445b1a Merge pull request #531 from gcarq/pyup-update-pytest-mock-1.7.0-to-1.7.1
Update pytest-mock to 1.7.1
2018-03-01 14:18:10 +02:00
pyup-bot
69eddbbc76 Update pytest-mock from 1.7.0 to 1.7.1 2018-03-01 12:56:17 +01:00
Samuel Husso
4dca84817e Merge pull request #526 from gcarq/improve_log_messages
Improve log messages
2018-02-26 08:48:09 +02:00
Janne Sinivirta
bf54692efb use log_has helper in tests 2018-02-24 22:18:19 +02:00
Janne Sinivirta
76c5cdc6e3 more minor tweaks to log messages 2018-02-24 20:30:16 +02:00
Janne Sinivirta
3e89b9685d remove unnecessary detail from log message 2018-02-24 19:28:51 +02:00
Janne Sinivirta
646d1f7316 better log message for outdated history 2018-02-24 19:25:08 +02:00
Janne Sinivirta
67ad9e9351 simplify some error message statements 2018-02-24 19:19:43 +02:00
Janne Sinivirta
160af91f9a improving log messages 2018-02-24 18:58:57 +02:00
Janne Sinivirta
5e73f3431c log how old the last received tick is 2018-02-24 16:59:20 +02:00
Samuel Husso
cd28693726 Merge pull request #525 from gcarq/pyup-update-sqlalchemy-1.2.3-to-1.2.4
Update sqlalchemy to 1.2.4
2018-02-23 07:52:47 +02:00
pyup-bot
ebad2b7542 Update sqlalchemy from 1.2.3 to 1.2.4 2018-02-22 23:17:07 +01:00
Samuel Husso
293dc4da80 Merge pull request #523 from gcarq/pyup-update-numpy-1.14.0-to-1.14.1
Update numpy to 1.14.1
2018-02-21 09:09:20 +02:00
Samuel Husso
df13a6f333 Merge pull request #524 from gcarq/pyup-update-pytest-3.4.0-to-3.4.1
Update pytest to 3.4.1
2018-02-21 09:08:46 +02:00
pyup-bot
e58cafed6f Update pytest from 3.4.0 to 3.4.1 2018-02-21 02:43:34 +01:00
pyup-bot
072f0b07d4 Update numpy from 1.14.0 to 1.14.1 2018-02-21 02:43:31 +01:00
Samuel Husso
35c51c73f7 Merge pull request #518 from gcarq/cleaning_up_backtesting
Cleaning up backtesting/hyperopt
2018-02-18 10:18:00 +02:00
Janne Sinivirta
fac122891f remove stoploss parameter from backtest, it is loaded from strategy 2018-02-17 11:14:03 +02:00
Samuel Husso
8eed9c08a6 Merge pull request #519 from gcarq/pyup-update-pytest-mock-1.6.3-to-1.7.0
Update pytest-mock to 1.7.0
2018-02-17 10:12:28 +02:00
Samuel Husso
1911143a75 Merge pull request #520 from gcarq/pyup-update-sqlalchemy-1.2.2-to-1.2.3
Update sqlalchemy to 1.2.3
2018-02-17 10:11:32 +02:00
pyup-bot
19616eba35 Update sqlalchemy from 1.2.2 to 1.2.3 2018-02-17 01:16:22 +01:00
pyup-bot
e0153d8203 Update pytest-mock from 1.6.3 to 1.7.0 2018-02-16 22:58:22 +01:00
Janne Sinivirta
d1bdbcd273 Fix wrong duration calculation in hyperopting 2018-02-16 22:08:20 +02:00
Janne Sinivirta
bf72b5bc37 make args available for optimizer and use them instead of guessing from params 2018-02-16 14:00:12 +02:00
Janne Sinivirta
ec8bf82695 combine shared backtest/hyperopt flags 2018-02-15 15:23:49 +02:00
Janne Sinivirta
f64c8cc9ce realistic should be False by default and enabled with a --realistic-simulation flag 2018-02-15 13:11:17 +02:00
Samuel Husso
028700d86f Merge pull request #517 from gcarq/fix-backslash-again
Correctly join paths in ticker loading
2018-02-15 10:38:37 +02:00
Samuel Husso
d13d6736b9 Merge pull request #515 from gcarq/indicator_helpers
Random indicator helpers
2018-02-15 10:12:37 +02:00
Janne Sinivirta
a1ba57186b correctly join paths and debug log the found results 2018-02-15 08:59:02 +02:00
Janne Sinivirta
459611516c enable stochastic and fisherRSI in default strategy 2018-02-14 13:02:31 +02:00
Janne Sinivirta
340ab0214b add generic fishers inverse transformation with smoothing 2018-02-14 10:17:43 +02:00
Janne Sinivirta
178d1ed423 add ehlers super smoother 2018-02-14 10:16:53 +02:00
Janne Sinivirta
cf013140a6 add went_up and went_down helpers 2018-02-13 11:37:59 +02:00
Samuel Husso
e3d222912d Merge pull request #511 from gcarq/hyperopt_selectable_spaces
Allow selecting Hyperopt search space
2018-02-12 08:28:24 +02:00
Gérald LONLAS
1134c81aad Merge pull request #513 from gcarq/arrays_for_backtesting
Make backtesting 5x faster
2018-02-11 21:02:43 -08:00
Janne Sinivirta
3e07d41fa9 remove mention of sell space 2018-02-12 07:01:51 +02:00
Janne Sinivirta
b1230b27b7 adjust unit test to match new --spaces format 2018-02-11 19:22:13 +02:00
Janne Sinivirta
1eecf28a8b adjust documentation to match changes to --spaces flag 2018-02-11 19:18:11 +02:00
Janne Sinivirta
fe28addb51 specify allowed values for --spaces flag 2018-02-11 19:17:04 +02:00
Janne Sinivirta
9bcdc8e14b remove unnecessary condition 2018-02-11 15:25:30 +02:00
Janne Sinivirta
2ce03ab1b5 make Strategy store roi and stoploss values as numbers to avoid later casting 2018-02-11 15:25:30 +02:00
Janne Sinivirta
5190cd507e start with simpler condition 2018-02-11 14:37:12 +02:00
Janne Sinivirta
2dd2f31431 remove repeated condition 2018-02-11 14:31:37 +02:00
Janne Sinivirta
dc105d5eae better names for row variables 2018-02-11 14:24:19 +02:00
Janne Sinivirta
c62356438a loop over arrays instead of dataframes 2018-02-11 14:18:57 +02:00
Janne Sinivirta
d74543ac32 document the new --spaces flag for hyperopt 2018-02-10 11:04:16 +02:00
Janne Sinivirta
55a1f604d6 small corrections and typo fixes to hyperopt documentation 2018-02-10 11:03:56 +02:00
Janne Sinivirta
f14d6249e0 allow selecting hyperopt searchspace 2018-02-09 20:59:06 +02:00
kryofly
12a19e400f tests: more backtesting testing (#496)
* tests: more backtesting testing

* tests: hyperopt

* tests: document kludge

* tests: improve test_dataframe_correct_length

* tests: remove remarks
2018-02-08 21:49:43 +02:00
Samuel Husso
53b1f7ac4d Merge pull request #509 from gcarq/cleanup_plot_scripts
Cleanup plot scripts
2018-02-08 13:50:34 +02:00
Janne Sinivirta
6f80aff3e2 cleanup plot scripts 2018-02-08 13:32:34 +02:00
Gérald LONLAS
aa7aeb046e Merge pull request #508 from gcarq/faster_backtesting
Faster backtesting
2018-02-06 22:59:45 -08:00
Janne Sinivirta
bf46f2e50d short circuit check for roi threshold 2018-02-06 21:37:11 +02:00
Janne Sinivirta
4760dd699d remove surprisingly slow logging line 2018-02-06 21:37:11 +02:00
Janne Sinivirta
22c48d5cef use faster time diff 2018-02-06 21:37:11 +02:00
Janne Sinivirta
0454b4c8d5 remove unnecessary Decimal construction 2018-02-06 21:37:11 +02:00
Janne Sinivirta
5c02f0983d let Strategy hold a sorted roi map 2018-02-06 21:37:11 +02:00
Janne Sinivirta
a28ffcbcf7 remove slow unnecessary table scan 2018-02-06 21:21:47 +02:00
Samuel Husso
c5400b6c37 Merge pull request #507 from gcarq/date_indexing_for_backtesting
Date indexing for backtesting
2018-02-06 12:20:33 +02:00
Janne Sinivirta
a071571eac switch to faster short circuiting condition 2018-02-06 12:13:12 +02:00
Janne Sinivirta
5cf2dd79f2 don't reset index if not needed 2018-02-06 11:34:01 +02:00
Janne Sinivirta
cf7c6d2e9c switch to properly using dates as indexes, makes date based searching and slicing a lot faster 2018-02-06 11:34:00 +02:00
Janne Sinivirta
8c7b29734e use date info to calculate trade durations 2018-02-06 11:34:00 +02:00
macd2
192521523f add an option to control vertical spacing (#506) 2018-02-05 08:05:12 +02:00
Gérald LONLAS
2765ee5a85 Merge pull request #504 from gcarq/improve_argparse
Use substitution in argparse help texts
2018-02-04 13:36:01 -08:00
Samuel Husso
585c2e31c6 Merge pull request #502 from gcarq/marker_for_buy
Change buy and sell markers in plot_dataframe
2018-02-04 16:31:41 +02:00
Janne Sinivirta
fecd9f830e use substitution in argparse 2018-02-04 15:48:41 +02:00
Janne Sinivirta
6efd744497 change buy and sell markers in plot_dataframe 2018-02-04 14:09:36 +02:00
Samuel Husso
2b6a62faa1 Merge pull request #501 from gcarq/pyup-update-pymarketcap-3.3.155-to-3.3.158
Update pymarketcap to 3.3.158
2018-02-04 12:10:01 +02:00
Gérald LONLAS
4b62f84cc7 Merge pull request #500 from gcarq/fix/setup.sh
Fix config generation on setup.sh
2018-02-03 19:04:07 -08:00
pyup-bot
3fb3d30365 Update pymarketcap from 3.3.155 to 3.3.158 2018-02-03 23:38:59 +01:00
Gerald Lonlas
2c16ba18a4 Fix config generation on setup.sh 2018-02-03 12:55:15 -08:00
pyup.io bot
f45c64d61b Update pymarketcap from 3.3.154 to 3.3.155 (#498) 2018-02-03 21:32:16 +02:00
mijgame
7bf88333dd Fix typos (#497)
* Update config_full.json.example

Typo

* Update config.json.example
2018-02-03 21:31:55 +02:00
Gérald LONLAS
e1a033672f Merge pull request #493 from macd2/patch-3
typo fix
2018-02-02 09:34:45 -08:00
macd2
4dbc4cb652 typo fix 2018-02-02 11:23:10 +01:00
Gérald LONLAS
d24cd89304 Remove Strategy fallback to default strategy (#490)
* Remove Strategy fallback to default strategy
2018-02-02 11:01:09 +02:00
Samuel Husso
0f041b424d Merge pull request #491 from gcarq/pyup-update-pymarketcap-3.3.153-to-3.3.154
Update pymarketcap to 3.3.154
2018-02-01 20:35:40 +02:00
pyup-bot
7688f18a25 Update pymarketcap from 3.3.153 to 3.3.154 2018-02-01 18:08:57 +01:00
Samuel Husso
d5435a9962 Merge pull request #487 from gcarq/pyup-update-pytest-3.3.2-to-3.4.0
Update pytest to 3.4.0
2018-02-01 08:21:45 +02:00
kryofly
9f6aedea47 telegram refactor 1/ (#389)
* telegram refactor 1/

move out freqcode from telegram

* telegram refactor 2/

move out rpc_trade_status

* telegram refactor 3/

move out rpc_daily_profit

* telegram refactor /4

move out rpc_trade_statistics

* 5/

* rpc refactor 6/

* rpc refactor 7/

* rpc refactor 8/

* rpc refactor 9/

* rpc refactor 10/

cleanups
two tests are broken

* fiat

* rpc: Add back fiat singleton usage

* test: rpc_trade_statistics

Test that rpc_trade_statistics can handle trades that lacks
trade.open_rate (it is set to None)

* test: rpc_forcesell

Also some cleanups

* test: telegram.py::init

* test: telegram test_cleanup and test_status

* test rcp cleanup
2018-02-01 08:05:23 +02:00
Janne Sinivirta
45975c9677 set capturing level 2018-01-31 19:37:38 +02:00
Janne Sinivirta
0a42a0e814 Merge pull request #479 from gcarq/fix/issue-478
Fix Backtesting / Hyperopt ticker_interval download
2018-01-31 17:15:47 +02:00
Janne Sinivirta
5855f0cdfc Merge pull request #486 from jbweb/develop
Fix typos
2018-01-31 16:48:12 +02:00
Janne Sinivirta
5b71d5f3a1 Merge pull request #488 from jblestang/fixing_bug_in_backtesting_causing_to_much_sells
Fixing bug in backtesting preventing sell events to be executed
2018-01-31 16:42:02 +02:00
Janne Sinivirta
613ad4c5d6 Merge pull request #481 from jblestang/fix_buy_sell_order
Fixing buy and sell order
2018-01-31 16:37:55 +02:00
Jordy Bulten
e6d6918ed8 Fixed typos in setup script 2018-01-31 09:46:20 +01:00
Jean-Baptiste LE STANG
07b7828f39 Fixing bug in backtesting causing to much sells 2018-01-31 07:59:45 +01:00
pyup-bot
8ba08af539 Update pytest from 3.3.2 to 3.4.0 2018-01-31 03:42:52 +01:00
Jordy
3aa77360f0 Update config_full.json.example
Typo fix
2018-01-30 21:46:40 +01:00
Jordy
c9f97149e1 Update config.json.example
Typo fix
2018-01-30 21:46:07 +01:00
Gérald LONLAS
529e4d0131 Merge pull request #484 from baudbox/develop
Adding 1.6 comment into telegram pre-requirements
2018-01-30 08:17:01 -08:00
baudbox
dc322f0423 Fixed typo 2018-01-30 15:29:18 +01:00
baudbox
6adeb97b19 Adding 1.6 comment 2018-01-30 15:00:05 +01:00
Jean-Baptiste LE STANG
d53d4b808b Fixing buy and sell order 2018-01-30 09:38:24 +01:00
Gerald Lonlas
d313eb812d Forgot one args.ticker_interval 2018-01-29 23:07:54 -08:00
Gerald Lonlas
cac2f2b58b Wrong assert condition 2018-01-29 23:04:28 -08:00
Gerald Lonlas
321e3ede30 Fix hyperopt ticker interval download 2018-01-29 22:53:28 -08:00
Gerald Lonlas
524290d678 Fix backtesting ticker interval download 2018-01-29 22:51:29 -08:00
Janne Sinivirta
5f86c389b0 Merge pull request #476 from gcarq/feat/update-testdata
update backtesting data for the latest market craze
2018-01-30 07:38:11 +02:00
Samuel Husso
990a609afd test_analyze: update dataframe magic len check so that test pass 2018-01-30 07:26:00 +02:00
Samuel Husso
271e11e065 update backtesting data for the latest market craze 2018-01-30 07:01:44 +02:00
Samuel Husso
9df2ccbceb Merge pull request #467 from gcarq/feature/setup_script
Add setup.sh script to install and update the bot
2018-01-30 06:33:54 +02:00
Gérald LONLAS
ac006e0d52 Merge pull request #469 from jblestang/refactoring_sell_eval_conditions
Refactoring the sell conditions evaluation to share the function with…
2018-01-29 18:45:20 -08:00
Gérald LONLAS
0bf56f249a Merge pull request #473 from ElanHasson/patch-1
Fixed typo. Update bot-usage.md
2018-01-29 13:08:37 -08:00
Elan Hasson
b6c6f42d40 Update bot-usage.md
Fixed typo.
2018-01-29 10:08:50 -05:00
Jean-Baptiste LE STANG
0d04da3158 Removing unecessary buy condition when sell_profit_only 2018-01-29 13:33:49 +01:00
Jean-Baptiste LE STANG
94172091ae Refactoring the sell conditions evaluation to share the function with backtesting 2018-01-29 10:10:19 +01:00
Samuel Husso
e6c215104f Merge pull request #468 from gcarq/fix/ignore-freqtrade-plot
Ignore freqtrade-plot.html
2018-01-29 09:50:18 +02:00
Gerald Lonlas
7a3eb40697 Ignore freqtrade-plot.html 2018-01-28 23:41:22 -08:00
Gerald Lonlas
7321836bfb Indent functions code 2018-01-28 23:35:13 -08:00
Gerald Lonlas
96c54716d7 Add --plot parameter for installing plotting dependencies 2018-01-28 23:24:41 -08:00
Gerald Lonlas
f69adc1894 Add setup.sh script to install and update the bot 2018-01-28 23:18:15 -08:00
Janne Sinivirta
21b142df40 Merge pull request #453 from ermakus/fix_usdt_balance
Fix usdt balance
2018-01-29 08:48:38 +02:00
Janne Sinivirta
a5155b3b20 Merge pull request #465 from gcarq/fix/increase_test_coverage
Fix/increase test coverage
2018-01-29 08:47:26 +02:00
Anton Ermak
807c067701 More test coverage 2018-01-29 10:55:42 +07:00
Gérald LONLAS
b8af493b56 Merge pull request #459 from rybolov/develop
Read .gzip files in testdata/
2018-01-28 19:27:36 -08:00
Michael Smith
e438422a22 test_optimize.py:
Added spaces for flake8 compliance.
2018-01-29 11:21:01 +08:00
Gérald LONLAS
91ed349e11 Merge pull request #466 from gcarq/fix/doc
Update doc: add --upgrade pip
2018-01-28 18:44:43 -08:00
Michael Smith
b8f2341998 BTC_UNITEST-8.json:
Added to test gzip loading before .json file.
2018-01-29 10:25:24 +08:00
Michael Smith
4799e1ed44 tests/optimize/test_optimize.py:
Added test for gzip ticker file.
BTC_UNITEST-8.json.gz:
Added to test gzip loading.
2018-01-29 10:22:55 +08:00
Michael Smith
e3b295cecc tests/optimize/test_optimize.py:
Added test for gzip ticker file.
BTC_UNITEST-8.json.gz:
Added to test gzip loading.
2018-01-29 10:22:34 +08:00
Gerald Lonlas
2a37034787 Update doc: add --upgrade pip 2018-01-28 18:01:02 -08:00
Gérald LONLAS
aae8044150 Merge pull request #456 from jblestang/fix_old_dataframe_detection_for_longer_tickers
Fixing wrong 'old dataframe detection mechanism' for long tickers
2018-01-28 17:40:03 -08:00
Gerald Lonlas
20af5049af Thanks Flake8 2018-01-28 16:34:38 -08:00
Gerald Lonlas
3e777a9d87 Add unit test in misc.py to cover datesarray_to_datetimearray() 2018-01-28 16:25:15 -08:00
Gerald Lonlas
36fa5b827d Add unit test on rpc_telegram.py 2018-01-28 16:18:10 -08:00
Gerald Lonlas
7ab2498544 Increase test coverage on optimize.py 2018-01-28 15:33:57 -08:00
Gerald Lonlas
df453803ce Increase test coverage on rpc_telegram.py 2018-01-28 15:29:26 -08:00
Gerald Lonlas
fd9c62d1c4 Increase test coverage on strategy.py 2018-01-28 15:16:22 -08:00
Gerald Lonlas
25ab08f422 Fix Flake8 warning 2018-01-28 15:03:54 -08:00
Gérald LONLAS
a0dea5a51f Merge pull request #458 from seansan/patch-7
Backtest with **With a (custom) strategy file**
2018-01-28 14:59:28 -08:00
Gérald LONLAS
cec8ef3599 Merge pull request #463 from mijgame/patch-1
Update telegram-usage.md
2018-01-28 14:51:52 -08:00
Gerald Lonlas
d85b56a2bd Add unit test for test_file_dump_json() 2018-01-28 14:38:30 -08:00
Gerald Lonlas
2bccaa31c9 Increase pylint score on misc.py 2018-01-28 14:28:28 -08:00
Gerald Lonlas
45a34be2ac Add more unittest for trim_tickerlist() method 2018-01-28 14:20:20 -08:00
Gerald Lonlas
9f8539f13e Remove unused code on Strategy interface 2018-01-28 13:21:25 -08:00
mijgame
33c6ef28f8 Update telegram-usage.md
Typo
2018-01-28 19:33:24 +01:00
seansan
fe730a3db0 Update backtesting.md 2018-01-28 15:20:38 +01:00
Michael Smith
f66958c34f optimize/__init__.py:
Added support for gzip ticker data files if they exist.
2018-01-28 21:57:25 +08:00
Michael Smith
b44adaa5ab Added support in /optimize for gzip ticker data files if they exist. 2018-01-28 21:52:27 +08:00
seansan
3a905e3d59 BAcktest with **With a (custom) strategy file** 2018-01-28 14:51:45 +01:00
Jean-Baptiste LE STANG
cf4d25d547 Fixing wrong 'old dataframe detection mechanism' for long tickers( > 30 minutes) 2018-01-28 14:40:02 +01:00
Samuel Husso
3b11459a38 Merge pull request #454 from gcarq/replace_matplotlib
Replace matplotlib with Plotly
2018-01-28 12:59:10 +02:00
Janne Sinivirta
02079771ef update documentation 2018-01-28 12:53:52 +02:00
Janne Sinivirta
7d29df3783 replace matplotlib with Plotly in requirements.txt 2018-01-28 11:56:52 +02:00
Janne Sinivirta
9b8cb05037 convert plot_profit to use Plotly instead of matplotlib 2018-01-28 11:51:26 +02:00
Anton Ermak
3593626a8e Merge branch 'fix_usdt_balance' of git+ssh://github.com/ermakus/freqtrade into fix_usdt_balance 2018-01-28 16:16:13 +07:00
Anton Ermak
45239724c6 Skip convert if balance is zero 2018-01-28 16:15:23 +07:00
Janne Sinivirta
bb470d0aea Merge pull request #451 from gcarq/pyup-update-python-bittrex-0.2.2-to-0.3.0
Update python-bittrex to 0.3.0
2018-01-28 11:14:57 +02:00
Janne Sinivirta
ffb60fe8b9 replace matplotlib with Plotly in plot_dataframe.py 2018-01-28 11:12:14 +02:00
Samuel Husso
40a78970e1 flake: remove requests as we dont use it 2018-01-28 11:09:03 +02:00
Anton Ermak
81ed7627bf Unit test 2018-01-28 16:08:43 +07:00
Samuel Husso
8be94c4af4 remove custom timeout as the latest bittrex package version implemented it 2018-01-28 11:03:19 +02:00
Janne Sinivirta
9090715ae5 Merge branch 'develop' of github.com:gcarq/freqtrade into develop 2018-01-28 10:46:33 +02:00
Janne Sinivirta
a6a479f7aa balances to min roi hyperopt settings 2018-01-28 10:46:22 +02:00
Janne Sinivirta
dde0695909 Merge pull request #452 from gcarq/fix/pylint
Fix/pylint
2018-01-28 10:39:56 +02:00
Gerald Lonlas
d824816880 Increase pylint score on test files 2018-01-28 00:28:41 -08:00
Gerald Lonlas
776dd4a0d5 Increase pylint score on strategy 2018-01-27 21:26:57 -08:00
pyup-bot
f33bc93639 Update python-bittrex from 0.2.2 to 0.3.0 2018-01-28 04:38:46 +01:00
Gerald Lonlas
67c6c380e1 Increase pylint score for fiat_convert 2018-01-27 18:23:08 -08:00
Janne Sinivirta
022fedb5d2 Merge pull request #416 from kryofly/plot_profit
Plot profit
2018-01-27 14:02:48 +02:00
Samuel Husso
50402a7805 Merge pull request #449 from gcarq/lower_hyperopt_precision
Lower precision for most search space variables
2018-01-27 10:05:14 +02:00
Janne Sinivirta
67ddb2e7f8 lower precision for most search space variables 2018-01-27 09:51:06 +02:00
Anton Ermak
432735773a Unit test 2018-01-27 13:04:06 +07:00
Samuel Husso
781b9b6dd4 Merge pull request #446 from gcarq/pylint_fixes
Pylint fixes
2018-01-26 19:21:03 +02:00
Samuel Husso
c85f498bc7 Merge pull request #445 from gcarq/pyup-update-pymarketcap-3.3.152-to-3.3.153
Update pymarketcap to 3.3.153
2018-01-26 19:15:21 +02:00
Janne Sinivirta
67995a2f49 remove unnecessary else statements 2018-01-26 19:02:26 +02:00
Janne Sinivirta
1eebbebed1 fix assert order 2018-01-26 19:02:25 +02:00
Janne Sinivirta
a5690e707d remove unused parameters 2018-01-26 19:02:25 +02:00
Janne Sinivirta
0ff56c6e8d use uppercase constant 2018-01-26 18:54:15 +02:00
pyup-bot
b547893fbf Update pymarketcap from 3.3.152 to 3.3.153 2018-01-26 17:53:44 +01:00
Janne Sinivirta
e14007ced4 sort imports 2018-01-26 18:52:39 +02:00
Janne Sinivirta
42919e8864 give type hint for _CONF 2018-01-26 18:49:14 +02:00
Janne Sinivirta
5505845c6f remove unused method parameter 2018-01-26 18:48:53 +02:00
Janne Sinivirta
95ab7c84bc remove unnecessary else 2018-01-26 18:41:41 +02:00
Janne Sinivirta
f33923c784 fix typings for hyperopt code 2018-01-26 18:32:45 +02:00
Janne Sinivirta
a7a7c37121 add day counter to timeframe 2018-01-26 18:32:45 +02:00
Samuel Husso
e08003b336 Merge pull request #443 from gcarq/pyup-update-pymarketcap-3.3.150-to-3.3.152
Update pymarketcap to 3.3.152
2018-01-26 17:34:03 +02:00
pyup-bot
29c84bf622 Update pymarketcap from 3.3.150 to 3.3.152 2018-01-26 16:23:43 +01:00
Janne Sinivirta
b7e297ebda remove unused loop variable 2018-01-26 11:50:00 +02:00
kryofly
fe2f779c47 Merge branch 'develop' into plot_profit 2018-01-26 10:07:48 +01:00
Janne Sinivirta
90aae6c3a8 Merge pull request #439 from gcarq/fix/test_clean_dry_run_db
Fix test_clean_dry_run_db failing test
2018-01-26 08:24:25 +02:00
Gerald Lonlas
0baffd94a4 Fix test_clean_dry_run_db failing test 2018-01-25 21:05:10 -08:00
Janne Sinivirta
4fe6ae0bae fix search space for min ROI 2018-01-25 22:32:46 +02:00
Samuel Husso
477acdd635 Merge pull request #437 from nalepae/patch-1
[DOC] Correct typos about telegram.
2018-01-25 20:14:08 +02:00
Manu NALEPA
3da12014b8 [DOC] Correct typos about telegram. 2018-01-25 18:26:01 +01:00
Samuel Husso
58d07eeb87 Merge pull request #436 from gcarq/roi_hyperopt
ROI table Hyperopting
2018-01-25 13:34:37 +02:00
Janne Sinivirta
42087c9bfe let hyperopt optimize ROI table 2018-01-25 11:12:00 +02:00
Janne Sinivirta
5007165908 add search space for ROI table 2018-01-25 09:34:26 +02:00
Janne Sinivirta
0b24fb50c0 Merge pull request #433 from gcarq/pyup-update-sqlalchemy-1.2.1-to-1.2.2
Update sqlalchemy to 1.2.2
2018-01-25 09:31:39 +02:00
Janne Sinivirta
7dc63c06e7 Merge pull request #356 from kryofly/test_coverage
Test coverage
2018-01-25 09:31:06 +02:00
pyup-bot
5819ba9a9c Update sqlalchemy from 1.2.1 to 1.2.2 2018-01-25 04:16:43 +01:00
Janne Sinivirta
4e9e97ddbb Merge pull request #432 from kryofly/stratback
tests: run backtest single
2018-01-24 12:34:54 +02:00
kryofly
30ca078cec test: use pytest fixture 2018-01-24 11:05:27 +01:00
kryofly
a14d9d35c7 tests: run backtest single 2018-01-24 10:32:52 +01:00
Samuel Husso
c968b904de Merge pull request #429 from gcarq/fix/issue-385
Fix dry_run db issue when open_order_id already exist
2018-01-24 07:25:26 +02:00
Samuel Husso
ba65e12c33 Merge pull request #431 from gcarq/pyup-update-pymarketcap-3.3.148-to-3.3.150
Update pymarketcap to 3.3.150
2018-01-24 07:06:28 +02:00
pyup-bot
c83ac5271d Update pymarketcap from 3.3.148 to 3.3.150 2018-01-23 20:38:41 +01:00
Gérald LONLAS
38101d433b Merge pull request #430 from gcarq/include_indicators_in_hyperopt
Separate strategy and hyperopt
2018-01-23 08:15:26 -08:00
Janne Sinivirta
30abebfe65 remove hyperopt things from test_strategy 2018-01-23 17:01:13 +02:00
Janne Sinivirta
c400d15ed1 rip out hyperopt things from strategy, add indicator populating to hyperopt 2018-01-23 16:56:12 +02:00
Janne Sinivirta
a6cbc1ba16 Merge pull request #400 from gcarq/feature/custom_strategy
Allow custom strategy files
2018-01-23 15:25:18 +02:00
Samuel Husso
b11fe2f814 Merge pull request #424 from gcarq/feat/telegram-sell-msg
Feat/telegram sell msg
2018-01-23 10:59:05 +02:00
Samuel Husso
c593e909aa Merge pull request #428 from gcarq/fix/issue-397
Remove useless USDT_BTC filename conversion
2018-01-23 09:53:10 +02:00
Gerald Lonlas
f4298a7323 Fix dry_run db issue when open_order_id exist 2018-01-22 23:23:29 -08:00
Samuel Husso
93bd63cfbe get rid of / replacements, minor edit to outgoing msg 2018-01-23 08:55:22 +02:00
Gerald Lonlas
e220ad5389 Remove useless USDT_BTC filename conversion 2018-01-22 21:40:07 -08:00
Gerald Lonlas
5c499d16a5 Make plot_profit.py flake8 compliant 2018-01-22 21:20:17 -08:00
Gerald Lonlas
6d8252e2b6 Add support of custom strategy in plot_profit.py 2018-01-22 21:17:54 -08:00
Gerald Lonlas
fcb29c6da5 Make plot_dataframe.py flake8 compliant 2018-01-22 21:12:48 -08:00
Gerald Lonlas
00f1c57279 Add support of custom strategy into plot_dataframe.py 2018-01-22 21:09:40 -08:00
Gerald Lonlas
41aa8f18fb Add ticker_interval support in strategy class 2018-01-22 20:51:39 -08:00
Gerald Lonlas
5eb7aa07a1 Update bot version to 0.16.0
This commit is major core upgrade and introduce breaking change.
2018-01-22 20:51:39 -08:00
Gerald Lonlas
1792aebaf6 Fix doc feedbacks 2018-01-22 20:51:39 -08:00
Gerald Lonlas
eac6e05392 Fix error when config does not have stoploss 2018-01-22 20:51:39 -08:00
Gerald Lonlas
04010548f8 Update hyperopt params in test_strategy.py 2018-01-22 20:51:39 -08:00
Gerald Lonlas
3e8088d99c Avoid hyperopt to fail if a guard was removed from SPACE but still defined in populate_buy_trend() 2018-01-22 20:51:39 -08:00
Gerald Lonlas
1c7da95fed Move hyperopt_trials.pickle to user_data/ 2018-01-22 20:51:39 -08:00
Gerald Lonlas
baae374899 Move hyperopt_conf.py into user_data/ 2018-01-22 20:51:39 -08:00
Gerald Lonlas
a5853681e3 Update documentation 2018-01-22 20:51:39 -08:00
Gerald Lonlas
be75522507 Fix flake8 2018-01-22 20:51:39 -08:00
Gerald Lonlas
dfd61bbf1d Implement More triggers and guards from PR#394 2018-01-22 20:51:39 -08:00
Gerald Lonlas
c46d78b4b9 Decouple strategy from analyse.py 2018-01-22 20:51:39 -08:00
Janne Sinivirta
f7e979f3ba Merge pull request #423 from gcarq/feature/Crypto2Fiat_Singleton
Convert CryptoToFiatConverter into a Singleton
2018-01-22 16:24:19 +02:00
Janne Sinivirta
fd8e7c2623 Merge pull request #426 from gcarq/fix/ticker_interval_as_int
ticker_interval as int (instead of string)
2018-01-22 11:34:20 +02:00
Samuel Husso
757a46ab12 ticker_interval as int (instead of string) 2018-01-22 10:39:26 +02:00
Samuel Husso
bce6a7be61 rebase develop and update tests 2018-01-22 09:39:11 +02:00
Samuel Husso
6abbf45042 Update tests to reflect new selling msg 2018-01-22 09:36:56 +02:00
Samuel Husso
ddd62277c2 add total amount of trades to /status 2018-01-22 09:36:56 +02:00
Samuel Husso
bd356f3eb4 when selling, show more information about the trade in the message 2018-01-22 09:36:56 +02:00
kryofly
aec481b6b3 tests: 100% cov bittrex.py 2018-01-22 08:30:00 +01:00
Gerald Lonlas
28b1ecb109 Convert CryptoToFiatConverter into a Singleton
Result in a speed up of the unittest from 60s to 4s

Because it cost time to load Pymarketcap() every time we create
a CryptoToFiatConverter, it worth it to change it into a
Singleton.
2018-01-21 16:41:59 -08:00
Samuel Husso
408f120612 Merge pull request #417 from jblestang/fix_bv_key_not_present_in_ticker_data_clean
Fixing the 'BV' key being missing for USDT
2018-01-21 19:03:33 +02:00
Jean-Baptiste LE STANG
c0d3ac5534 With a better unit test thanks @glonlas 2018-01-21 15:02:41 +01:00
Jean-Baptiste LE STANG
960d088deb Fixing the 'BV' key being missing for USDT 2018-01-21 15:02:41 +01:00
kryofly
19ef682250 Merge branch 'develop' into plot_profit 2018-01-21 14:13:08 +01:00
kryofly
6171be4f46 Use dates on plot profit/dataframe
* plot_dataframe also support --timerange
* Both default to tkinter as matplotlib plotting backend
2018-01-21 13:44:30 +01:00
Janne Sinivirta
f6df701b84 Merge pull request #415 from gcarq/fix/wrong_refactoring
Remove optimize.load_data() that is called twice
2018-01-21 07:42:25 +02:00
Gerald Lonlas
ad2a5f1717 Remove optimize.load_data() that is called twice 2018-01-20 15:35:13 -08:00
Gérald LONLAS
3b6b2aa5fe Merge pull request #414 from gcarq/fix/issue-413
Fix the issue get_signal() missing 1 required positional argument: Interval
2018-01-20 15:12:14 -08:00
Gerald Lonlas
998081785e Fix the issue get_signal() missing 1 required positional argument: Interval 2018-01-20 15:05:01 -08:00
kryofly
e94e6292e9 Merge branch 'develop' into test_coverage 2018-01-20 22:01:03 +01:00
Gérald LONLAS
d2371b5bac Merge pull request #391 from jblestang/support_multiple_ticker
Support multiple tickers
2018-01-20 11:02:42 -08:00
kryofly
f40d9dbb05 plot_profit uses --timerange flag 2018-01-20 19:49:04 +01:00
Jean-Baptiste LE STANG
f1efaffe81 with fXXXXX8 2018-01-20 19:30:47 +01:00
Jean-Baptiste LE STANG
36797cda30 Merge branch 'develop' into support_multiple_ticker 2018-01-20 19:25:47 +01:00
Samuel Husso
52d881e3f9 Merge pull request #411 from jblestang/fixing_crappy_ticker_data_handling
fixing handling of data fetched from Bittrex server with bad content in the ticker
2018-01-20 18:07:30 +02:00
Jean-Baptiste LE STANG
081d3932b6 Fixing bug report #406 + unit test 2018-01-20 14:44:13 +01:00
Janne Sinivirta
a7e561b55f Merge pull request #369 from kryofly/plot_profit
Plot profit from exported backtesting results
2018-01-20 11:54:46 +02:00
kryofly
cf266a67ad Merge branch 'develop' into test_coverage 2018-01-20 10:06:53 +01:00
kryofly
8bbe8a7f95 Merge branch 'develop' into plot_profit 2018-01-20 08:33:28 +01:00
Janne Sinivirta
a3f84d9f21 Merge pull request #409 from gcarq/feature/add_num_trade_daily
Add number of trades in /daily command
2018-01-20 08:23:50 +02:00
Gerald Lonlas
fb110ccfd2 Add number of trades in /daily command 2018-01-19 22:14:31 -08:00
Janne Sinivirta
99de17da82 Merge pull request #361 from kryofly/backtest-export
Backtest export
2018-01-20 07:45:38 +02:00
kryofly
e3088647fc Merge branch 'develop' into test_coverage 2018-01-19 08:40:40 +01:00
kryofly
9d75b63a6e Merge branch 'develop' into plot_profit 2018-01-19 07:26:04 +01:00
kryofly
4a9e1cb345 Merge branch 'develop' into backtest-export 2018-01-19 07:02:38 +01:00
Gérald LONLAS
a4b8db38ca Merge pull request #404 from gcarq/fix/doc
Fix markdown mistakes in backtesting doc
2018-01-18 21:28:54 -08:00
Gerald Lonlas
ddc1b7cd49 Update bot commands in README.md 2018-01-18 21:15:20 -08:00
Gerald Lonlas
861e065d08 Fix markdown mistakes in backtesting doc 2018-01-18 21:07:55 -08:00
Gérald LONLAS
14d16f2574 Merge pull request #357 from kryofly/timeperiod
Timeperiod
2018-01-18 20:26:44 -08:00
Gérald LONLAS
57757d22f9 Merge pull request #403 from gcarq/pyup-update-arrow-0.12.0-to-0.12.1
Update arrow to 0.12.1
2018-01-18 20:25:13 -08:00
Gérald LONLAS
98f808326f Merge pull request #395 from jblestang/fix_signal_overlaps
Fix signal overlaps
2018-01-18 19:47:55 -08:00
pyup-bot
9a48e3b867 Update arrow from 0.12.0 to 0.12.1 2018-01-19 01:33:33 +01:00
Janne Sinivirta
6cafa9120c Merge pull request #392 from stephendade/timeoutfix3
Order timeouts - added exception catching and rpc messaging
2018-01-18 10:18:48 +02:00
Janne Sinivirta
4658b554ce Merge pull request #399 from gcarq/pyup-update-ta-lib-0.4.15-to-0.4.16
Update ta-lib to 0.4.16
2018-01-18 07:19:34 +02:00
Janne Sinivirta
4a3144ae43 Merge pull request #398 from kryofly/test_speedup
tests: speed up backtests
2018-01-18 07:19:14 +02:00
pyup-bot
fb34fe8c9a Update ta-lib from 0.4.15 to 0.4.16 2018-01-17 23:08:30 +01:00
Jean-Baptiste LE STANG
c9e1fd3fc4 Merge branch 'develop' into support_multiple_ticker 2018-01-17 21:29:36 +01:00
kryofly
423b251467 tests: speed up backtests 2018-01-17 18:19:39 +01:00
Jean-Baptiste LE STANG
f48b493620 Merge branch 'support_multiple_ticker' of https://github.com/jblestang/freqtrade into support_multiple_ticker 2018-01-17 13:52:36 +01:00
Jean-Baptiste LE STANG
5e75f1d8cd Fixing the documentation 2018-01-17 13:52:14 +01:00
toto
b34621fadf fixing default ticker_interval 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
42a135fbd9 fix typo in API Bittrex 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
8e5de365a5 Ticker in the conf is now an enum string 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
658d16c2cd really fixing this stuff ... 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
3a4ff4c76c fixing a duplicated unit test without config 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
7b292d5ca3 backtesting takes its ticker_interval from the config file, else from the command line options 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
2509ce030d Refreshing pair of only selected ticker_interval 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
15189c28ed fixing pep8 compliance 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
a0df566b2b fix unitest file for 30 minutes ticker 2018-01-17 13:52:14 +01:00
Jean-Baptiste LE STANG
e2e2005567 Adding 30 minutes, 1 hour, 1 day tickers 2018-01-17 13:52:14 +01:00
Samuel Husso
a799b7d56d Merge pull request #394 from gcarq/more_triggers
More triggers and guards
2018-01-17 14:14:33 +02:00
Jean-Baptiste LE STANG
0d709847ee Fixing the doc and and the default value of sell_profit_only to False 2018-01-17 11:31:26 +01:00
Jean-Baptiste LE STANG
58bcb9dfc8 Fixing the documentation 2018-01-17 11:24:45 +01:00
Stephen Dade
04be438b35 Better exception handling for check_handle_timedout 2018-01-17 19:51:27 +11:00
toto
fa3b96eb4a fixing default ticker_interval 2018-01-16 21:37:37 +01:00
toto
5723039637 fXXXXXXk8 2018-01-16 21:21:43 +01:00
toto
6dd48fb820 Adding unitest 2018-01-16 21:18:43 +01:00
toto
12ffbf5047 - get_signal to return both SELL and BUY signal
- _process modified so that we do not sell if we would buy afterwards
- execute_sell modified so that that min_roi_reached is not executed if we would buy afterwards

Veuillez saisir le message de validation pour vos modifications. Les lignes
2018-01-16 20:22:15 +01:00
Janne Sinivirta
c670ccfd37 add trigger +DI crossed above -DI 2018-01-16 18:52:06 +02:00
Janne Sinivirta
8896b39231 add heikenashi reversal bullish trigger to hyperopt 2018-01-16 18:52:06 +02:00
Janne Sinivirta
ce963aae58 add macd < 0 guard to hyperopt 2018-01-16 18:52:06 +02:00
Janne Sinivirta
dc01807b3c switch ema5 trigger to ema3 cross trigger 2018-01-16 18:52:06 +02:00
Janne Sinivirta
fadac5fe4a remove too aggressive trigger 2018-01-16 18:52:06 +02:00
Janne Sinivirta
99260735ae remove broken bbands trigger from hyperopt. add two working bbands triggers 2018-01-16 18:52:06 +02:00
Janne Sinivirta
3e1a70bbb2 enable correct bollinger bands 2018-01-16 18:52:06 +02:00
Janne Sinivirta
fd3568d48f Merge pull request #393 from gcarq/balancing_hyperopt_2
Balancing hyperopt objective
2018-01-16 18:21:50 +02:00
Janne Sinivirta
501be8a3bc adjust the hyperopt objective function to emphasize profit and allow more variation in trade counts 2018-01-16 16:36:50 +02:00
Janne Sinivirta
38fe7ec7cd adjust default target values for hyperopt 2018-01-16 16:35:48 +02:00
Stephen Dade
01e10014bb Order timeouts - added exception catching and rpc messaging 2018-01-16 22:21:05 +11:00
kryofly
0e58ab7e01 more advanced use of --timerange 2018-01-16 00:15:49 +01:00
Jean-Baptiste LE STANG
bcabb90f5a fix typo in API Bittrex 2018-01-15 22:36:38 +01:00
Jean-Baptiste LE STANG
86b11a9365 Ticker in the conf is now an enum string 2018-01-15 22:27:12 +01:00
kryofly
71bb348698 rename --timeperiod to --timerange 2018-01-15 21:49:06 +01:00
Samuel Husso
5a82d99482 Merge pull request #388 from gcarq/pyup-update-sqlalchemy-1.2.0-to-1.2.1
Update sqlalchemy to 1.2.1
2018-01-15 19:23:42 +02:00
pyup-bot
50462fdb00 Update sqlalchemy from 1.2.0 to 1.2.1 2018-01-15 16:32:27 +01:00
Samuel Husso
354dcaac58 Merge pull request #386 from ermakus/show_estimated_btc_fiat_balance
Show estimated BTC and fiat balance
2018-01-15 09:13:42 +02:00
Anton Ermak
5db04b15e7 Balance Estimated BTC - fix test 2018-01-15 12:08:56 +07:00
Anton Ermak
dd9ab5264d Estimated BTC and fiat value for balance 2018-01-15 12:08:42 +07:00
Gérald LONLAS
5a50b88f52 Merge pull request #374 from robmoggach/develop
New Installation Docs
2018-01-14 19:59:40 -08:00
Gérald LONLAS
dce554af53 Merge branch 'develop' into develop 2018-01-14 18:10:55 -08:00
Gérald LONLAS
130867a6c2 Merge branch 'develop' into develop 2018-01-14 18:03:28 -08:00
Rob Moggach
b5cd9dab26 change cat to cp 2018-01-14 12:25:30 -05:00
Janne Sinivirta
ec7bfba8df add comment about checking the new total profit logging 2018-01-14 13:11:19 +02:00
Janne Sinivirta
f1e176d35c log total profit in percentages also 2018-01-14 13:10:25 +02:00
Janne Sinivirta
92241baade log the loss value 2018-01-14 13:09:39 +02:00
kryofly
f61012097c Merge branch 'develop' into timeperiod 2018-01-14 10:23:54 +01:00
Samuel Husso
fe26ff763e Merge pull request #381 from gcarq/doc_update
Documentation update
2018-01-14 09:46:11 +02:00
Samuel Husso
6aa812aa0c Merge pull request #379 from kryofly/testdata-download2
support download for multiple testdata sets
2018-01-14 09:42:53 +02:00
Gerald Lonlas
344843d802 Update doc: 'cp' becomes 'cp -n', and add more FAQ questions 2018-01-13 23:02:00 -08:00
kryofly
3277e491f1 support download for multiple testdata sets 2018-01-13 17:40:59 +01:00
Janne Sinivirta
80e7f37f50 Merge pull request #376 from jblestang/fix_ticker_with_null_value
Fixing the ticker analysis with null values
2018-01-13 15:36:20 +02:00
Janne Sinivirta
61c4624f5f Merge pull request #377 from gcarq/pyup-update-pymarketcap-3.3.147-to-3.3.148
Update pymarketcap to 3.3.148
2018-01-13 15:34:31 +02:00
kryofly
fc2e8b321f test for bittrex to reach 100% cov again 2018-01-13 14:29:16 +01:00
pyup-bot
e5b27baa59 Update pymarketcap from 3.3.147 to 3.3.148 2018-01-13 13:38:23 +01:00
kryofly
a62a5f814a main returns integer instead of sys.exit 2018-01-13 13:16:40 +01:00
kryofly
53447e7ef5 test cleanup 2018-01-13 12:52:02 +01:00
Jean-Baptiste LE STANG
f7a44d1cec Fixing the ticker analysis with null value 2018-01-13 09:50:02 +01:00
Jean-Baptiste LE STANG
c34a61dd55 really fixing this stuff ... 2018-01-13 09:21:49 +01:00
Jean-Baptiste LE STANG
e834a4e4f5 fixing a duplicated unit test without config 2018-01-13 09:09:12 +01:00
Jean-Baptiste LE STANG
0328caffe4 backtesting takes its ticker_interval from the config file, else from the command line options 2018-01-13 08:55:45 +01:00
Jean-Baptiste LE STANG
260bb2f558 Refreshing pair of only selected ticker_interval 2018-01-13 08:32:44 +01:00
Gérald LONLAS
70f2aed0a7 Merge pull request #375 from gcarq/update_version
Update freqtrade version
2018-01-12 23:21:06 -08:00
Jean-Baptiste LE STANG
46dc9985fc fixing pep8 compliance 2018-01-13 08:19:39 +01:00
Gerald Lonlas
3087ca0823 Update freqtrade version 2018-01-12 22:56:39 -08:00
Janne Sinivirta
372dc5b49a Merge pull request #368 from gcarq/pyup-update-pymarketcap-3.3.145-to-3.3.147
Update pymarketcap to 3.3.147
2018-01-13 07:33:16 +02:00
Janne Sinivirta
030aedc7d4 Merge pull request #362 from gcarq/pyup-update-ta-lib-0.4.14-to-0.4.15
Update ta-lib to 0.4.15
2018-01-13 07:33:04 +02:00
Rob Moggach
25e021d4b4 installation docs update 2018-01-12 21:32:09 -08:00
Rob Moggach
d48d2d08df cleaned up installation docs 2018-01-12 18:36:12 -08:00
kryofly
524899ccbf plot profit: export format change 2018-01-12 22:23:43 +01:00
kryofly
d4008374f6 backtest export: include enter,exit dates 2018-01-12 22:12:00 +01:00
kryofly
48432abff1 remove two-letter options 2018-01-12 19:48:52 +01:00
kryofly
167483f777 plot profit: filter multiple pairs, misc fixes 2018-01-12 19:18:31 +01:00
Jean-Baptiste LE STANG
4eca4abb21 fix unitest file for 30 minutes ticker 2018-01-12 17:06:26 +01:00
Jean-Baptiste LE STANG
e99286f871 Adding 30 minutes, 1 hour, 1 day tickers 2018-01-12 17:02:35 +01:00
kryofly
d8d46890b3 script: plot profit 2018-01-12 11:56:04 +01:00
kryofly
98cf986934 misc options parsing split up 2018-01-12 11:55:58 +01:00
kryofly
829da096e2 plotting docs 2018-01-12 11:49:50 +01:00
pyup-bot
a26cb4bc6b Update pymarketcap from 3.3.145 to 3.3.147 2018-01-12 11:08:23 +01:00
Gérald LONLAS
1fe86656e1 Merge pull request #364 from gcarq/fix/issue-363
Fix plot_dataframe.py
2018-01-11 21:26:10 -08:00
Gerald Lonlas
39c6e5263a Fix plot_dataframe.py 2018-01-11 21:09:04 -08:00
pyup-bot
46a1a2de10 Update ta-lib from 0.4.14 to 0.4.15 2018-01-11 20:53:26 +01:00
kryofly
05f5a1b0ee Merge branch 'develop' into test_coverage 2018-01-11 19:49:33 +01:00
kryofly
153e11f045 Merge branch 'develop' into timeperiod 2018-01-11 19:45:47 +01:00
kryofly
4781a23809 Merge branch 'develop' into backtest-export 2018-01-11 19:40:42 +01:00
kryofly
ed47ee4e29 backtest export json2 2018-01-11 19:14:11 +01:00
kryofly
27769f0301 uncomplex backtest 2018-01-11 17:45:41 +01:00
kryofly
feb5da0c35 file_dump_json 2018-01-11 15:49:04 +01:00
Samuel Husso
3a902289f1 testdata path to use os.path.join (#360) 2018-01-11 12:58:06 +01:00
Samuel Husso
3ac3ead2cf Merge pull request #358 from ermakus/set_requests_default_timeout
Set timeout for bittrex only
2018-01-11 08:51:21 +02:00
Anton Ermak
0d0737d1f6 Resolve conflict 2018-01-11 13:36:56 +07:00
Samuel Husso
27fcf62011 Merge pull request #354 from gcarq/linter-fixes
Linter fixes
2018-01-11 08:32:48 +02:00
Anton Ermak
bb91fdbaf9 oops, print removed 2018-01-11 13:26:49 +07:00
Anton Ermak
11cbb9188b Set timeout for bittrex only 2018-01-11 12:24:05 +07:00
Janne Sinivirta
c11102cf4a another run of autopep8 2018-01-11 07:08:56 +02:00
Janne Sinivirta
02fcbbb6d2 few flake8 fixes 2018-01-11 07:08:56 +02:00
Janne Sinivirta
0d6051e6f9 formatting 2018-01-11 07:08:56 +02:00
Janne Sinivirta
6a433282dc fix literal comparison 2018-01-11 07:08:56 +02:00
Janne Sinivirta
8fb404b0f8 ignore talib.abstract in pylint 2018-01-11 07:08:56 +02:00
Janne Sinivirta
64530c6196 remove unused variables 2018-01-11 07:08:56 +02:00
Janne Sinivirta
86db6c9084 sort imports 2018-01-11 07:08:56 +02:00
Janne Sinivirta
0abc30401c linter fixes and cleanups 2018-01-11 06:50:36 +02:00
Janne Sinivirta
1b6b0ad9d2 autopep8 2018-01-11 06:50:36 +02:00
Janne Sinivirta
7cdbd550c8 Merge pull request #351 from gcarq/feat/hyperopt-resume
resume hyperopt run
2018-01-11 06:47:05 +02:00
kryofly
94883202b8 docs: --timeperiod argument 2018-01-11 00:14:36 +01:00
kryofly
b0f3fd7ffb timeperiod argument to backtesting and hyperopt 2018-01-10 23:48:59 +01:00
kryofly
feca87345f refactor 2018-01-10 23:00:40 +01:00
kryofly
f848a5c87d tests optimize load_data 2018-01-10 13:43:03 +01:00
kryofly
0cb57bee0e small refactor of check_handle_timedout 2018-01-10 13:43:00 +01:00
kryofly
f8cc08e2a1 small refactor splitting the _process() 2018-01-10 13:42:59 +01:00
kryofly
ad2328bbd8 tests for exchange 2018-01-10 13:42:58 +01:00
kryofly
d5ca77da97 tests for analyze 2018-01-10 13:42:55 +01:00
Samuel Husso
69f68c428e Merge pull request #355 from ermakus/set_requests_default_timeout
Set requests default timeout
2018-01-10 14:22:39 +02:00
Anton Ermak
abcdbcfd39 Set requests default timeout 2018-01-10 17:37:49 +07:00
Samuel Husso
e67c652988 use os.path.join, fix docstrings 2018-01-10 11:50:00 +02:00
Gérald LONLAS
ddc711ec93 Merge pull request #353 from kryofly/test_exchange_bittrex
test: increase coverage of exchange.bittrex
2018-01-09 17:26:38 -08:00
kryofly
b9bf5c1118 test: increase coverage of exchange.bittrex 2018-01-09 14:07:50 +01:00
Robert Moggach
9840e0b5b8 use HTTPS git URL in README.md (#347) 2018-01-09 13:31:59 +01:00
Samuel Husso
ffae0b2cd5 hyperopt: prettyfie best values when receiving SIGINT, use the global TRIALS 2018-01-09 12:37:56 +02:00
Samuel Husso
fe2b0c2862 add unittest to save and read trials file 2018-01-09 12:26:52 +02:00
Samuel Husso
1647e7a0c1 update fix failing tests, unitest that resume hyperopt functionality works 2018-01-09 12:26:52 +02:00
Samuel Husso
b35fa4c9f6 hyperopt: show the best results so far 2018-01-09 12:25:58 +02:00
Samuel Husso
a48840509b Hyperopt: use results from previous runs 2018-01-09 12:25:58 +02:00
Samuel Husso
ca8cab0ce9 Hyperopt to handle SIGINT by saving/reading the trials file 2018-01-09 12:25:58 +02:00
Gérald LONLAS
bbcf6943ce Merge pull request #349 from gcarq/docs-update
Update installation.md
2018-01-08 23:50:21 -08:00
Samuel Husso
fbf9bfe897 Update installation.md
it seems that ta-lib requires python3.6-dev package to be installed
2018-01-09 07:24:00 +02:00
Janne Sinivirta
e46fcf0e02 Merge pull request #344 from gcarq/fix-hyperopt-stoploss
Fix hyperopt stoploss
2018-01-09 06:42:13 +02:00
Rob Moggach
732281bca0 public git URL 2018-01-08 20:27:41 -08:00
Janne Sinivirta
f7dd5e6396 use sensible value for stoploss in test 2018-01-08 22:00:10 +02:00
Janne Sinivirta
dd2ccea6e5 fix wrong range in stoploss search space 2018-01-08 21:59:46 +02:00
Janne Sinivirta
3d13eb2dc2 Merge pull request #342 from stephendade/fiatfix
Added missing fiat currencies to config
2018-01-08 10:11:01 +02:00
Stephen Dade
26b8661325 Added missing fiat currencies to config 2018-01-08 18:51:04 +11:00
Janne Sinivirta
fa97a82568 Merge pull request #332 from gcarq/hyperopt_stoploss
Add stoploss to the hyperopt parameters
2018-01-08 08:03:09 +02:00
Janne Sinivirta
1ae73d7da2 Merge branch 'develop' into hyperopt_stoploss 2018-01-08 07:49:44 +02:00
Samuel Husso
d8e692c9a3 Merge pull request #339 from gcarq/upgrade_flake8
Upgrade flake8
2018-01-08 07:34:45 +02:00
Gerald Lonlas
ca05d1f79e Fix for flake8 2018-01-07 21:08:12 -08:00
Janne Sinivirta
9dd38aebe0 add stoploss to the hyperopt parameters 2018-01-07 21:08:12 -08:00
Gérald LONLAS
ceded8a20a Merge pull request #338 from gcarq/fix/issue-337
Fix hypeopt issue when no result found
2018-01-07 21:07:07 -08:00
Gerald Lonlas
9c21077dc1 Fix hypeopt issue when no result found 2018-01-07 17:53:21 -08:00
Gérald LONLAS
fca6a09a41 Merge pull request #293 from jblestang/fix_issue_278
The /status table command was getting slower when we had multiple trades opened
2018-01-07 15:15:25 -08:00
Jean-Baptiste LE STANG
bba711c89a with flake8 ... 2018-01-07 23:35:16 +01:00
Jean-Baptiste LE STANG
5fbaa6d4cf rebasing for ta-lib dependency 2018-01-07 23:30:37 +01:00
Jean-Baptiste LE STANG
5b1f84f816 without debug print 2018-01-07 23:29:19 +01:00
Jean-Baptiste LE STANG
65127533ef fixing unittest 2018-01-07 23:29:19 +01:00
Jean-Baptiste LE STANG
05ca00b623 Add a unitest and fix pep8 2018-01-07 23:26:45 +01:00
Jean-Baptiste LE STANG
4b6d855e63 fix a typo in the description of get_ticker 2018-01-07 23:26:45 +01:00
Jean-Baptiste LE STANG
7d7752efbf really fixing 2018-01-07 23:26:45 +01:00
Jean-Baptiste LE STANG
ce6f6ab9fe fixing refresh argument ... 2018-01-07 23:26:45 +01:00
Jean-Baptiste LE STANG
3a0569cfd3 force refresh is the value has never been set 2018-01-07 23:26:45 +01:00
Jean-Baptiste LE STANG
7d21015b52 get_ticker can return a cached value 2018-01-07 23:26:45 +01:00
Gérald LONLAS
a57707071c Merge pull request #334 from gcarq/pyup-update-ta-lib-0.4.10-to-0.4.14
Update ta-lib to 0.4.14
2018-01-07 14:25:01 -08:00
Gérald LONLAS
2a347e4027 Merge pull request #328 from kryofly/datadir
--datadir <path> argument
2018-01-07 14:17:43 -08:00
Jean-Baptiste LE STANG
4c8ae3a7af without debug print 2018-01-07 23:15:33 +01:00
Jean-Baptiste LE STANG
2773ce7ebf rebasing against develop 2018-01-07 21:34:42 +01:00
Jean-Baptiste LE STANG
f4e4104d14 Fixing unitest 2018-01-07 21:26:43 +01:00
Jean-Baptiste LE STANG
b722a89276 fixing unittest 2018-01-07 21:24:17 +01:00
pyup-bot
4bf6711dbb Update ta-lib from 0.4.10 to 0.4.14 2018-01-07 18:08:15 +01:00
Janne Sinivirta
5be733a174 fix flake8 warnings 2018-01-07 14:37:09 +02:00
Janne Sinivirta
c3cae5dfc4 have pip upgrade flake8 and coveralls 2018-01-07 14:32:01 +02:00
kryofly
0c9d862a49 docs: --datadir documentation 2018-01-07 10:15:26 +01:00
Jean-Baptiste LE STANG
975a785e68 Add a unitest and fix pep8 2018-01-07 10:14:11 +01:00
Jean-Baptiste LE STANG
6be607e528 fix a typo in the description of get_ticker 2018-01-07 10:14:11 +01:00
Jean-Baptiste LE STANG
80c4dea875 really fixing 2018-01-07 10:14:11 +01:00
Jean-Baptiste LE STANG
9e7a4c3717 fixing refresh argument ... 2018-01-07 10:14:11 +01:00
Jean-Baptiste LE STANG
c72e9c3cef force refresh is the value has never been set 2018-01-07 10:14:11 +01:00
Jean-Baptiste LE STANG
8175eaa48a get_ticker can return a cached value 2018-01-07 10:14:11 +01:00
kryofly
890083ce7f Merge branch 'develop' into datadir 2018-01-07 10:00:35 +01:00
Gérald LONLAS
454cd16df4 Merge pull request #331 from gcarq/fix/work_without_network
Fix _coinmarketcap that fails backtesting and Hyperopt when no network
2018-01-06 21:33:24 -08:00
Gérald LONLAS
7e233b536c Merge pull request #323 from gcarq/add_indicators
Add 28 optional indicators populate_indicators()
2018-01-06 21:30:27 -08:00
Gérald LONLAS
ae19ab3dd3 Merge pull request #330 from gcarq/feature/better_hp_result_display
Make readable hyperopt best parameters result
2018-01-06 21:30:02 -08:00
Gerald Lonlas
bf4b2dc05e Fix _coinmarketcap that fails backtesting and Hyperopt when no network 2018-01-06 21:21:28 -08:00
Janne Sinivirta
571ea6a2bc Merge pull request #329 from gcarq/pyup-update-numpy-1.13.3-to-1.14.0
Update numpy to 1.14.0
2018-01-07 07:19:29 +02:00
Gerald Lonlas
b3ea0f4ec5 Make readable hyperopt best parameters result 2018-01-06 17:19:48 -08:00
pyup-bot
d4c8ad5ba7 Update numpy from 1.13.3 to 1.14.0 2018-01-07 01:47:18 +01:00
Gérald LONLAS
2432c9f290 Merge pull request #324 from kryofly/parse-common
Parsing: common options, reduce function scope
2018-01-06 15:11:30 -08:00
Gérald LONLAS
7f7d53adb7 Merge pull request #327 from gcarq/fix_profit_experimental
Fix profit experimental
2018-01-06 15:05:20 -08:00
kryofly
60ed4b9d1e --datadir <path> argument
This argument enables usage of different backtesting directories.
Useful if one wants compare backtesting performance over time.
2018-01-06 23:24:35 +01:00
Gerald Lonlas
83a999d16e Change Bollinger bands for qtpylib.bollinger_bands 2018-01-06 13:19:45 -08:00
Janne Sinivirta
a29f3de025 fix variable names to pythonic 2018-01-06 21:21:56 +02:00
Janne Sinivirta
6ab0ec6aac only apply profit guarantee to sell_signal 2018-01-06 21:18:57 +02:00
kryofly
984204e380 let parse_args only parse, no continuation
This removes parse_args() from the call stack
It pushes down the test-mocking one level [from parse_args() to main()].
Moves parse_args into a more generic 'modules' parsing direction.
2018-01-06 11:21:09 +01:00
Gerald Lonlas
297166fcb9 Add 29 optional indicators populate_indicators() 2018-01-06 01:11:01 -08:00
kryofly
e6e57e47cf plot script can take arguments 2018-01-06 09:55:15 +01:00
Janne Sinivirta
bcde377019 Merge pull request #321 from gcarq/log-exceptions
Log exceptions
2018-01-06 10:14:57 +02:00
Samuel Husso
2d39759d34 pep8 fix 2018-01-06 10:08:25 +02:00
kryofly
e4500af736 test case for common CLI parsing
Rearrange current tests.
2018-01-06 08:27:44 +01:00
Janne Sinivirta
41933c31ca Merge pull request #315 from kryofly/tests_jan05
tests cover more backtesting
2018-01-06 09:26:20 +02:00
kryofly
47675943ee split common command line args parsing
A new function parse_args_common() that only parses
common command line options. The returned object can
be composed to parse more arguments.
As is done by parse_args().
2018-01-06 07:39:05 +01:00
Gérald LONLAS
74a708b794 Merge pull request #312 from gcarq/fix_backtesting_header
Fix Backtesting header alignment
2018-01-05 19:30:04 -08:00
Janne Sinivirta
833c7f21af Merge pull request #306 from stephendade/timeoutfix
Unfilled order timeouts - now using timestamps from exchange
2018-01-05 18:04:27 +02:00
Janne Sinivirta
f8eedc69dd Merge pull request #313 from seansan/patch-4
Add CCI
2018-01-05 18:04:08 +02:00
Samuel Husso
797324c35e Merge pull request #317 from gcarq/pyup-update-pymarketcap-3.3.143-to-3.3.145
Update pymarketcap to 3.3.145
2018-01-05 13:48:51 +02:00
Samuel Husso
ae967a4f40 add test to handle analyze_ticker raising exception 2018-01-05 13:43:56 +02:00
pyup-bot
188fc69e56 Update pymarketcap from 3.3.143 to 3.3.145 2018-01-05 12:08:16 +01:00
Samuel Husso
be8506b45e log exceptions, catch *all* exceptions when analysing ticker 2018-01-05 12:18:44 +02:00
kryofly
79fcd0b06c tests cover more backtesting 2018-01-05 10:44:10 +01:00
kryofly
421ccb23d3 split load tickerdata function 2018-01-05 10:20:48 +01:00
seansan
f1969175cd Add CCI 2018-01-05 08:40:03 +01:00
Gerald Lonlas
7fd6d089c0 Fix Backtesting header alignment 2018-01-04 23:14:10 -08:00
Gérald LONLAS
552fba773d Merge pull request #310 from gcarq/pyup-update-pytest-3.3.1-to-3.3.2
Update pytest to 3.3.2
2018-01-04 22:38:37 -08:00
Gérald LONLAS
8e272cfd53 Merge pull request #311 from gcarq/use_named_arguments
Use named argument for backtest()
2018-01-04 22:38:25 -08:00
Gérald LONLAS
36fbe54634 Merge pull request #307 from gcarq/pyup-update-pymarketcap-3.3.141-to-3.3.143
Update pymarketcap to 3.3.143
2018-01-04 22:38:04 -08:00
Gerald Lonlas
90017998fc Use named argument for backtest() 2018-01-04 22:27:55 -08:00
Stephen Dade
ebe95ba1e1 Open order times should be strings, not datetime objectsy 2018-01-05 15:12:13 +11:00
pyup-bot
c803762704 Update pytest from 3.3.1 to 3.3.2 2018-01-05 01:28:53 +01:00
pyup-bot
f8d8f3347a Update pymarketcap from 3.3.141 to 3.3.143 2018-01-04 20:08:11 +01:00
Stephen Dade
d4fcc38a57 Unfilled order timeouts - now using timestamps from exchange 2018-01-05 01:39:01 +11:00
Janne Sinivirta
c60ef181dc Merge pull request #297 from jblestang/add_stoploss_and_use_sell_profit_only_to_hyperopt
Add stoploss, sell_only_profit and use_sell_signal conf parameters to backtest function
2018-01-04 13:33:01 +02:00
Samuel Husso
db4ad2f6f9 Merge pull request #295 from stephendade/Ordertimeout
Added order timeout handling
2018-01-04 09:26:16 +02:00
Stephen Dade
b5d2cfecc7 Unfilled Order timeout - better documentation and variable naming 2018-01-04 10:35:57 +11:00
Jean-Baptiste LE STANG
75955fcc04 Add a unitest and fix pep8 2018-01-03 17:58:08 +01:00
Jean-Baptiste LE STANG
050e73d960 fix a typo in the description of get_ticker 2018-01-03 17:51:01 +01:00
Jean-Baptiste LE STANG
0f2d3adbbc applying pep8 2018-01-03 17:36:40 +01:00
Jean-Baptiste LE STANG
ea6a1c629d fixing pep8 compliance 2018-01-03 11:50:30 +01:00
Jean-Baptiste LE STANG
eb53a796e2 pep8 compliance 2018-01-03 11:35:54 +01:00
Jean-Baptiste LE STANG
2d273a8509 Update unittests 2018-01-03 11:30:24 +01:00
Stephen Dade
7169ad557f Correct documentation for opentradetimeout 2018-01-03 21:24:42 +11:00
Stephen Dade
b4d6250d55 Added order timeout handling 2018-01-03 21:22:35 +11:00
Jean-Baptiste LE STANG
45f2d01895 - add a profit/loss counter
- the use of the sell_signal is conditional now (taken from the config)
2018-01-03 11:19:46 +01:00
Jean-Baptiste LE STANG
c176ace889 Adding sell_profit_only and stoploss in hyperopt 2018-01-03 10:56:18 +01:00
Gérald LONLAS
1ce4613aad Merge pull request #296 from gcarq/update_documentation
Update documentation
2018-01-03 00:07:41 -08:00
Gerald Lonlas
eb473842b8 Update documentation 2018-01-02 23:59:14 -08:00
Gérald LONLAS
407eaa0870 Merge pull request #279 from gcarq/revamp_documentations
Reorder and revamp the documentation
2018-01-02 23:48:49 -08:00
Gérald LONLAS
9b09b5aa29 Merge pull request #291 from gcarq/backtesting_speed_opt
Backtesting speed optimizations
2018-01-02 23:35:47 -08:00
Gerald Lonlas
70d1511f73 Update ISSUE_TEMPLATE.md and PULL_REQUEST_TEMPLATE.md 2018-01-02 23:34:26 -08:00
Gérald LONLAS
4a717f3df8 Merge pull request #294 from jblestang/add_trades_count_in_performance
Add trades count foreach pair in performance command
2018-01-02 23:03:30 -08:00
Gerald Lonlas
cb7c36a512 Add Backtesting and Hyperopt documentation 2018-01-02 22:50:54 -08:00
Gerald Lonlas
f37c495b90 Update the documentation from the PR review 2018-01-02 22:50:54 -08:00
Gerald Lonlas
284c6c4223 Reorder and revamp the documentation 2018-01-02 22:50:54 -08:00
Samuel Husso
fd5497cfc7 Merge pull request #265 from gcarq/feature/experimental/force_profit_sell
Add experimental feature to sell only if we make a profit
2018-01-03 08:14:54 +02:00
Samuel Husso
208d3770da Merge pull request #292 from jblestang/fix_pair_black_list
Bug in blacklist pair handling
2018-01-03 07:54:18 +02:00
Jean-Baptiste LE STANG
01b49dc502 Merge branch 'develop' into add_trades_count_in_performance 2018-01-03 00:06:56 +01:00
Jean-Baptiste LE STANG
fbb19e451d Adding the number of trades for each traded pair in the performance command 2018-01-03 00:06:50 +01:00
Jean-Baptiste LE STANG
a1ffa4497d Merge branch 'develop' into fix_issue_278 2018-01-02 23:12:21 +01:00
Jean-Baptiste LE STANG
e69f9dd029 Bad unittest detected reading coverage report, rewritten and bug found 2018-01-02 23:00:03 +01:00
Janne Sinivirta
fed3024302 rewrite get_timeframe in backtesting 2018-01-02 21:54:31 +02:00
Janne Sinivirta
dc2f048c98 make tuples smaller in backtesting loops 2018-01-02 21:52:47 +02:00
Samuel Husso
f4ccd4609b Merge pull request #284 from jblestang/fix_issue_283
fixing the sorting issue in MarketSummary when using --dynamic-whitelist (issue #283)
2018-01-02 21:00:20 +02:00
Samuel Husso
1e3a29c049 Merge pull request #287 from gcarq/fix_tabulate
Improve backtesting result formatting
2018-01-02 19:00:54 +02:00
Janne Sinivirta
82e9ed2ac2 shorten table title to match table length 2018-01-02 17:53:47 +02:00
Janne Sinivirta
ae52880f81 improve backtesting result formatting 2018-01-02 17:39:02 +02:00
Jean-Baptiste LE STANG
90236fb537 Fixing error log on inactive wallet 2018-01-02 15:17:23 +01:00
Jean-Baptiste LE STANG
55d0d27756 message too long, removing URL for now 2018-01-02 14:55:31 +01:00
Jean-Baptiste LE STANG
d849694a70 Adding URL to market graph and number of trades/pair in /performance commande 2018-01-02 14:43:38 +01:00
Jean-Baptiste LE STANG
29987c3ff6 Adding the number of trades in the performance display 2018-01-02 14:32:13 +01:00
Jean-Baptiste LE STANG
5f696a0cce really fixing 2018-01-02 14:13:55 +01:00
Jean-Baptiste LE STANG
90d3c09536 fixing refresh argument ... 2018-01-02 14:13:40 +01:00
Jean-Baptiste LE STANG
3f65fc014e flake8 on tests 2018-01-02 13:46:16 +01:00
Jean-Baptiste LE STANG
5344b711ea Add two more unit tests for covering pair that are in a blacklist, and unknown pairs in the conf 2018-01-02 13:42:10 +01:00
Jean-Baptiste LE STANG
a3e827c144 with flake8 code review 2018-01-02 12:18:26 +01:00
Jean-Baptiste LE STANG
52e267e864 fix for issue #283 2018-01-02 12:04:47 +01:00
Jean-Baptiste LE STANG
165781a545 force refresh is the value has never been set 2018-01-02 11:00:22 +01:00
Jean-Baptiste LE STANG
e10a3d1f9d get_ticker can return a cached value 2018-01-02 10:56:42 +01:00
Samuel Husso
0c11d4443f Merge pull request #277 from stephendade/patch-1
Fixed pytest typo
2018-01-02 07:47:23 +02:00
Stephen
50be2fabbf Fixed pytest typo 2018-01-02 15:04:41 +11:00
jblestang
7a2e9ef535 Add fiat display in sell msg (#271)
* Display amount (fiat currency) in the sell message
* Display also base currency
* Adding more info in Buy Message, the stake amount, and the amount using FIAT Converter
* fix display style and width
* Fixing flake8
2018-01-01 14:21:43 -08:00
Gérald LONLAS
079f2e3609 Merge pull request #276 from jblestang/issue-273
Removing tilde and change profit to loss when negative profit is made
2018-01-01 14:19:29 -08:00
Jean-Baptiste LE STANG
0e0d613191 Removing tilde and change profit to loss when negative profit is made 2018-01-01 20:18:38 +01:00
Samuel Husso
de68209f3b Revert "Make get_signals async. This should speed up create_trade calls by at least 10x. (#223)" (#275)
This reverts commit 6768658300.
See details in #PR266
2018-01-01 19:32:58 +01:00
Janne Sinivirta
59546b623e Merge pull request #269 from gcarq/pyup-update-pandas-0.21.1-to-0.22.0
Update pandas to 0.22.0
2018-01-01 07:47:59 +02:00
Gérald LONLAS
0a5463fee8 Merge pull request #267 from gcarq/update_config_example
Add pair_blacklist sample in config.json.example
2017-12-31 11:19:51 -08:00
pyup-bot
cdfb18e9b4 Update pandas from 0.21.1 to 0.22.0 2017-12-31 14:21:50 +01:00
Gerald Lonlas
1f635d3793 Add pair_blacklist in config.example 2017-12-31 01:14:17 -08:00
Gerald Lonlas
714d77dbd8 Add expiremental feature to sell only if we make a profit 2017-12-30 18:14:10 -08:00
Gérald LONLAS
9803130848 Merge pull request #259 from gcarq/fix/issue-248
Fix issue #248: missing configuration when executing /forcesell
2017-12-30 17:28:16 -08:00
Samuel Husso
ad44d8d42a Merge pull request #263 from jblestang/fix_issue_262
Fixing bug #262
2017-12-30 17:01:00 +02:00
Jean-Baptiste LE STANG
68f81b2abb autopep8 is going to be my new friend 2017-12-30 15:55:49 +01:00
Jean-Baptiste LE STANG
4945331093 Fixing the positional parameter naming + unit tests updated 2017-12-30 15:43:22 +01:00
jblestang
8411844d7e Implement pair_blacklist functionality (#257)
* Adding an optional black_list of pairs not to be traded

* applying the blacklist also when not using --dynamic-whitelist

* fix error retrieving pair in conf

* Refactoring the handling of whitelist among the various functions

* unit test to verify that black listed pairs are being removed from the pair_whitelist

* Fixing newly added unit tests in develop

* fixing flake8 code review

* fix code review from @garcq
2017-12-30 14:15:07 +01:00
Janne Sinivirta
00415d66a2 Merge pull request #260 from gcarq/increase_code_coverage
Increase code coverage
2017-12-30 14:02:33 +02:00
kryofly
f7398e615a Improve backtesting tests (#256)
* test bugfix dataframe trimming

* flake8 (as usual)

* tests backtesting cleanup and bugfix

* flake8

* test backtesting::start()

* tests cleanup set() usage

* tests: add missing assert
2017-12-30 11:55:23 +01:00
Gerald Lonlas
e81a9cbb17 Increase code coverage
Change log:
* Increase code coverage for test_exchange.py
* Move Exchange Unit tests files tests/exchange/
* Move RPC Unit tests files tests/rpc/
2017-12-29 23:37:02 -08:00
Gerald Lonlas
c8c8c626b0 Fix issue #248: missing configuration when executing /forcesell
This is not a beautiful workaround, I am not proud of it,
but a redesigning of main.py and telegram.py will be
necessary for a better integration. Any better solution
is welcome.
2017-12-29 20:03:12 -08:00
Janne Sinivirta
9f5f0ddaaa Merge pull request #243 from gcarq/pyup-update-pymarketcap-3.3.139-to-3.3.141
Update pymarketcap to 3.3.141
2017-12-29 19:31:50 +02:00
Janne Sinivirta
80e1e64eae Merge pull request #249 from kryofly/tests_dec28
tests for dataframe, whitelist and backtesting
2017-12-29 19:14:57 +02:00
kryofly
37613fc056 flake8 2017-12-29 17:53:58 +01:00
Janne Sinivirta
57c6aefe38 Merge branch 'develop' into tests_dec28 2017-12-29 16:34:00 +02:00
Janne Sinivirta
133c467cf4 Merge branch 'develop' into tests_dec28 2017-12-29 16:33:12 +02:00
Janne Sinivirta
900cab4b42 Merge pull request #253 from kryofly/sell_signal
execute sell if get_signal OR ROI reached
2017-12-29 16:31:37 +02:00
Janne Sinivirta
f9cc556971 Merge branch 'develop' into sell_signal 2017-12-29 16:27:04 +02:00
Janne Sinivirta
f2ce367cec Merge branch 'develop' into sell_signal 2017-12-29 16:26:23 +02:00
Janne Sinivirta
fba9cbcff6 Merge pull request #247 from gcarq/add_unittest
Refactor Optimize tests, and add more unit tests
2017-12-29 16:23:36 +02:00
kryofly
3e0458da7d flake8 2017-12-29 09:40:24 +01:00
Gerald Lonlas
0d605d2396 Refactor Optimize tests, and add more unit tests 2017-12-28 22:32:48 -08:00
Janne Sinivirta
145583f0b7 Merge pull request #244 from jblestang/fix_daily_profit
Fixing daily profit,
2017-12-29 06:05:25 +02:00
kryofly
847dde0d65 execute sell if get_signal OR ROI reached 2017-12-29 00:07:54 +01:00
kryofly
ab112581a7 tests: anal stretching to accomodate flake8 2017-12-28 20:05:33 +01:00
kryofly
f48f5d0f31 tests for dataframe, whitelist and backtesting 2017-12-28 15:58:19 +01:00
Janne Sinivirta
0abf0b0e39 Merge pull request #242 from gcarq/backtesting-unittests
Backtesting and hyperopt unit tests
2017-12-28 12:45:28 +02:00
pyup.io bot
965616b214 Update sqlalchemy from 1.1.15 to 1.2.0 (#245) 2017-12-28 10:11:32 +01:00
Janne Sinivirta
a36fd00f6a also print dot when hyperopt eval result is fail 2017-12-28 06:40:11 +02:00
Janne Sinivirta
7f44ba6df4 unit tests for optimize.hyperopt 2017-12-28 06:39:56 +02:00
Janne Sinivirta
7b0beb0afa cleanups 2017-12-28 06:36:18 +02:00
Janne Sinivirta
ae0a1436e2 match test files to prod files for backtesting/hyperopt 2017-12-28 06:35:09 +02:00
Jean-Baptiste LE STANG
8537e9f40f CI flake8 error 2017-12-27 21:33:42 +01:00
Jean Baptiste LE STANG
d61d88559c Fixing daily profit, taking into account the time part of the date (removing it in fact) 2017-12-27 21:06:05 +01:00
Janne Sinivirta
9b4c0f01f2 more unit tests for backtesting 2017-12-27 17:39:54 +02:00
Gérald LONLAS
6c8253a4f5 Add more unittest (#241) 2017-12-27 11:41:11 +01:00
pyup-bot
6464373636 Update pymarketcap from 3.3.139 to 3.3.141 2017-12-27 10:19:45 +01:00
Janne Sinivirta
dcd0a0ec61 Merge pull request #239 from glonlas/feature/value_in_fiat
Display profits in fiat
2017-12-27 11:19:38 +02:00
Gerald Lonlas
ff6b0fc1c9 Display profits in fiat 2017-12-26 19:44:19 -08:00
Michael Egger
a514b92dcf catch MIN_TRADE_REQUIREMENT_NOT_MET as non-critical exception (#237)
* add MIN_TRADE_REQUIREMENT_NOT_MET to response validation

* implement test
2017-12-26 09:39:29 +01:00
Janne Sinivirta
de33d69eed Lint fixes (#236)
* correct docstring

* add type annotation to trade_count_lock

* fix indentations

* allow globals in hyperopt.py

* fix import order

* simplify asserts

* use proper variable name

* simplify condition

* fix path operation that fails on windows
2017-12-25 12:07:50 +01:00
Janne Sinivirta
9959d53f5e Logging improvements to Hyperopt (#235)
* make log texts go on new line

* remove unnecessary fields from hyperopt log messages

* shorten log text in hyperopt

* consider making zero trades a failed hyperopt eval

* only log from hyperopt when result improves

* remove unnecessary temp variables

* remove unused result data variables

* remove unused import

* fix an outdated comment
2017-12-25 08:18:34 +01:00
Pan Long
6768658300 Make get_signals async. This should speed up create_trade calls by at least 10x. (#223) 2017-12-25 07:01:01 +01:00
Samuel Husso
433bf409f4 Merge pull request #232 from gcarq/tweak-hyperopt
Tweak Hyperopt
2017-12-23 19:25:45 +02:00
Janne Sinivirta
353b0d2d34 balance hyperopt objective to adjusted profit calculations 2017-12-23 19:18:28 +02:00
Janne Sinivirta
e644d57dbe log should state profit is in BTC to avoid confusion 2017-12-23 19:00:49 +02:00
Janne Sinivirta
50e7cef5f3 remove commented-out code 2017-12-23 19:00:49 +02:00
Janne Sinivirta
1058820e1b just pass stake_amount instead of the whole config 2017-12-23 19:00:49 +02:00
Janne Sinivirta
24bc3a8390 show more digits for profits 2017-12-23 15:11:19 +02:00
Janne Sinivirta
5309ea3820 use newline for each log result for readability 2017-12-23 15:11:19 +02:00
Janne Sinivirta
a063680d32 calculate log line only if really logging 2017-12-23 15:11:19 +02:00
Janne Sinivirta
10cf2ce853 remove unnecessary confusing division 2017-12-23 15:11:19 +02:00
Janne Sinivirta
871357a2e3 just require positive results 2017-12-23 15:11:19 +02:00
Janne Sinivirta
efe0d77dbb Merge pull request #231 from gcarq/fix/hyperopt-filter-nan
filter nan values from total_profit and avg_profit
2017-12-23 15:07:40 +02:00
Samuel Husso
8d93363655 filter nan values from total_profit and avg_profit 2017-12-23 09:21:04 +02:00
Samuel Husso
b6dd9dd227 Merge pull request #227 from gcarq/create-contribute-guideline
Create contribution guideline
2017-12-22 19:00:49 +02:00
Janne Sinivirta
95c6ada2ad link to contribution guide from README.md 2017-12-22 14:31:08 +02:00
Janne Sinivirta
11585f9581 Create contribution guideline 2017-12-22 14:29:31 +02:00
Janne Sinivirta
8085a7b237 Merge pull request #215 from seansan/patch-1
add % in status table for profit
2017-12-22 14:09:06 +02:00
Janne Sinivirta
c99e2c12ba Merge branch 'develop' into patch-1 2017-12-22 14:05:09 +02:00
Janne Sinivirta
44a4ff0cb2 Merge branch 'develop' into patch-1 2017-12-22 13:58:13 +02:00
Janne Sinivirta
f300af0fe2 Merge pull request #200 from glonlas/fix_fees_calculation
Fix the fee calculation
2017-12-22 13:55:02 +02:00
Samuel Husso
ff186c7f65 Merge pull request #218 from glonlas/fix_hyperopt
Fix hyperopt when using MongoDB
2017-12-22 10:48:45 +02:00
Gerald Lonlas
41e22657e4 Fix hyperopt when using MongoDB 2017-12-21 19:20:47 -08:00
Samuel Husso
974815cb14 Merge pull request #220 from seansan/patch-2
added Minimal (advised) system requirements
2017-12-21 10:16:47 +02:00
seansan
33beab9c47 added Minimal (advised) system requirements 2017-12-21 09:13:26 +01:00
Gerald Lonlas
d258118b0a Fix the fee calculation, backtesting, and hyperopt fee calculation and avg_profit 2017-12-20 20:18:41 -08:00
seansan
4dab39ed9e add % in status table for profit 2017-12-20 13:58:18 +01:00
Janne Sinivirta
33293d5cdd Merge pull request #205 from gcarq/fix/travis-curl-redirect
pass follow redirects for curl to fix travis
2017-12-19 09:26:42 +02:00
Samuel Husso
285308dcbe pass follow redirects for curl to fix travis 2017-12-19 08:27:52 +02:00
Janne Sinivirta
c8fb6c4661 More lint fixes (#198)
* autopep fixes

* remove unused imports

* fix plot_dataframe.py lint warnings

* make pep8 error fails the build

* two more line breakings

* matplotlib.use() must be called before pyplot import
2017-12-18 17:36:00 +01:00
Janne Sinivirta
1a556198b2 Merge pull request #203 from gcarq/travis/fix-ssl
use curl instead of wget (see travis-ci/issues/5059)
2017-12-18 11:09:50 +02:00
Samuel Husso
98650acca0 use curl instead of wget (see travis-ci/issues/5059) 2017-12-18 10:26:48 +02:00
Samuel Husso
123f2781a1 Merge pull request #202 from gcarq/cache-talib
Cache TAlib
2017-12-18 10:06:24 +02:00
Janne Sinivirta
92f6db5bd7 fix checking for cached ta-lib 2017-12-18 09:36:29 +02:00
Janne Sinivirta
e5f8c1e75d cache ta-lib folder, skip build if cache exists 2017-12-18 09:29:17 +02:00
Janne Sinivirta
4c0a316e3e enable sudo for installing talib 2017-12-18 09:20:52 +02:00
Gerald Lonlas
d613d63fdc Fix the fee calculation 2017-12-17 23:01:34 -08:00
Janne Sinivirta
e3941cde7e move wgetting and building of talib to an sh file 2017-12-18 07:15:14 +02:00
Janne Sinivirta
642422d5c4 cache pip dependencies (#199) 2017-12-17 21:19:50 +01:00
Samuel Husso
117ec4e64d Merge pull request #195 from gcarq/feature/travis-smoke-tests
add smoke tests to run a round of hyperopt and backtesting
2017-12-17 15:45:14 +02:00
Samuel Husso
0219584bfe Merge pull request #197 from gcarq/fix_plotting
Fix plotting broken by refactoring
2017-12-17 15:43:01 +02:00
Janne Sinivirta
d3947fc893 create config.json for backtesting 2017-12-17 15:19:35 +02:00
Janne Sinivirta
fe0c26f536 create config.json for hyperopt 2017-12-17 15:13:39 +02:00
Janne Sinivirta
e83e4909a0 install freqtrade module for hyperopting 2017-12-17 15:01:11 +02:00
Janne Sinivirta
ed05a1db9d Merge branch 'develop' into feature/travis-smoke-tests 2017-12-17 14:51:26 +02:00
Janne Sinivirta
21a11f5589 run pytest, hyperopt and backtesting in parallel 2017-12-17 14:45:31 +02:00
Janne Sinivirta
6288adfefd fix plotting broken by refactoring 2017-12-17 14:14:57 +02:00
Janne Sinivirta
6a1caafb7a Merge pull request #196 from gcarq/fix/hyperopt
fix hyperopt not getting default ticker_interval
2017-12-17 13:50:25 +02:00
Samuel Husso
ce51749177 fix hyperopt not getting default ticker_interval 2017-12-17 12:34:26 +02:00
Samuel Husso
a68ca31684 add smoke test commands under script block 2017-12-17 12:01:08 +02:00
Samuel Husso
5f1b9943d1 add smoke tests to run a round of hyperopt and backtesting 2017-12-17 11:55:34 +02:00
Janne Sinivirta
155ed4e501 Merge pull request #191 from gcarq/feature/add-systemd-service-file
add systemd service file
2017-12-17 07:43:20 +02:00
Janne Sinivirta
80ef2cfed4 Merge pull request #193 from gcarq/feature/ci-enforce-pep8
CI: enforce PEP8 conform code
2017-12-17 07:42:23 +02:00
Janne Sinivirta
5efc417690 Merge pull request #192 from gcarq/feature/forcesell-handle-open-orders
/forcesell: handle trades with open orders
2017-12-17 07:41:51 +02:00
Gérald LONLAS
14868615d5 Add mock to improve backtesting tests (#194) 2017-12-17 00:24:21 +01:00
Gérald LONLAS
512fcdbcb1 Allow user to update testdata files with parameter --refresh-pairs-cached (#174) 2017-12-16 15:42:28 +01:00
gcarq
6f2caf9698 invoke flake8 after success 2017-12-16 03:44:49 +01:00
gcarq
a395a14eeb adapt README 2017-12-16 03:40:06 +01:00
gcarq
95fe0f4dec fix pep8 warnings 2017-12-16 03:39:47 +01:00
gcarq
f6d85e021f add setup.cfg to configure flake8 2017-12-16 03:28:59 +01:00
gcarq
597f08e2a2 update README 2017-12-16 03:00:51 +01:00
gcarq
df4784e7b9 add service file 2017-12-16 03:00:43 +01:00
gcarq
ddd3d2d0a9 ignore cancelled order during trade state update 2017-12-16 02:36:43 +01:00
gcarq
cb4ecfd3a3 move function 2017-12-16 01:37:06 +01:00
gcarq
f4b59492ab fix NoneType issue 2017-12-16 01:31:15 +01:00
gcarq
ae37f49b51 /forcesell: handle trades with open orders 2017-12-16 01:09:07 +01:00
gcarq
6e68315d2c reorder imports 2017-12-15 23:58:21 +01:00
gcarq
c1c9dd03ce /daily: fix identation and simplify loops 2017-12-15 23:56:02 +01:00
Gérald LONLAS
e00f02b603 Improve telegram /profit command (#188) 2017-12-15 17:19:00 +01:00
pyup.io bot
9f907d5b5e Update python-bittrex from 0.2.1 to 0.2.2 (#189) 2017-12-15 16:10:10 +01:00
Samuel Husso
6729574201 Merge pull request #186 from glonlas/update_daily_command
Improve  /daily command
2017-12-15 08:19:02 +02:00
Gerald Lonlas
2a2af4878e Update /daily command, reorder telegram menu, limit /daily profit at 8 decimals 2017-12-14 21:18:52 -08:00
Michael Egger
bfb3e09d1d raise ContentDecodingError if bittrex responds with NO_API_RESPONSE (#183) 2017-12-14 20:27:04 +01:00
Pan Long
89ee0654f4 Use ENTRYPOINT instead of CMD so additional arguments can be supplied for docker run. (#184) 2017-12-14 18:41:40 +01:00
Gérald LONLAS
2ac8b685d6 Add param for Dry run to use a DB file instead of memory (#182) 2017-12-14 15:10:11 +01:00
Samuel Husso
4b38100ae2 Merge pull request #175 from gcarq/pyup-update-pandas-0.21.0-to-0.21.1
Update pandas to 0.21.1
2017-12-13 08:18:31 +02:00
pyup-bot
d6c14d5258 Update pandas from 0.21.0 to 0.21.1 2017-12-13 06:18:06 +01:00
Samuel Husso
cb09cabbdd Merge pull request #171 from stephendade/dailymsg
Added daily profit telegram command
2017-12-12 19:42:31 +02:00
Janne Sinivirta
77023c0ecf Merge pull request #169 from jblestang/fix_ticker_interval
Fix ticker interval
2017-12-12 17:21:55 +02:00
Stephen Dade
0b18c93d19 Daily profit command - better message formatting and minor fixes 2017-12-12 19:41:25 +11:00
Jean-Baptiste LE STANG
0617753a7f Adding a test unit for 1 minute ticker interval 2017-12-11 22:11:06 +01:00
Janne Sinivirta
b77fad6e5f Merge pull request #173 from glonlas/autoselect_top_currencies
Allow to change the number of currencies used by dynamic-whitelist
2017-12-11 18:04:10 +02:00
Gerald Lonlas
90bf6f2d4a Remove unecessary import 2017-12-11 00:07:36 -08:00
Gerald Lonlas
ef7646417b Allow to change the number of currencies used by dynamic-whitelist 2017-12-11 00:01:27 -08:00
Samuel Husso
01874e379f Merge pull request #172 from gcarq/new_pair_set
New currency pair set
2017-12-11 09:33:05 +02:00
Janne Sinivirta
7afd8da28f fix a broken unit test due to changing test dataset 2017-12-10 13:56:39 +02:00
Janne Sinivirta
3d532c6015 update backtest data to match pairs in config.json.example 2017-12-10 11:17:01 +02:00
Janne Sinivirta
a692ef6715 update example coins to be from monthly max volume list 2017-12-10 11:16:28 +02:00
Stephen Dade
ccb8c3c352 Added daily profit telegram command 2017-12-10 17:32:40 +11:00
toto
18f01113c2 use the CLI arguments as the ticker interval 2017-12-09 11:51:53 +01:00
toto
f7def09dec fix for the ticker interval set by default to 5 2017-12-09 11:39:26 +01:00
Janne Sinivirta
82bf0be3e2 Merge pull request #168 from gcarq/pyup-update-python-telegram-bot-8.1.1-to-9.0.0
Update python-telegram-bot to 9.0.0
2017-12-09 07:33:36 +02:00
pyup-bot
212f4fdd95 Update python-telegram-bot from 8.1.1 to 9.0.0 2017-12-08 23:21:03 +01:00
Samuel Husso
a5058ff999 Merge pull request #164 from gcarq/pyup-update-pytest-3.3.0-to-3.3.1
Update pytest to 3.3.1
2017-12-06 09:07:18 +02:00
pyup-bot
ea1c16f2ac Update pytest from 3.3.0 to 3.3.1 2017-12-06 05:15:53 +01:00
Janne Sinivirta
67337fadaa Merge pull request #157 from gcarq/pyup-update-pytest-3.2.5-to-3.3.0
Update pytest to 3.3.0
2017-12-03 10:02:03 +02:00
Janne Sinivirta
94c1d66e59 Merge pull request #159 from gcarq/pyup-update-tabulate-0.8.1-to-0.8.2
Update tabulate to 0.8.2
2017-12-03 10:01:29 +02:00
Janne Sinivirta
510e6edfbf Merge pull request #156 from gcarq/pyup-update-arrow-0.10.0-to-0.12.0
Update arrow to 0.12.0
2017-12-03 09:40:02 +02:00
Janne Sinivirta
e8c31142ae Merge pull request #154 from gcarq/hyperopt/simplify-logging
Hyperopt/simplify logging
2017-12-03 09:39:45 +02:00
pyup-bot
71c780a530 Update tabulate from 0.8.1 to 0.8.2 2017-12-03 08:34:08 +01:00
pyup-bot
7e579de163 Update pytest from 3.2.5 to 3.3.0 2017-12-03 08:34:01 +01:00
pyup-bot
dd1a52c534 Update arrow from 0.10.0 to 0.12.0 2017-12-03 08:33:57 +01:00
Janne Sinivirta
e815a43164 Merge pull request #137 from gcarq/pyup-initial-update
Initial Update
2017-12-03 09:33:50 +02:00
Janne Sinivirta
2f17706e76 Merge pull request #155 from gcarq/maintenance/remove-btc-time
remove BTC_TIME
2017-12-02 15:29:10 +02:00
Samuel Husso
86a94798dd BTC_TIME will be removed from bittrex Dec 8th 2017-12-02 15:06:33 +02:00
Samuel Husso
a7cca4985e omit hyperopt output if total_profit doesn't go pass threashold (3) 2017-12-02 01:32:23 +02:00
Samuel Husso
965c075362 disable info logging on hyperopt.tpe 2017-12-02 00:21:46 +02:00
Janne Sinivirta
05d7746f62 Revert "Update networkx from 1.11 to 2.0"
This reverts commit 0502bd3c2d.
2017-12-01 21:13:02 +02:00
Samuel Husso
688326b58c Merge pull request #146 from gcarq/feature/integrate-backtesting
integrate backtesting/hyperopt into freqtrade.optimize
2017-11-30 08:19:59 +02:00
gcarq
0c9993cc89 convert bash scripts to python scripts 2017-11-25 15:40:19 +01:00
gcarq
0c35e6ad19 minor changes 2017-11-25 03:28:52 +01:00
gcarq
68521ea46c adapt README 2017-11-25 03:28:39 +01:00
gcarq
2fe11cd77a add helper scripts for mongodb 2017-11-25 03:28:18 +01:00
gcarq
e27a6a7a91 add mongodb support for hyperopt parallelization 2017-11-25 02:04:37 +01:00
gcarq
5bf583cba4 remove unused imports 2017-11-25 01:23:18 +01:00
gcarq
a23fce519d pretty print hyperopt results 2017-11-25 01:22:36 +01:00
gcarq
7f3f127165 remove custom env from .travis.yml 2017-11-25 01:13:28 +01:00
gcarq
9ff1f05e66 add --epochs to hyperopt subcommand 2017-11-25 01:12:44 +01:00
gcarq
b9c4eafd96 integrate hyperopt and implement subcommand 2017-11-25 01:04:11 +01:00
gcarq
7fa5846c6b move hyperopt to freqtrade.optimize.hyperopt 2017-11-25 00:30:39 +01:00
gcarq
3b37f77a4d move backtesting to freqtrade.optimize.backtesting 2017-11-24 23:58:35 +01:00
Michael Egger
858d2329e5 add experimental flag support and add use_sell_signal (#143)
* add use_sell_signal to config schema

* check use_sell_signal

* set use_sell_signal to false
2017-11-24 21:58:00 +01:00
Mathieu Favréaux
371ee1e457 In backtesting, ensure we don't buy the same pair again before selling (#139)
* in backtesting, ensure we don't buy before we sell

* no overlapping trades only if max_open_trades > 0

* --limit-max-trades now --realistic-simulation
2017-11-24 21:09:44 +01:00
Geka000
cfbfe90aa0 keyboard markup for telegram bot (#142) 2017-11-24 20:54:50 +01:00
Michael Egger
fd30f5dc59 Merge branch 'develop' into pyup-initial-update 2017-11-23 21:49:56 +01:00
pyup-bot
0502bd3c2d Update networkx from 1.11 to 2.0 2017-11-23 21:07:43 +01:00
pyup-bot
3ce7ef5e8b Update pytest from 3.2.3 to 3.2.5 2017-11-23 21:07:42 +01:00
pyup-bot
2324aa0782 Update scipy from 0.19.1 to 1.0.0 2017-11-23 21:07:40 +01:00
pyup-bot
6a57a8da12 Update scikit-learn from 0.19.0 to 0.19.1 2017-11-23 21:07:39 +01:00
pyup-bot
9276f3202c Update pandas from 0.20.3 to 0.21.0 2017-11-23 21:07:37 +01:00
pyup-bot
a6598997e2 Update sqlalchemy from 1.1.14 to 1.1.15 2017-11-23 21:07:36 +01:00
gcarq
82913cd3f4 upgrade python-bittrex to 0.2.1 2017-11-23 20:53:13 +01:00
gcarq
be6939ee8a use 8 digits of precision for amount and rate in formatting 2017-11-23 20:52:07 +01:00
Samuel Husso
7ba4a5d24b Merge pull request #136 from gcarq/stoploss_tweak
Stoploss tweak
2017-11-23 19:54:08 +02:00
Janne Sinivirta
371e6d99c9 set stoploss to -10% 2017-11-23 18:43:19 +02:00
Janne Sinivirta
84b105c82b fix invalid json in example config 2017-11-23 18:41:25 +02:00
Janne Sinivirta
c6def418cf Merge pull request #135 from rybolov/develop
Better buy and sell strategy
2017-11-23 18:25:56 +02:00
Michael Smith
5fce2c5712 Better buy and sell strategy:
Buy if at the low end of normal range and the price is increasing.
Buy into extreme gains regardless of if it's on the low part of the range.
Avoid buying when the price is on a long decrease even if it's low.
Sell anytime the price is above the top end of normal range and the momentum slows.
Sell on an extreme drop.
2017-11-23 22:33:41 +08:00
Janne Sinivirta
aacd7d8987 Merge pull request #131 from gcarq/feature/backtesting-max-open-trades
implement trade count lock for backtesting
2017-11-23 16:16:43 +02:00
gcarq
4a707d7452 add --limit-max-trades 2017-11-23 00:25:06 +01:00
Janne Sinivirta
21551b3c40 Merge pull request #133 from gcarq/feature/fix-buy-amount-calc
fix LIMIT_BUY amount calculation
2017-11-22 22:31:25 +02:00
gcarq
7727f2cc8f implement test 2017-11-22 21:02:36 +01:00
gcarq
9a87dcf0a1 dont apply fees on trade creation 2017-11-22 21:01:44 +01:00
gcarq
9136e64d89 force flush in create_trade and execute_sell (fixes #128) 2017-11-22 20:51:25 +01:00
Samuel Husso
765a762ccf Merge pull request #122 from gcarq/feature/fix-signal-handling
fix signal handling
2017-11-22 13:38:57 +02:00
gcarq
02ca2ed585 implement trade count lock for backtesting 2017-11-21 22:33:34 +01:00
gcarq
f3ba3ddd54 move buy_price and sell_price to plotting script 2017-11-21 20:41:49 +01:00
gcarq
65ce948b0b catch ValueErrors from analyze_ticker (fixes #123) 2017-11-21 20:37:29 +01:00
gcarq
383a9f6eeb catch BaseException to force stdout flush when process dies 2017-11-21 20:24:52 +01:00
Janne Sinivirta
43dda9c9cf Merge pull request #125 from gcarq/conf-update
update conf example
2017-11-21 09:38:25 +02:00
Samuel Husso
7a44a1d1c1 match example config to backtest_conf and update README to fix #124 2017-11-21 07:37:31 +02:00
gcarq
5d934cd5b6 enhance open order formatting in status handle 2017-11-20 23:33:52 +01:00
gcarq
788cda4925 add missing import 2017-11-20 22:26:32 +01:00
gcarq
55a69e4a45 use normal program flow to handle interrupts 2017-11-20 22:15:19 +01:00
gcarq
1931d31147 Merge tag '0.14.3' into develop
0.14.3
2017-11-20 20:01:23 +01:00
134 changed files with 14450 additions and 2894 deletions

View File

@@ -4,3 +4,12 @@ Dockerfile
.dockerignore
config.json*
*.sqlite
.coveragerc
.eggs
.github
.pylintrc
.travis.yml
CONTRIBUTING.md
MANIFEST.in
README.md
freqtrade.service

30
.github/ISSUE_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,30 @@
## Step 1: Have you search for this issue before posting it?
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue).
If it hasn't been reported, please create a new issue.
## Step 2: Describe your environment
* Python Version: _____ (`python -V`)
* Branch: Master | Develop
* Last Commit ID: _____ (`git log --format="%H" -n 1`)
## Step 3: Describe the problem:
*Explain the problem you have encountered*
### Steps to reproduce:
1. _____
2. _____
3. _____
### Observed Results:
* What happened?
* What did you expect to happen?
### Relevant code exceptions or logs:
```
// paste your log here
```

15
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,15 @@
Thank you for sending your pull request. But first, have you included
unit tests, and is your code PEP8 conformant? [More details](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
## Summary
Explain in one sentence the goal of this PR
Solve the issue: #___
## Quick changelog
- <change log #1>
- <change log #2>
## What's new?
*Explain in details what this PR solve or improve. You can include visuals.*

17
.gitignore vendored
View File

@@ -1,3 +1,14 @@
# Freqtrade rules
freqtrade/tests/testdata/*.json
hyperopt_conf.py
config.json
*.sqlite
.hyperopt
logfile.txt
hyperopt_trials.pickle
user_data/
freqtrade-plot.html
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -73,11 +84,9 @@ target/
# pyenv
.python-version
config.json
preprocessor.py
*.sqlite
.env
.venv
.idea
.vscode
.pytest_cache/

View File

@@ -1,10 +1,10 @@
[MASTER]
extension-pkg-whitelist=numpy,talib
extension-pkg-whitelist=numpy,talib,talib.abstract
[BASIC]
good-names=logger
ignore=vendor
[TYPECHECK]
ignored-modules=numpy,talib
ignored-modules=numpy,talib,talib.abstract

View File

@@ -1,12 +1,9 @@
sudo: false
sudo: true
os:
- linux
language: python
python:
- 3.6
env:
- BACKTEST=
- BACKTEST=true
addons:
apt:
packages:
@@ -14,16 +11,27 @@ addons:
- libdw-dev
- binutils-dev
install:
- wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
- tar zxvf ta-lib-0.4.0-src.tar.gz
- cd ta-lib && ./configure && sudo make && sudo make install && cd ..
- ./install_ta-lib.sh
- export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
- pip install coveralls
- pip install --upgrade flake8 coveralls pytest-random-order
- pip install -r requirements.txt
script:
- pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- pip install -e .
jobs:
include:
- script: pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- script:
- cp config.json.example config.json
- python freqtrade/main.py backtesting
- script:
- cp config.json.example config.json
- python freqtrade/main.py hyperopt -e 5
- script: flake8 freqtrade
after_success:
- coveralls
notifications:
slack:
secure: bKLXmOrx8e2aPZl7W8DA5BdPAXWGpI5UzST33oc1G/thegXcDVmHBTJrBs4sZak6bgAclQQrdZIsRd2eFYzHLalJEaw6pk7hoAw8SvLnZO0ZurWboz7qg2+aZZXfK4eKl/VUe4sM9M4e/qxjkK+yWG7Marg69c4v1ypF7ezUi1fPYILYw8u0paaiX0N5UX8XNlXy+PBlga2MxDjUY70MuajSZhPsY2pDUvYnMY1D/7XN3cFW0g+3O8zXjF0IF4q1Z/1ASQe+eYjKwPQacE+O8KDD+ZJYoTOFBAPllrtpO1jnOPFjNGf3JIbVMZw4bFjIL0mSQaiSUaUErbU3sFZ5Or79rF93XZ81V7uEZ55vD8KMfR2CB1cQJcZcj0v50BxLo0InkFqa0Y8Nra3sbpV4fV5Oe8pDmomPJrNFJnX6ULQhQ1gTCe0M5beKgVms5SITEpt4/Y0CmLUr6iHDT0CUiyMIRWAXdIgbGh1jfaWOMksybeRevlgDsIsNBjXmYI1Sw2ZZR2Eo2u4R6zyfyjOMLwYJ3vgq9IrACv2w5nmf0+oguMWHf6iWi2hiOqhlAN1W74+3HsYQcqnuM3LGOmuCnPprV1oGBqkPXjIFGpy21gNx4vHfO1noLUyJnMnlu2L7SSuN1CdLsnjJ1hVjpJjPfqB4nn8g12x87TqM1bOm+3Q=
cache:
directories:
- $HOME/.cache/pip
- ta-lib

45
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,45 @@
# Contribute to freqtrade
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:
- Create your PR against the `develop` branch, not `master`.
- New features need to contain unit tests and must be PEP8
conformant (max-line-length = 100).
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
or in a [issue](https://github.com/gcarq/freqtrade/issues) before a PR.
**Before sending the PR:**
## 1. Run unit tests
All unit tests must pass. If a unit test is broken, change your code to
make it pass. It means you have introduced a regression.
**Test the whole project**
```bash
pytest freqtrade
```
**Test only one file**
```bash
pytest freqtrade/tests/test_<file_name>.py
```
**Test only one method from one file**
```bash
pytest freqtrade/tests/test_<file_name>.py::test_<method_name>
```
## 2. Test if your code is PEP8 compliant
**Install packages** (If not already installed)
```bash
pip3.6 install flake8 coveralls
```
**Run Flake8**
```bash
flake8 freqtrade
```

View File

@@ -1,7 +1,7 @@
FROM python:3.6.2
FROM python:3.6.5-slim-stretch
# Install TA-lib
RUN apt-get update && apt-get -y install build-essential && apt-get clean
RUN apt-get update && apt-get -y install curl build-essential && apt-get clean
RUN curl -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz | \
tar xzvf - && \
cd ta-lib && \
@@ -20,4 +20,4 @@ RUN pip install -r requirements.txt
# Install and execute
COPY . /freqtrade/
RUN pip install -e .
CMD ["freqtrade"]
ENTRYPOINT ["freqtrade"]

323
README.md
View File

@@ -1,194 +1,207 @@
# freqtrade
[![Build Status](https://travis-ci.org/gcarq/freqtrade.svg?branch=develop)](https://travis-ci.org/gcarq/freqtrade)
[![Coverage Status](https://coveralls.io/repos/github/gcarq/freqtrade/badge.svg?branch=develop)](https://coveralls.io/github/gcarq/freqtrade?branch=develop)
[![Coverage Status](https://coveralls.io/repos/github/gcarq/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/gcarq/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/gcarq/freqtrade/maintainability)
Simple High frequency trading bot for crypto currencies.
Currently supports trading on Bittrex exchange.
Simple High frequency trading bot for crypto currencies designed to
support multi exchanges and be controlled via Telegram.
This software is for educational purposes only.
Don't risk money which you are afraid to lose.
![freqtrade](https://raw.githubusercontent.com/gcarq/freqtrade/develop/docs/assets/freqtrade-screenshot.png)
The command interface is accessible via Telegram (not required).
Just register a new bot on https://telegram.me/BotFather
and enter the telegram `token` and your `chat_id` in `config.json`
## Disclaimer
This software is for educational purposes only. Do not risk money which
you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS
AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
Persistence is achieved through sqlite.
Always start by running a trading bot in Dry-run and do not engage money
before you understand how it works and what profit/loss you should
expect.
### Telegram RPC commands:
* /start: Starts the trader
* /stop: Stops the trader
* /status [table]: Lists all open trades
* /count: Displays number of open trades
* /profit: Lists cumulative profit from all finished trades
* /forcesell <trade_id>|all: Instantly sells the given trade (Ignoring `minimum_roi`).
* /performance: Show performance of each finished trade grouped by pair
* /balance: Show account balance per currency
* /help: Show help message
* /version: Show version
We strongly recommend you to have coding and Python knowledge. Do not
hesitate to read the source code and understand the mechanism of this bot.
### Config
`minimal_roi` is a JSON object where the key is a duration
in minutes and the value is the minimum ROI in percent.
See the example below:
```
"minimal_roi": {
"50": 0.0, # Sell after 30 minutes if the profit is not negative
"40": 0.01, # Sell after 25 minutes if there is at least 1% profit
"30": 0.02, # Sell after 15 minutes if there is at least 2% profit
"0": 0.045 # Sell immediately if there is at least 4.5% profit
},
## Table of Contents
- [Features](#features)
- [Quick start](#quick-start)
- [Documentations](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Strategy Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Support](#support)
- [Help](#help--slack)
- [Bugs](#bugs--issues)
- [Feature Requests](#feature-requests)
- [Pull Requests](#pull-requests)
- [Basic Usage](#basic-usage)
- [Bot commands](#bot-commands)
- [Telegram RPC commands](#telegram-rpc-commands)
- [Requirements](#requirements)
- [Min hardware required](#min-hardware-required)
- [Software requirements](#software-requirements)
## Branches
The project is currently setup in two main branches:
- `develop` - This branch has often new features, but might also cause
breaking changes.
- `master` - This branch contains the latest stable release. The bot
'should' be stable on this branch, and is generally well tested.
## Features
- [x] **Based on Python 3.6+**: For botting on any operating system -
Windows, macOS and Linux
- [x] **Persistence**: Persistence is achieved through sqlite
- [x] **Dry-run**: Run the bot without playing money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
- [x] **Strategy Optimization**: Optimize your buy/sell strategy
parameters with Hyperopts.
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you
want to trade.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you
want to avoid.
- [x] **Manageable via Telegram**: Manage the bot with Telegram
- [x] **Display profit/loss in fiat**: Display your profit/loss in
33 fiat.
- [x] **Daily summary of profit/loss**: Provide a daily summary
of your profit/loss.
- [x] **Performance status report**: Provide a performance status of
your current trades.
### Exchange supported
- [x] Bittrex
- [ ] Binance
- [ ] Others
## Quick start
This quick start section is a very short explanation on how to test the
bot in dry-run. We invite you to read the
[bot documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
to ensure you understand how the bot is working.
### Easy installation
The script below will install all dependencies and help you to configure the bot.
```bash
./setup.sh --install
```
`stoploss` is loss in percentage that should trigger a sale.
For example value `-0.10` will cause immediate sell if the
profit dips below -10% for a given trade. This parameter is optional.
`initial_state` is an optional field that defines the initial application state.
Possible values are `running` or `stopped`. (default=`running`)
If the value is `stopped` the bot has to be started with `/start` first.
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
The other values should be self-explanatory,
if not feel free to raise a github issue.
### Prerequisites
* python3.6
* sqlite
* [TA-lib](https://github.com/mrjbq7/ta-lib#dependencies) binaries
### Install
#### Arch Linux
Use your favorite AUR helper and install `python-freqtrade-git`.
#### Manually
`master` branch contains the latest stable release.
`develop` branch has often new features, but might also cause breaking changes. To use it, you are encouraged to join our [slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
### Manual installation
The following steps are made for Linux/MacOS environment
**1. Clone the repo**
```bash
git clone git@github.com:gcarq/freqtrade.git
git checkout develop
cd freqtrade
```
$ cd freqtrade/
# copy example config. Dont forget to insert your api keys
$ cp config.json.example config.json
$ python -m venv .env
$ source .env/bin/activate
$ pip install -r requirements.txt
$ pip install -e .
$ ./freqtrade/main.py
**2. Create the config file**
Switch `"dry_run": true,`
```bash
cp config.json.example config.json
vi config.json
```
**3. Build your docker image and run it**
```bash
docker build -t freqtrade .
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
There is also an [article](https://www.sales4k.com/blockchain/high-frequency-trading-bot-tutorial/) about how to setup the bot (thanks [@gurghet](https://github.com/gurghet)).*
\* *Note:* that article was written for an earlier version, so it may be outdated
### Help / Slack
For any questions not covered by the documentation or for further
information about the bot, we encourage you to join our slack channel.
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
#### Docker
### [Bugs / Issues](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/gcarq/freqtrade/issues/new) and
ensure you follow the template guide so that our team can assist you as
quickly as possible.
Building the image:
### [Feature Requests](https://github.com/gcarq/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,
first search if this feature was not [already discussed](https://github.com/gcarq/freqtrade/labels/enhancement).
If it hasn't been requested, please
[create a new request](https://github.com/gcarq/freqtrade/issues/new)
and ensure you follow the template guide so that it does not get lost
in the bug reports.
```
$ cd freqtrade
$ docker build -t freqtrade .
```
### [Pull Requests](https://github.com/gcarq/freqtrade/pulls)
Feel like our bot is missing a feature? We welcome your pull requests!
Please read our
[Contributing document](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
to understand the requirements before sending your pull-requests.
For security reasons, your configuration file will not be included in the
image, you will need to bind mount it. It is also advised to bind mount
a SQLite database file (see second example) to keep it between updates.
**Important:** Always create your PR against the `develop` branch, not
`master`.
You can run a one-off container that is immediately deleted upon exiting with
the following command (config.json must be in the current working directory):
## Basic Usage
```
$ docker run --rm -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
### Bot commands
To run a restartable instance in the background (feel free to place your
configuration and database files wherever it feels comfortable on your
filesystem):
```
$ cd ~/.freq
$ touch tradesv3.sqlite
$ docker run -d \
--name freqtrade \
-v ~/.freq/config.json:/freqtrade/config.json \
-v ~/.freq/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade
```
If you are using `dry_run=True` it's not necessary to mount `tradesv3.sqlite`.
You can then use the following commands to monitor and manage your container:
```
$ docker logs freqtrade
$ docker logs -f freqtrade
$ docker restart freqtrade
$ docker stop freqtrade
$ docker start freqtrade
```
You do not need to rebuild the image for configuration
changes, it will suffice to edit `config.json` and restart the container.
### Usage
```
usage: freqtrade [-h] [-c PATH] [-v] [--version] [--dynamic-whitelist]
{backtesting} ...
```bash
usage: main.py [-h] [-v] [--version] [-c PATH] [--dry-run-db] [--datadir PATH]
[--dynamic-whitelist [INT]]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
positional arguments:
{backtesting}
{backtesting,hyperopt}
backtesting backtesting module
hyperopt hyperopt module
optional arguments:
-h, --help show this help message and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
-v, --verbose be verbose
--version show program's version number and exit
--dynamic-whitelist dynamically generate and update whitelist based on 24h
BaseVolume
-c PATH, --config PATH
specify configuration file (default: config.json)
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH path to backtest data (default freqdata/tests/testdata
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
```
More details on:
- [How to run the bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [How to use Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [How to use Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
### Telegram RPC commands
Telegram is not mandatory. However, this is a great way to control your
bot. More details on our
[documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
### Backtesting
- `/start`: Starts the trader
- `/stop`: Stops the trader
- `/status [table]`: Lists all open trades
- `/count`: Displays number of open trades
- `/profit`: Lists cumulative profit from all finished trades
- `/forcesell <trade_id>|all`: Instantly sells the given trade
(Ignoring `minimum_roi`).
- `/performance`: Show performance of each finished trade grouped by pair
- `/balance`: Show account balance per currency
- `/daily <n>`: Shows profit or loss per day, over the last n days
- `/help`: Show help message
- `/version`: Show version
Backtesting also uses the config specified via `-c/--config`.
## Requirements
```
usage: freqtrade backtesting [-h] [-l] [-i INT]
### Min hardware required
To run this bot we recommend you a cloud instance with a minimum of:
* Minimal (advised) system requirements: 2GB RAM, 1GB disk space, 2vCPU
optional arguments:
-h, --help show this help message and exit
-l, --live using live data
-i INT, --ticker-interval INT
specify ticker interval in minutes (default: 5)
```
### Execute tests
```
$ pytest
```
This will by default skip the slow running backtest set. To run backtest set:
```
$ BACKTEST=true pytest -s freqtrade/tests/test_backtesting.py
```
### Contributing
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:
- Create your PR against the `develop` branch, not `master`.
- New features need to contain unit tests.
- If you are unsure, discuss the feature on [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) or in a [issue](https://github.com/gcarq/freqtrade/issues) before a PR.
### Software requirements
- [Python 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/)
- [pip](https://pip.pypa.io/en/stable/installing/)
- [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
- [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
- [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
- [Docker](https://www.docker.com/products/docker) (Recommended)

View File

@@ -1,4 +1,7 @@
#!/usr/bin/env python3
from freqtrade.main import main
main()
import sys
from freqtrade.main import main, set_loggers
set_loggers()
main(sys.argv[1:])

View File

@@ -2,40 +2,43 @@
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.05,
"fiat_display_currency": "USD",
"dry_run": false,
"minimal_roi": {
"50": 0.0,
"40": 0.01,
"30": 0.02,
"0": 0.045
},
"stoploss": -0.40,
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
},
"exchange": {
"name": "bittrex",
"key": "key",
"secret": "secret",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"pair_whitelist": [
"BTC_RLC",
"BTC_TKN",
"BTC_TRST",
"BTC_SWT",
"BTC_PIVX",
"BTC_MLN",
"BTC_XZC",
"BTC_TIME",
"BTC_LUN"
"BTC_ETH",
"BTC_LTC",
"BTC_ETC",
"BTC_DASH",
"BTC_ZEC",
"BTC_XLM",
"BTC_NXT",
"BTC_POWR",
"BTC_ADA",
"BTC_XMR"
],
"pair_blacklist": [
"BTC_DOGE"
]
},
"experimental": {
"use_sell_signal": false,
"sell_profit_only": false
},
"telegram": {
"enabled": true,
"token": "token",
"chat_id": "chat_id"
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"initial_state": "running",
"internals": {
"process_throttle_secs": 5
}
}
}

54
config_full.json.example Normal file
View File

@@ -0,0 +1,54 @@
{
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.05,
"fiat_display_currency": "USD",
"dry_run": false,
"ticker_interval": 5,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
},
"exchange": {
"name": "bittrex",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"pair_whitelist": [
"BTC_ETH",
"BTC_LTC",
"BTC_ETC",
"BTC_DASH",
"BTC_ZEC",
"BTC_XLM",
"BTC_NXT",
"BTC_POWR",
"BTC_ADA",
"BTC_XMR"
],
"pair_blacklist": [
"BTC_DOGE"
]
},
"experimental": {
"use_sell_signal": false,
"sell_profit_only": false
},
"telegram": {
"enabled": true,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"initial_state": "running",
"internals": {
"process_throttle_secs": 5
},
"strategy": "DefaultStrategy",
"strategy_path": "/some/folder/"
}

0
docs/.gitkeep Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

164
docs/backtesting.md Normal file
View File

@@ -0,0 +1,164 @@
# Backtesting
This page explains how to validate your strategy performance by using
Backtesting.
## Table of Contents
- [Test your strategy with Backtesting](#test-your-strategy-with-backtesting)
- [Understand the backtesting result](#understand-the-backtesting-result)
## Test your strategy with Backtesting
Now you have good Buy and Sell strategies, you want to test it against
real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pair) from your config file
and load static tickers located in
[/freqtrade/tests/testdata](https://github.com/gcarq/freqtrade/tree/develop/freqtrade/tests/testdata).
If the 5 min and 1 min ticker for the crypto-currencies to test is not
already in the `testdata` folder, backtesting will download them
automatically. Testdata files will not be updated until you specify it.
The result of backtesting will confirm you if your bot as more chance to
make a profit than a loss.
The backtesting is very easy with freqtrade.
### Run a backtesting against the currencies listed in your config file
**With 5 min tickers (Per default)**
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation
```
**With 1 min tickers**
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --ticker-interval 1
```
**Reload your testdata files**
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --refresh-pairs-cached
```
**With live data (do not alter your testdata files)**
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --live
```
**Using a different on-disk ticker-data source**
```bash
python3 ./freqtrade/main.py backtesting --datadir freqtrade/tests/testdata-20180101
```
**With a (custom) strategy file**
```bash
python3 ./freqtrade/main.py -s currentstrategy backtesting
```
Where `-s currentstrategy` refers to a filename `currentstrategy.py` in `freqtrade/user_data/strategies`
**Exporting trades to file**
```bash
python3 ./freqtrade/main.py backtesting --export trades
```
**Running backtest with smaller testset**
Use the `--timerange` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
Example:
```bash
python3 ./freqtrade/main.py backtesting --timerange=-200
```
***Advanced use of timerange***
Doing `--timerange=-200` will get the last 200 timeframes
from your inputdata. You can also specify specific dates,
or a range span indexed by start and stop.
The full timerange specification:
- Use last 123 tickframes of data: `--timerange=-123`
- Use first 123 tickframes of data: `--timerange=123-`
- Use tickframes from line 123 through 456: `--timerange=123-456`
Incoming feature, not implemented yet:
- `--timerange=-20180131`
- `--timerange=20180101-`
- `--timerange=20180101-20181231`
**Update testdata directory**
To update your testdata directory, or download into another testdata directory:
```bash
mkdir -p user_data/data/testdata-20180113
cp freqtrade/tests/testdata/pairs.json user_data/data-20180113
cd user_data/data-20180113
```
Possibly edit pairs.json file to include/exclude pairs
```bash
python3 freqtrade/tests/testdata/download_backtest_data.py -p pairs.json
```
The script will read your pairs.json file, and download ticker data
into the current working directory.
For help about backtesting usage, please refer to
[Backtesting commands](#backtesting-commands).
## Understand the backtesting result
The most important in the backtesting is to understand the result.
A backtesting result will look like that:
```
====================== BACKTESTING REPORT ================================
pair buy count avg profit % total profit BTC avg duration
-------- ----------- -------------- ------------------ --------------
BTC_ETH 56 -0.67 -0.00075455 62.3
BTC_LTC 38 -0.48 -0.00036315 57.9
BTC_ETC 42 -1.15 -0.00096469 67.0
BTC_DASH 72 -0.62 -0.00089368 39.9
BTC_ZEC 45 -0.46 -0.00041387 63.2
BTC_XLM 24 -0.88 -0.00041846 47.7
BTC_NXT 24 0.68 0.00031833 40.2
BTC_POWR 35 0.98 0.00064887 45.3
BTC_ADA 43 -0.39 -0.00032292 55.0
BTC_XMR 40 -0.40 -0.00032181 47.4
TOTAL 419 -0.41 -0.00348593 52.9
```
The last line will give you the overall performance of your strategy,
here:
```
TOTAL 419 -0.41 -0.00348593 52.9
```
We understand the bot has made `419` trades for an average duration of
`52.9` min, with a performance of `-0.41%` (loss), that means it has
lost a total of `-0.00348593 BTC`.
As you will see your strategy performance will be influenced by your buy
strategy, your sell strategy, and also by the `minimal_roi` and
`stop_loss` you have set.
As for an example if your minimal_roi is only `"0": 0.01`. You cannot
expect the bot to make more profit than 1% (because it will sell every
time a trade will reach 1%).
```json
"minimal_roi": {
"0": 0.01
},
```
On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
(55%), there is a lot of chance that the bot will never reach this
profit. Hence, keep in mind that your performance is a mix of your
strategies, your configuration, and the crypto-currency you have set up.
## Next step
Great, your strategy is profitable. What if the bot can give your the
optimal parameters to use for your strategy?
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)

152
docs/bot-optimization.md Normal file
View File

@@ -0,0 +1,152 @@
# Bot Optimization
This page explains where to customize your strategies, and add new
indicators.
## Table of Contents
- [Install a custom strategy file](#install-a-custom-strategy-file)
- [Customize your strategy](#change-your-strategy)
- [Add more Indicator](#add-more-indicator)
- [Where is the default strategy](#where-is-the-default-strategy)
Since the version `0.16.0` the bot allows using custom strategy file.
## Install a custom strategy file
This is very simple. Copy paste your strategy file into the folder
`user_data/strategies`.
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`:
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py`
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
## Change your strategy
The bot includes a default strategy file. However, we recommend you to
use your own file to not have to lose your parameters every time the default
strategy file will be updated on Github. Put your custom strategy file
into the folder `user_data/strategies`.
A strategy file contains all the information needed to build a good strategy:
- Buy strategy rules
- Sell strategy rules
- Minimal ROI recommended
- Stoploss recommended
- Hyperopt parameter
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
You can test it with the parameter: `--strategy TestStrategy`
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
### Specify custom strategy location
If you want to use a strategy from a different folder you can pass `--strategy-path`
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/folder
```
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
file as reference.**
### Buy strategy
Edit the method `populate_buy_trend()` into your strategy file to
update your buy strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] <= dataframe['blower']) &
(dataframe['tema'] > dataframe['tema'].shift(1))
),
'buy'] = 1
return dataframe
```
### Sell strategy
Edit the method `populate_sell_trend()` into your strategy file to
update your sell strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['blower']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
),
'sell'] = 1
return dataframe
```
## Add more Indicator
As you have seen, buy and sell strategies need indicators. You can add
more indicators by extending the list contained in
the method `populate_indicators()` from your strategy file.
Sample:
```python
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
dataframe['sar'] = ta.SAR(dataframe)
dataframe['adx'] = ta.ADX(dataframe)
stoch = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch['fastd']
dataframe['fastk'] = stoch['fastk']
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['ao'] = awesome_oscillator(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
return dataframe
```
**Want more indicators example?**
Look into the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
Then uncomment indicators you need.
### Where is the default strategy?
The default buy strategy is located in the file
[freqtrade/default_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
## Next step
Now you have a perfect strategy you probably want to backtesting it.
Your next step is to learn [How to use the Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md).

173
docs/bot-usage.md Normal file
View File

@@ -0,0 +1,173 @@
# Bot usage
This page explains the difference parameters of the bot and how to run
it.
## Table of Contents
- [Bot commands](#bot-commands)
- [Backtesting commands](#backtesting-commands)
- [Hyperopt commands](#hyperopt-commands)
## Bot commands
```
usage: main.py [-h] [-c PATH] [-v] [--version] [--dynamic-whitelist [INT]]
[--dry-run-db]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
positional arguments:
{backtesting,hyperopt}
backtesting backtesting module
hyperopt hyperopt module
optional arguments:
-h, --help show this help message and exit
-v, --verbose be verbose
--version show program's version number and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
-s NAME, --strategy NAME
specify strategy class name (default: DefaultStrategy)
--strategy-path PATH specify additional strategy lookup path
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH
path to backtest data (default freqdata/tests/testdata
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
```
### How to use a different config file?
The bot allows you to select which config file you want to use. Per
default, the bot will load the file `./config.json`
```bash
python3 ./freqtrade/main.py -c path/far/far/away/config.json
```
### How to use --strategy?
This parameter will allow you to load your custom strategy class.
Per default without `--strategy` or `-s` the bot will load the
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
The bot will search your strategy file within `user_data/strategies` and `freqtrade/strategy`.
To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this parameter.
**Example:**
In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
a strategy class called `AwesomeStrategy` to load it:
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
If the bot does not find your strategy file, it will display in an error
message the reason (File not found, or errors in your code).
Learn more about strategy file in [optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).
### How to use --strategy-path?
This parameter allows you to add an additional strategy lookup path, which gets
checked before the default locations (The passed path must be a folder!):
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/folder
```
#### How to install a strategy?
This is very simple. Copy paste your strategy file into the folder
`user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it.
### How to use --dynamic-whitelist?
Per default `--dynamic-whitelist` will retrieve the 20 currencies based
on BaseVolume. This value can be changed when you run the script.
**By Default**
Get the 20 currencies based on BaseVolume.
```bash
python3 ./freqtrade/main.py --dynamic-whitelist
```
**Customize the number of currencies to retrieve**
Get the 30 currencies based on BaseVolume.
```bash
python3 ./freqtrade/main.py --dynamic-whitelist 30
```
**Exception**
`--dynamic-whitelist` must be greater than 0. If you enter 0 or a
negative value (e.g -2), `--dynamic-whitelist` will use the default
value (20).
### How to use --dry-run-db?
When you run the bot in Dry-run mode, per default no transactions are
stored in a database. If you want to store your bot actions in a DB
using `--dry-run-db`. This command will use a separate database file
`tradesv3.dry_run.sqlite`
```bash
python3 ./freqtrade/main.py -c config.json --dry-run-db
```
## Backtesting commands
Backtesting also uses the config specified via `-c/--config`.
```
usage: freqtrade backtesting [-h] [-l] [-i INT] [--realistic-simulation]
[-r]
optional arguments:
-h, --help show this help message and exit
-l, --live using live data
-i INT, --ticker-interval INT
specify ticker interval in minutes (default: 5)
--realistic-simulation
uses max_open_trades from config to simulate real
world limitations
-r, --refresh-pairs-cached
refresh the pairs files in tests/testdata with
the latest data from Bittrex. Use it if you want
to run your backtesting with up-to-date data.
```
### How to use --refresh-pairs-cached parameter?
The first time your run Backtesting, it will take the pairs you have
set in your config file and download data from Bittrex.
If for any reason you want to update your data set, you use
`--refresh-pairs-cached` to force Backtesting to update the data it has.
**Use it only if you want to update your data set. You will not be able
to come back to the previous version.**
To test your strategy with latest data, we recommend continuing using
the parameter `-l` or `--live`.
## Hyperopt commands
It is possible to use hyperopt for trading strategy optimization.
Hyperopt uses an internal json config return by `hyperopt_optimize_conf()`
located in `freqtrade/optimize/hyperopt_conf.py`.
```
usage: freqtrade hyperopt [-h] [-e INT] [--use-mongodb]
optional arguments:
-h, --help show this help message and exit
-e INT, --epochs INT specify number of epochs (default: 100)
--use-mongodb parallelize evaluations with mongodb (requires mongod
in PATH)
```
## A parameter missing in the configuration?
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
in [misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L84)
## Next step
The optimal strategy of the bot will change with time depending of the
market trends. The next step is to
[optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).

140
docs/configuration.md Normal file
View File

@@ -0,0 +1,140 @@
# Configure the bot
This page explains how to configure your `config.json` file.
## Table of Contents
- [Bot commands](#bot-commands)
- [Backtesting commands](#backtesting-commands)
- [Hyperopt commands](#hyperopt-commands)
## Setup config.json
We recommend to copy and use the `config.json.example` as a template
for your bot configuration.
The table below will list all configuration parameters.
| Command | Default | Mandatory | Description |
|----------|---------|----------|-------------|
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have.
| `stake_currency` | BTC | Yes | Crypto-currency used for trading.
| `stake_amount` | 0.05 | Yes | Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged.
| `ticker_interval` | [1, 5, 30, 60, 1440] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Defaut is 5 minutes
| `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below.
| `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode.
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
| `unfilledtimeout` | 0 | No | How long (in minutes) the bot will wait for an unfilled order to complete, after which the order will be cancelled.
| `bid_strategy.ask_last_balance` | 0.0 | Yes | Set the bidding price. More information below.
| `exchange.name` | bittrex | Yes | Name of the exchange class to use.
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
| `exchange.secret` | secret | No | API secret to use for the exchange. Only required when you are in production mode.
| `exchange.pair_whitelist` | [] | No | List of currency to use by the bot. Can be overrided with `--dynamic-whitelist` param.
| `exchange.pair_blacklist` | [] | No | List of currency the bot must avoid. Useful when using `--dynamic-whitelist` param.
| `experimental.use_sell_signal` | false | No | Use your sell strategy in addition of the `minimal_roi`.
| `experimental.sell_profit_only` | false | No | waits until you have made a positive profit before taking a sell decision.
| `telegram.enabled` | true | Yes | Enable or not the usage of Telegram.
| `telegram.token` | token | No | Your Telegram bot token. Only required if `telegram.enabled` is `true`.
| `telegram.chat_id` | chat_id | No | Your personal Telegram account id. Only required if `telegram.enabled` is `true`.
| `initial_state` | running | No | Defines the initial application state. More information below.
| `strategy` | DefaultStrategy | No | Defines Strategy class to use.
| `strategy_path` | null | No | Adds an additional strategy lookup path (must be a folder).
| `internals.process_throttle_secs` | 5 | Yes | Set the process throttle. Value in second.
The definition of each config parameters is in
[misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L205).
### Understand minimal_roi
`minimal_roi` is a JSON object where the key is a duration
in minutes and the value is the minimum ROI in percent.
See the example below:
```
"minimal_roi": {
"40": 0.0, # Sell after 40 minutes if the profit is not negative
"30": 0.01, # Sell after 30 minutes if there is at least 1% profit
"20": 0.02, # Sell after 20 minutes if there is at least 2% profit
"0": 0.04 # Sell immediately if there is at least 4% profit
},
```
Most of the strategy files already include the optimal `minimal_roi`
value. This parameter is optional. If you use it, it will take over the
`minimal_roi` value from the strategy file.
### Understand stoploss
`stoploss` is loss in percentage that should trigger a sale.
For example value `-0.10` will cause immediate sell if the
profit dips below -10% for a given trade. This parameter is optional.
Most of the strategy files already include the optimal `stoploss`
value. This parameter is optional. If you use it, it will take over the
`stoploss` value from the strategy file.
### Understand initial_state
`initial_state` is an optional field that defines the initial application state.
Possible values are `running` or `stopped`. (default=`running`)
If the value is `stopped` the bot has to be started with `/start` first.
### Understand ask_last_balance
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
### What values for fiat_display_currency?
`fiat_display_currency` set the fiat to use for the conversion form coin to fiat in Telegram.
The valid value are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
## Switch to dry-run mode
We recommend starting the bot in dry-run mode to see how your bot will
behave and how is the performance of your strategy. In Dry-run mode the
bot does not engage your money. It only runs a live simulation without
creating trades.
### To switch your bot in Dry-run mode:
1. Edit your `config.json` file
2. Switch dry-run to true
```json
"dry_run": true,
```
3. Remove your Bittrex API key (change them by fake api credentials)
```json
"exchange": {
"name": "bittrex",
"key": "key",
"secret": "secret",
...
}
```
Once you will be happy with your bot performance, you can switch it to
production mode.
## Switch to production mode
In production mode, the bot will engage your money. Be careful a wrong
strategy can lose all your money. Be aware of what you are doing when
you run it in production mode.
### To switch your bot in production mode:
1. Edit your `config.json` file
2. Switch dry-run to false
```json
"dry_run": false,
```
3. Insert your Bittrex API key (change them by fake api keys)
```json
"exchange": {
"name": "bittrex",
"key": "af8ddd35195e9dc500b9a6f799f6f5c93d89193b",
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
...
}
```
If you have not your Bittrex API key yet,
[see our tutorial](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md).
## Next step
Now you have configured your config.json, the next step is to
[start your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md).

71
docs/faq.md Normal file
View File

@@ -0,0 +1,71 @@
# freqtrade FAQ
#### I have waited 5 minutes, why hasn't the bot made any trades yet?!
Depending on the buy strategy, the amount of whitelisted coins, the
situation of the market etc, it can take up to hours to find good entry
position for a trade. Be patient!
#### I have made 12 trades already, why is my total profit negative?!
I understand your disappointment but unfortunately 12 trades is just
not enough to say anything. If you run backtesting, you can see that our
current algorithm does leave you on the plus side, but that is after
thousands of trades and even there, you will be left with losses on
specific coins that you have traded tens if not hundreds of times. We
of course constantly aim to improve the bot but it will _always_ be a
gamble, which should leave you with modest wins on monthly basis but
you can't say much from few trades.
#### Id like to change the stake amount. Can I just stop the bot with
/stop and then change the config.json and run it again?
Not quite. Trades are persisted to a database but the configuration is
currently only read when the bot is killed and restarted. `/stop` more
like pauses. You can stop your bot, adjust settings and start it again.
#### I want to improve the bot with a new strategy
That's great. We have a nice backtesting and hyperoptimizing setup. See
the tutorial [here|Testing-new-strategies-with-Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands).
#### Is there a setting to only SELL the coins being held and not
perform anymore BUYS?
You can use the `/forcesell all` command from Telegram.
### How many epoch do I need to get a good Hyperopt result?
Per default Hyperopts without `-e` or `--epochs` parameter will only
run 100 epochs, means 100 evals of your triggers, guards, .... Too few
to find a great result (unless if you are very lucky), so you probably
have to run it for 10.000 or more. But it will take an eternity to
compute.
We recommend you to run it at least 10.000 epochs:
```bash
python3 ./freqtrade/main.py hyperopt -e 10000
```
or if you want intermediate result to see
```bash
for i in {1..100}; do python3 ./freqtrade/main.py hyperopt -e 100; done
```
#### Why it is so long to run hyperopt?
Finding a great Hyperopt results takes time.
If you wonder why it takes a while to find great hyperopt results
This answer was written during the under the release 0.15.1, when we had
:
- 8 triggers
- 9 guards: let's say we evaluate even 10 values from each
- 1 stoploss calculation: let's say we want 10 values from that too to
be evaluated
The following calculation is still very rough and not very precise
but it will give the idea. With only these triggers and guards there is
already 8*10^9*10 evaluations. A roughly total of 80 billion evals.
Did you run 100 000 evals? Congrats, you've done roughly 1 / 100 000 th
of the search space.

315
docs/hyperopt.md Normal file
View File

@@ -0,0 +1,315 @@
# Hyperopt
This page explains how to tune your strategy by finding the optimal
parameters with Hyperopt.
## Table of Contents
- [Prepare your Hyperopt](#prepare-hyperopt)
- [1. Configure your Guards and Triggers](#1-configure-your-guards-and-triggers)
- [2. Update the hyperopt config file](#2-update-the-hyperopt-config-file)
- [Advanced Hyperopt notions](#advanced-notions)
- [Understand the Guards and Triggers](#understand-the-guards-and-triggers)
- [Execute Hyperopt](#execute-hyperopt)
- [Hyperopt with MongoDB](#hyperopt-with-mongoDB)
- [Understand the hyperopts result](#understand-the-backtesting-result)
## Prepare Hyperopt
Before we start digging in Hyperopt, we recommend you to take a look at
your strategy file located into [user_data/strategies/](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
### 1. Configure your Guards and Triggers
There are two places you need to change in your strategy file to add a
new buy strategy for testing:
- Inside [populate_buy_trend()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
- Inside [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
There you have two different type of indicators: 1. `guards` and 2.
`triggers`.
1. Guards are conditions like "never buy if ADX < 10", or never buy if
current price is over EMA10.
2. Triggers are ones that actually trigger buy in specific moment, like
"buy when EMA5 crosses over EMA10" or buy when close price touches lower
bollinger band.
HyperOpt will, for each eval round, pick just ONE trigger, and possibly
multiple guards. So that the constructed strategy will be something like
"*buy exactly when close price touches lower bollinger band, BUT only if
ADX > 10*".
If you have updated the buy strategy, means change the content of
`populate_buy_trend()` method you have to update the `guards` and
`triggers` hyperopts must used.
As for an example if your `populate_buy_trend()` method is:
```python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(dataframe['rsi'] < 35) &
(dataframe['adx'] > 65),
'buy'] = 1
return dataframe
```
Your hyperopt file must contain `guards` to find the right value for
`(dataframe['adx'] > 65)` & and `(dataframe['plus_di'] > 0.5)`. That
means you will need to enable/disable triggers.
In our case the `SPACE` and `populate_buy_trend` in your strategy file
will look like:
```python
space = {
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'stochf_cross'},
{'type': 'ht_sine'},
]),
}
...
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
}
...
```
### 2. Update the hyperopt config file
Hyperopt is using a dedicated config file. Currently hyperopt
cannot use your config file. It is also made on purpose to allow you
testing your strategy with different configurations.
The Hyperopt configuration is located in
[user_data/hyperopt_conf.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopt_conf.py).
## Advanced notions
### Understand the Guards and Triggers
When you need to add the new guards and triggers to be hyperopt
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
If it's a trigger, you add one line to the 'trigger' choice group and that's it.
If it's a guard, you will add a line like this:
```
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
```
This says, "*one of the guards is RSI, it can have two values, enabled or
disabled. If it is enabled, try different values for it between 20 and 40*".
So, the part of the strategy builder using the above setting looks like
this:
```
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
```
It checks if Hyperopt wants the RSI guard to be enabled for this
round `params['rsi']['enabled']` and if it is, then it will add a
condition that says RSI must be smaller than the value hyperopt picked
for this evaluation, which is given in the `params['rsi']['value']`.
That's it. Now you can add new parts of strategies to Hyperopt and it
will try all the combinations with all different values in the search
for best working algo.
### Add a new Indicators
If you want to test an indicator that isn't used by the bot currently,
you need to add it to the `populate_indicators()` method in `hyperopt.py`.
## Execute Hyperopt
Once you have updated your hyperopt configuration you can run it.
Because hyperopt tries a lot of combination to find the best parameters
it will take time you will have the result (more than 30 mins).
We strongly recommend to use `screen` to prevent any connection loss.
```bash
python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
```
The `-e` flag will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations.
### Execute hyperopt with different ticker-data source
If you would like to hyperopt parameters using an alternate ticker data that
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
use data from directory `user_data/data`.
### Running hyperopt with smaller testset
Use the `--timeperiod` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
Example:
```bash
python3 ./freqtrade/main.py hyperopt --timeperiod -200
```
### Running hyperopt with smaller search space
Use the `--spaces` argument to limit the search space used by hyperopt.
Letting Hyperopt optimize everything is a huuuuge search space. Often it
might make more sense to start by just searching for initial buy algorithm.
Or maybe you just want to optimize your stoploss or roi table for that awesome
new buy strategy you have.
Legal values are:
- `all`: optimize everything
- `buy`: just search for a new buy strategy
- `roi`: just optimize the minimal profit table for your strategy
- `stoploss`: search for the best stoploss value
- space-separated list of any of the above values for example `--spaces roi stoploss`
### Hyperopt with MongoDB
Hyperopt with MongoDB, is like Hyperopt under steroids. As you saw by
executing the previous command is the execution takes a long time.
To accelerate it you can use hyperopt with MongoDB.
To run hyperopt with MongoDb you will need 3 terminals.
**Terminal 1: Start MongoDB**
```bash
cd <freqtrade>
source .env/bin/activate
python3 scripts/start-mongodb.py
```
**Terminal 2: Start Hyperopt worker**
```bash
cd <freqtrade>
source .env/bin/activate
python3 scripts/start-hyperopt-worker.py
```
**Terminal 3: Start Hyperopt with MongoDB**
```bash
cd <freqtrade>
source .env/bin/activate
python3 ./freqtrade/main.py -c config.json hyperopt --use-mongodb
```
**Re-run an Hyperopt**
To re-run Hyperopt you have to delete the existing MongoDB table.
```bash
cd <freqtrade>
rm -rf .hyperopt/mongodb/
```
## Understand the hyperopts result
Once Hyperopt is completed you can use the result to adding new buy
signal. Given following result from hyperopt:
```
Best parameters:
{
"adx": {
"enabled": true,
"value": 15.0
},
"fastd": {
"enabled": true,
"value": 40.0
},
"green_candle": {
"enabled": true
},
"mfi": {
"enabled": false
},
"over_sar": {
"enabled": false
},
"rsi": {
"enabled": true,
"value": 37.0
},
"trigger": {
"type": "lower_bb"
},
"uptrend_long_ema": {
"enabled": true
},
"uptrend_short_ema": {
"enabled": false
},
"uptrend_sma": {
"enabled": false
}
}
Best Result:
2197 trades. Avg profit 1.84%. Total profit 0.79367541 BTC. Avg duration 241.0 mins.
```
You should understand this result like:
- You should **consider** the guard "adx" (`"adx"` is `"enabled": true`)
and the best value is `15.0` (`"value": 15.0,`)
- You should **consider** the guard "fastd" (`"fastd"` is `"enabled":
true`) and the best value is `40.0` (`"value": 40.0,`)
- You should **consider** to enable the guard "green_candle"
(`"green_candle"` is `"enabled": true`) but this guards as no
customizable value.
- You should **ignore** the guard "mfi" (`"mfi"` is `"enabled": false`)
- and so on...
You have to look inside your strategy file into `buy_strategy_generator()`
method, what those values match to.
So for example you had `adx:` with the `value: 15.0` so we would look
at `adx`-block, that translates to the following code block:
```
(dataframe['adx'] > 15.0)
```
Translating your whole hyperopt result to as the new buy-signal
would be the following:
```
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(dataframe['adx'] > 15.0) & # adx-value
(dataframe['fastd'] < 40.0) & # fastd-value
(dataframe['close'] > dataframe['open']) & # green_candle
(dataframe['rsi'] < 37.0) & # rsi-value
(dataframe['ema50'] > dataframe['ema100']) # uptrend_long_ema
),
'buy'] = 1
return dataframe
```
## Next step
Now you have a perfect bot and want to control it from Telegram. Your
next step is to learn the [Telegram usage](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md).

32
docs/index.md Normal file
View File

@@ -0,0 +1,32 @@
# freqtrade documentation
Welcome to freqtrade documentation. Please feel free to contribute to
this documentation if you see it became outdated by sending us a
Pull-request. Do not hesitate to reach us on
[Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
if you do not find the answer to your questions.
## Table of Contents
- [Pre-requisite](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
- [Setup your Bittrex account](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
- [Setup your Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
- [Bot Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Install with Docker (all platforms)](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#docker)
- [Install on Linux Ubuntu](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#21-linux---ubuntu-1604)
- [Install on MacOS](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#23-macos-installation)
- [Install on Windows](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#windows)
- [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage (Start your bot)](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md)
- [Bot commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [Backtesting commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [Hyperopt commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Bot Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Change your strategy](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
- [Add more Indicator](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
- [Test your strategy with Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Control the bot with telegram](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md)
- [Contribute to the project](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [How to contribute](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [Run tests & Check PEP8 compliance](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [FAQ](https://github.com/gcarq/freqtrade/blob/develop/docs/faq.md)
- [SQL cheatsheet](https://github.com/gcarq/freqtrade/blob/develop/docs/sql_cheatsheet.md)

350
docs/installation.md Normal file
View File

@@ -0,0 +1,350 @@
# Installation
This page explains how to prepare your environment for running the bot.
To understand how to set up the bot please read the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
## Table of Contents
* [Table of Contents](#table-of-contents)
* [Easy Installation - Linux Script](#easy-installation---linux-script)
* [Automatic Installation - Docker](#automatic-installation---docker)
* [Custom Linux MacOS Installation](#custom-installation)
- [Requirements](#requirements)
- [Linux - Ubuntu 16.04](#linux---ubuntu-1604)
- [MacOS](#macos)
- [Setup Config and virtual env](#setup-config-and-virtual-env)
* [Windows](#windows)
<!-- /TOC -->
------
## Easy Installation - Linux Script
If you are on Debian, Ubuntu or MacOS a freqtrade provides a script to Install, Update, Configure, and Reset your bot.
```bash
$ ./setup.sh
usage:
-i,--install Install freqtrade from scratch
-u,--update Command git pull to update.
-r,--reset Hard reset your develop/master branch.
-c,--config Easy config generator (Will override your existing file).
```
### --install
This script will install everything you need to run the bot:
* Mandatory software as: `Python3`, `ta-lib`, `wget`
* Setup your virtualenv
* Configure your `config.json` file
This script is a combination of `install script` `--reset`, `--config`
### --update
Update parameter will pull the last version of your current branch and update your virtualenv.
### --reset
Reset parameter will hard reset your branch (only if you are on `master` or `develop`) and recreate your virtualenv.
### --config
Config parameter is a `config.json` configurator. This script will ask you questions to setup your bot and create your `config.json`.
------
## Automatic Installation - Docker
Start by downloading Docker for your platform:
* [Mac](https://www.docker.com/products/docker#/mac)
* [Windows](https://www.docker.com/products/docker#/windows)
* [Linux](https://www.docker.com/products/docker#/linux)
Once you have Docker installed, simply create the config file (e.g. `config.json`) and then create a Docker image for `freqtrade` using the Dockerfile in this repo.
### 1. Prepare the Bot
#### 1.1. Clone the git repository
```bash
git clone https://github.com/gcarq/freqtrade.git
```
#### 1.2. (Optional) Checkout the develop branch
```bash
git checkout develop
```
#### 1.3. Go into the new directory
```bash
cd freqtrade
```
#### 1.4. Copy `config.json.example` to `config.json`
```bash
cp -n config.json.example config.json
```
> To edit the config please refer to the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
#### 1.5. Create your database file *(optional - the bot will create it if it is missing)*
Production
```bash
touch tradesv3.sqlite
````
Dry-Run
```bash
touch tradesv3.dryrun.sqlite
```
### 2. Build the Docker image
```bash
cd freqtrade
docker build -t freqtrade .
```
For security reasons, your configuration file will not be included in the image, you will need to bind mount it. It is also advised to bind mount an SQLite database file (see the "5. Run a restartable docker image" section) to keep it between updates.
### 3. Verify the Docker image
After the build process you can verify that the image was created with:
```bash
docker images
```
### 4. Run the Docker image
You can run a one-off container that is immediately deleted upon exiting with the following command (`config.json` must be in the current working directory):
```bash
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
### 5. Run a restartable docker image
To run a restartable instance in the background (feel free to place your configuration and database files wherever it feels comfortable on your filesystem).
#### 5.1. Move your config file and database
```bash
mkdir ~/.freqtrade
mv config.json ~/.freqtrade
mv tradesv3.sqlite ~/.freqtrade
```
#### 5.2. Run the docker image
```bash
docker run -d \
--name freqtrade \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade
```
If you are using `dry_run=True` it's not necessary to mount `tradesv3.sqlite`, but you can mount `tradesv3.dryrun.sqlite` if you plan to use the dry run mode with the param `--dry-run-db`.
### 6. Monitor your Docker instance
You can then use the following commands to monitor and manage your container:
```bash
docker logs freqtrade
docker logs -f freqtrade
docker restart freqtrade
docker stop freqtrade
docker start freqtrade
```
You do not need to rebuild the image for configuration changes, it will suffice to edit `config.json` and restart the container.
------
## Custom Installation
We've included/collected install instructions for Ubuntu 16.04, MacOS, and Windows. These are guidelines and your success may vary with other distros.
### Requirements
Click each one for install guide:
* [Python 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/), note the bot was not tested on Python >= 3.7.x
* [pip](https://pip.pypa.io/en/stable/installing/)
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
### Linux - Ubuntu 16.04
#### 1. Install Python 3.6, Git, and wget
```bash
sudo add-apt-repository ppa:jonathonf/python-3.6
sudo apt-get update
sudo apt-get install python3.6 python3.6-venv python3.6-dev build-essential autoconf libtool pkg-config make wget git
```
#### 2. Install TA-Lib
Official webpage: https://mrjbq7.github.io/ta-lib/install.html
```bash
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
tar xvzf ta-lib-0.4.0-src.tar.gz
cd ta-lib
./configure --prefix=/usr
make
make install
cd ..
rm -rf ./ta-lib*
```
#### 3. [Optional] Install MongoDB
Install MongoDB if you plan to optimize your strategy with Hyperopt.
```bash
sudo apt-get install mongodb-org
```
> Complete tutorial from Digital Ocean: [How to Install MongoDB on Ubuntu 16.04](https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-16-04).
#### 4. Install FreqTrade
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
```
Optionally checkout the develop branch:
```bash
git checkout develop
```
#### 5. Configure `freqtrade` as a `systemd` service
From the freqtrade repo... copy `freqtrade.service` to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
For this to be persistent (run when user is logged out) you'll need to enable `linger` for your freqtrade user.
```bash
sudo loginctl enable-linger "$USER"
```
### MacOS
#### 1. Install Python 3.6, git, wget and ta-lib
```bash
brew install python3 git wget ta-lib
```
#### 2. [Optional] Install MongoDB
Install MongoDB if you plan to optimize your strategy with Hyperopt.
```bash
curl -O https://fastdl.mongodb.org/osx/mongodb-osx-ssl-x86_64-3.4.10.tgz
tar -zxvf mongodb-osx-ssl-x86_64-3.4.10.tgz
mkdir -p <path_freqtrade>/env/mongodb
cp -R -n mongodb-osx-x86_64-3.4.10/ <path_freqtrade>/env/mongodb
export PATH=<path_freqtrade>/env/mongodb/bin:$PATH
```
#### 3. Install FreqTrade
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
```
Optionally checkout the develop branch:
```bash
git checkout develop
```
### Setup Config and virtual env
#### 1. Initialize the configuration
```bash
cd freqtrade
cp config.json.example config.json
```
> *To edit the config please refer to [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md).*
#### 2. Setup your Python virtual environment (virtualenv)
```bash
python3.6 -m venv .env
source .env/bin/activate
pip3.6 install --upgrade pip
pip3.6 install -r requirements.txt
pip3.6 install -e .
```
#### 3. Run the Bot
If this is the first time you run the bot, ensure you are running it in Dry-run `"dry_run": true,` otherwise it will start to buy and sell coins.
```bash
python3.6 ./freqtrade/main.py -c config.json
```
------
## Windows
We recommend that Windows users use [Docker](#docker) as this will work
much easier and smoother (also more secure).
### Install freqtrade
copy paste `config.json` to ``\path\freqtrade-develop\freqtrade`
```cmd
>cd \path\freqtrade-develop
>python -m venv .env
>cd .env\Scripts
>activate.bat
>cd \path\freqtrade-develop
>pip install -r requirements.txt
>pip install -e .
>cd freqtrade
>python main.py
```
> Thanks [Owdr](https://github.com/Owdr) for the commands. Source: [Issue #222](https://github.com/gcarq/freqtrade/issues/222)
Now you have an environment ready, the next step is
[Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)...

77
docs/plotting.md Normal file
View File

@@ -0,0 +1,77 @@
# Plotting
This page explains how to plot prices, indicator, profits.
## Table of Contents
- [Plot price and indicators](#plot-price-and-indicators)
- [Plot profit](#plot-profit)
## Installation
Plotting scripts use Plotly library. Install/upgrade it with:
```
pip install --upgrade plotly
```
At least version 2.3.0 is required.
## Plot price and indicators
Usage for the price plotter:
```
script/plot_dataframe.py [-h] [-p pair] [--live]
```
Example
```
python scripts/plot_dataframe.py -p BTC_ETH
```
The `-p` pair argument, can be used to specify what
pair you would like to plot.
**Advanced use**
To plot the current live price use the `--live` flag:
```
python scripts/plot_dataframe.py -p BTC_ETH --live
```
To plot a timerange (to zoom in):
```
python scripts/plot_dataframe.py -p BTC_ETH --timerange=100-200
```
Timerange doesn't work with live data.
## Plot profit
The profit plotter show a picture with three plots:
1) Average closing price for all pairs
2) The summarized profit made by backtesting.
Note that this is not the real-world profit, but
more of an estimate.
3) Each pair individually profit
The first graph is good to get a grip of how the overall market
progresses.
The second graph will show how you algorithm works or doesnt.
Perhaps you want an algorithm that steadily makes small profits,
or one that acts less seldom, but makes big swings.
The third graph can be useful to spot outliers, events in pairs
that makes profit spikes.
Usage for the profit plotter:
```
script/plot_profit.py [-h] [-p pair] [--datadir directory] [--ticker_interval num]
```
The `-p` pair argument, can be used to plot a single pair
Example
```
python3 scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p BTC_LTC
```

48
docs/pre-requisite.md Normal file
View File

@@ -0,0 +1,48 @@
# Pre-requisite
Before running your bot in production you will need to setup few
external API. In production mode, the bot required valid Bittrex API
credentials and a Telegram bot (optional but recommended).
## Table of Contents
- [Setup your Bittrex account](#setup-your-bittrex-account)
- [Backtesting commands](#setup-your-telegram-bot)
## Setup your Bittrex account
*To be completed, please feel free to complete this section.*
## Setup your Telegram bot
The only things you need is a working Telegram bot and its API token.
Below we explain how to create your Telegram Bot, and how to get your
Telegram user id.
### 1. Create your Telegram bot
**1.1. Start a chat with https://telegram.me/BotFather**
**1.2. Send the message** `/newbot`
*BotFather response:*
```
Alright, a new bot. How are we going to call it? Please choose a name for your bot.
```
**1.3. Choose the public name of your bot (e.g "`Freqtrade bot`")**
*BotFather response:*
```
Good. Now let's choose a username for your bot. It must end in `bot`. Like this, for example: TetrisBot or tetris_bot.
```
**1.4. Choose the name id of your bot (e.g "`My_own_freqtrade_bot`")**
**1.5. Father bot will return you the token (API key)**
Copy it and keep it you will use it for the config parameter `token`.
*BotFather response:*
```
Done! Congratulations on your new bot. You will find it at t.me/My_own_freqtrade_bot. You can now add a description, about section and profile picture for your bot, see /help for a list of commands. By the way, when you've finished creating your cool bot, ping our Bot Support if you want a better username for it. Just make sure the bot is fully operational before you do this.
Use this token to access the HTTP API:
521095879:AAEcEZEL7ADJ56FtG_qD0bQJSKETbXCBCi0
For a description of the Bot API, see this page: https://core.telegram.org/bots/api
```
**1.6. Don't forget to start the conversation with your bot, by clicking /START button**
### 2. Get your user id
**2.1. Talk to https://telegram.me/userinfobot**
**2.2. Get your "Id", you will use it for the config parameter
`chat_id`.**

90
docs/sql_cheatsheet.md Normal file
View File

@@ -0,0 +1,90 @@
# SQL Helper
This page constains some help if you want to edit your sqlite db.
## Install sqlite3
**Ubuntu/Debian installation**
```bash
sudo apt-get install sqlite3
```
## Open the DB
```bash
sqlite3
.open <filepath>
```
## Table structure
### List tables
```bash
.tables
```
### Display table structure
```bash
.schema <table_name>
```
### Trade table structure
```sql
CREATE TABLE trades (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);
```
## Get all trades in the table
```sql
SELECT * FROM trades;
```
## Fix trade still open after a /forcesell
```sql
UPDATE trades
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate
WHERE id=<trade_ID_to_update>;
```
**Example:**
```sql
UPDATE trades
SET is_open=0, close_date='2017-12-20 03:08:45.103418', close_rate=0.19638016, close_profit=0.0496
WHERE id=31;
```
## Insert manually a new trade
```sql
INSERT
INTO trades (exchange, pair, is_open, fee, open_rate, stake_amount, amount, open_date)
VALUES ('BITTREX', 'BTC_<COIN>', 1, 0.0025, <open_rate>, <stake_amount>, <amount>, '<datetime>')
```
**Example:**
```sql
INSERT INTO trades (exchange, pair, is_open, fee, open_rate, stake_amount, amount, open_date) VALUES ('BITTREX', 'BTC_ETC', 1, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
```
## Fix wrong fees in the table
If your DB was created before
[PR#200](https://github.com/gcarq/freqtrade/pull/200) was merged
(before 12/23/17).
```sql
UPDATE trades SET fee=0.0025 WHERE fee=0.005;
```

140
docs/telegram-usage.md Normal file
View File

@@ -0,0 +1,140 @@
# Telegram usage
This page explains how to command your bot with Telegram.
## Pre-requisite
To control your bot with Telegram, you need first to
[set up a Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
and add your Telegram API keys into your config file.
## Telegram commands
Per default, the Telegram bot shows predefined commands. Some commands
are only available by sending them to the bot. The table below list the
official commands. You can ask at any moment for help with `/help`.
| Command | Default | Description |
|----------|---------|-------------|
| `/start` | | Starts the trader
| `/stop` | | Stops the trader
| `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format
| `/count` | | Displays number of trades used and available
| `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/performance` | | Show performance of each finished trade grouped by pair
| `/balance` | | Show account balance per currency
| `/daily <n>` | 7 | Shows profit or loss per day, over the last n days
| `/help` | | Show help message
| `/version` | | Show version
## Telegram commands in action
Below, example of Telegram message you will receive for each command.
### /start
> **Status:** `running`
### /stop
> `Stopping trader ...`
> **Status:** `stopped`
## /status
For each open trade, the bot will send you the following message.
> **Trade ID:** `123`
> **Current Pair:** BTC_CVC
> **Open Since:** `1 days ago`
> **Amount:** `26.64180098`
> **Open Rate:** `0.00007489`
> **Close Rate:** `None`
> **Current Rate:** `0.00007489`
> **Close Profit:** `None`
> **Current Profit:** `12.95%`
> **Open Order:** `None`
## /status table
Return the status of all open trades in a table format.
```
ID Pair Since Profit
---- -------- ------- --------
67 BTC_SC 1 d 13.33%
123 BTC_CVC 1 h 12.95%
```
## /count
Return the number of trades used and available.
```
current max
--------- -----
2 10
```
## /profit
Return a summary of your profit/loss and performance.
> **ROI:** Close trades
> ∙ `0.00485701 BTC (258.45%)`
> ∙ `62.968 USD`
> **ROI:** All trades
> ∙ `0.00255280 BTC (143.43%)`
> ∙ `33.095 EUR`
>
> **Total Trade Count:** `138`
> **First Trade opened:** `3 days ago`
> **Latest Trade opened:** `2 minutes ago`
> **Avg. Duration:** `2:33:45`
> **Best Performing:** `BTC_PAY: 50.23%`
## /forcesell <trade_id>
> **BITTREX:** Selling BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
## /performance
Return the performance of each crypto-currency the bot has sold.
> Performance:
> 1. `BTC_RCN 57.77%`
> 2. `BTC_PAY 56.91%`
> 3. `BTC_VIB 47.07%`
> 4. `BTC_SALT 30.24%`
> 5. `BTC_STORJ 27.24%`
> ...
## /balance
Return the balance of all crypto-currency your have on the exchange.
> **Currency:** BTC
> **Available:** 3.05890234
> **Balance:** 3.05890234
> **Pending:** 0.0
> **Currency:** CVC
> **Available:** 86.64180098
> **Balance:** 86.64180098
> **Pending:** 0.0
## /daily <n>
Per default `/daily` will return the 7 last days.
The example below if for `/daily 3`:
> **Daily Profit over the last 3 days:**
```
Day Profit BTC Profit USD
---------- -------------- ------------
2018-01-03 0.00224175 BTC 29,142 USD
2018-01-02 0.00033131 BTC 4,307 USD
2018-01-01 0.00269130 BTC 34.986 USD
```
## /version
> **Version:** `0.14.3`
### using proxy with telegram
in [freqtrade/freqtrade/rpc/telegram.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/rpc/telegram.py) replace
```
self._updater = Updater(token=self._config['telegram']['token'], workers=0)
```
with
```
self._updater = Updater(token=self._config['telegram']['token'], request_kwargs={'proxy_url': 'socks5://127.0.0.1:1080/'}, workers=0)
```

14
freqtrade.service Normal file
View File

@@ -0,0 +1,14 @@
[Unit]
Description=Freqtrade Daemon
After=network.target
[Service]
# Set WorkingDirectory and ExecStart to your file paths accordingly
# NOTE: %h will be resolved to /home/<username>
WorkingDirectory=%h/freqtrade
ExecStart=/usr/bin/freqtrade --dynamic-whitelist 40
Restart=on-failure
[Install]
WantedBy=default.target

View File

@@ -1,4 +1,16 @@
""" FreqTrade bot """
__version__ = '0.14.3'
__version__ = '0.16.1'
from . import main
class DependencyException(BaseException):
"""
Indicates that a assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class OperationalException(BaseException):
"""
Requires manual intervention.
This happens when an exchange returns an unexpected error during runtime.
"""

View File

@@ -1,135 +1,214 @@
"""
Functions to analyze ticker data with indicators and produce buy and sell signals
"""
from enum import Enum
import logging
from datetime import timedelta
from datetime import datetime, timedelta
from enum import Enum
from typing import Dict, List, Tuple
import arrow
import talib.abstract as ta
from pandas import DataFrame, to_datetime
from freqtrade.exchange import get_ticker_history
from freqtrade.vendor.qtpylib.indicators import awesome_oscillator, crossed_above
from freqtrade.persistence import Trade
from freqtrade.strategy.resolver import StrategyResolver
logger = logging.getLogger(__name__)
class SignalType(Enum):
""" Enum to distinguish between buy and sell signals """
"""
Enum to distinguish between buy and sell signals
"""
BUY = "buy"
SELL = "sell"
def parse_ticker_dataframe(ticker: list) -> DataFrame:
class Analyze(object):
"""
Analyses the trend for the given ticker history
:param ticker: See exchange.get_ticker_history
:return: DataFrame
Analyze class contains everything the bot need to determine if the situation is good for
buying or selling.
"""
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
frame = DataFrame(ticker) \
.drop('BV', 1) \
.rename(columns=columns)
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
frame.sort_values('date', inplace=True)
return frame
def __init__(self, config: dict) -> None:
"""
Init Analyze
:param config: Bot configuration (use the one from Configuration())
"""
self.config = config
self.strategy = StrategyResolver(self.config).strategy
@staticmethod
def parse_ticker_dataframe(ticker: list) -> DataFrame:
"""
Analyses the trend for the given ticker history
:param ticker: See exchange.get_ticker_history
:return: DataFrame
"""
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
frame = DataFrame(ticker).rename(columns=columns)
if 'BV' in frame:
frame.drop('BV', axis=1, inplace=True)
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
dataframe['sar'] = ta.SAR(dataframe)
dataframe['adx'] = ta.ADX(dataframe)
stoch = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch['fastd']
dataframe['fastk'] = stoch['fastk']
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['ao'] = awesome_oscillator(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
return dataframe
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
'close': 'last',
'high': 'max',
'low': 'min',
'open': 'first',
'volume': 'max',
})
return frame
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(dataframe['tema'] <= dataframe['blower']) &
(dataframe['rsi'] < 37) &
(dataframe['fastd'] < 48) &
(dataframe['adx'] > 31),
'buy'] = 1
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
return dataframe
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
return self.strategy.populate_indicators(dataframe=dataframe)
def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(crossed_above(dataframe['rsi'], 70)),
'sell'] = 1
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.strategy.populate_buy_trend(dataframe=dataframe)
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.strategy.populate_sell_trend(dataframe=dataframe)
def get_ticker_interval(self) -> int:
"""
Return ticker interval to use
:return: Ticker interval value to use
"""
return self.strategy.ticker_interval
def analyze_ticker(pair: str) -> DataFrame:
"""
Get ticker data for given currency pair, push it to a DataFrame and
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
ticker_hist = get_ticker_history(pair)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return DataFrame()
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
dataframe = self.parse_ticker_dataframe(ticker_history)
dataframe = self.populate_indicators(dataframe)
dataframe = self.populate_buy_trend(dataframe)
dataframe = self.populate_sell_trend(dataframe)
return dataframe
dataframe = parse_ticker_dataframe(ticker_hist)
dataframe = populate_indicators(dataframe)
dataframe = populate_buy_trend(dataframe)
dataframe = populate_sell_trend(dataframe)
# TODO: buy_price and sell_price are only used by the plotter, should probably be moved there
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
dataframe.loc[dataframe['sell'] == 1, 'sell_price'] = dataframe['close']
return dataframe
def get_signal(self, pair: str, interval: int) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format BTC_ANT or BTC-ANT
:param interval: Interval to use (in min)
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
"""
ticker_hist = get_ticker_history(pair, interval)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False, False
try:
dataframe = self.analyze_ticker(ticker_hist)
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing ticker for pair %s: %s',
pair,
str(error)
)
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
if signal_date < arrow.utcnow() - timedelta(minutes=(interval + 5)):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug(
'trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'],
pair,
str(buy),
str(sell)
)
return buy, sell
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool) -> bool:
"""
This function evaluate if on the condition required to trigger a sell has been reached
if the threshold is reached and updates the trade record.
:return: True if trade should be sold, False otherwise
"""
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
if self.min_roi_reached(trade=trade, current_rate=rate, current_time=date):
logger.debug('Required profit reached. Selling..')
return True
# Experimental: Check if the trade is profitable before selling it (avoid selling at loss)
if self.config.get('experimental', {}).get('sell_profit_only', False):
logger.debug('Checking if trade is profitable..')
if trade.calc_profit(rate=rate) <= 0:
return False
if sell and not buy and self.config.get('experimental', {}).get('use_sell_signal', False):
logger.debug('Sell signal received. Selling..')
return True
def get_signal(pair: str, signal: SignalType) -> bool:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format BTC_ANT or BTC-ANT
:return: True if pair is good for buying, False otherwise
"""
dataframe = analyze_ticker(pair)
if dataframe.empty:
return False
latest = dataframe.iloc[-1]
def min_roi_reached(self, trade: Trade, current_rate: float, current_time: datetime) -> bool:
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should
sell
:return True if bot should sell at current rate
"""
current_profit = trade.calc_profit_percent(current_rate)
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss:
logger.debug('Stop loss hit.')
return True
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration, threshold in self.strategy.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
if signal_date < arrow.now() - timedelta(minutes=10):
return False
result = latest[signal.value] == 1
logger.debug('%s_trigger: %s (pair=%s, signal=%s)', signal.value, latest['date'], pair, result)
return result
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
"""
return {pair: self.populate_indicators(self.parse_ticker_dataframe(pair_data))
for pair, pair_data in tickerdata.items()}

257
freqtrade/arguments.py Normal file
View File

@@ -0,0 +1,257 @@
"""
This module contains the argument manager class
"""
import argparse
import logging
import os
import re
from typing import List, Tuple, Optional
from freqtrade import __version__, constants
class Arguments(object):
"""
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: List[str], description: str):
self.args = args
self.parsed_arg = None
self.parser = argparse.ArgumentParser(description=description)
def _load_args(self) -> None:
self.common_args_parser()
self._build_subcommands()
def get_parsed_arg(self) -> argparse.Namespace:
"""
Return the list of arguments
:return: List[str] List of arguments
"""
if self.parsed_arg is None:
self._load_args()
self.parsed_arg = self.parse_args()
return self.parsed_arg
def parse_args(self) -> argparse.Namespace:
"""
Parses given arguments and returns an argparse Namespace instance.
"""
parsed_arg = self.parser.parse_args(self.args)
return parsed_arg
def common_args_parser(self) -> None:
"""
Parses given common arguments and returns them as a parsed object.
"""
self.parser.add_argument(
'-v', '--verbose',
help='be verbose',
action='store_const',
dest='loglevel',
const=logging.DEBUG,
default=logging.INFO,
)
self.parser.add_argument(
'--version',
action='version',
version='%(prog)s {}'.format(__version__),
)
self.parser.add_argument(
'-c', '--config',
help='specify configuration file (default: %(default)s)',
dest='config',
default='config.json',
type=str,
metavar='PATH',
)
self.parser.add_argument(
'-d', '--datadir',
help='path to backtest data (default: %(default)s',
dest='datadir',
default=os.path.join('freqtrade', 'tests', 'testdata'),
type=str,
metavar='PATH',
)
self.parser.add_argument(
'-s', '--strategy',
help='specify strategy class name (default: %(default)s)',
dest='strategy',
default='DefaultStrategy',
type=str,
metavar='NAME',
)
self.parser.add_argument(
'--strategy-path',
help='specify additional strategy lookup path',
dest='strategy_path',
type=str,
metavar='PATH',
)
self.parser.add_argument(
'--dynamic-whitelist',
help='dynamically generate and update whitelist \
based on 24h BaseVolume (Default 20 currencies)', # noqa
dest='dynamic_whitelist',
const=constants.DYNAMIC_WHITELIST,
type=int,
metavar='INT',
nargs='?',
)
self.parser.add_argument(
'--dry-run-db',
help='Force dry run to use a local DB "tradesv3.dry_run.sqlite" \
instead of memory DB. Work only if dry_run is enabled.',
action='store_true',
dest='dry_run_db',
)
@staticmethod
def backtesting_options(parser: argparse.ArgumentParser) -> None:
"""
Parses given arguments for Backtesting scripts.
"""
parser.add_argument(
'-l', '--live',
help='using live data',
action='store_true',
dest='live',
)
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='refresh the pairs files in tests/testdata with the latest data from Bittrex. \
Use it if you want to run your backtesting with up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
parser.add_argument(
'--export',
help='export backtest results, argument are: trades\
Example --export=trades',
type=str,
default=None,
dest='export',
)
@staticmethod
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
'-i', '--ticker-interval',
help='specify ticker interval in minutes (1, 5, 30, 60, 1440)',
dest='ticker_interval',
type=int,
metavar='INT',
)
parser.add_argument(
'--realistic-simulation',
help='uses max_open_trades from config to simulate real world limitations',
action='store_true',
dest='realistic_simulation',
)
parser.add_argument(
'--timerange',
help='specify what timerange of data to use.',
default=None,
type=str,
dest='timerange',
)
@staticmethod
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
"""
Parses given arguments for Hyperopt scripts.
"""
parser.add_argument(
'-e', '--epochs',
help='specify number of epochs (default: %(default)d)',
dest='epochs',
default=constants.HYPEROPT_EPOCH,
type=int,
metavar='INT',
)
parser.add_argument(
'--use-mongodb',
help='parallelize evaluations with mongodb (requires mongod in PATH)',
dest='mongodb',
action='store_true',
)
parser.add_argument(
'-s', '--spaces',
help='Specify which parameters to hyperopt. Space separate list. \
Default: %(default)s',
choices=['all', 'buy', 'roi', 'stoploss'],
default='all',
nargs='+',
dest='spaces',
)
def _build_subcommands(self) -> None:
"""
Builds and attaches all subcommands
:return: None
"""
from freqtrade.optimize import backtesting, hyperopt
subparsers = self.parser.add_subparsers(dest='subparser')
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser('backtesting', help='backtesting module')
backtesting_cmd.set_defaults(func=backtesting.start)
self.optimizer_shared_options(backtesting_cmd)
self.backtesting_options(backtesting_cmd)
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
hyperopt_cmd.set_defaults(func=hyperopt.start)
self.optimizer_shared_options(hyperopt_cmd)
self.hyperopt_options(hyperopt_cmd)
@staticmethod
def parse_timerange(text: str) -> Optional[Tuple[List, int, int]]:
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
return None
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^(-\d+)$', (None, 'line')),
(r'^(\d+)-$', ('line', None)),
(r'^(\d+)-(\d+)$', ('index', 'index'))]
for rex, stype in syntax:
# Apply the regular expression to text
match = re.match(rex, text)
if match: # Regex has matched
rvals = match.groups()
index = 0
start = None
stop = None
if stype[0]:
start = rvals[index]
if stype[0] != 'date':
start = int(start)
index += 1
if stype[1]:
stop = rvals[index]
if stype[1] != 'date':
stop = int(stop)
return stype, start, stop
raise Exception('Incorrect syntax for timerange "%s"' % text)
def scripts_options(self) -> None:
"""
Parses given arguments for plot scripts.
"""
self.parser.add_argument(
'-p', '--pair',
help='Show profits for only this pairs. Pairs are comma-separated.',
dest='pair',
default=None
)

208
freqtrade/configuration.py Normal file
View File

@@ -0,0 +1,208 @@
"""
This module contains the configuration class
"""
import json
import logging
from argparse import Namespace
from typing import Dict, Any
from jsonschema import Draft4Validator, validate
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants
logger = logging.getLogger(__name__)
class Configuration(object):
"""
Class to read and init the bot configuration
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
"""
def __init__(self, args: Namespace) -> None:
self.args = args
self.config = None
def load_config(self) -> Dict[str, Any]:
"""
Extract information for sys.argv and load the bot configuration
:return: Configuration dictionary
"""
logger.info('Using config: %s ...', self.args.config)
config = self._load_config_file(self.args.config)
# Set strategy if not specified in config and or if it's non default
if self.args.strategy != constants.DEFAULT_STRATEGY or not config.get('strategy'):
config.update({'strategy': self.args.strategy})
if self.args.strategy_path:
config.update({'strategy_path': self.args.strategy_path})
# Load Common configuration
config = self._load_common_config(config)
# Load Backtesting
config = self._load_backtesting_config(config)
# Load Hyperopt
config = self._load_hyperopt_config(config)
return config
def _load_config_file(self, path: str) -> Dict[str, Any]:
"""
Loads a config file from the given path
:param path: path as str
:return: configuration as dictionary
"""
try:
with open(path) as file:
conf = json.load(file)
except FileNotFoundError:
logger.critical(
'Config file "%s" not found. Please create your config file',
path
)
exit(0)
if 'internals' not in conf:
conf['internals'] = {}
logger.info('Validating configuration ...')
return self._validate_config(conf)
def _load_common_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load common configuration
:return: configuration as dictionary
"""
# Log level
if 'loglevel' in self.args and self.args.loglevel:
config.update({'loglevel': self.args.loglevel})
logging.basicConfig(
level=config['loglevel'],
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger.info('Log level set to %s', logging.getLevelName(config['loglevel']))
# Add dynamic_whitelist if found
if 'dynamic_whitelist' in self.args and self.args.dynamic_whitelist:
config.update({'dynamic_whitelist': self.args.dynamic_whitelist})
logger.info(
'Parameter --dynamic-whitelist detected. '
'Using dynamically generated whitelist. '
'(not applicable with Backtesting and Hyperopt)'
)
# Add dry_run_db if found and the bot in dry run
if self.args.dry_run_db and config.get('dry_run', False):
config.update({'dry_run_db': True})
logger.info('Parameter --dry-run-db detected ...')
if config.get('dry_run_db', False):
if config.get('dry_run', False):
logger.info('Dry_run will use the DB file: "tradesv3.dry_run.sqlite"')
else:
logger.info('Dry run is disabled. (--dry_run_db ignored)')
return config
def _load_backtesting_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Backtesting configuration
:return: configuration as dictionary
"""
# If -i/--ticker-interval is used we override the configuration parameter
# (that will override the strategy configuration)
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Parameter -i/--ticker-interval detected ...')
logger.info('Using ticker_interval: %d ...', config.get('ticker_interval'))
# If -l/--live is used we add it to the configuration
if 'live' in self.args and self.args.live:
config.update({'live': True})
logger.info('Parameter -l/--live detected ...')
# If --realistic-simulation is used we add it to the configuration
if 'realistic_simulation' in self.args and self.args.realistic_simulation:
config.update({'realistic_simulation': True})
logger.info('Parameter --realistic-simulation detected ...')
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
# If --timerange is used we add it to the configuration
if 'timerange' in self.args and self.args.timerange:
config.update({'timerange': self.args.timerange})
logger.info('Parameter --timerange detected: %s ...', self.args.timerange)
# If --datadir is used we add it to the configuration
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': self.args.datadir})
logger.info('Parameter --datadir detected: %s ...', self.args.datadir)
# If -r/--refresh-pairs-cached is used we add it to the configuration
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
config.update({'refresh_pairs': True})
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
# If --export is used we add it to the configuration
if 'export' in self.args and self.args.export:
config.update({'export': self.args.export})
logger.info('Parameter --export detected: %s ...', self.args.export)
return config
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Hyperopt configuration
:return: configuration as dictionary
"""
# If --realistic-simulation is used we add it to the configuration
if 'epochs' in self.args and self.args.epochs:
config.update({'epochs': self.args.epochs})
logger.info('Parameter --epochs detected ...')
logger.info('Will run Hyperopt with for %s epochs ...', config.get('epochs'))
# If --mongodb is used we add it to the configuration
if 'mongodb' in self.args and self.args.mongodb:
config.update({'mongodb': self.args.mongodb})
logger.info('Parameter --use-mongodb detected ...')
# If --spaces is used we add it to the configuration
if 'spaces' in self.args and self.args.spaces:
config.update({'spaces': self.args.spaces})
logger.info('Parameter -s/--spaces detected: %s', config.get('spaces'))
return config
def _validate_config(self, conf: Dict[str, Any]) -> Dict[str, Any]:
"""
Validate the configuration follow the Config Schema
:param conf: Config in JSON format
:return: Returns the config if valid, otherwise throw an exception
"""
try:
validate(conf, constants.CONF_SCHEMA)
return conf
except ValidationError as exception:
logger.fatal(
'Invalid configuration. See config.json.example. Reason: %s',
exception
)
raise ValidationError(
best_match(Draft4Validator(constants.CONF_SCHEMA).iter_errors(conf)).message
)
def get_config(self) -> Dict[str, Any]:
"""
Return the config. Use this method to get the bot config
:return: Dict: Bot config
"""
if self.config is None:
self.config = self.load_config()
return self.config

116
freqtrade/constants.py Normal file
View File

@@ -0,0 +1,116 @@
# pragma pylint: disable=too-few-public-methods
"""
bot constants
"""
DYNAMIC_WHITELIST = 20 # pairs
PROCESS_THROTTLE_SECS = 5 # sec
TICKER_INTERVAL = 5 # min
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
DEFAULT_STRATEGY = 'DefaultStrategy'
# Required json-schema for user specified config
CONF_SCHEMA = {
'type': 'object',
'properties': {
'max_open_trades': {'type': 'integer', 'minimum': 1},
'ticker_interval': {'type': 'integer', 'enum': [1, 5, 30, 60, 1440]},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT']},
'stake_amount': {'type': 'number', 'minimum': 0.0005},
'fiat_display_currency': {'type': 'string', 'enum': ['AUD', 'BRL', 'CAD', 'CHF',
'CLP', 'CNY', 'CZK', 'DKK',
'EUR', 'GBP', 'HKD', 'HUF',
'IDR', 'ILS', 'INR', 'JPY',
'KRW', 'MXN', 'MYR', 'NOK',
'NZD', 'PHP', 'PKR', 'PLN',
'RUB', 'SEK', 'SGD', 'THB',
'TRY', 'TWD', 'ZAR', 'USD']},
'dry_run': {'type': 'boolean'},
'minimal_roi': {
'type': 'object',
'patternProperties': {
'^[0-9.]+$': {'type': 'number'}
},
'minProperties': 1
},
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True},
'unfilledtimeout': {'type': 'integer', 'minimum': 0},
'bid_strategy': {
'type': 'object',
'properties': {
'ask_last_balance': {
'type': 'number',
'minimum': 0,
'maximum': 1,
'exclusiveMaximum': False
},
},
'required': ['ask_last_balance']
},
'exchange': {'$ref': '#/definitions/exchange'},
'experimental': {
'type': 'object',
'properties': {
'use_sell_signal': {'type': 'boolean'},
'sell_profit_only': {'type': 'boolean'}
}
},
'telegram': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'token': {'type': 'string'},
'chat_id': {'type': 'string'},
},
'required': ['enabled', 'token', 'chat_id']
},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'internals': {
'type': 'object',
'properties': {
'process_throttle_secs': {'type': 'number'},
'interval': {'type': 'integer'}
}
}
},
'definitions': {
'exchange': {
'type': 'object',
'properties': {
'name': {'type': 'string'},
'key': {'type': 'string'},
'secret': {'type': 'string'},
'pair_whitelist': {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+_[0-9A-Z]+$'
},
'uniqueItems': True
},
'pair_blacklist': {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+_[0-9A-Z]+$'
},
'uniqueItems': True
}
},
'required': ['name', 'key', 'secret', 'pair_whitelist']
}
},
'anyOf': [
{'required': ['exchange']}
],
'required': [
'max_open_trades',
'stake_currency',
'stake_amount',
'fiat_display_currency',
'dry_run',
'bid_strategy',
'telegram'
]
}

View File

@@ -9,6 +9,7 @@ import arrow
import requests
from cachetools import cached, TTLCache
from freqtrade import OperationalException
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.interface import Exchange
@@ -51,7 +52,7 @@ def init(config: dict) -> None:
try:
exchange_class = Exchanges[name.upper()].value
except KeyError:
raise RuntimeError('Exchange {} is not supported'.format(name))
raise OperationalException('Exchange {} is not supported'.format(name))
_API = exchange_class(exchange_config)
@@ -62,7 +63,7 @@ def init(config: dict) -> None:
def validate_pairs(pairs: List[str]) -> None:
"""
Checks if all given pairs are tradable on the current exchange.
Raises RuntimeError if one pair is not available.
Raises OperationalException if one pair is not available.
:param pairs: list of pairs
:return: None
"""
@@ -75,11 +76,12 @@ def validate_pairs(pairs: List[str]) -> None:
stake_cur = _CONF['stake_currency']
for pair in pairs:
if not pair.startswith(stake_cur):
raise RuntimeError(
raise OperationalException(
'Pair {} not compatible with stake_currency: {}'.format(pair, stake_cur)
)
if pair not in markets:
raise RuntimeError('Pair {} is not available at {}'.format(pair, _API.name.lower()))
raise OperationalException(
'Pair {} is not available at {}'.format(pair, _API.name.lower()))
def buy(pair: str, rate: float, amount: float) -> str:
@@ -132,12 +134,12 @@ def get_balances():
return _API.get_balances()
def get_ticker(pair: str) -> dict:
return _API.get_ticker(pair)
def get_ticker(pair: str, refresh: Optional[bool] = True) -> dict:
return _API.get_ticker(pair, refresh)
@cached(TTLCache(maxsize=100, ttl=30))
def get_ticker_history(pair: str, tick_interval: Optional[int] = 5) -> List[Dict]:
def get_ticker_history(pair: str, tick_interval) -> List[Dict]:
return _API.get_ticker_history(pair, tick_interval)

View File

@@ -1,9 +1,11 @@
import logging
from typing import List, Dict
from typing import Dict, List, Optional
from bittrex.bittrex import Bittrex as _Bittrex, API_V2_0, API_V1_1
from bittrex.bittrex import API_V1_1, API_V2_0
from bittrex.bittrex import Bittrex as _Bittrex
from requests.exceptions import ContentDecodingError
from freqtrade import OperationalException
from freqtrade.exchange.interface import Exchange
logger = logging.getLogger(__name__)
@@ -37,16 +39,31 @@ class Bittrex(Exchange):
calls_per_second=1,
api_version=API_V2_0,
)
self.cached_ticker = {}
@staticmethod
def _validate_response(response) -> None:
"""
Validates the given bittrex response
and raises a ContentDecodingError if a non-fatal issue happened.
"""
temp_error_messages = [
'NO_API_RESPONSE',
'MIN_TRADE_REQUIREMENT_NOT_MET',
]
if response['message'] in temp_error_messages:
raise ContentDecodingError(response['message'])
@property
def fee(self) -> float:
# See https://bittrex.com/fees
# 0.25 %: See https://bittrex.com/fees
return 0.0025
def buy(self, pair: str, rate: float, amount: float) -> str:
data = _API.buy_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:
raise RuntimeError('{message} params=({pair}, {rate}, {amount})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair}, {rate}, {amount})'.format(
message=data['message'],
pair=pair,
rate=rate,
@@ -56,7 +73,8 @@ class Bittrex(Exchange):
def sell(self, pair: str, rate: float, amount: float) -> str:
data = _API.sell_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:
raise RuntimeError('{message} params=({pair}, {rate}, {amount})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair}, {rate}, {amount})'.format(
message=data['message'],
pair=pair,
rate=rate,
@@ -66,7 +84,8 @@ class Bittrex(Exchange):
def get_balance(self, currency: str) -> float:
data = _API.get_balance(currency)
if not data['success']:
raise RuntimeError('{message} params=({currency})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({currency})'.format(
message=data['message'],
currency=currency))
return float(data['result']['Balance'] or 0.0)
@@ -74,54 +93,62 @@ class Bittrex(Exchange):
def get_balances(self):
data = _API.get_balances()
if not data['success']:
raise RuntimeError('{message}'.format(message=data['message']))
Bittrex._validate_response(data)
raise OperationalException('{message}'.format(message=data['message']))
return data['result']
def get_ticker(self, pair: str) -> dict:
data = _API.get_ticker(pair.replace('_', '-'))
if not data['success']:
raise RuntimeError('{message} params=({pair})'.format(
message=data['message'],
pair=pair))
if not data.get('result') \
or not data['result'].get('Bid') \
or not data['result'].get('Ask') \
or not data['result'].get('Last'):
raise ContentDecodingError('{message} params=({pair})'.format(
message='Got invalid response from bittrex',
pair=pair))
return {
'bid': float(data['result']['Bid']),
'ask': float(data['result']['Ask']),
'last': float(data['result']['Last']),
}
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
if refresh or pair not in self.cached_ticker.keys():
data = _API.get_ticker(pair.replace('_', '-'))
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair})'.format(
message=data['message'],
pair=pair))
keys = ['Bid', 'Ask', 'Last']
if not data.get('result') or\
not all(key in data.get('result', {}) for key in keys) or\
not all(data.get('result', {})[key] is not None for key in keys):
raise ContentDecodingError('Invalid response from Bittrex params=({pair})'.format(
pair=pair))
# Update the pair
self.cached_ticker[pair] = {
'bid': float(data['result']['Bid']),
'ask': float(data['result']['Ask']),
'last': float(data['result']['Last']),
}
return self.cached_ticker[pair]
def get_ticker_history(self, pair: str, tick_interval: int) -> List[Dict]:
if tick_interval == 1:
interval = 'oneMin'
elif tick_interval == 5:
interval = 'fiveMin'
elif tick_interval == 30:
interval = 'thirtyMin'
elif tick_interval == 60:
interval = 'hour'
elif tick_interval == 1440:
interval = 'Day'
else:
raise ValueError('Cannot parse tick_interval: {}'.format(tick_interval))
raise ValueError('Unknown tick_interval: {}'.format(tick_interval))
data = _API_V2.get_candles(pair.replace('_', '-'), interval)
# These sanity check are necessary because bittrex cannot keep their API stable.
if not data.get('result'):
raise ContentDecodingError('{message} params=({pair})'.format(
message='Got invalid response from bittrex',
raise ContentDecodingError('Invalid response from Bittrex params=({pair})'.format(
pair=pair))
for prop in ['C', 'V', 'O', 'H', 'L', 'T']:
for tick in data['result']:
if prop not in tick.keys():
raise ContentDecodingError('{message} params=({pair})'.format(
message='Required property {} not present in response'.format(prop),
pair=pair))
raise ContentDecodingError('Required property {} not present '
'in response params=({})'.format(prop, pair))
if not data['success']:
raise RuntimeError('{message} params=({pair})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair})'.format(
message=data['message'],
pair=pair))
@@ -130,7 +157,8 @@ class Bittrex(Exchange):
def get_order(self, order_id: str) -> Dict:
data = _API.get_order(order_id)
if not data['success']:
raise RuntimeError('{message} params=({order_id})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({order_id})'.format(
message=data['message'],
order_id=order_id))
data = data['result']
@@ -148,7 +176,8 @@ class Bittrex(Exchange):
def cancel_order(self, order_id: str) -> None:
data = _API.cancel(order_id)
if not data['success']:
raise RuntimeError('{message} params=({order_id})'.format(
Bittrex._validate_response(data)
raise OperationalException('{message} params=({order_id})'.format(
message=data['message'],
order_id=order_id))
@@ -158,19 +187,22 @@ class Bittrex(Exchange):
def get_markets(self) -> List[str]:
data = _API.get_markets()
if not data['success']:
raise RuntimeError('{message}'.format(message=data['message']))
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return [m['MarketName'].replace('-', '_') for m in data['result']]
def get_market_summaries(self) -> List[Dict]:
data = _API.get_market_summaries()
if not data['success']:
raise RuntimeError('{message}'.format(message=data['message']))
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return data['result']
def get_wallet_health(self) -> List[Dict]:
data = _API_V2.get_wallet_health()
if not data['success']:
raise RuntimeError('{message}'.format(message=data['message']))
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return [{
'Currency': entry['Health']['Currency'],
'IsActive': entry['Health']['IsActive'],

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Dict
from typing import Dict, List, Optional
class Exchange(ABC):
@@ -62,10 +62,11 @@ class Exchange(ABC):
"""
@abstractmethod
def get_ticker(self, pair: str) -> dict:
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
"""
Gets ticker for given pair.
:param pair: Pair as str, format: BTC_ETC
:param refresh: Shall we query a new value or a cached value is enough
:return: dict, format: {
'bid': float,
'ask': float,

193
freqtrade/fiat_convert.py Normal file
View File

@@ -0,0 +1,193 @@
"""
Module that define classes to convert Crypto-currency to FIAT
e.g BTC to USD
"""
import logging
import time
from coinmarketcap import Market
logger = logging.getLogger(__name__)
class CryptoFiat(object):
"""
Object to describe what is the price of Crypto-currency in a FIAT
"""
# Constants
CACHE_DURATION = 6 * 60 * 60 # 6 hours
def __init__(self, crypto_symbol: str, fiat_symbol: str, price: float) -> None:
"""
Create an object that will contains the price for a crypto-currency in fiat
:param crypto_symbol: Crypto-currency you want to convert (e.g BTC)
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
:param price: Price in FIAT
"""
# Public attributes
self.crypto_symbol = None
self.fiat_symbol = None
self.price = 0.0
# Private attributes
self._expiration = 0
self.crypto_symbol = crypto_symbol.upper()
self.fiat_symbol = fiat_symbol.upper()
self.set_price(price=price)
def set_price(self, price: float) -> None:
"""
Set the price of the Crypto-currency in FIAT and set the expiration time
:param price: Price of the current Crypto currency in the fiat
:return: None
"""
self.price = price
self._expiration = time.time() + self.CACHE_DURATION
def is_expired(self) -> bool:
"""
Return if the current price is still valid or needs to be refreshed
:return: bool, true the price is expired and needs to be refreshed, false the price is
still valid
"""
return self._expiration - time.time() <= 0
class CryptoToFiatConverter(object):
"""
Main class to initiate Crypto to FIAT.
This object contains a list of pair Crypto, FIAT
This object is also a Singleton
"""
__instance = None
_coinmarketcap = None
# Constants
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD"
]
CRYPTOMAP = {
'BTC': 'bitcoin',
'ETH': 'ethereum',
'USDT': 'thether'
}
def __new__(cls):
if CryptoToFiatConverter.__instance is None:
CryptoToFiatConverter.__instance = object.__new__(cls)
try:
CryptoToFiatConverter._coinmarketcap = Market()
except BaseException:
CryptoToFiatConverter._coinmarketcap = None
return CryptoToFiatConverter.__instance
def __init__(self) -> None:
self._pairs = []
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Convert an amount of crypto-currency to fiat
:param crypto_amount: amount of crypto-currency to convert
:param crypto_symbol: crypto-currency used
:param fiat_symbol: fiat to convert to
:return: float, value in fiat of the crypto-currency amount
"""
price = self.get_price(crypto_symbol=crypto_symbol, fiat_symbol=fiat_symbol)
return float(crypto_amount) * float(price)
def get_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Return the price of the Crypto-currency in Fiat
:param crypto_symbol: Crypto-currency you want to convert (e.g BTC)
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
:return: Price in FIAT
"""
crypto_symbol = crypto_symbol.upper()
fiat_symbol = fiat_symbol.upper()
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
# Get the pair that interest us and return the price in fiat
for pair in self._pairs:
if pair.crypto_symbol == crypto_symbol and pair.fiat_symbol == fiat_symbol:
# If the price is expired we refresh it, avoid to call the API all the time
if pair.is_expired():
pair.set_price(
price=self._find_price(
crypto_symbol=pair.crypto_symbol,
fiat_symbol=pair.fiat_symbol
)
)
# return the last price we have for this pair
return pair.price
# The pair does not exist, so we create it and return the price
return self._add_pair(
crypto_symbol=crypto_symbol,
fiat_symbol=fiat_symbol,
price=self._find_price(
crypto_symbol=crypto_symbol,
fiat_symbol=fiat_symbol
)
)
def _add_pair(self, crypto_symbol: str, fiat_symbol: str, price: float) -> float:
"""
:param crypto_symbol: Crypto-currency you want to convert (e.g BTC)
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
:return: price in FIAT
"""
self._pairs.append(
CryptoFiat(
crypto_symbol=crypto_symbol,
fiat_symbol=fiat_symbol,
price=price
)
)
return price
def _is_supported_fiat(self, fiat: str) -> bool:
"""
Check if the FIAT your want to convert to is supported
:param fiat: FIAT to check (e.g USD)
:return: bool, True supported, False not supported
"""
fiat = fiat.upper()
return fiat in self.SUPPORTED_FIAT
def _find_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Call CoinMarketCap API to retrieve the price in the FIAT
:param crypto_symbol: Crypto-currency you want to convert (e.g BTC)
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
:return: float, price of the crypto-currency in Fiat
"""
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
if crypto_symbol not in self.CRYPTOMAP:
raise ValueError(
'The crypto symbol {} is not supported.'.format(crypto_symbol))
try:
return float(
self._coinmarketcap.ticker(
currency=self.CRYPTOMAP[crypto_symbol],
convert=fiat_symbol
)[0]['price_' + fiat_symbol.lower()]
)
except BaseException:
return 0.0

526
freqtrade/freqtradebot.py Normal file
View File

@@ -0,0 +1,526 @@
"""
Freqtrade is the main module of this bot. It contains the class Freqtrade()
"""
import copy
import json
import logging
import time
import traceback
from datetime import datetime
from typing import Dict, List, Optional, Any, Callable
import arrow
import requests
from cachetools import cached, TTLCache
from freqtrade import (
DependencyException, OperationalException, exchange, persistence, __version__
)
from freqtrade.analyze import Analyze
from freqtrade import constants
from freqtrade.fiat_convert import CryptoToFiatConverter
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc_manager import RPCManager
from freqtrade.state import State
logger = logging.getLogger(__name__)
class FreqtradeBot(object):
"""
Freqtrade is the main class of the bot.
This is from here the bot start its logic.
"""
def __init__(self, config: Dict[str, Any], db_url: Optional[str] = None):
"""
Init all variables and object the bot need to work
:param config: configuration dict, you can use the Configuration.get_config()
method to get the config dict.
:param db_url: database connector string for sqlalchemy (Optional)
"""
logger.info(
'Starting freqtrade %s',
__version__,
)
# Init bot states
self.state = State.STOPPED
# Init objects
self.config = config
self.analyze = None
self.fiat_converter = None
self.rpc = None
self.persistence = None
self.exchange = None
self._init_modules(db_url=db_url)
def _init_modules(self, db_url: Optional[str] = None) -> None:
"""
Initializes all modules and updates the config
:param db_url: database connector string for sqlalchemy (Optional)
:return: None
"""
# Initialize all modules
self.analyze = Analyze(self.config)
self.fiat_converter = CryptoToFiatConverter()
self.rpc = RPCManager(self)
persistence.init(self.config, db_url)
exchange.init(self.config)
# Set initial application state
initial_state = self.config.get('initial_state')
if initial_state:
self.state = State[initial_state.upper()]
else:
self.state = State.STOPPED
def clean(self) -> bool:
"""
Cleanup the application state und finish all pending tasks
:return: None
"""
self.rpc.send_msg('*Status:* `Stopping trader...`')
logger.info('Stopping trader and cleaning up modules...')
self.state = State.STOPPED
self.rpc.cleanup()
persistence.cleanup()
return True
def worker(self, old_state: None) -> State:
"""
Trading routine that must be run at each loop
:param old_state: the previous service state from the previous call
:return: current service state
"""
# Log state transition
state = self.state
if state != old_state:
self.rpc.send_msg('*Status:* `{}`'.format(state.name.lower()))
logger.info('Changing state to: %s', state.name)
if state == State.STOPPED:
time.sleep(1)
elif state == State.RUNNING:
min_secs = self.config.get('internals', {}).get(
'process_throttle_secs',
constants.PROCESS_THROTTLE_SECS
)
nb_assets = self.config.get('dynamic_whitelist', None)
self._throttle(func=self._process,
min_secs=min_secs,
nb_assets=nb_assets)
return state
def _throttle(self, func: Callable[..., Any], min_secs: float, *args, **kwargs) -> Any:
"""
Throttles the given callable that it
takes at least `min_secs` to finish execution.
:param func: Any callable
:param min_secs: minimum execution time in seconds
:return: Any
"""
start = time.time()
result = func(*args, **kwargs)
end = time.time()
duration = max(min_secs - (end - start), 0.0)
logger.debug('Throttling %s for %.2f seconds', func.__name__, duration)
time.sleep(duration)
return result
def _process(self, nb_assets: Optional[int] = 0) -> bool:
"""
Queries the persistence layer for open trades and handles them,
otherwise a new trade is created.
:param: nb_assets: the maximum number of pairs to be traded at the same time
:return: True if one or more trades has been created or closed, False otherwise
"""
state_changed = False
try:
# Refresh whitelist based on wallet maintenance
sanitized_list = self._refresh_whitelist(
self._gen_pair_whitelist(
self.config['stake_currency']
) if nb_assets else self.config['exchange']['pair_whitelist']
)
# Keep only the subsets of pairs wanted (up to nb_assets)
final_list = sanitized_list[:nb_assets] if nb_assets else sanitized_list
self.config['exchange']['pair_whitelist'] = final_list
# Query trades from persistence layer
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
# First process current opened trades
for trade in trades:
state_changed |= self.process_maybe_execute_sell(trade)
# Then looking for buy opportunities
if len(trades) < self.config['max_open_trades']:
state_changed = self.process_maybe_execute_buy()
if 'unfilledtimeout' in self.config:
# Check and handle any timed out open orders
self.check_handle_timedout(self.config['unfilledtimeout'])
Trade.session.flush()
except (requests.exceptions.RequestException, json.JSONDecodeError) as error:
logger.warning('%s, retrying in 30 seconds...', error)
time.sleep(constants.RETRY_TIMEOUT)
except OperationalException:
self.rpc.send_msg(
'*Status:* OperationalException:\n```\n{traceback}```{hint}'
.format(
traceback=traceback.format_exc(),
hint='Issue `/start` if you think it is safe to restart.'
)
)
logger.exception('OperationalException. Stopping trader ...')
self.state = State.STOPPED
return state_changed
@cached(TTLCache(maxsize=1, ttl=1800))
def _gen_pair_whitelist(self, base_currency: str, key: str = 'BaseVolume') -> List[str]:
"""
Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str
:param key: sort key (defaults to 'BaseVolume')
:return: List of pairs
"""
summaries = sorted(
(s for s in exchange.get_market_summaries() if
s['MarketName'].startswith(base_currency)),
key=lambda s: s.get(key) or 0.0,
reverse=True
)
return [s['MarketName'].replace('-', '_') for s in summaries]
def _refresh_whitelist(self, whitelist: List[str]) -> List[str]:
"""
Check wallet health and remove pair from whitelist if necessary
:param whitelist: the sorted list (based on BaseVolume) of pairs the user might want to
trade
:return: the list of pairs the user wants to trade without the one unavailable or
black_listed
"""
sanitized_whitelist = whitelist
health = exchange.get_wallet_health()
known_pairs = set()
for status in health:
pair = '{}_{}'.format(self.config['stake_currency'], status['Currency'])
# pair is not int the generated dynamic market, or in the blacklist ... ignore it
if pair not in whitelist or pair in self.config['exchange'].get('pair_blacklist', []):
continue
# else the pair is valid
known_pairs.add(pair)
# Market is not active
if not status['IsActive']:
sanitized_whitelist.remove(pair)
logger.info(
'Ignoring %s from whitelist (reason: %s).',
pair, status.get('Notice') or 'wallet is not active'
)
# We need to remove pairs that are unknown
final_list = [x for x in sanitized_whitelist if x in known_pairs]
return final_list
def get_target_bid(self, ticker: Dict[str, float]) -> float:
"""
Calculates bid target between current ask price and last price
:param ticker: Ticker to use for getting Ask and Last Price
:return: float: Price
"""
if ticker['ask'] < ticker['last']:
return ticker['ask']
balance = self.config['bid_strategy']['ask_last_balance']
return ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
def create_trade(self) -> bool:
"""
Checks the implemented trading indicator(s) for a randomly picked pair,
if one pair triggers the buy_signal a new trade record gets created
:param stake_amount: amount of btc to spend
:param interval: Ticker interval used for Analyze
:return: True if a trade object has been created and persisted, False otherwise
"""
stake_amount = self.config['stake_amount']
interval = self.analyze.get_ticker_interval()
logger.info(
'Checking buy signals to create a new trade with stake_amount: %f ...',
stake_amount
)
whitelist = copy.deepcopy(self.config['exchange']['pair_whitelist'])
# Check if stake_amount is fulfilled
if exchange.get_balance(self.config['stake_currency']) < stake_amount:
raise DependencyException(
'stake amount is not fulfilled (currency={})'.format(self.config['stake_currency'])
)
# Remove currently opened and latest pairs from whitelist
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
if trade.pair in whitelist:
whitelist.remove(trade.pair)
logger.debug('Ignoring %s in pair whitelist', trade.pair)
if not whitelist:
raise DependencyException('No currency pairs in whitelist')
# Pick pair based on StochRSI buy signals
for _pair in whitelist:
(buy, sell) = self.analyze.get_signal(_pair, interval)
if buy and not sell:
pair = _pair
break
else:
return False
# Calculate amount
buy_limit = self.get_target_bid(exchange.get_ticker(pair))
amount = stake_amount / buy_limit
order_id = exchange.buy(pair, buy_limit, amount)
stake_amount_fiat = self.fiat_converter.convert_amount(
stake_amount,
self.config['stake_currency'],
self.config['fiat_display_currency']
)
# Create trade entity and return
self.rpc.send_msg(
'*{}:* Buying [{}]({}) with limit `{:.8f} ({:.6f} {}, {:.3f} {})` '
.format(
exchange.get_name().upper(),
pair.replace('_', '/'),
exchange.get_pair_detail_url(pair),
buy_limit,
stake_amount,
self.config['stake_currency'],
stake_amount_fiat,
self.config['fiat_display_currency']
)
)
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
trade = Trade(
pair=pair,
stake_amount=stake_amount,
amount=amount,
fee=exchange.get_fee(),
open_rate=buy_limit,
open_date=datetime.utcnow(),
exchange=exchange.get_name().upper(),
open_order_id=order_id
)
Trade.session.add(trade)
Trade.session.flush()
return True
def process_maybe_execute_buy(self) -> bool:
"""
Tries to execute a buy trade in a safe way
:return: True if executed
"""
try:
# Create entity and execute trade
if self.create_trade():
return True
logger.info('Found no buy signals for whitelisted currencies. Trying again..')
return False
except DependencyException as exception:
logger.warning('Unable to create trade: %s', exception)
return False
def process_maybe_execute_sell(self, trade: Trade) -> bool:
"""
Tries to execute a sell trade
:return: True if executed
"""
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Found open order for %s', trade)
trade.update(exchange.get_order(trade.open_order_id))
if trade.is_open and trade.open_order_id is None:
# Check if we can sell our current pair
return self.handle_trade(trade)
return False
def handle_trade(self, trade: Trade) -> bool:
"""
Sells the current pair if the threshold is reached and updates the trade record.
:return: True if trade has been sold, False otherwise
"""
if not trade.is_open:
raise ValueError('attempt to handle closed trade: {}'.format(trade))
logger.debug('Handling %s ...', trade)
current_rate = exchange.get_ticker(trade.pair)['bid']
(buy, sell) = (False, False)
if self.config.get('experimental', {}).get('use_sell_signal'):
(buy, sell) = self.analyze.get_signal(trade.pair, self.analyze.get_ticker_interval())
if self.analyze.should_sell(trade, current_rate, datetime.utcnow(), buy, sell):
self.execute_sell(trade, current_rate)
return True
logger.info('Found no sell signals for whitelisted currencies. Trying again..')
return False
def check_handle_timedout(self, timeoutvalue: int) -> None:
"""
Check if any orders are timed out and cancel if neccessary
:param timeoutvalue: Number of minutes until order is considered timed out
:return: None
"""
timeoutthreashold = arrow.utcnow().shift(minutes=-timeoutvalue).datetime
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
try:
order = exchange.get_order(trade.open_order_id)
except requests.exceptions.RequestException:
logger.info(
'Cannot query order for %s due to %s',
trade,
traceback.format_exc())
continue
ordertime = arrow.get(order['opened'])
# Check if trade is still actually open
if int(order['remaining']) == 0:
continue
if order['type'] == "LIMIT_BUY" and ordertime < timeoutthreashold:
self.handle_timedout_limit_buy(trade, order)
elif order['type'] == "LIMIT_SELL" and ordertime < timeoutthreashold:
self.handle_timedout_limit_sell(trade, order)
# FIX: 20180110, why is cancel.order unconditionally here, whereas
# it is conditionally called in the
# handle_timedout_limit_sell()?
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
"""Buy timeout - cancel order
:return: True if order was fully cancelled
"""
exchange.cancel_order(trade.open_order_id)
if order['remaining'] == order['amount']:
# if trade is not partially completed, just delete the trade
Trade.session.delete(trade)
# FIX? do we really need to flush, caller of
# check_handle_timedout will flush afterwards
Trade.session.flush()
logger.info('Buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Unfilled buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
return True
# if trade is partially complete, edit the stake details for the trade
# and close the order
trade.amount = order['amount'] - order['remaining']
trade.stake_amount = trade.amount * trade.open_rate
trade.open_order_id = None
logger.info('Partial buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Remaining buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
return False
# FIX: 20180110, should cancel_order() be cond. or unconditionally called?
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
"""
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
"""
if order['remaining'] == order['amount']:
# if trade is not partially completed, just cancel the trade
exchange.cancel_order(trade.open_order_id)
trade.close_rate = None
trade.close_profit = None
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
self.rpc.send_msg('*Timeout:* Unfilled sell order for {} cancelled'.format(
trade.pair.replace('_', '/')))
logger.info('Sell order timeout for %s.', trade)
return True
# TODO: figure out how to handle partially complete sell orders
return False
def execute_sell(self, trade: Trade, limit: float) -> None:
"""
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
:return: None
"""
# Execute sell and update trade record
order_id = exchange.sell(str(trade.pair), limit, trade.amount)
trade.open_order_id = order_id
fmt_exp_profit = round(trade.calc_profit_percent(rate=limit) * 100, 2)
profit_trade = trade.calc_profit(rate=limit)
current_rate = exchange.get_ticker(trade.pair, False)['bid']
profit = trade.calc_profit_percent(current_rate)
message = "*{exchange}:* Selling\n" \
"*Current Pair:* [{pair}]({pair_url})\n" \
"*Limit:* `{limit}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Profit:* `{profit:.2f}%`" \
"".format(
exchange=trade.exchange,
pair=trade.pair,
pair_url=exchange.get_pair_detail_url(trade.pair),
limit=limit,
open_rate=trade.open_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
profit=round(profit * 100, 2),
)
# For regular case, when the configuration exists
if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
fiat_converter = CryptoToFiatConverter()
profit_fiat = fiat_converter.convert_amount(
profit_trade,
self.config['stake_currency'],
self.config['fiat_display_currency']
)
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f} {coin}`' \
'` / {profit_fiat:.3f} {fiat})`' \
''.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade,
coin=self.config['stake_currency'],
profit_fiat=profit_fiat,
fiat=self.config['fiat_display_currency'],
)
# Because telegram._forcesell does not have the configuration
# Ignore the FIAT value and does not show the stake_currency as well
else:
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f})`'.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade
)
# Send the message
self.rpc.send_msg(message)
Trade.session.flush()

View File

@@ -0,0 +1,40 @@
from math import exp, pi, sqrt, cos
import numpy as np
import talib as ta
from pandas import Series
def went_up(series: Series) -> bool:
return series > series.shift(1)
def went_down(series: Series) -> bool:
return series < series.shift(1)
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> type(Series):
magic = pi * sqrt(2) / smoothing
a1 = exp(-magic)
coeff2 = 2 * a1 * cos(magic)
coeff3 = -a1 * a1
coeff1 = (1 - coeff2 - coeff3) / 2
filtered = series.copy()
for i in range(2, len(series)):
filtered.iloc[i] = coeff1 * (series.iloc[i] + series.iloc[i-1]) + \
coeff2 * filtered.iloc[i-1] + coeff3 * filtered.iloc[i-2]
return filtered
def fishers_inverse(series: Series, smoothing: float = 0) -> np.ndarray:
""" Does a smoothed fishers inverse transformation.
Can be used with any oscillator that goes from 0 to 100 like RSI or MFI """
v1 = 0.1 * (series - 50)
if smoothing > 0:
v2 = ta.WMA(v1.values, timeperiod=smoothing)
else:
v2 = v1
return (np.exp(2 * v2)-1) / (np.exp(2 * v2) + 1)

View File

@@ -1,335 +1,69 @@
#!/usr/bin/env python3
import copy
import json
"""
Main Freqtrade bot script.
Read the documentation to know what cli arguments you need.
"""
import logging
import sys
import time
import traceback
from datetime import datetime
from signal import signal, SIGINT, SIGABRT, SIGTERM
from typing import Dict, Optional, List
from typing import List
import requests
from cachetools import cached, TTLCache
from freqtrade import __version__, exchange, persistence, rpc
from freqtrade.analyze import get_signal, SignalType
from freqtrade.misc import State, get_state, update_state, parse_args, throttle, \
load_config, FreqtradeException
from freqtrade.persistence import Trade
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.freqtradebot import FreqtradeBot
logger = logging.getLogger('freqtrade')
_CONF = {}
def refresh_whitelist(whitelist: Optional[List[str]] = None) -> None:
def main(sysargv: List[str]) -> None:
"""
Check wallet health and remove pair from whitelist if necessary
:param whitelist: a new whitelist (optional)
This function will initiate the bot and start the trading loop.
:return: None
"""
whitelist = whitelist or _CONF['exchange']['pair_whitelist']
arguments = Arguments(
sysargv,
'Simple High Frequency Trading Bot for crypto currencies'
)
args = arguments.get_parsed_arg()
sanitized_whitelist = []
health = exchange.get_wallet_health()
for status in health:
pair = '{}_{}'.format(_CONF['stake_currency'], status['Currency'])
if pair not in whitelist:
continue
if status['IsActive']:
sanitized_whitelist.append(pair)
else:
logger.info(
'Ignoring %s from whitelist (reason: %s).',
pair, status.get('Notice') or 'wallet is not active'
)
if _CONF['exchange']['pair_whitelist'] != sanitized_whitelist:
logger.debug('Using refreshed pair whitelist: %s ...', sanitized_whitelist)
_CONF['exchange']['pair_whitelist'] = sanitized_whitelist
# A subcommand has been issued.
# Means if Backtesting or Hyperopt have been called we exit the bot
if hasattr(args, 'func'):
args.func(args)
return
def _process(dynamic_whitelist: Optional[bool] = False) -> bool:
"""
Queries the persistence layer for open trades and handles them,
otherwise a new trade is created.
:param: dynamic_whitelist: True is a dynamic whitelist should be generated (optional)
:return: True if a trade has been created or closed, False otherwise
"""
state_changed = False
freqtrade = None
return_code = 1
try:
# Refresh whitelist based on wallet maintenance
refresh_whitelist(
gen_pair_whitelist(_CONF['stake_currency']) if dynamic_whitelist else None
)
# Query trades from persistence layer
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if len(trades) < _CONF['max_open_trades']:
try:
# Create entity and execute trade
trade = create_trade(float(_CONF['stake_amount']))
if trade:
Trade.session.add(trade)
state_changed = True
else:
logger.info(
'Checked all whitelisted currencies. '
'Found no suitable entry positions for buying. Will keep looking ...'
)
except FreqtradeException as e:
logger.warning('Unable to create trade: %s', e)
# Load and validate configuration
config = Configuration(args).get_config()
for trade in trades:
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Got open order for %s', trade)
trade.update(exchange.get_order(trade.open_order_id))
# Init the bot
freqtrade = FreqtradeBot(config)
if trade.is_open and trade.open_order_id is None:
# Check if we can sell our current pair
state_changed = handle_trade(trade) or state_changed
state = None
while 1:
state = freqtrade.worker(old_state=state)
Trade.session.flush()
except (requests.exceptions.RequestException, json.JSONDecodeError) as error:
logger.warning(
'Got %s in _process(), retrying in 30 seconds...',
error
)
time.sleep(30)
except RuntimeError:
rpc.send_msg('*Status:* Got RuntimeError:\n```\n{traceback}```{hint}'.format(
traceback=traceback.format_exc(),
hint='Issue `/start` if you think it is safe to restart.'
))
logger.exception('Got RuntimeError. Stopping trader ...')
update_state(State.STOPPED)
return state_changed
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
return_code = 0
except BaseException:
logger.exception('Fatal exception!')
finally:
if freqtrade:
freqtrade.clean()
sys.exit(return_code)
def execute_sell(trade: Trade, limit: float) -> None:
def set_loggers() -> None:
"""
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
Set the logger level for Third party libs
:return: None
"""
# Execute sell and update trade record
order_id = exchange.sell(str(trade.pair), limit, trade.amount)
trade.open_order_id = order_id
fmt_exp_profit = round(trade.calc_profit(limit) * 100, 2)
rpc.send_msg('*{}:* Selling [{}]({}) with limit `{:.8f} (profit: ~{:.2f}%)`'.format(
trade.exchange,
trade.pair.replace('_', '/'),
exchange.get_pair_detail_url(trade.pair),
limit,
fmt_exp_profit
))
def min_roi_reached(trade: Trade, current_rate: float, current_time: datetime) -> bool:
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should sell
:return True if bot should sell at current rate
"""
current_profit = trade.calc_profit(current_rate)
if 'stoploss' in _CONF and current_profit < float(_CONF['stoploss']):
logger.debug('Stop loss hit.')
return True
# Check if time matches and current rate is above threshold
time_diff = (current_time - trade.open_date).total_seconds() / 60
for duration, threshold in sorted(_CONF['minimal_roi'].items()):
if time_diff > float(duration) and current_profit > threshold:
return True
logger.debug('Threshold not reached. (cur_profit: %1.2f%%)', current_profit * 100.0)
return False
def handle_trade(trade: Trade) -> bool:
"""
Sells the current pair if the threshold is reached and updates the trade record.
:return: True if trade has been sold, False otherwise
"""
if not trade.is_open:
raise ValueError('attempt to handle closed trade: {}'.format(trade))
logger.debug('Handling %s ...', trade)
current_rate = exchange.get_ticker(trade.pair)['bid']
if min_roi_reached(trade, current_rate, datetime.utcnow()) or get_signal(trade.pair, SignalType.SELL):
execute_sell(trade, current_rate)
return True
return False
def get_target_bid(ticker: Dict[str, float]) -> float:
""" Calculates bid target between current ask price and last price """
if ticker['ask'] < ticker['last']:
return ticker['ask']
balance = _CONF['bid_strategy']['ask_last_balance']
return ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
def create_trade(stake_amount: float) -> Optional[Trade]:
"""
Checks the implemented trading indicator(s) for a randomly picked pair,
if one pair triggers the buy_signal a new trade record gets created
:param stake_amount: amount of btc to spend
"""
logger.info(
'Checking buy signals to create a new trade with stake_amount: %f ...',
stake_amount
)
whitelist = copy.deepcopy(_CONF['exchange']['pair_whitelist'])
# Check if stake_amount is fulfilled
if exchange.get_balance(_CONF['stake_currency']) < stake_amount:
raise FreqtradeException(
'stake amount is not fulfilled (currency={})'.format(_CONF['stake_currency'])
)
# Remove currently opened and latest pairs from whitelist
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
if trade.pair in whitelist:
whitelist.remove(trade.pair)
logger.debug('Ignoring %s in pair whitelist', trade.pair)
if not whitelist:
raise FreqtradeException('No pair in whitelist')
# Pick pair based on StochRSI buy signals
for _pair in whitelist:
if get_signal(_pair, SignalType.BUY):
pair = _pair
break
else:
return None
# Calculate amount and subtract fee
fee = exchange.get_fee()
buy_limit = get_target_bid(exchange.get_ticker(pair))
amount = (1 - fee) * stake_amount / buy_limit
order_id = exchange.buy(pair, buy_limit, amount)
# Create trade entity and return
rpc.send_msg('*{}:* Buying [{}]({}) with limit `{:.8f}`'.format(
exchange.get_name().upper(),
pair.replace('_', '/'),
exchange.get_pair_detail_url(pair),
buy_limit
))
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
return Trade(pair=pair,
stake_amount=stake_amount,
amount=amount,
fee=fee * 2,
open_rate=buy_limit,
open_date=datetime.utcnow(),
exchange=exchange.get_name().upper(),
open_order_id=order_id)
def init(config: dict, db_url: Optional[str] = None) -> None:
"""
Initializes all modules and updates the config
:param config: config as dict
:param db_url: database connector string for sqlalchemy (Optional)
:return: None
"""
# Initialize all modules
rpc.init(config)
persistence.init(config, db_url)
exchange.init(config)
# Set initial application state
initial_state = config.get('initial_state')
if initial_state:
update_state(State[initial_state.upper()])
else:
update_state(State.STOPPED)
# Register signal handlers
for sig in (SIGINT, SIGTERM, SIGABRT):
signal(sig, cleanup)
@cached(TTLCache(maxsize=1, ttl=1800))
def gen_pair_whitelist(base_currency: str, topn: int = 20, key: str = 'BaseVolume') -> List[str]:
"""
Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str
:param topn: maximum number of returned results
:param key: sort key (defaults to 'BaseVolume')
:return: List of pairs
"""
summaries = sorted(
(s for s in exchange.get_market_summaries() if s['MarketName'].startswith(base_currency)),
key=lambda s: s.get(key) or 0.0,
reverse=True
)
return [s['MarketName'].replace('-', '_') for s in summaries[:topn]]
def cleanup(*args, **kwargs) -> None:
"""
Cleanup the application state und finish all pending tasks
:return: None
"""
rpc.send_msg('*Status:* `Stopping trader...`')
logger.info('Stopping trader and cleaning up modules...')
update_state(State.STOPPED)
persistence.cleanup()
rpc.cleanup()
exit(0)
def main():
"""
Loads and validates the config and handles the main loop
:return: None
"""
global _CONF
args = parse_args(sys.argv[1:])
if not args:
exit(0)
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger.info(
'Starting freqtrade %s (loglevel=%s)',
__version__,
logging.getLevelName(args.loglevel)
)
# Load and validate configuration
_CONF = load_config(args.config)
# Initialize all modules and start main loop
if args.dynamic_whitelist:
logger.info('Using dynamically generated whitelist. (--dynamic-whitelist detected)')
init(_CONF)
old_state = None
while True:
new_state = get_state()
# Log state transition
if new_state != old_state:
rpc.send_msg('*Status:* `{}`'.format(new_state.name.lower()))
logger.info('Changing state to: %s', new_state.name)
if new_state == State.STOPPED:
time.sleep(1)
elif new_state == State.RUNNING:
throttle(
_process,
min_secs=_CONF['internals'].get('process_throttle_secs', 10),
dynamic_whitelist=args.dynamic_whitelist,
)
old_state = new_state
logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)
if __name__ == '__main__':
main()
set_loggers()
main(sys.argv[1:])

View File

@@ -1,250 +1,74 @@
import argparse
import enum
"""
Various tool function for Freqtrade and scripts
"""
import json
import logging
import os
import time
from typing import Any, Callable, List, Dict
import re
from datetime import datetime
from typing import Dict
from jsonschema import validate, Draft4Validator
from jsonschema.exceptions import best_match, ValidationError
from wrapt import synchronized
from freqtrade import __version__
import numpy as np
from pandas import DataFrame
logger = logging.getLogger(__name__)
class FreqtradeException(BaseException):
pass
class State(enum.Enum):
RUNNING = 0
STOPPED = 1
# Current application state
_STATE = State.STOPPED
@synchronized
def update_state(state: State) -> None:
def shorten_date(_date: str) -> str:
"""
Updates the application state
:param state: new state
:return: None
Trim the date so it fits on small screens
"""
global _STATE
_STATE = state
new_date = re.sub('seconds?', 'sec', _date)
new_date = re.sub('minutes?', 'min', new_date)
new_date = re.sub('hours?', 'h', new_date)
new_date = re.sub('days?', 'd', new_date)
new_date = re.sub('^an?', '1', new_date)
return new_date
@synchronized
def get_state() -> State:
############################################
# Used by scripts #
# Matplotlib doesn't support ::datetime64, #
# so we need to convert it into ::datetime #
############################################
def datesarray_to_datetimearray(dates: np.ndarray) -> np.ndarray:
"""
Gets the current application state
Convert an pandas-array of timestamps into
An numpy-array of datetimes
:return: numpy-array of datetime
"""
times = []
dates = dates.astype(datetime)
for index in range(0, dates.size):
date = dates[index].to_pydatetime()
times.append(date)
return np.array(times)
def common_datearray(dfs: Dict[str, DataFrame]) -> np.ndarray:
"""
Return dates from Dataframe
:param dfs: Dict with format pair: pair_data
:return: List of dates
"""
alldates = {}
for pair, pair_data in dfs.items():
dates = datesarray_to_datetimearray(pair_data['date'])
for date in dates:
alldates[date] = 1
lst = []
for date, _ in alldates.items():
lst.append(date)
arr = np.array(lst)
return np.sort(arr, axis=0)
def file_dump_json(filename, data) -> None:
"""
Dump JSON data into a file
:param filename: file to create
:param data: JSON Data to save
:return:
"""
return _STATE
def load_config(path: str) -> Dict:
"""
Loads a config file from the given path
:param path: path as str
:return: configuration as dictionary
"""
with open(path) as file:
conf = json.load(file)
if 'internals' not in conf:
conf['internals'] = {}
logger.info('Validating configuration ...')
try:
validate(conf, CONF_SCHEMA)
return conf
except ValidationError:
logger.fatal('Configuration is not valid! See config.json.example')
raise ValidationError(
best_match(Draft4Validator(CONF_SCHEMA).iter_errors(conf)).message
)
def throttle(func: Callable[..., Any], min_secs: float, *args, **kwargs) -> Any:
"""
Throttles the given callable that it
takes at least `min_secs` to finish execution.
:param func: Any callable
:param min_secs: minimum execution time in seconds
:return: Any
"""
start = time.time()
result = func(*args, **kwargs)
end = time.time()
duration = max(min_secs - (end - start), 0.0)
logger.debug('Throttling %s for %.2f seconds', func.__name__, duration)
time.sleep(duration)
return result
def parse_args(args: List[str]):
"""
Parses given arguments and returns an argparse Namespace instance.
Returns None if a sub command has been selected and executed.
"""
parser = argparse.ArgumentParser(
description='Simple High Frequency Trading Bot for crypto currencies'
)
parser.add_argument(
'-c', '--config',
help='specify configuration file (default: config.json)',
dest='config',
default='config.json',
type=str,
metavar='PATH',
)
parser.add_argument(
'-v', '--verbose',
help='be verbose',
action='store_const',
dest='loglevel',
const=logging.DEBUG,
default=logging.INFO,
)
parser.add_argument(
'--version',
action='version',
version='%(prog)s {}'.format(__version__),
)
parser.add_argument(
'--dynamic-whitelist',
help='dynamically generate and update whitelist based on 24h BaseVolume',
action='store_true',
)
build_subcommands(parser)
parsed_args = parser.parse_args(args)
# No subcommand as been selected
if not hasattr(parsed_args, 'func'):
return parsed_args
parsed_args.func(parsed_args)
return None
def build_subcommands(parser: argparse.ArgumentParser) -> None:
""" Builds and attaches all subcommands """
subparsers = parser.add_subparsers(dest='subparser')
backtest = subparsers.add_parser('backtesting', help='backtesting module')
backtest.set_defaults(func=start_backtesting)
backtest.add_argument(
'-l', '--live',
action='store_true',
dest='live',
help='using live data',
)
backtest.add_argument(
'-i', '--ticker-interval',
help='specify ticker interval in minutes (default: 5)',
dest='ticker_interval',
default=5,
type=int,
metavar='INT',
)
def start_backtesting(args) -> None:
"""
Exports all args as environment variables and starts backtesting via pytest.
:param args: arguments namespace
:return:
"""
import pytest
os.environ.update({
'BACKTEST': 'true',
'BACKTEST_LIVE': 'true' if args.live else '',
'BACKTEST_CONFIG': args.config,
'BACKTEST_TICKER_INTERVAL': str(args.ticker_interval),
})
path = os.path.join(os.path.dirname(__file__), 'tests', 'test_backtesting.py')
pytest.main(['-s', path])
# Required json-schema for user specified config
CONF_SCHEMA = {
'type': 'object',
'properties': {
'max_open_trades': {'type': 'integer', 'minimum': 1},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT']},
'stake_amount': {'type': 'number', 'minimum': 0.0005},
'dry_run': {'type': 'boolean'},
'minimal_roi': {
'type': 'object',
'patternProperties': {
'^[0-9.]+$': {'type': 'number'}
},
'minProperties': 1
},
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True},
'bid_strategy': {
'type': 'object',
'properties': {
'ask_last_balance': {
'type': 'number',
'minimum': 0,
'maximum': 1,
'exclusiveMaximum': False
},
},
'required': ['ask_last_balance']
},
'exchange': {'$ref': '#/definitions/exchange'},
'telegram': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'token': {'type': 'string'},
'chat_id': {'type': 'string'},
},
'required': ['enabled', 'token', 'chat_id']
},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'internals': {
'type': 'object',
'properties': {
'process_throttle_secs': {'type': 'number'}
}
}
},
'definitions': {
'exchange': {
'type': 'object',
'properties': {
'name': {'type': 'string'},
'key': {'type': 'string'},
'secret': {'type': 'string'},
'pair_whitelist': {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+_[0-9A-Z]+$'
},
'uniqueItems': True
}
},
'required': ['name', 'key', 'secret', 'pair_whitelist']
}
},
'anyOf': [
{'required': ['exchange']}
],
'required': [
'max_open_trades',
'stake_currency',
'stake_amount',
'dry_run',
'minimal_roi',
'bid_strategy',
'telegram'
]
}
with open(filename, 'w') as fp:
json.dump(data, fp, default=str)

View File

@@ -0,0 +1,148 @@
# pragma pylint: disable=missing-docstring
import gzip
import json
import logging
import os
from typing import Optional, List, Dict, Tuple
from freqtrade import misc
from freqtrade.exchange import get_ticker_history
from user_data.hyperopt_conf import hyperopt_optimize_conf
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: Tuple[Tuple, int, int]) -> List[Dict]:
stype, start, stop = timerange
if stype == (None, 'line'):
return tickerlist[stop:]
elif stype == ('line', None):
return tickerlist[0:start]
elif stype == ('index', 'index'):
return tickerlist[start:stop]
return tickerlist
def load_tickerdata_file(
datadir: str, pair: str,
ticker_interval: int,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Optional[List[Dict]]:
"""
Load a pair from file,
:return dict OR empty if unsuccesful
"""
path = make_testdata_path(datadir)
file = os.path.join(path, '{pair}-{ticker_interval}.json'.format(
pair=pair,
ticker_interval=ticker_interval,
))
gzipfile = file + '.gz'
# If the file does not exist we download it when None is returned.
# If file exists, read the file, load the json
if os.path.isfile(gzipfile):
logger.debug('Loading ticker data from file %s', gzipfile)
with gzip.open(gzipfile) as tickerdata:
pairdata = json.load(tickerdata)
elif os.path.isfile(file):
logger.debug('Loading ticker data from file %s', file)
with open(file) as tickerdata:
pairdata = json.load(tickerdata)
else:
return None
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def load_data(datadir: str, ticker_interval: int,
pairs: Optional[List[str]] = None,
refresh_pairs: Optional[bool] = False,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Dict[str, List]:
"""
Loads ticker history data for the given parameters
:return: dict
"""
result = {}
_pairs = pairs or hyperopt_optimize_conf()['exchange']['pair_whitelist']
# If the user force the refresh of pairs
if refresh_pairs:
logger.info('Download data for all pairs and store them in %s', datadir)
download_pairs(datadir, _pairs, ticker_interval)
for pair in _pairs:
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
if not pairdata:
# download the tickerdata from exchange
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
# and retry reading the pair
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
result[pair] = pairdata
return result
def make_testdata_path(datadir: str) -> str:
"""Return the path where testdata files are stored"""
return datadir or os.path.abspath(
os.path.join(
os.path.dirname(__file__), '..', 'tests', 'testdata'
)
)
def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
"""For each pairs passed in parameters, download the ticker intervals"""
for pair in pairs:
try:
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
except BaseException:
logger.info(
'Failed to download the pair: "%s", Interval: %s min',
pair,
ticker_interval
)
return False
return True
# FIX: 20180110, suggest rename interval to tick_interval
def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) -> None:
"""
Download the latest 1 and 5 ticker intervals from Bittrex for the pairs passed in parameters
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
"""
path = make_testdata_path(datadir)
logger.info(
'Download the pair: "%s", Interval: %s min', pair, interval
)
filename = os.path.join(path, '{pair}-{interval}.json'.format(
pair=pair.replace("-", "_"),
interval=interval,
))
if os.path.isfile(filename):
with open(filename, "rt") as file:
data = json.load(file)
else:
data = []
logger.debug('Current Start: %s', data[1]['T'] if data else None)
logger.debug('Current End: %s', data[-1:][0]['T'] if data else None)
# Extend data with new ticker history
data.extend([
row for row in get_ticker_history(pair=pair, tick_interval=int(interval))
if row not in data
])
data = sorted(data, key=lambda _data: _data['T'])
logger.debug('New Start: %s', data[1]['T'])
logger.debug('New End: %s', data[-1:][0]['T'])
misc.file_dump_json(filename, data)

View File

@@ -0,0 +1,307 @@
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
"""
This module contains the backtesting logic
"""
import logging
import operator
from argparse import Namespace
from typing import Dict, Tuple, Any, List, Optional
import arrow
from pandas import DataFrame
from tabulate import tabulate
import freqtrade.optimize as optimize
from freqtrade import exchange
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.exchange import Bittrex
from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class Backtesting(object):
"""
Backtesting class, this class contains all the logic to run a backtest
To run a backtest:
backtesting = Backtesting(config)
backtesting.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.analyze = None
self.ticker_interval = None
self.tickerdata_to_dataframe = None
self.populate_buy_trend = None
self.populate_sell_trend = None
self._init()
def _init(self) -> None:
"""
Init objects required for backtesting
:return: None
"""
self.analyze = Analyze(self.config)
self.ticker_interval = self.analyze.strategy.ticker_interval
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
self.populate_buy_trend = self.analyze.populate_buy_trend
self.populate_sell_trend = self.analyze.populate_sell_trend
exchange._API = Bittrex({'key': '', 'secret': ''})
@staticmethod
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
timeframe = [
(arrow.get(min(frame.date)), arrow.get(max(frame.date)))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
max(timeframe, key=operator.itemgetter(1))[1]
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
stake_currency = self.config.get('stake_currency')
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.currency == pair]
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_BTC.sum(),
result.duration.mean(),
len(result[result.profit_BTC > 0]),
len(result[result.profit_BTC < 0])
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.duration.mean(),
len(results[results.profit_BTC > 0]),
len(results[results.profit_BTC < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[Tuple]:
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(
open_rate=buy_row.close,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / buy_row.open,
fee=exchange.get_fee()
)
# calculate win/lose forwards from buy point
for sell_row in partial_ticker:
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
buy_signal = sell_row.buy
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
sell_row.sell):
return \
sell_row, \
(
pair,
trade.calc_profit_percent(rate=sell_row.close),
trade.calc_profit(rate=sell_row.close),
(sell_row.date - buy_row.date).seconds // 60
), \
sell_row.date
return None
def backtest(self, args: Dict) -> DataFrame:
"""
Implements backtesting functionality
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
Of course try to not have ugly code. By some accessor are sometime slower than functions.
Avoid, logging on this method
:param args: a dict containing:
stake_amount: btc amount to use for each trade
processed: a processed dictionary with format {pair, data}
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
realistic: do we try to simulate realistic trades? (default: True)
sell_profit_only: sell if profit only
use_sell_signal: act on sell-signal
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', False)
record = args.get('record', None)
records = []
trades = []
trade_count_lock = {}
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(self.populate_buy_trend(pair_data))[headers]
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
for index, row in enumerate(ticker):
if row.buy == 0 or row.sell == 1:
continue # skip rows where no buy signal or that would immediately sell off
if realistic:
if lock_pair_until is not None and row.date <= lock_pair_until:
continue
if max_open_trades > 0:
# Check if max_open_trades has already been reached for the given date
if not trade_count_lock.get(row.date, 0) < max_open_trades:
continue
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
ret = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_count_lock, args)
if ret:
row2, trade_entry, next_date = ret
lock_pair_until = next_date
trades.append(trade_entry)
if record:
# Note, need to be json.dump friendly
# record a tuple of pair, current_profit_percent,
# entry-date, duration
records.append((pair, trade_entry[1],
row.date.strftime('%s'),
row2.date.strftime('%s'),
index, trade_entry[3]))
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:
logger.info('Dumping backtest results')
file_dump_json('backtest-result.json', records)
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
return DataFrame.from_records(trades, columns=labels)
def start(self) -> None:
"""
Run a backtesting end-to-end
:return: None
"""
data = {}
pairs = self.config['exchange']['pair_whitelist']
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
if self.config.get('live'):
logger.info('Downloading data for all pairs in whitelist ...')
for pair in pairs:
data[pair] = exchange.get_ticker_history(pair, self.ticker_interval)
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
timerange = Arguments.parse_timerange(self.config.get('timerange'))
data = optimize.load_data(
self.config['datadir'],
pairs=pairs,
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
timerange=timerange
)
# Ignore max_open_trades in backtesting, except realistic flag was passed
if self.config.get('realistic_simulation', False):
max_open_trades = self.config['max_open_trades']
else:
logger.info('Ignoring max_open_trades (realistic_simulation not set) ...')
max_open_trades = 0
preprocessed = self.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = self.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
# Execute backtest and print results
sell_profit_only = self.config.get('experimental', {}).get('sell_profit_only', False)
use_sell_signal = self.config.get('experimental', {}).get('use_sell_signal', False)
results = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'realistic': self.config.get('realistic_simulation', False),
'sell_profit_only': sell_profit_only,
'use_sell_signal': use_sell_signal,
'record': self.config.get('export')
}
)
logger.info(
'\n==================================== '
'BACKTESTING REPORT'
' ====================================\n'
'%s',
self._generate_text_table(
data,
results
)
)
def setup_configuration(args: Namespace) -> Dict[str, Any]:
"""
Prepare the configuration for the backtesting
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
return config
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Initialize configuration
config = setup_configuration(args)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()

View File

@@ -0,0 +1,608 @@
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import json
import logging
import os
import pickle
import signal
import sys
from argparse import Namespace
from functools import reduce
from math import exp
from operator import itemgetter
from typing import Dict, Any, Callable
import numpy
import talib.abstract as ta
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
from hyperopt.mongoexp import MongoTrials
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.optimize import load_data
from freqtrade.optimize.backtesting import Backtesting
from user_data.hyperopt_conf import hyperopt_optimize_conf
logger = logging.getLogger(__name__)
class Hyperopt(Backtesting):
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
# set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
self.target_trades = 600
self.total_tries = config.get('epochs', 0)
self.current_tries = 0
self.current_best_loss = 100
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
self.max_accepted_trade_duration = 300
# this is expexted avg profit * expected trade count
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
# check that the reported Σ% values do not exceed this!
self.expected_max_profit = 3.0
# Configuration and data used by hyperopt
self.processed = None
# Hyperopt Trials
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
self.trials = Trials()
@staticmethod
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
dataframe['adx'] = ta.ADX(dataframe)
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['roc'] = ta.ROC(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabolic
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
return dataframe
def save_trials(self) -> None:
"""
Save hyperopt trials to file
"""
logger.info('Saving Trials to \'%s\'', self.trials_file)
pickle.dump(self.trials, open(self.trials_file, 'wb'))
def read_trials(self) -> Trials:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = pickle.load(open(self.trials_file, 'rb'))
os.remove(self.trials_file)
return trials
def log_trials_result(self) -> None:
"""
Display Best hyperopt result
"""
vals = json.dumps(self.trials.best_trial['misc']['vals'], indent=4)
results = self.trials.best_trial['result']['result']
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
if results['loss'] < self.current_best_loss:
self.current_best_loss = results['loss']
log_msg = '\n{:5d}/{}: {}. Loss {:.5f}'.format(
results['current_tries'],
results['total_tries'],
results['result'],
results['loss']
)
print(log_msg)
else:
print('.', end='')
sys.stdout.flush()
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
"""
Objective function, returns smaller number for more optimal results
"""
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
return trade_loss + profit_loss + duration_loss
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table thqt will be used by Hyperopt
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def roi_space() -> Dict[str, Any]:
"""
Values to search for each ROI steps
"""
return {
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
}
@staticmethod
def stoploss_space() -> Dict[str, Any]:
"""
Stoploss Value to search
"""
return {
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
}
@staticmethod
def indicator_space() -> Dict[str, Any]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return {
'macd_below_zero': hp.choice('macd_below_zero', [
{'enabled': False},
{'enabled': True}
]),
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 10, 25, 5)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 15, 45, 5)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 20, 50, 5)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 5)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'lower_bb_tema'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema3_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'ht_sine'},
{'type': 'heiken_reversal_bull'},
{'type': 'di_cross'},
]),
}
def has_space(self, space: str) -> bool:
"""
Tell if a space value is contained in the configuration
"""
if space in self.config['spaces'] or 'all' in self.config['spaces']:
return True
return False
def hyperopt_space(self) -> Dict[str, Any]:
"""
Return the space to use during Hyperopt
"""
spaces = {}
if self.has_space('buy'):
spaces = {**spaces, **Hyperopt.indicator_space()}
if self.has_space('roi'):
spaces = {**spaces, **Hyperopt.roi_space()}
if self.has_space('stoploss'):
spaces = {**spaces, **Hyperopt.stoploss_space()}
return spaces
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
conditions = []
# GUARDS AND TRENDS
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
conditions.append(dataframe['macd'] < 0)
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if 'mfi' in params and params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if 'fastd' in params and params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if 'adx' in params and params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if 'rsi' in params and params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if 'over_sar' in params and params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if 'green_candle' in params and params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': (
dataframe['close'] < dataframe['bb_lowerband']
),
'lower_bb_tema': (
dataframe['tema'] < dataframe['bb_lowerband']
),
'faststoch10': (qtpylib.crossed_above(
dataframe['fastd'], 10.0
)),
'ao_cross_zero': (qtpylib.crossed_above(
dataframe['ao'], 0.0
)),
'ema3_cross_ema10': (qtpylib.crossed_above(
dataframe['ema3'], dataframe['ema10']
)),
'macd_cross_signal': (qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
)),
'sar_reversal': (qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
)),
'ht_sine': (qtpylib.crossed_above(
dataframe['htleadsine'], dataframe['htsine']
)),
'heiken_reversal_bull': (
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
(dataframe['ha_low'] == dataframe['ha_open'])
),
'di_cross': (qtpylib.crossed_above(
dataframe['plus_di'], dataframe['minus_di']
)),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
def generate_optimizer(self, params: Dict) -> Dict:
if self.has_space('roi'):
self.analyze.strategy.minimal_roi = self.generate_roi_table(params)
if self.has_space('buy'):
self.populate_buy_trend = self.buy_strategy_generator(params)
if self.has_space('stoploss'):
self.analyze.strategy.stoploss = params['stoploss']
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': self.processed,
'realistic': self.config.get('realistic_simulation', False),
}
)
result_explanation = self.format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.duration.mean()
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
print('.', end='')
return {
'status': STATUS_FAIL,
'loss': float('inf')
}
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
self.current_tries += 1
self.log_results(
{
'loss': loss,
'current_tries': self.current_tries,
'total_tries': self.total_tries,
'result': result_explanation,
}
)
return {
'loss': loss,
'status': STATUS_OK,
'result': result_explanation,
}
@staticmethod
def format_results(results: DataFrame) -> str:
"""
Return the format result in a string
"""
return ('{:6d} trades. Avg profit {: 5.2f}%. '
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.profit_percent.sum(),
results.duration.mean(),
)
def start(self) -> None:
timerange = Arguments.parse_timerange(self.config.get('timerange'))
data = load_data(
datadir=self.config.get('datadir'),
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
timerange=timerange
)
if self.has_space('buy'):
self.analyze.populate_indicators = Hyperopt.populate_indicators
self.processed = self.tickerdata_to_dataframe(data)
if self.config.get('mongodb'):
logger.info('Using mongodb ...')
logger.info(
'Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!'
)
db_name = 'freqtrade_hyperopt'
self.trials = MongoTrials(
arg='mongo://127.0.0.1:1234/{}/jobs'.format(db_name),
exp_key='exp1'
)
else:
logger.info('Preparing Trials..')
signal.signal(signal.SIGINT, self.signal_handler)
# read trials file if we have one
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
self.current_tries = len(self.trials.results)
self.total_tries += self.current_tries
logger.info(
'Continuing with trials. Current: %d, Total: %d',
self.current_tries,
self.total_tries
)
try:
best_parameters = fmin(
fn=self.generate_optimizer,
space=self.hyperopt_space(),
algo=tpe.suggest,
max_evals=self.total_tries,
trials=self.trials
)
results = sorted(self.trials.results, key=itemgetter('loss'))
best_result = results[0]['result']
except ValueError:
best_parameters = {}
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
'try with more epochs (param: -e).'
# Improve best parameter logging display
if best_parameters:
best_parameters = space_eval(
self.hyperopt_space(),
best_parameters
)
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
if 'roi_t1' in best_parameters:
logger.info('ROI table:\n%s', self.generate_roi_table(best_parameters))
logger.info('Best Result:\n%s', best_result)
# Store trials result to file to resume next time
self.save_trials()
def signal_handler(self, sig, frame) -> None:
"""
Hyperopt SIGINT handler
"""
logger.info(
'Hyperopt received %s',
signal.Signals(sig).name
)
self.save_trials()
self.log_trials_result()
sys.exit(0)
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Remove noisy log messages
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
# Initialize configuration
# Monkey patch the configuration with hyperopt_conf.py
configuration = Configuration(args)
logger.info('Starting freqtrade in Hyperopt mode')
optimize_config = hyperopt_optimize_conf()
config = configuration._load_common_config(optimize_config)
config = configuration._load_backtesting_config(config)
config = configuration._load_hyperopt_config(config)
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()

View File

@@ -1,10 +1,15 @@
"""
This module contains the class to persist trades into SQLite
"""
import logging
from datetime import datetime
from decimal import Decimal, getcontext
from typing import Optional, Dict
from typing import Dict, Optional
import arrow
from sqlalchemy import Boolean, Column, DateTime, Float, Integer, String, create_engine
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
create_engine)
from sqlalchemy.engine import Engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
@@ -29,10 +34,15 @@ def init(config: dict, engine: Optional[Engine] = None) -> None:
_CONF.update(config)
if not engine:
if _CONF.get('dry_run', False):
engine = create_engine('sqlite://',
connect_args={'check_same_thread': False},
poolclass=StaticPool,
echo=False)
# the user wants dry run to use a DB
if _CONF.get('dry_run_db', False):
engine = create_engine('sqlite:///tradesv3.dry_run.sqlite')
# Otherwise dry run will store in memory
else:
engine = create_engine('sqlite://',
connect_args={'check_same_thread': False},
poolclass=StaticPool,
echo=False)
else:
engine = create_engine('sqlite:///tradesv3.sqlite')
@@ -41,6 +51,10 @@ def init(config: dict, engine: Optional[Engine] = None) -> None:
Trade.query = session.query_property()
_DECL_BASE.metadata.create_all(engine)
# Clean dry_run DB
if _CONF.get('dry_run', False) and _CONF.get('dry_run_db', False):
clean_dry_run_db()
def cleanup() -> None:
"""
@@ -50,7 +64,21 @@ def cleanup() -> None:
Trade.session.flush()
def clean_dry_run_db() -> None:
"""
Remove open_order_id from a Dry_run DB
:return: None
"""
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
# Check we are updating only a dry_run order not a prod one
if 'dry_run' in trade.open_order_id:
trade.open_order_id = None
class Trade(_DECL_BASE):
"""
Class used to define a trade structure
"""
__tablename__ = 'trades'
id = Column(Integer, primary_key=True)
@@ -68,7 +96,7 @@ class Trade(_DECL_BASE):
open_order_id = Column(String)
def __repr__(self):
return 'Trade(id={}, pair={}, amount={}, open_rate={}, open_since={})'.format(
return 'Trade(id={}, pair={}, amount={:.8f}, open_rate={:.8f}, open_since={})'.format(
self.id,
self.pair,
self.amount,
@@ -82,38 +110,112 @@ class Trade(_DECL_BASE):
:param order: order retrieved by exchange.get_order()
:return: None
"""
if not order['closed']:
# Ignore open and cancelled orders
if not order['closed'] or order['rate'] is None:
return
logger.info('Updating trade (id=%d) ...', self.id)
getcontext().prec = 8 # Bittrex do not go above 8 decimal
if order['type'] == 'LIMIT_BUY':
# Update open rate and actual amount
self.open_rate = order['rate']
self.amount = order['amount']
self.open_rate = Decimal(order['rate'])
self.amount = Decimal(order['amount'])
logger.info('LIMIT_BUY has been fulfilled for %s.', self)
self.open_order_id = None
elif order['type'] == 'LIMIT_SELL':
# Set close rate and set actual profit
self.close_rate = order['rate']
self.close_profit = self.calc_profit()
self.close_date = datetime.utcnow()
self.is_open = False
logger.info(
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
self
)
self.close(order['rate'])
else:
raise ValueError('Unknown order type: {}'.format(order['type']))
cleanup()
def close(self, rate: float) -> None:
"""
Sets close_rate to the given rate, calculates total profit
and marks trade as closed
"""
self.close_rate = Decimal(rate)
self.close_profit = self.calc_profit_percent()
self.close_date = datetime.utcnow()
self.is_open = False
self.open_order_id = None
Trade.session.flush()
logger.info(
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
self
)
def calc_profit(self, rate: Optional[float] = None) -> float:
def calc_open_trade_price(
self,
fee: Optional[float] = None) -> float:
"""
Calculate the open_rate in BTC
:param fee: fee to use on the open rate (optional).
If rate is not set self.fee will be used
:return: Price in BTC of the open trade
"""
getcontext().prec = 8
buy_trade = (Decimal(self.amount) * Decimal(self.open_rate))
fees = buy_trade * Decimal(fee or self.fee)
return float(buy_trade + fees)
def calc_close_trade_price(
self,
rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
"""
Calculate the close_rate in BTC
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
:return: Price in BTC of the open trade
"""
getcontext().prec = 8
if rate is None and not self.close_rate:
return 0.0
sell_trade = (Decimal(self.amount) * Decimal(rate or self.close_rate))
fees = sell_trade * Decimal(fee or self.fee)
return float(sell_trade - fees)
def calc_profit(
self,
rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
"""
Calculate the profit in BTC between Close and Open trade
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
:param rate: close rate to compare with (optional).
If rate is not set self.close_rate will be used
:return: profit in BTC as float
"""
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee)
)
return float("{0:.8f}".format(close_trade_price - open_trade_price))
def calc_profit_percent(
self,
rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
"""
Calculates the profit in percentage (including fee).
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
:param fee: fee to use on the close rate (optional).
:return: profit in percentage as float
"""
getcontext().prec = 8
return float((Decimal(rate or self.close_rate) - Decimal(self.open_rate))
/ Decimal(self.open_rate) - Decimal(self.fee))
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee)
)
return float("{0:.8f}".format((close_trade_price / open_trade_price) - 1))

View File

@@ -1,42 +0,0 @@
import logging
from . import telegram
logger = logging.getLogger(__name__)
REGISTERED_MODULES = []
def init(config: dict) -> None:
"""
Initializes all enabled rpc modules
:param config: config to use
:return: None
"""
if config['telegram'].get('enabled', False):
logger.info('Enabling rpc.telegram ...')
REGISTERED_MODULES.append('telegram')
telegram.init(config)
def cleanup() -> None:
"""
Stops all enabled rpc modules
:return: None
"""
if 'telegram' in REGISTERED_MODULES:
logger.debug('Cleaning up rpc.telegram ...')
telegram.cleanup()
def send_msg(msg: str) -> None:
"""
Send given markdown message to all registered rpc modules
:param msg: message
:return: None
"""
logger.info(msg)
if 'telegram' in REGISTERED_MODULES:
telegram.send_msg(msg)

383
freqtrade/rpc/rpc.py Normal file
View File

@@ -0,0 +1,383 @@
"""
This module contains class to define a RPC communications
"""
import logging
from datetime import datetime, timedelta
from decimal import Decimal
from typing import Tuple, Any
import arrow
import sqlalchemy as sql
from pandas import DataFrame
from freqtrade import exchange
from freqtrade.misc import shorten_date
from freqtrade.persistence import Trade
from freqtrade.state import State
logger = logging.getLogger(__name__)
class RPC(object):
"""
RPC class can be used to have extra feature, like bot data, and access to DB data
"""
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
self.freqtrade = freqtrade
def rpc_trade_status(self) -> Tuple[bool, Any]:
"""
Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is
a remotely exposed function
:return:
"""
# Fetch open trade
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if self.freqtrade.state != State.RUNNING:
return True, '*Status:* `trader is not running`'
elif not trades:
return True, '*Status:* `no active trade`'
else:
result = []
for trade in trades:
order = None
if trade.open_order_id:
order = exchange.get_order(trade.open_order_id)
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair, False)['bid']
current_profit = trade.calc_profit_percent(current_rate)
fmt_close_profit = '{:.2f}%'.format(
round(trade.close_profit * 100, 2)
) if trade.close_profit else None
message = "*Trade ID:* `{trade_id}`\n" \
"*Current Pair:* [{pair}]({market_url})\n" \
"*Open Since:* `{date}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Close Rate:* `{close_rate}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Close Profit:* `{close_profit}`\n" \
"*Current Profit:* `{current_profit:.2f}%`\n" \
"*Open Order:* `{open_order}`"\
.format(
trade_id=trade.id,
pair=trade.pair,
market_url=exchange.get_pair_detail_url(trade.pair),
date=arrow.get(trade.open_date).humanize(),
open_rate=trade.open_rate,
close_rate=trade.close_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
close_profit=fmt_close_profit,
current_profit=round(current_profit * 100, 2),
open_order='({} rem={:.8f})'.format(
order['type'], order['remaining']
) if order else None,
)
result.append(message)
return False, result
def rpc_status_table(self) -> Tuple[bool, Any]:
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if self.freqtrade.state != State.RUNNING:
return True, '*Status:* `trader is not running`'
elif not trades:
return True, '*Status:* `no active order`'
else:
trades_list = []
for trade in trades:
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair, False)['bid']
trades_list.append([
trade.id,
trade.pair,
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
'{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate))
])
columns = ['ID', 'Pair', 'Since', 'Profit']
df_statuses = DataFrame.from_records(trades_list, columns=columns)
df_statuses = df_statuses.set_index(columns[0])
# The style used throughout is to return a tuple
# consisting of (error_occured?, result)
# Another approach would be to just return the
# result, or raise error
return False, df_statuses
def rpc_daily_profit(
self, timescale: int,
stake_currency: str, fiat_display_currency: str) -> Tuple[bool, Any]:
today = datetime.utcnow().date()
profit_days = {}
if not (isinstance(timescale, int) and timescale > 0):
return True, '*Daily [n]:* `must be an integer greater than 0`'
fiat = self.freqtrade.fiat_converter
for day in range(0, timescale):
profitday = today - timedelta(days=day)
trades = Trade.query \
.filter(Trade.is_open.is_(False)) \
.filter(Trade.close_date >= profitday)\
.filter(Trade.close_date < (profitday + timedelta(days=1)))\
.order_by(Trade.close_date)\
.all()
curdayprofit = sum(trade.calc_profit() for trade in trades)
profit_days[profitday] = {
'amount': format(curdayprofit, '.8f'),
'trades': len(trades)
}
stats = [
[
key,
'{value:.8f} {symbol}'.format(
value=float(value['amount']),
symbol=stake_currency
),
'{value:.3f} {symbol}'.format(
value=fiat.convert_amount(
value['amount'],
stake_currency,
fiat_display_currency
),
symbol=fiat_display_currency
),
'{value} trade{s}'.format(
value=value['trades'],
s='' if value['trades'] < 2 else 's'
),
]
for key, value in profit_days.items()
]
return False, stats
def rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str) -> Tuple[bool, Any]:
"""
:return: cumulative profit statistics.
"""
trades = Trade.query.order_by(Trade.id).all()
profit_all_coin = []
profit_all_percent = []
profit_closed_coin = []
profit_closed_percent = []
durations = []
for trade in trades:
current_rate = None
if not trade.open_rate:
continue
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
if not trade.is_open:
profit_percent = trade.calc_profit_percent()
profit_closed_coin.append(trade.calc_profit())
profit_closed_percent.append(profit_percent)
else:
# Get current rate
current_rate = exchange.get_ticker(trade.pair, False)['bid']
profit_percent = trade.calc_profit_percent(rate=current_rate)
profit_all_coin.append(
trade.calc_profit(rate=Decimal(trade.close_rate or current_rate))
)
profit_all_percent.append(profit_percent)
best_pair = Trade.session.query(
Trade.pair, sql.func.sum(Trade.close_profit).label('profit_sum')
).filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(sql.text('profit_sum DESC')).first()
if not best_pair:
return True, '*Status:* `no closed trade`'
bp_pair, bp_rate = best_pair
# FIX: we want to keep fiatconverter in a state/environment,
# doing this will utilize its caching functionallity, instead we reinitialize it here
fiat = self.freqtrade.fiat_converter
# Prepare data to display
profit_closed_coin = round(sum(profit_closed_coin), 8)
profit_closed_percent = round(sum(profit_closed_percent) * 100, 2)
profit_closed_fiat = fiat.convert_amount(
profit_closed_coin,
stake_currency,
fiat_display_currency
)
profit_all_coin = round(sum(profit_all_coin), 8)
profit_all_percent = round(sum(profit_all_percent) * 100, 2)
profit_all_fiat = fiat.convert_amount(
profit_all_coin,
stake_currency,
fiat_display_currency
)
num = float(len(durations) or 1)
return (
False,
{
'profit_closed_coin': profit_closed_coin,
'profit_closed_percent': profit_closed_percent,
'profit_closed_fiat': profit_closed_fiat,
'profit_all_coin': profit_all_coin,
'profit_all_percent': profit_all_percent,
'profit_all_fiat': profit_all_fiat,
'trade_count': len(trades),
'first_trade_date': arrow.get(trades[0].open_date).humanize(),
'latest_trade_date': arrow.get(trades[-1].open_date).humanize(),
'avg_duration': str(timedelta(seconds=sum(durations) / num)).split('.')[0],
'best_pair': bp_pair,
'best_rate': round(bp_rate * 100, 2)
}
)
def rpc_balance(self, fiat_display_currency: str) -> Tuple[bool, Any]:
"""
:return: current account balance per crypto
"""
balances = [
c for c in exchange.get_balances()
if c['Balance'] or c['Available'] or c['Pending']
]
if not balances:
return True, '`All balances are zero.`'
output = []
total = 0.0
for currency in balances:
coin = currency['Currency']
if coin == 'BTC':
currency["Rate"] = 1.0
else:
if coin == 'USDT':
currency["Rate"] = 1.0 / exchange.get_ticker('USDT_BTC', False)['bid']
else:
currency["Rate"] = exchange.get_ticker('BTC_' + coin, False)['bid']
currency['BTC'] = currency["Rate"] * currency["Balance"]
total = total + currency['BTC']
output.append(
{
'currency': currency['Currency'],
'available': currency['Available'],
'balance': currency['Balance'],
'pending': currency['Pending'],
'est_btc': currency['BTC']
}
)
fiat = self.freqtrade.fiat_converter
symbol = fiat_display_currency
value = fiat.convert_amount(total, 'BTC', symbol)
return False, (output, total, symbol, value)
def rpc_start(self) -> (bool, str):
"""
Handler for start.
"""
if self.freqtrade.state == State.RUNNING:
return True, '*Status:* `already running`'
self.freqtrade.state = State.RUNNING
return False, '`Starting trader ...`'
def rpc_stop(self) -> (bool, str):
"""
Handler for stop.
"""
if self.freqtrade.state == State.RUNNING:
self.freqtrade.state = State.STOPPED
return False, '`Stopping trader ...`'
return True, '*Status:* `already stopped`'
# FIX: no test for this!!!!
def rpc_forcesell(self, trade_id) -> Tuple[bool, Any]:
"""
Handler for forcesell <id>.
Sells the given trade at current price
:return: error or None
"""
def _exec_forcesell(trade: Trade) -> None:
# Check if there is there is an open order
if trade.open_order_id:
order = exchange.get_order(trade.open_order_id)
# Cancel open LIMIT_BUY orders and close trade
if order and not order['closed'] and order['type'] == 'LIMIT_BUY':
exchange.cancel_order(trade.open_order_id)
trade.close(order.get('rate') or trade.open_rate)
# TODO: sell amount which has been bought already
return
# Ignore trades with an attached LIMIT_SELL order
if order and not order['closed'] and order['type'] == 'LIMIT_SELL':
return
# Get current rate and execute sell
current_rate = exchange.get_ticker(trade.pair, False)['bid']
self.freqtrade.execute_sell(trade, current_rate)
# ---- EOF def _exec_forcesell ----
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
_exec_forcesell(trade)
return False, ''
# Query for trade
trade = Trade.query.filter(
sql.and_(
Trade.id == trade_id,
Trade.is_open.is_(True)
)
).first()
if not trade:
logger.warning('forcesell: Invalid argument received')
return True, 'Invalid argument.'
_exec_forcesell(trade)
return False, ''
def rpc_performance(self) -> Tuple[bool, Any]:
"""
Handler for performance.
Shows a performance statistic from finished trades
"""
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
pair_rates = Trade.session.query(Trade.pair,
sql.func.sum(Trade.close_profit).label('profit_sum'),
sql.func.count(Trade.pair).label('count')) \
.filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(sql.text('profit_sum DESC')) \
.all()
trades = []
for (pair, rate, count) in pair_rates:
trades.append({'pair': pair, 'profit': round(rate * 100, 2), 'count': count})
return False, trades
def rpc_count(self) -> Tuple[bool, Any]:
"""
Returns the number of trades running
:return: None
"""
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
return False, trades

View File

@@ -0,0 +1,56 @@
"""
This module contains class to manage RPC communications (Telegram, Slack, ...)
"""
import logging
from freqtrade.rpc.telegram import Telegram
logger = logging.getLogger(__name__)
class RPCManager(object):
"""
Class to manage RPC objects (Telegram, Slack, ...)
"""
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param config: config to use
:return: None
"""
self.freqtrade = freqtrade
self.registered_modules = []
self.telegram = None
self._init()
def _init(self) -> None:
"""
Init RPC modules
:return:
"""
if self.freqtrade.config['telegram'].get('enabled', False):
logger.info('Enabling rpc.telegram ...')
self.registered_modules.append('telegram')
self.telegram = Telegram(self.freqtrade)
def cleanup(self) -> None:
"""
Stops all enabled rpc modules
:return: None
"""
if 'telegram' in self.registered_modules:
logger.info('Cleaning up rpc.telegram ...')
self.registered_modules.remove('telegram')
self.telegram.cleanup()
def send_msg(self, msg: str) -> None:
"""
Send given markdown message to all registered rpc modules
:param msg: message
:return: None
"""
logger.info(msg)
if 'telegram' in self.registered_modules:
self.telegram.send_msg(msg)

View File

@@ -1,88 +1,22 @@
import logging
import re
from datetime import timedelta
from typing import Callable, Any
from pandas import DataFrame
from tabulate import tabulate
# pragma pylint: disable=unused-argument, unused-variable, protected-access, invalid-name
import arrow
from sqlalchemy import and_, func, text
from telegram import ParseMode, Bot, Update
"""
This module manage Telegram communication
"""
import logging
from typing import Any, Callable
from tabulate import tabulate
from telegram import Bot, ParseMode, ReplyKeyboardMarkup, Update
from telegram.error import NetworkError, TelegramError
from telegram.ext import CommandHandler, Updater
from freqtrade import exchange, __version__
from freqtrade.misc import get_state, State, update_state
from freqtrade.persistence import Trade
from freqtrade.__init__ import __version__
from freqtrade.rpc.rpc import RPC
# Remove noisy log messages
logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)
logger = logging.getLogger(__name__)
_UPDATER: Updater = None
_CONF = {}
def init(config: dict) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:return: None
"""
global _UPDATER
_CONF.update(config)
if not is_enabled():
return
_UPDATER = Updater(token=config['telegram']['token'], workers=0)
# Register command handler and start telegram message polling
handles = [
CommandHandler('status', _status),
CommandHandler('profit', _profit),
CommandHandler('balance', _balance),
CommandHandler('start', _start),
CommandHandler('stop', _stop),
CommandHandler('forcesell', _forcesell),
CommandHandler('performance', _performance),
CommandHandler('count', _count),
CommandHandler('help', _help),
CommandHandler('version', _version),
]
for handle in handles:
_UPDATER.dispatcher.add_handler(handle)
_UPDATER.start_polling(
clean=True,
bootstrap_retries=-1,
timeout=30,
read_latency=60,
)
logger.info(
'rpc.telegram is listening for following commands: %s',
[h.command for h in handles]
)
def cleanup() -> None:
"""
Stops all running telegram threads.
:return: None
"""
if not is_enabled():
return
_UPDATER.stop()
def is_enabled() -> bool:
"""
Returns True if the telegram module is activated, False otherwise
"""
return bool(_CONF['telegram'].get('enabled', False))
def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[..., Any]:
"""
@@ -90,402 +24,426 @@ def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[
:param command_handler: Telegram CommandHandler
:return: decorated function
"""
def wrapper(*args, **kwargs):
bot, update = kwargs.get('bot') or args[0], kwargs.get('update') or args[1]
def wrapper(self, *args, **kwargs):
"""
Decorator logic
"""
update = kwargs.get('update') or args[1]
# Reject unauthorized messages
chat_id = int(_CONF['telegram']['chat_id'])
chat_id = int(self._config['telegram']['chat_id'])
if int(update.message.chat_id) != chat_id:
logger.info('Rejected unauthorized message from: %s', update.message.chat_id)
logger.info(
'Rejected unauthorized message from: %s',
update.message.chat_id
)
return wrapper
logger.info('Executing handler: %s for chat_id: %s', command_handler.__name__, chat_id)
logger.info(
'Executing handler: %s for chat_id: %s',
command_handler.__name__,
chat_id
)
try:
return command_handler(*args, **kwargs)
return command_handler(self, *args, **kwargs)
except BaseException:
logger.exception('Exception occurred within Telegram module')
return wrapper
@authorized_only
def _status(bot: Bot, update: Update) -> None:
class Telegram(RPC):
"""
Handler for /status.
Returns the current TradeThread status
:param bot: telegram bot
:param update: message update
:return: None
Telegram, this class send messages to Telegram
"""
def __init__(self, freqtrade) -> None:
"""
Init the Telegram call, and init the super class RPC
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
super().__init__(freqtrade)
# Check if additional parameters are passed
params = update.message.text.replace('/status', '').split(' ') \
if update.message.text else []
if 'table' in params:
_status_table(bot, update)
return
self._updater = None
self._config = freqtrade.config
self._init()
# Fetch open trade
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if get_state() != State.RUNNING:
send_msg('*Status:* `trader is not running`', bot=bot)
elif not trades:
send_msg('*Status:* `no active trade`', bot=bot)
else:
for trade in trades:
order = None
if trade.open_order_id:
order = exchange.get_order(trade.open_order_id)
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair)['bid']
current_profit = trade.calc_profit(current_rate)
fmt_close_profit = '{:.2f}%'.format(
round(trade.close_profit * 100, 2)
) if trade.close_profit else None
message = """
*Trade ID:* `{trade_id}`
*Current Pair:* [{pair}]({market_url})
*Open Since:* `{date}`
*Amount:* `{amount}`
*Open Rate:* `{open_rate:.8f}`
*Close Rate:* `{close_rate}`
*Current Rate:* `{current_rate:.8f}`
*Close Profit:* `{close_profit}`
*Current Profit:* `{current_profit:.2f}%`
*Open Order:* `{open_order}`
""".format(
trade_id=trade.id,
pair=trade.pair,
market_url=exchange.get_pair_detail_url(trade.pair),
date=arrow.get(trade.open_date).humanize(),
open_rate=trade.open_rate,
close_rate=trade.close_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
close_profit=fmt_close_profit,
current_profit=round(current_profit * 100, 2),
open_order='{} ({})'.format(
order['remaining'], order['type']
) if order else None,
)
send_msg(message, bot=bot)
def _init(self) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:return: None
"""
if not self.is_enabled():
return
self._updater = Updater(token=self._config['telegram']['token'], workers=0)
@authorized_only
def _status_table(bot: Bot, update: Update) -> None:
"""
Handler for /status table.
Returns the current TradeThread status in table format
:param bot: telegram bot
:param update: message update
:return: None
"""
# Fetch open trade
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if get_state() != State.RUNNING:
send_msg('*Status:* `trader is not running`', bot=bot)
elif not trades:
send_msg('*Status:* `no active order`', bot=bot)
else:
trades_list = []
for trade in trades:
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair)['bid']
trades_list.append([
trade.id,
trade.pair,
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
'{:.2f}'.format(100 * trade.calc_profit(current_rate))
])
# Register command handler and start telegram message polling
handles = [
CommandHandler('status', self._status),
CommandHandler('profit', self._profit),
CommandHandler('balance', self._balance),
CommandHandler('start', self._start),
CommandHandler('stop', self._stop),
CommandHandler('forcesell', self._forcesell),
CommandHandler('performance', self._performance),
CommandHandler('daily', self._daily),
CommandHandler('count', self._count),
CommandHandler('help', self._help),
CommandHandler('version', self._version),
]
for handle in handles:
self._updater.dispatcher.add_handler(handle)
self._updater.start_polling(
clean=True,
bootstrap_retries=-1,
timeout=30,
read_latency=60,
)
logger.info(
'rpc.telegram is listening for following commands: %s',
[h.command for h in handles]
)
columns = ['ID', 'Pair', 'Since', 'Profit']
df_statuses = DataFrame.from_records(trades_list, columns=columns)
df_statuses = df_statuses.set_index(columns[0])
def cleanup(self) -> None:
"""
Stops all running telegram threads.
:return: None
"""
if not self.is_enabled():
return
message = tabulate(df_statuses, headers='keys', tablefmt='simple')
message = "<pre>{}</pre>".format(message)
self._updater.stop()
send_msg(message, parse_mode=ParseMode.HTML)
def is_enabled(self) -> bool:
"""
Returns True if the telegram module is activated, False otherwise
"""
return bool(self._config.get('telegram', {}).get('enabled', False))
@authorized_only
def _status(self, bot: Bot, update: Update) -> None:
"""
Handler for /status.
Returns the current TradeThread status
:param bot: telegram bot
:param update: message update
:return: None
"""
@authorized_only
def _profit(bot: Bot, update: Update) -> None:
"""
Handler for /profit.
Returns a cumulative profit statistics.
:param bot: telegram bot
:param update: message update
:return: None
"""
trades = Trade.query.order_by(Trade.id).all()
# Check if additional parameters are passed
params = update.message.text.replace('/status', '').split(' ') \
if update.message.text else []
if 'table' in params:
self._status_table(bot, update)
return
profit_amounts = []
profits = []
durations = []
for trade in trades:
if not trade.open_rate:
continue
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
if trade.close_profit:
profit = trade.close_profit
# Fetch open trade
(error, trades) = self.rpc_trade_status()
if error:
self.send_msg(trades, bot=bot)
else:
# Get current rate
current_rate = exchange.get_ticker(trade.pair)['bid']
profit = trade.calc_profit(current_rate)
for trademsg in trades:
self.send_msg(trademsg, bot=bot)
profit_amounts.append(profit * trade.stake_amount)
profits.append(profit)
@authorized_only
def _status_table(self, bot: Bot, update: Update) -> None:
"""
Handler for /status table.
Returns the current TradeThread status in table format
:param bot: telegram bot
:param update: message update
:return: None
"""
# Fetch open trade
(err, df_statuses) = self.rpc_status_table()
if err:
self.send_msg(df_statuses, bot=bot)
else:
message = tabulate(df_statuses, headers='keys', tablefmt='simple')
message = "<pre>{}</pre>".format(message)
best_pair = Trade.session.query(Trade.pair, func.sum(Trade.close_profit).label('profit_sum')) \
.filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(text('profit_sum DESC')) \
.first()
self.send_msg(message, parse_mode=ParseMode.HTML)
if not best_pair:
send_msg('*Status:* `no closed trade`', bot=bot)
return
bp_pair, bp_rate = best_pair
markdown_msg = """
*ROI:* `{profit_btc:.8f} ({profit:.2f}%)`
*Trade Count:* `{trade_count}`
*First Trade opened:* `{first_trade_date}`
*Latest Trade opened:* `{latest_trade_date}`
*Avg. Duration:* `{avg_duration}`
*Best Performing:* `{best_pair}: {best_rate:.2f}%`
""".format(
profit_btc=round(sum(profit_amounts), 8),
profit=round(sum(profits) * 100, 2),
trade_count=len(trades),
first_trade_date=arrow.get(trades[0].open_date).humanize(),
latest_trade_date=arrow.get(trades[-1].open_date).humanize(),
avg_duration=str(timedelta(seconds=sum(durations) / float(len(durations)))).split('.')[0],
best_pair=bp_pair,
best_rate=round(bp_rate * 100, 2),
)
send_msg(markdown_msg, bot=bot)
@authorized_only
def _balance(bot: Bot, update: Update) -> None:
"""
Handler for /balance
Returns current account balance per crypto
"""
output = ''
balances = [
c for c in exchange.get_balances()
if c['Balance'] or c['Available'] or c['Pending']
]
if not balances:
output = '`All balances are zero.`'
for currency in balances:
output += """*Currency*: {Currency}
*Available*: {Available}
*Balance*: {Balance}
*Pending*: {Pending}
""".format(**currency)
send_msg(output)
@authorized_only
def _start(bot: Bot, update: Update) -> None:
"""
Handler for /start.
Starts TradeThread
:param bot: telegram bot
:param update: message update
:return: None
"""
if get_state() == State.RUNNING:
send_msg('*Status:* `already running`', bot=bot)
else:
update_state(State.RUNNING)
@authorized_only
def _stop(bot: Bot, update: Update) -> None:
"""
Handler for /stop.
Stops TradeThread
:param bot: telegram bot
:param update: message update
:return: None
"""
if get_state() == State.RUNNING:
send_msg('`Stopping trader ...`', bot=bot)
update_state(State.STOPPED)
else:
send_msg('*Status:* `already stopped`', bot=bot)
@authorized_only
def _forcesell(bot: Bot, update: Update) -> None:
"""
Handler for /forcesell <id>.
Sells the given trade at current price
:param bot: telegram bot
:param update: message update
:return: None
"""
if get_state() != State.RUNNING:
send_msg('`trader is not running`', bot=bot)
return
trade_id = update.message.text.replace('/forcesell', '').strip()
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
# Get current rate
current_rate = exchange.get_ticker(trade.pair)['bid']
from freqtrade.main import execute_sell
execute_sell(trade, current_rate)
return
# Query for trade
trade = Trade.query.filter(and_(
Trade.id == trade_id,
Trade.is_open.is_(True)
)).first()
if not trade:
send_msg('Invalid argument. See `/help` to view usage')
logger.warning('/forcesell: Invalid argument received')
return
# Get current rate
current_rate = exchange.get_ticker(trade.pair)['bid']
from freqtrade.main import execute_sell
execute_sell(trade, current_rate)
@authorized_only
def _performance(bot: Bot, update: Update) -> None:
"""
Handler for /performance.
Shows a performance statistic from finished trades
:param bot: telegram bot
:param update: message update
:return: None
"""
if get_state() != State.RUNNING:
send_msg('`trader is not running`', bot=bot)
return
pair_rates = Trade.session.query(Trade.pair, func.sum(Trade.close_profit).label('profit_sum')) \
.filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(text('profit_sum DESC')) \
.all()
stats = '\n'.join('{index}.\t<code>{pair}\t{profit:.2f}%</code>'.format(
index=i + 1,
pair=pair,
profit=round(rate * 100, 2)
) for i, (pair, rate) in enumerate(pair_rates))
message = '<b>Performance:</b>\n{}'.format(stats)
logger.debug(message)
send_msg(message, parse_mode=ParseMode.HTML)
@authorized_only
def _count(bot: Bot, update: Update) -> None:
"""
Handler for /count.
Returns the number of trades running
:param bot: telegram bot
:param update: message update
:return: None
"""
if get_state() != State.RUNNING:
send_msg('`trader is not running`', bot=bot)
return
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
message = tabulate({
'current': [len(trades)],
'max': [_CONF['max_open_trades']]
}, headers=['current', 'max'], tablefmt='simple')
message = "<pre>{}</pre>".format(message)
logger.debug(message)
send_msg(message, parse_mode=ParseMode.HTML)
@authorized_only
def _help(bot: Bot, update: Update) -> None:
"""
Handler for /help.
Show commands of the bot
:param bot: telegram bot
:param update: message update
:return: None
"""
message = """
*/start:* `Starts the trader`
*/stop:* `Stops the trader`
*/status [table]:* `Lists all open trades`
*table :* `will display trades in a table`
*/profit:* `Lists cumulative profit from all finished trades`
*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, regardless of profit`
*/performance:* `Show performance of each finished trade grouped by pair`
*/count:* `Show number of trades running compared to allowed number of trades`
*/balance:* `Show account balance per currency`
*/help:* `This help message`
*/version:* `Show version`
"""
send_msg(message, bot=bot)
@authorized_only
def _version(bot: Bot, update: Update) -> None:
"""
Handler for /version.
Show version information
:param bot: telegram bot
:param update: message update
:return: None
"""
send_msg('*Version:* `{}`'.format(__version__), bot=bot)
def shorten_date(date):
"""
Trim the date so it fits on small screens
"""
new_date = re.sub('seconds?', 'sec', date)
new_date = re.sub('minutes?', 'min', new_date)
new_date = re.sub('hours?', 'h', new_date)
new_date = re.sub('days?', 'd', new_date)
new_date = re.sub('^an?', '1', new_date)
return new_date
def send_msg(msg: str, bot: Bot = None, parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
"""
Send given markdown message
:param msg: message
:param bot: alternative bot
:param parse_mode: telegram parse mode
:return: None
"""
if not is_enabled():
return
bot = bot or _UPDATER.bot
try:
@authorized_only
def _daily(self, bot: Bot, update: Update) -> None:
"""
Handler for /daily <n>
Returns a daily profit (in BTC) over the last n days.
:param bot: telegram bot
:param update: message update
:return: None
"""
try:
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except NetworkError as network_err:
# Sometimes the telegram server resets the current connection,
# if this is the case we send the message again.
timescale = int(update.message.text.replace('/daily', '').strip())
except (TypeError, ValueError):
timescale = 7
(error, stats) = self.rpc_daily_profit(
timescale,
self._config['stake_currency'],
self._config['fiat_display_currency']
)
if error:
self.send_msg(stats, bot=bot)
else:
stats = tabulate(stats,
headers=[
'Day',
'Profit {}'.format(self._config['stake_currency']),
'Profit {}'.format(self._config['fiat_display_currency'])
],
tablefmt='simple')
message = '<b>Daily Profit over the last {} days</b>:\n<pre>{}</pre>'\
.format(
timescale,
stats
)
self.send_msg(message, bot=bot, parse_mode=ParseMode.HTML)
@authorized_only
def _profit(self, bot: Bot, update: Update) -> None:
"""
Handler for /profit.
Returns a cumulative profit statistics.
:param bot: telegram bot
:param update: message update
:return: None
"""
(error, stats) = self.rpc_trade_statistics(
self._config['stake_currency'],
self._config['fiat_display_currency']
)
if error:
self.send_msg(stats, bot=bot)
return
# Message to display
markdown_msg = "*ROI:* Close trades\n" \
"∙ `{profit_closed_coin:.8f} {coin} ({profit_closed_percent:.2f}%)`\n" \
"∙ `{profit_closed_fiat:.3f} {fiat}`\n" \
"*ROI:* All trades\n" \
"∙ `{profit_all_coin:.8f} {coin} ({profit_all_percent:.2f}%)`\n" \
"∙ `{profit_all_fiat:.3f} {fiat}`\n" \
"*Total Trade Count:* `{trade_count}`\n" \
"*First Trade opened:* `{first_trade_date}`\n" \
"*Latest Trade opened:* `{latest_trade_date}`\n" \
"*Avg. Duration:* `{avg_duration}`\n" \
"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"\
.format(
coin=self._config['stake_currency'],
fiat=self._config['fiat_display_currency'],
profit_closed_coin=stats['profit_closed_coin'],
profit_closed_percent=stats['profit_closed_percent'],
profit_closed_fiat=stats['profit_closed_fiat'],
profit_all_coin=stats['profit_all_coin'],
profit_all_percent=stats['profit_all_percent'],
profit_all_fiat=stats['profit_all_fiat'],
trade_count=stats['trade_count'],
first_trade_date=stats['first_trade_date'],
latest_trade_date=stats['latest_trade_date'],
avg_duration=stats['avg_duration'],
best_pair=stats['best_pair'],
best_rate=stats['best_rate']
)
self.send_msg(markdown_msg, bot=bot)
@authorized_only
def _balance(self, bot: Bot, update: Update) -> None:
"""
Handler for /balance
"""
(error, result) = self.rpc_balance(self._config['fiat_display_currency'])
if error:
self.send_msg('`All balances are zero.`')
return
(currencys, total, symbol, value) = result
output = ''
for currency in currencys:
output += """*Currency*: {currency}
*Available*: {available}
*Balance*: {balance}
*Pending*: {pending}
*Est. BTC*: {est_btc: .8f}
""".format(**currency)
output += """*Estimated Value*:
*BTC*: {0: .8f}
*{1}*: {2: .2f}
""".format(total, symbol, value)
self.send_msg(output)
@authorized_only
def _start(self, bot: Bot, update: Update) -> None:
"""
Handler for /start.
Starts TradeThread
:param bot: telegram bot
:param update: message update
:return: None
"""
(error, msg) = self.rpc_start()
if error:
self.send_msg(msg, bot=bot)
@authorized_only
def _stop(self, bot: Bot, update: Update) -> None:
"""
Handler for /stop.
Stops TradeThread
:param bot: telegram bot
:param update: message update
:return: None
"""
(error, msg) = self.rpc_stop()
self.send_msg(msg, bot=bot)
@authorized_only
def _forcesell(self, bot: Bot, update: Update) -> None:
"""
Handler for /forcesell <id>.
Sells the given trade at current price
:param bot: telegram bot
:param update: message update
:return: None
"""
trade_id = update.message.text.replace('/forcesell', '').strip()
(error, message) = self.rpc_forcesell(trade_id)
if error:
self.send_msg(message, bot=bot)
return
@authorized_only
def _performance(self, bot: Bot, update: Update) -> None:
"""
Handler for /performance.
Shows a performance statistic from finished trades
:param bot: telegram bot
:param update: message update
:return: None
"""
(error, trades) = self.rpc_performance()
if error:
self.send_msg(trades, bot=bot)
return
stats = '\n'.join('{index}.\t<code>{pair}\t{profit:.2f}% ({count})</code>'.format(
index=i + 1,
pair=trade['pair'],
profit=trade['profit'],
count=trade['count']
) for i, trade in enumerate(trades))
message = '<b>Performance:</b>\n{}'.format(stats)
self.send_msg(message, parse_mode=ParseMode.HTML)
@authorized_only
def _count(self, bot: Bot, update: Update) -> None:
"""
Handler for /count.
Returns the number of trades running
:param bot: telegram bot
:param update: message update
:return: None
"""
(error, trades) = self.rpc_count()
if error:
self.send_msg(trades, bot=bot)
return
message = tabulate({
'current': [len(trades)],
'max': [self._config['max_open_trades']],
'total stake': [sum((trade.open_rate * trade.amount) for trade in trades)]
}, headers=['current', 'max', 'total stake'], tablefmt='simple')
message = "<pre>{}</pre>".format(message)
logger.debug(message)
self.send_msg(message, parse_mode=ParseMode.HTML)
@authorized_only
def _help(self, bot: Bot, update: Update) -> None:
"""
Handler for /help.
Show commands of the bot
:param bot: telegram bot
:param update: message update
:return: None
"""
message = "*/start:* `Starts the trader`\n" \
"*/stop:* `Stops the trader`\n" \
"*/status [table]:* `Lists all open trades`\n" \
" *table :* `will display trades in a table`\n" \
"*/profit:* `Lists cumulative profit from all finished trades`\n" \
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, " \
"regardless of profit`\n" \
"*/performance:* `Show performance of each finished trade grouped by pair`\n" \
"*/daily <n>:* `Shows profit or loss per day, over the last n days`\n" \
"*/count:* `Show number of trades running compared to allowed number of trades`" \
"\n" \
"*/balance:* `Show account balance per currency`\n" \
"*/help:* `This help message`\n" \
"*/version:* `Show version`"
self.send_msg(message, bot=bot)
@authorized_only
def _version(self, bot: Bot, update: Update) -> None:
"""
Handler for /version.
Show version information
:param bot: telegram bot
:param update: message update
:return: None
"""
self.send_msg('*Version:* `{}`'.format(__version__), bot=bot)
def send_msg(self, msg: str, bot: Bot = None,
parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
"""
Send given markdown message
:param msg: message
:param bot: alternative bot
:param parse_mode: telegram parse mode
:return: None
"""
if not self.is_enabled():
return
bot = bot or self._updater.bot
keyboard = [['/daily', '/profit', '/balance'],
['/status', '/status table', '/performance'],
['/count', '/start', '/stop', '/help']]
reply_markup = ReplyKeyboardMarkup(keyboard)
try:
try:
bot.send_message(
self._config['telegram']['chat_id'],
text=msg,
parse_mode=parse_mode,
reply_markup=reply_markup
)
except NetworkError as network_err:
# Sometimes the telegram server resets the current connection,
# if this is the case we send the message again.
logger.warning(
'Telegram NetworkError: %s! Trying one more time.',
network_err.message
)
bot.send_message(
self._config['telegram']['chat_id'],
text=msg,
parse_mode=parse_mode,
reply_markup=reply_markup
)
except TelegramError as telegram_err:
logger.warning(
'Got Telegram NetworkError: %s! Trying one more time.',
network_err.message
'TelegramError: %s! Giving up on that message.',
telegram_err.message
)
bot.send_message(_CONF['telegram']['chat_id'], msg, parse_mode=parse_mode)
except TelegramError as telegram_err:
logger.warning('Got TelegramError: %s! Giving up on that message.', telegram_err.message)

14
freqtrade/state.py Normal file
View File

@@ -0,0 +1,14 @@
# pragma pylint: disable=too-few-public-methods
"""
Bot state constant
"""
import enum
class State(enum.Enum):
"""
Bot running states
"""
RUNNING = 0
STOPPED = 1

View File

View File

@@ -0,0 +1,240 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.indicator_helpers import fishers_inverse
from freqtrade.strategy.interface import IStrategy
class DefaultStrategy(IStrategy):
"""
Default Strategy provided by freqtrade bot.
You can override it with your own strategy
"""
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
"""
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)
"""
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
"""
# ROC
dataframe['roc'] = ta.ROC(dataframe)
"""
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
"""
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies
# ------------------------------------
# Previous Bollinger bands
# Because ta.BBANDS implementation is broken with small numbers, it actually
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
# and use middle band instead.
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['rsi'] < 35) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > 0.5)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > 0.5)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > 0.5)
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,44 @@
"""
IStrategy interface
This module defines the interface to apply for strategies
"""
from abc import ABC, abstractmethod
from pandas import DataFrame
class IStrategy(ABC):
"""
Interface for freqtrade strategies
Defines the mandatory structure must follow any custom strategies
Attributes you can use:
minimal_roi -> Dict: Minimal ROI designed for the strategy
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> int: value of the ticker interval to use for the strategy
"""
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
"""
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with sell column
"""

View File

@@ -0,0 +1,131 @@
# pragma pylint: disable=attribute-defined-outside-init
"""
This module load custom strategies
"""
import importlib.util
import inspect
import logging
import os
from collections import OrderedDict
from typing import Optional, Dict, Type
from freqtrade import constants
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
class StrategyResolver(object):
"""
This class contains all the logic to load custom strategy class
"""
__slots__ = ['strategy']
def __init__(self, config: Optional[Dict] = None) -> None:
"""
Load the custom class from config parameter
:param config: configuration dictionary or None
"""
config = config or {}
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
strategy_name = config.get('strategy') or constants.DEFAULT_STRATEGY
self.strategy = self._load_strategy(strategy_name, extra_dir=config.get('strategy_path'))
# Set attributes
# Check if we need to override configuration
if 'minimal_roi' in config:
self.strategy.minimal_roi = config['minimal_roi']
logger.info("Override strategy \'minimal_roi\' with value in config file.")
if 'stoploss' in config:
self.strategy.stoploss = config['stoploss']
logger.info(
"Override strategy \'stoploss\' with value in config file: %s.", config['stoploss']
)
if 'ticker_interval' in config:
self.strategy.ticker_interval = config['ticker_interval']
logger.info(
"Override strategy \'ticker_interval\' with value in config file: %s.",
config['ticker_interval']
)
# Sort and apply type conversions
self.strategy.minimal_roi = OrderedDict(sorted(
{int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(),
key=lambda t: t[0]))
self.strategy.stoploss = float(self.strategy.stoploss)
self.strategy.ticker_interval = int(self.strategy.ticker_interval)
def _load_strategy(
self, strategy_name: str, extra_dir: Optional[str] = None) -> Optional[IStrategy]:
"""
Search and loads the specified strategy.
:param strategy_name: name of the module to import
:param extra_dir: additional directory to search for the given strategy
:return: Strategy instance or None
"""
current_path = os.path.dirname(os.path.realpath(__file__))
abs_paths = [
os.path.join(current_path, '..', '..', 'user_data', 'strategies'),
current_path,
]
if extra_dir:
# Add extra strategy directory on top of search paths
abs_paths.insert(0, extra_dir)
for path in abs_paths:
strategy = self._search_strategy(path, strategy_name)
if strategy:
logger.info('Using resolved strategy %s from \'%s\'', strategy_name, path)
return strategy
raise ImportError(
"Impossible to load Strategy '{}'. This class does not exist"
" or contains Python code errors".format(strategy_name)
)
@staticmethod
def _get_valid_strategies(module_path: str, strategy_name: str) -> Optional[Type[IStrategy]]:
"""
Returns a list of all possible strategies for the given module_path
:param module_path: absolute path to the module
:param strategy_name: Class name of the strategy
:return: Tuple with (name, class) or None
"""
# Generate spec based on absolute path
spec = importlib.util.spec_from_file_location('user_data.strategies', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
valid_strategies_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)
if strategy_name == name and IStrategy in obj.__bases__
)
return next(valid_strategies_gen, None)
@staticmethod
def _search_strategy(directory: str, strategy_name: str) -> Optional[IStrategy]:
"""
Search for the strategy_name in the given directory
:param directory: relative or absolute directory path
:return: name of the strategy class
"""
logger.debug('Searching for strategy %s in \'%s\'', strategy_name, directory)
for entry in os.listdir(directory):
# Only consider python files
if not entry.endswith('.py'):
logger.debug('Ignoring %s', entry)
continue
strategy = StrategyResolver._get_valid_strategies(
os.path.abspath(os.path.join(directory, entry)), strategy_name
)
if strategy:
return strategy()
return None

View File

@@ -1,20 +0,0 @@
# pragma pylint: disable=missing-docstring
import json
import os
def load_backtesting_data(ticker_interval: int = 5):
path = os.path.abspath(os.path.dirname(__file__))
result = {}
pairs = [
'BTC_BCC', 'BTC_ETH', 'BTC_DASH', 'BTC_POWR', 'BTC_ETC',
'BTC_VTC', 'BTC_WAVES', 'BTC_LSK', 'BTC_XLM', 'BTC_OK',
]
for pair in pairs:
with open('{abspath}/testdata/{pair}-{ticker_interval}.json'.format(
abspath=path,
pair=pair,
ticker_interval=ticker_interval,
)) as tickerdata:
result[pair] = json.load(tickerdata)
return result

View File

@@ -1,29 +1,69 @@
# pragma pylint: disable=missing-docstring
import json
import logging
from datetime import datetime
from functools import reduce
from unittest.mock import MagicMock
import arrow
import pytest
from jsonschema import validate
from telegram import Message, Chat, Update
from sqlalchemy import create_engine
from telegram import Chat, Message, Update
from freqtrade.misc import CONF_SCHEMA
from freqtrade.analyze import Analyze
from freqtrade import constants
from freqtrade.freqtradebot import FreqtradeBot
logging.getLogger('').setLevel(logging.INFO)
@pytest.fixture(scope="module")
def log_has(line, logs):
# caplog mocker returns log as a tuple: ('freqtrade.analyze', logging.WARNING, 'foobar')
# and we want to match line against foobar in the tuple
return reduce(lambda a, b: a or b,
filter(lambda x: x[2] == line, logs),
False)
# Functions for recurrent object patching
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
"""
This function patch _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: None
"""
mocker.patch('freqtrade.fiat_convert.Market', {'price_usd': 12345.0})
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
mocker.patch('freqtrade.freqtradebot.persistence.init', MagicMock())
mocker.patch('freqtrade.freqtradebot.exchange.init', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager._init', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager.send_msg', MagicMock())
mocker.patch('freqtrade.freqtradebot.Analyze.get_signal', MagicMock())
return FreqtradeBot(config, create_engine('sqlite://'))
@pytest.fixture(scope="function")
def default_conf():
""" Returns validated configuration suitable for most tests """
configuration = {
"max_open_trades": 1,
"stake_currency": "BTC",
"stake_amount": 0.05,
"stake_amount": 0.001,
"fiat_display_currency": "USD",
"ticker_interval": 5,
"dry_run": True,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.05,
"stoploss": -0.10,
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
},
@@ -45,27 +85,13 @@ def default_conf():
"token": "token",
"chat_id": "0"
},
"initial_state": "running"
"initial_state": "running",
"loglevel": logging.DEBUG
}
validate(configuration, CONF_SCHEMA)
validate(configuration, constants.CONF_SCHEMA)
return configuration
@pytest.fixture(scope="module")
def backtest_conf():
return {
"stake_currency": "BTC",
"stake_amount": 0.01,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.05
}
@pytest.fixture
def update():
_update = Update(0)
@@ -76,9 +102,27 @@ def update():
@pytest.fixture
def ticker():
return MagicMock(return_value={
'bid': 0.07256061,
'ask': 0.072661,
'last': 0.07256061,
'bid': 0.00001098,
'ask': 0.00001099,
'last': 0.00001098,
})
@pytest.fixture
def ticker_sell_up():
return MagicMock(return_value={
'bid': 0.00001172,
'ask': 0.00001173,
'last': 0.00001172,
})
@pytest.fixture
def ticker_sell_down():
return MagicMock(return_value={
'bid': 0.00001044,
'ask': 0.00001043,
'last': 0.00001044,
})
@@ -118,11 +162,50 @@ def limit_buy_order():
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.07256061,
'amount': 206.43811673387373,
'opened': str(arrow.utcnow().datetime),
'rate': 0.00001099,
'amount': 90.99181073,
'remaining': 0.0,
'closed': datetime.utcnow(),
'closed': str(arrow.utcnow().datetime),
}
@pytest.fixture
def limit_buy_order_old():
return {
'id': 'mocked_limit_buy_old',
'type': 'LIMIT_BUY',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'amount': 90.99181073,
'remaining': 90.99181073,
}
@pytest.fixture
def limit_sell_order_old():
return {
'id': 'mocked_limit_sell_old',
'type': 'LIMIT_SELL',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'amount': 90.99181073,
'remaining': 90.99181073,
}
@pytest.fixture
def limit_buy_order_old_partial():
return {
'id': 'mocked_limit_buy_old_partial',
'type': 'LIMIT_BUY',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'amount': 90.99181073,
'remaining': 67.99181073,
}
@@ -132,9 +215,217 @@ def limit_sell_order():
'id': 'mocked_limit_sell',
'type': 'LIMIT_SELL',
'pair': 'mocked',
'opened': datetime.utcnow(),
'rate': 0.0802134,
'amount': 206.43811673387373,
'opened': str(arrow.utcnow().datetime),
'rate': 0.00001173,
'amount': 90.99181073,
'remaining': 0.0,
'closed': datetime.utcnow(),
'closed': str(arrow.utcnow().datetime),
}
@pytest.fixture
def ticker_history():
return [
{
"O": 8.794e-05,
"H": 8.948e-05,
"L": 8.794e-05,
"C": 8.88e-05,
"V": 991.09056638,
"T": "2017-11-26T08:50:00",
"BV": 0.0877869
},
{
"O": 8.88e-05,
"H": 8.942e-05,
"L": 8.88e-05,
"C": 8.893e-05,
"V": 658.77935965,
"T": "2017-11-26T08:55:00",
"BV": 0.05874751
},
{
"O": 8.891e-05,
"H": 8.893e-05,
"L": 8.875e-05,
"C": 8.877e-05,
"V": 7920.73570705,
"T": "2017-11-26T09:00:00",
"BV": 0.7039405
}
]
@pytest.fixture
def ticker_history_without_bv():
return [
{
"O": 8.794e-05,
"H": 8.948e-05,
"L": 8.794e-05,
"C": 8.88e-05,
"V": 991.09056638,
"T": "2017-11-26T08:50:00"
},
{
"O": 8.88e-05,
"H": 8.942e-05,
"L": 8.88e-05,
"C": 8.893e-05,
"V": 658.77935965,
"T": "2017-11-26T08:55:00"
},
{
"O": 8.891e-05,
"H": 8.893e-05,
"L": 8.875e-05,
"C": 8.877e-05,
"V": 7920.73570705,
"T": "2017-11-26T09:00:00"
}
]
# FIX: Perhaps change result fixture to use BTC_UNITEST instead?
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
return Analyze.parse_ticker_dataframe(json.load(data_file))
# FIX:
# Create an fixture/function
# that inserts a trade of some type and open-status
# return the open-order-id
# See tests in rpc/main that could use this
@pytest.fixture
def get_market_summaries_data():
"""
This fixture is a real result from exchange.get_market_summaries() but reduced to only
8 entries. 4 BTC, 4 USTD
:return: JSON market summaries
"""
return [
{
'Ask': 1.316e-05,
'BaseVolume': 5.72599471,
'Bid': 1.3e-05,
'Created': '2014-04-14T00:00:00',
'High': 1.414e-05,
'Last': 1.298e-05,
'Low': 1.282e-05,
'MarketName': 'BTC-XWC',
'OpenBuyOrders': 2000,
'OpenSellOrders': 1484,
'PrevDay': 1.376e-05,
'TimeStamp': '2018-02-05T01:32:40.493',
'Volume': 424041.21418375
},
{
'Ask': 0.00627051,
'BaseVolume': 93.23302388,
'Bid': 0.00618192,
'Created': '2016-10-20T04:48:30.387',
'High': 0.00669897,
'Last': 0.00618192,
'Low': 0.006,
'MarketName': 'BTC-XZC',
'OpenBuyOrders': 343,
'OpenSellOrders': 2037,
'PrevDay': 0.00668229,
'TimeStamp': '2018-02-05T01:32:43.383',
'Volume': 14863.60730702
},
{
'Ask': 0.01137247,
'BaseVolume': 383.55922657,
'Bid': 0.01136006,
'Created': '2016-11-15T20:29:59.73',
'High': 0.012,
'Last': 0.01137247,
'Low': 0.01119883,
'MarketName': 'BTC-ZCL',
'OpenBuyOrders': 1332,
'OpenSellOrders': 5317,
'PrevDay': 0.01179603,
'TimeStamp': '2018-02-05T01:32:42.773',
'Volume': 33308.07358285
},
{
'Ask': 0.04155821,
'BaseVolume': 274.75369074,
'Bid': 0.04130002,
'Created': '2016-10-28T17:13:10.833',
'High': 0.04354429,
'Last': 0.041585,
'Low': 0.0413,
'MarketName': 'BTC-ZEC',
'OpenBuyOrders': 863,
'OpenSellOrders': 5579,
'PrevDay': 0.0429,
'TimeStamp': '2018-02-05T01:32:43.21',
'Volume': 6479.84033259
},
{
'Ask': 210.99999999,
'BaseVolume': 615132.70989532,
'Bid': 210.05503736,
'Created': '2017-07-21T01:08:49.397',
'High': 257.396,
'Last': 211.0,
'Low': 209.05333589,
'MarketName': 'USDT-XMR',
'OpenBuyOrders': 180,
'OpenSellOrders': 1203,
'PrevDay': 247.93528899,
'TimeStamp': '2018-02-05T01:32:43.117',
'Volume': 2688.17410793
},
{
'Ask': 0.79589979,
'BaseVolume': 9349557.01853031,
'Bid': 0.789226,
'Created': '2017-07-14T17:10:10.737',
'High': 0.977,
'Last': 0.79589979,
'Low': 0.781,
'MarketName': 'USDT-XRP',
'OpenBuyOrders': 1075,
'OpenSellOrders': 6508,
'PrevDay': 0.93300218,
'TimeStamp': '2018-02-05T01:32:42.383',
'Volume': 10801663.00788851
},
{
'Ask': 0.05154982,
'BaseVolume': 2311087.71232136,
'Bid': 0.05040107,
'Created': '2017-12-29T19:29:18.357',
'High': 0.06668561,
'Last': 0.0508,
'Low': 0.05006731,
'MarketName': 'USDT-XVG',
'OpenBuyOrders': 655,
'OpenSellOrders': 5544,
'PrevDay': 0.0627,
'TimeStamp': '2018-02-05T01:32:41.507',
'Volume': 40031424.2152716
},
{
'Ask': 332.65500022,
'BaseVolume': 562911.87455665,
'Bid': 330.00000001,
'Created': '2017-07-14T17:10:10.673',
'High': 401.59999999,
'Last': 332.65500019,
'Low': 330.0,
'MarketName': 'USDT-ZEC',
'OpenBuyOrders': 161,
'OpenSellOrders': 1731,
'PrevDay': 391.42,
'TimeStamp': '2018-02-05T01:32:42.947',
'Volume': 1571.09647946
}
]

View File

@@ -0,0 +1,286 @@
# pragma pylint: disable=missing-docstring, C0103, bad-continuation, global-statement
# pragma pylint: disable=protected-access
import logging
from random import randint
from unittest.mock import MagicMock
import pytest
from requests.exceptions import RequestException
import freqtrade.exchange as exchange
from freqtrade import OperationalException
from freqtrade.exchange import init, validate_pairs, buy, sell, get_balance, get_balances, \
get_ticker, get_ticker_history, cancel_order, get_name, get_fee
from freqtrade.tests.conftest import log_has
API_INIT = False
def maybe_init_api(conf, mocker, force=False):
global API_INIT
if force or not API_INIT:
mocker.patch('freqtrade.exchange.validate_pairs',
side_effect=lambda s: True)
init(config=conf)
API_INIT = True
def test_init(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
maybe_init_api(default_conf, mocker, True)
assert log_has('Instance is running with dry_run enabled', caplog.record_tuples)
def test_init_exception(default_conf):
default_conf['exchange']['name'] = 'wrong_exchange_name'
with pytest.raises(
OperationalException,
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
init(config=default_conf)
def test_validate_pairs(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[
'BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT', 'BTC_BCC',
])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
validate_pairs(default_conf['exchange']['pair_whitelist'])
def test_validate_pairs_not_available(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
with pytest.raises(OperationalException, match=r'not available'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
def test_validate_pairs_not_compatible(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(
return_value=['BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT'])
default_conf['stake_currency'] = 'ETH'
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
with pytest.raises(OperationalException, match=r'not compatible'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
def test_validate_pairs_exception(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
api_mock = MagicMock()
api_mock.get_markets = MagicMock(side_effect=RequestException())
mocker.patch('freqtrade.exchange._API', api_mock)
# with pytest.raises(RequestException, match=r'Unable to validate pairs'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
assert log_has('Unable to validate pairs (assuming they are correct). Reason: ',
caplog.record_tuples)
def test_buy_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert 'dry_run_buy_' in buy(pair='BTC_ETH', rate=200, amount=1)
def test_buy_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.buy = MagicMock(
return_value='dry_run_buy_{}'.format(randint(0, 10**6)))
mocker.patch('freqtrade.exchange._API', api_mock)
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert 'dry_run_buy_' in buy(pair='BTC_ETH', rate=200, amount=1)
def test_sell_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert 'dry_run_sell_' in sell(pair='BTC_ETH', rate=200, amount=1)
def test_sell_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.sell = MagicMock(
return_value='dry_run_sell_{}'.format(randint(0, 10**6)))
mocker.patch('freqtrade.exchange._API', api_mock)
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert 'dry_run_sell_' in sell(pair='BTC_ETH', rate=200, amount=1)
def test_get_balance_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balance(currency='BTC') == 999.9
def test_get_balance_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_balance = MagicMock(return_value=123.4)
mocker.patch('freqtrade.exchange._API', api_mock)
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balance(currency='BTC') == 123.4
def test_get_balances_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balances() == []
def test_get_balances_prod(default_conf, mocker):
balance_item = {
'Currency': '1ST',
'Balance': 10.0,
'Available': 10.0,
'Pending': 0.0,
'CryptoAddress': None
}
api_mock = MagicMock()
api_mock.get_balances = MagicMock(
return_value=[balance_item, balance_item, balance_item])
mocker.patch('freqtrade.exchange._API', api_mock)
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert len(get_balances()) == 3
assert get_balances()[0]['Currency'] == '1ST'
assert get_balances()[0]['Balance'] == 10.0
assert get_balances()[0]['Available'] == 10.0
assert get_balances()[0]['Pending'] == 0.0
# This test is somewhat redundant with
# test_exchange_bittrex.py::test_exchange_bittrex_get_ticker
def test_get_ticker(default_conf, mocker):
maybe_init_api(default_conf, mocker)
api_mock = MagicMock()
tick = {"success": True, 'result': {'Bid': 0.00001098, 'Ask': 0.00001099, 'Last': 0.0001}}
api_mock.get_ticker = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange.bittrex._API', api_mock)
# retrieve original ticker
ticker = get_ticker(pair='BTC_ETH')
assert ticker['bid'] == 0.00001098
assert ticker['ask'] == 0.00001099
# change the ticker
tick = {"success": True, 'result': {"Bid": 0.5, "Ask": 1, "Last": 42}}
api_mock.get_ticker = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange.bittrex._API', api_mock)
# if not caching the result we should get the same ticker
# if not fetching a new result we should get the cached ticker
ticker = get_ticker(pair='BTC_ETH', refresh=False)
assert ticker['bid'] == 0.00001098
assert ticker['ask'] == 0.00001099
# force ticker refresh
ticker = get_ticker(pair='BTC_ETH', refresh=True)
assert ticker['bid'] == 0.5
assert ticker['ask'] == 1
def test_get_ticker_history(default_conf, mocker):
api_mock = MagicMock()
tick = 123
api_mock.get_ticker_history = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange._API', api_mock)
# retrieve original ticker
ticks = get_ticker_history('BTC_ETH', int(default_conf['ticker_interval']))
assert ticks == 123
# change the ticker
tick = 999
api_mock.get_ticker_history = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange._API', api_mock)
# ensure caching will still return the original ticker
ticks = get_ticker_history('BTC_ETH', int(default_conf['ticker_interval']))
assert ticks == 123
def test_cancel_order_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert cancel_order(order_id='123') is None
# Ensure that if not dry_run, we should call API
def test_cancel_order(default_conf, mocker):
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
api_mock = MagicMock()
api_mock.cancel_order = MagicMock(return_value=123)
mocker.patch('freqtrade.exchange._API', api_mock)
assert cancel_order(order_id='_') == 123
def test_get_order(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
order = MagicMock()
order.myid = 123
exchange._DRY_RUN_OPEN_ORDERS['X'] = order
print(exchange.get_order('X'))
assert exchange.get_order('X').myid == 123
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
api_mock = MagicMock()
api_mock.get_order = MagicMock(return_value=456)
mocker.patch('freqtrade.exchange._API', api_mock)
assert exchange.get_order('X') == 456
def test_get_name(default_conf, mocker):
mocker.patch('freqtrade.exchange.validate_pairs',
side_effect=lambda s: True)
default_conf['exchange']['name'] = 'bittrex'
init(default_conf)
assert get_name() == 'Bittrex'
def test_get_fee(default_conf, mocker):
mocker.patch('freqtrade.exchange.validate_pairs',
side_effect=lambda s: True)
init(default_conf)
assert get_fee() == 0.0025
def test_exchange_misc(mocker):
api_mock = MagicMock()
mocker.patch('freqtrade.exchange._API', api_mock)
exchange.get_markets()
assert api_mock.get_markets.call_count == 1
exchange.get_market_summaries()
assert api_mock.get_market_summaries.call_count == 1
api_mock.name = 123
assert exchange.get_name() == 123
api_mock.fee = 456
assert exchange.get_fee() == 456
exchange.get_wallet_health()
assert api_mock.get_wallet_health.call_count == 1

View File

@@ -0,0 +1,349 @@
# pragma pylint: disable=missing-docstring, C0103, protected-access, unused-argument
from unittest.mock import MagicMock
import pytest
from requests.exceptions import ContentDecodingError
import freqtrade.exchange.bittrex as btx
from freqtrade.exchange.bittrex import Bittrex
# Eat this flake8
# +------------------+
# | bittrex.Bittrex |
# +------------------+
# |
# (mock Fake_bittrex)
# |
# +-----------------------------+
# | freqtrade.exchange.Bittrex |
# +-----------------------------+
# Call into Bittrex will flow up to the
# external package bittrex.Bittrex.
# By inserting a mock, we redirect those
# calls.
# The faked bittrex API is called just 'fb'
# The freqtrade.exchange.Bittrex is a
# wrapper, and is called 'wb'
def _stub_config():
return {'key': '',
'secret': ''}
class FakeBittrex():
def __init__(self, success=True):
self.success = True # Believe in yourself
self.result = None
self.get_ticker_call_count = 0
# This is really ugly, doing side-effect during instance creation
# But we're allowed to in testing-code
btx._API = MagicMock()
btx._API.buy_limit = self.fake_buysell_limit
btx._API.sell_limit = self.fake_buysell_limit
btx._API.get_balance = self.fake_get_balance
btx._API.get_balances = self.fake_get_balances
btx._API.get_ticker = self.fake_get_ticker
btx._API.get_order = self.fake_get_order
btx._API.cancel = self.fake_cancel_order
btx._API.get_markets = self.fake_get_markets
btx._API.get_market_summaries = self.fake_get_market_summaries
btx._API_V2 = MagicMock()
btx._API_V2.get_candles = self.fake_get_candles
btx._API_V2.get_wallet_health = self.fake_get_wallet_health
def fake_buysell_limit(self, pair, amount, limit):
return {'success': self.success,
'result': {'uuid': '1234'},
'message': 'barter'}
def fake_get_balance(self, cur):
return {'success': self.success,
'result': {'Balance': 1234},
'message': 'unbalanced'}
def fake_get_balances(self):
return {'success': self.success,
'result': [{'BTC_ETH': 1234}],
'message': 'no balances'}
def fake_get_ticker(self, pair):
self.get_ticker_call_count += 1
return self.result or {'success': self.success,
'result': {'Bid': 1, 'Ask': 1, 'Last': 1},
'message': 'NO_API_RESPONSE'}
def fake_get_candles(self, pair, interval):
return self.result or {'success': self.success,
'result': [{'C': 0, 'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}],
'message': 'candles lit'}
def fake_get_order(self, uuid):
return {'success': self.success,
'result': {'OrderUuid': 'ABC123',
'Type': 'Type',
'Exchange': 'BTC_ETH',
'Opened': True,
'PricePerUnit': 1,
'Quantity': 1,
'QuantityRemaining': 1,
'Closed': True},
'message': 'lost'}
def fake_cancel_order(self, uuid):
return self.result or {'success': self.success,
'message': 'no such order'}
def fake_get_markets(self):
return self.result or {'success': self.success,
'message': 'market gone',
'result': [{'MarketName': '-_'}]}
def fake_get_market_summaries(self):
return self.result or {'success': self.success,
'message': 'no summary',
'result': ['sum']}
def fake_get_wallet_health(self):
return self.result or {'success': self.success,
'message': 'bad health',
'result': [{'Health': {'Currency': 'BTC_ETH',
'IsActive': True,
'LastChecked': 0},
'Currency': {'Notice': True}}]}
# The freqtrade.exchange.bittrex is called wrap_bittrex
# to not confuse naming with bittrex.bittrex
def make_wrap_bittrex():
conf = _stub_config()
wb = btx.Bittrex(conf)
return wb
def test_exchange_bittrex_class():
conf = _stub_config()
b = Bittrex(conf)
assert isinstance(b, Bittrex)
slots = dir(b)
for name in ['fee', 'buy', 'sell', 'get_balance', 'get_balances',
'get_ticker', 'get_ticker_history', 'get_order',
'cancel_order', 'get_pair_detail_url', 'get_markets',
'get_market_summaries', 'get_wallet_health']:
assert name in slots
# FIX: ensure that the slot is also a method in the class
# getattr(b, name) => bound method Bittrex.buy
# type(getattr(b, name)) => class 'method'
def test_exchange_bittrex_fee():
fee = Bittrex.fee.__get__(Bittrex)
assert fee >= 0 and fee < 0.1 # Fee is 0-10 %
def test_exchange_bittrex_buy_good():
wb = make_wrap_bittrex()
fb = FakeBittrex()
uuid = wb.buy('BTC_ETH', 1, 1)
assert uuid == fb.fake_buysell_limit(1, 2, 3)['result']['uuid']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'barter.*'):
wb.buy('BAD', 1, 1)
def test_exchange_bittrex_sell_good():
wb = make_wrap_bittrex()
fb = FakeBittrex()
uuid = wb.sell('BTC_ETH', 1, 1)
assert uuid == fb.fake_buysell_limit(1, 2, 3)['result']['uuid']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'barter.*'):
uuid = wb.sell('BAD', 1, 1)
def test_exchange_bittrex_get_balance():
wb = make_wrap_bittrex()
fb = FakeBittrex()
bal = wb.get_balance('BTC_ETH')
assert bal == fb.fake_get_balance(1)['result']['Balance']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'unbalanced'):
wb.get_balance('BTC_ETH')
def test_exchange_bittrex_get_balances():
wb = make_wrap_bittrex()
fb = FakeBittrex()
bals = wb.get_balances()
assert bals == fb.fake_get_balances()['result']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'no balances'):
wb.get_balances()
def test_exchange_bittrex_get_ticker():
wb = make_wrap_bittrex()
fb = FakeBittrex()
# Poll ticker, which updates the cache
tick = wb.get_ticker('BTC_ETH')
for x in ['bid', 'ask', 'last']:
assert x in tick
# Ensure the side-effect was made (update the ticker cache)
assert 'BTC_ETH' in wb.cached_ticker.keys()
# taint the cache, so we can recognize the cache wall utilized
wb.cached_ticker['BTC_ETH']['bid'] = 1234
# Poll again, getting the cached result
fb.get_ticker_call_count = 0
tick = wb.get_ticker('BTC_ETH', False)
# Ensure the result was from the cache, and that we didn't call exchange
assert wb.cached_ticker['BTC_ETH']['bid'] == 1234
assert fb.get_ticker_call_count == 0
def test_exchange_bittrex_get_ticker_bad():
wb = make_wrap_bittrex()
fb = FakeBittrex()
fb.result = {'success': True, 'result': {'Bid': 1, 'Ask': 0}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': False, 'message': 'gone bad'}
with pytest.raises(btx.OperationalException, match=r'.*gone bad.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': True, 'result': {}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': False, 'message': 'gone bad'}
with pytest.raises(btx.OperationalException, match=r'.*gone bad.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': True,
'result': {'Bid': 1, 'Ask': 0, 'Last': None}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
def test_exchange_bittrex_get_ticker_history_intervals():
wb = make_wrap_bittrex()
FakeBittrex()
for tick_interval in [1, 5, 30, 60, 1440]:
assert ([{'C': 0, 'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}] ==
wb.get_ticker_history('BTC_ETH', tick_interval))
def test_exchange_bittrex_get_ticker_history():
wb = make_wrap_bittrex()
fb = FakeBittrex()
assert wb.get_ticker_history('BTC_ETH', 5)
with pytest.raises(ValueError, match=r'.*Unknown tick_interval.*'):
wb.get_ticker_history('BTC_ETH', 2)
fb.success = False
with pytest.raises(btx.OperationalException, match=r'candles lit.*'):
wb.get_ticker_history('BTC_ETH', 5)
fb.success = True
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex.*'):
fb.result = {'bad': 0}
wb.get_ticker_history('BTC_ETH', 5)
with pytest.raises(ContentDecodingError, match=r'.*Required property C not present.*'):
fb.result = {'success': True,
'result': [{'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}], # close is missing
'message': 'candles lit'}
wb.get_ticker_history('BTC_ETH', 5)
def test_exchange_bittrex_get_order():
wb = make_wrap_bittrex()
fb = FakeBittrex()
order = wb.get_order('someUUID')
assert order['id'] == 'ABC123'
fb.success = False
with pytest.raises(btx.OperationalException, match=r'lost'):
wb.get_order('someUUID')
def test_exchange_bittrex_cancel_order():
wb = make_wrap_bittrex()
fb = FakeBittrex()
wb.cancel_order('someUUID')
with pytest.raises(btx.OperationalException, match=r'no such order'):
fb.success = False
wb.cancel_order('someUUID')
# Note: this can be a bug in exchange.bittrex._validate_response
with pytest.raises(KeyError):
fb.result = {'success': False} # message is missing!
wb.cancel_order('someUUID')
with pytest.raises(btx.OperationalException, match=r'foo'):
fb.result = {'success': False, 'message': 'foo'}
wb.cancel_order('someUUID')
def test_exchange_get_pair_detail_url():
wb = make_wrap_bittrex()
assert wb.get_pair_detail_url('BTC_ETH')
def test_exchange_get_markets():
wb = make_wrap_bittrex()
fb = FakeBittrex()
x = wb.get_markets()
assert x == ['__']
with pytest.raises(btx.OperationalException, match=r'market gone'):
fb.success = False
wb.get_markets()
def test_exchange_get_market_summaries():
wb = make_wrap_bittrex()
fb = FakeBittrex()
assert ['sum'] == wb.get_market_summaries()
with pytest.raises(btx.OperationalException, match=r'no summary'):
fb.success = False
wb.get_market_summaries()
def test_exchange_get_wallet_health():
wb = make_wrap_bittrex()
fb = FakeBittrex()
x = wb.get_wallet_health()
assert x[0]['Currency'] == 'BTC_ETH'
with pytest.raises(btx.OperationalException, match=r'bad health'):
fb.success = False
wb.get_wallet_health()
def test_validate_response_success():
response = {
'message': '',
'result': [],
}
Bittrex._validate_response(response)
def test_validate_response_no_api_response():
response = {
'message': 'NO_API_RESPONSE',
'result': None,
}
with pytest.raises(ContentDecodingError, match=r'.*NO_API_RESPONSE.*'):
Bittrex._validate_response(response)
def test_validate_response_min_trade_requirement_not_met():
response = {
'message': 'MIN_TRADE_REQUIREMENT_NOT_MET',
'result': None,
}
with pytest.raises(ContentDecodingError, match=r'.*MIN_TRADE_REQUIREMENT_NOT_MET.*'):
Bittrex._validate_response(response)

View File

@@ -0,0 +1,609 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import json
import math
import random
from copy import deepcopy
from typing import List
from unittest.mock import MagicMock
import numpy as np
import pandas as pd
from arrow import Arrow
from freqtrade import optimize
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
from freqtrade.tests.conftest import default_conf, log_has
# Avoid to reinit the same object again and again
_BACKTESTING = Backtesting(default_conf())
def get_args(args) -> List[str]:
return Arguments(args, '').get_parsed_arg()
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:]
return new
def load_data_test(what):
timerange = ((None, 'line'), None, -100)
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'], timerange=timerange)
pair = data['BTC_UNITEST']
datalen = len(pair)
# Depending on the what parameter we now adjust the
# loaded data looks:
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
# 'C': 0.123, 'V': 123.123,
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
base = 0.001
if what == 'raise':
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
'O': x * base, # But replace O,H,L,C
'H': x * base + 0.0001,
'L': x * base - 0.0001,
'C': x * base} for x in range(0, datalen)]}
if what == 'lower':
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
'O': 1 - x * base, # But replace O,H,L,C
'H': 1 - x * base + 0.0001,
'L': 1 - x * base - 0.0001,
'C': 1 - x * base} for x in range(0, datalen)]}
if what == 'sine':
hz = 0.1 # frequency
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
# But replace O,H,L,C
'O': math.sin(x * hz) / 1000 + base,
'H': math.sin(x * hz) / 1000 + base + 0.0001,
'L': math.sin(x * hz) / 1000 + base - 0.0001,
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
return data
def simple_backtest(config, contour, num_results) -> None:
backtesting = _BACKTESTING
data = load_data_test(contour)
processed = backtesting.tickerdata_to_dataframe(data)
assert isinstance(processed, dict)
results = backtesting.backtest(
{
'stake_amount': config['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'realistic': True
}
)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False, timerange=None):
tickerdata = optimize.load_tickerdata_file(datadir, 'BTC_UNITEST', 1, timerange=timerange)
pairdata = {'BTC_UNITEST': tickerdata}
return pairdata
# use for mock freqtrade.exchange.get_ticker_history'
def _load_pair_as_ticks(pair, tickfreq):
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
ticks = trim_dictlist(ticks, -200)
return ticks[pair]
# FIX: fixturize this?
def _make_backtest_conf(conf=None, pair='BTC_UNITEST', record=None):
data = optimize.load_data(None, ticker_interval=8, pairs=[pair])
data = trim_dictlist(data, -200)
return {
'stake_amount': conf['stake_amount'],
'processed': _BACKTESTING.tickerdata_to_dataframe(data),
'max_open_trades': 10,
'realistic': True,
'record': record
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
def _run_backtest_1(fun, backtest_conf):
# strategy is a global (hidden as a singleton), so we
# emulate strategy being pure, by override/restore here
# if we dont do this, the override in strategy will carry over
# to other tests
old_buy = _BACKTESTING.populate_buy_trend
old_sell = _BACKTESTING.populate_sell_trend
_BACKTESTING.populate_buy_trend = fun # Override
_BACKTESTING.populate_sell_trend = fun # Override
results = _BACKTESTING.backtest(backtest_conf)
_BACKTESTING.populate_buy_trend = old_buy # restore override
_BACKTESTING.populate_sell_trend = old_sell # restore override
return results
# Unit tests
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
config = setup_configuration(get_args(args))
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation' not in config
assert not log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' not in config
assert 'export' not in config
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1',
'--live',
'--realistic-simulation',
'--refresh-pairs-cached',
'--timerange', ':100',
'--export', '/bar/foo'
]
config = setup_configuration(get_args(args))
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1 ...',
caplog.record_tuples
)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation'in config
assert log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
assert 'refresh_pairs'in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
def test_start(mocker, default_conf, caplog) -> None:
"""
Test start() function
"""
start_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
args = get_args(args)
start(args)
assert log_has(
'Starting freqtrade in Backtesting mode',
caplog.record_tuples
)
assert start_mock.call_count == 1
def test_backtesting__init__(mocker, default_conf) -> None:
"""
Test Backtesting.__init__() method
"""
init_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._init', init_mock)
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.analyze is None
assert backtesting.ticker_interval is None
assert backtesting.tickerdata_to_dataframe is None
assert backtesting.populate_buy_trend is None
assert backtesting.populate_sell_trend is None
assert init_mock.call_count == 1
def test_backtesting_init(default_conf) -> None:
"""
Test Backtesting._init() method
"""
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert isinstance(backtesting.analyze, Analyze)
assert backtesting.ticker_interval == 5
assert callable(backtesting.tickerdata_to_dataframe)
assert callable(backtesting.populate_buy_trend)
assert callable(backtesting.populate_sell_trend)
def test_tickerdata_to_dataframe(default_conf) -> None:
"""
Test Backtesting.tickerdata_to_dataframe() method
"""
timerange = ((None, 'line'), None, -100)
tick = optimize.load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange)
tickerlist = {'BTC_UNITEST': tick}
backtesting = _BACKTESTING
data = backtesting.tickerdata_to_dataframe(tickerlist)
assert len(data['BTC_UNITEST']) == 100
# Load Analyze to compare the result between Backtesting function and Analyze are the same
analyze = Analyze(default_conf)
data2 = analyze.tickerdata_to_dataframe(tickerlist)
assert data['BTC_UNITEST'].equals(data2['BTC_UNITEST'])
def test_get_timeframe() -> None:
"""
Test Backtesting.get_timeframe() method
"""
backtesting = _BACKTESTING
data = backtesting.tickerdata_to_dataframe(
optimize.load_data(
None,
ticker_interval=1,
pairs=['BTC_UNITEST']
)
)
min_date, max_date = backtesting.get_timeframe(data)
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
def test_generate_text_table():
"""
Test Backtesting.generate_text_table() method
"""
backtesting = _BACKTESTING
results = pd.DataFrame(
{
'currency': ['BTC_ETH', 'BTC_ETH'],
'profit_percent': [0.1, 0.2],
'profit_BTC': [0.2, 0.4],
'duration': [10, 30],
'profit': [2, 0],
'loss': [0, 0]
}
)
result_str = (
'pair buy count avg profit % '
'total profit BTC avg duration profit loss\n'
'------- ----------- -------------- '
'------------------ -------------- -------- ------\n'
'BTC_ETH 2 15.00 '
'0.60000000 20.0 2 0\n'
'TOTAL 2 15.00 '
'0.60000000 20.0 2 0'
)
assert backtesting._generate_text_table(data={'BTC_ETH': {}}, results=results) == result_str
def test_backtesting_start(default_conf, mocker, caplog) -> None:
"""
Test Backtesting.start() method
"""
def get_timeframe(input1, input2):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
mocker.patch('freqtrade.exchange.get_ticker_history')
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
get_timeframe=get_timeframe,
)
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
conf['ticker_interval'] = 1
conf['live'] = False
conf['datadir'] = None
conf['export'] = None
conf['timerange'] = '-100'
backtesting = Backtesting(conf)
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Using local backtesting data (using whitelist in given config) ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Measuring data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog.record_tuples)
def test_backtest(default_conf) -> None:
"""
Test Backtesting.backtest() method
"""
backtesting = _BACKTESTING
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
data = trim_dictlist(data, -200)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': backtesting.tickerdata_to_dataframe(data),
'max_open_trades': 10,
'realistic': True
}
)
assert not results.empty
def test_backtest_1min_ticker_interval(default_conf) -> None:
"""
Test Backtesting.backtest() method with 1 min ticker
"""
backtesting = _BACKTESTING
# Run a backtesting for an exiting 5min ticker_interval
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
data = trim_dictlist(data, -200)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': backtesting.tickerdata_to_dataframe(data),
'max_open_trades': 1,
'realistic': True
}
)
assert not results.empty
def test_processed() -> None:
"""
Test Backtesting.backtest() method with offline data
"""
backtesting = _BACKTESTING
dict_of_tickerrows = load_data_test('raise')
dataframes = backtesting.tickerdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['BTC_UNITEST']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema50', 'ao', 'macd', 'plus_dm']:
assert col in cols
def test_backtest_pricecontours(default_conf) -> None:
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres)
# Test backtest using offline data (testdata directory)
def test_backtest_ticks(default_conf):
ticks = [1, 5]
fun = _BACKTESTING.populate_buy_trend
for tick in ticks:
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert not results.empty
def test_backtest_clash_buy_sell(default_conf):
# Override the default buy trend function in our DefaultStrategy
def fun(dataframe=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert results.empty
def test_backtest_only_sell(default_conf):
# Override the default buy trend function in our DefaultStrategy
def fun(dataframe=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf):
backtest_conf = _make_backtest_conf(conf=default_conf, pair='BTC_UNITEST')
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
def test_backtest_record(default_conf, mocker):
names = []
records = []
mocker.patch(
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
backtest_conf = _make_backtest_conf(
conf=default_conf,
pair='BTC_UNITEST',
record="trades"
)
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 3
# ('BTC_UNITEST', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur) in records:
assert pair == 'BTC_UNITEST'
isinstance(profit, float)
# FIX: buy/sell should be converted to ints
isinstance(date_buy, str)
isinstance(date_sell, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
oix = buy_index
assert dur > 0
def test_backtest_start_live(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
mocker.patch('freqtrade.exchange.get_ticker_history',
new=lambda n, i: _load_pair_as_ticks(n, i))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = MagicMock()
args.ticker_interval = 1
args.level = 10
args.live = True
args.datadir = None
args.export = None
args.strategy = 'DefaultStrategy'
args.timerange = '-100' # needed due to MagicMock malleability
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting',
'--ticker-interval', '1',
'--live',
'--timerange', '-100'
]
args = get_args(args)
start(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1 ...',
'Parameter -l/--live detected ...',
'Using max_open_trades: 1 ...',
'Parameter --timerange detected: -100 ..',
'Parameter --datadir detected: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:32:00+00:00 up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
log_has(line, caplog.record_tuples)

View File

@@ -0,0 +1,534 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import json
import os
from copy import deepcopy
from unittest.mock import MagicMock
import pandas as pd
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.optimize.hyperopt import Hyperopt, start
from freqtrade.strategy.resolver import StrategyResolver
from freqtrade.tests.conftest import default_conf, log_has
from freqtrade.tests.optimize.test_backtesting import get_args
# Avoid to reinit the same object again and again
_HYPEROPT = Hyperopt(default_conf())
# Functions for recurrent object patching
def create_trials(mocker) -> None:
"""
When creating trials, mock the hyperopt Trials so that *by default*
- we don't create any pickle'd files in the filesystem
- we might have a pickle'd file so make sure that we return
false when looking for it
"""
_HYPEROPT.trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=False)
mocker.patch('freqtrade.optimize.hyperopt.os.path.getsize', return_value=1)
mocker.patch('freqtrade.optimize.hyperopt.os.remove', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
return mocker.Mock(
results=[
{
'loss': 1,
'result': 'foo',
'status': 'ok'
}
],
best_trial={'misc': {'vals': {'adx': 999}}}
)
# Unit tests
def test_start(mocker, default_conf, caplog) -> None:
"""
Test start() function
"""
start_mock = MagicMock()
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'hyperopt',
'--epochs', '5'
]
args = get_args(args)
StrategyResolver({'strategy': 'DefaultStrategy'})
start(args)
import pprint
pprint.pprint(caplog.record_tuples)
assert log_has(
'Starting freqtrade in Hyperopt mode',
caplog.record_tuples
)
assert start_mock.call_count == 1
def test_loss_calculation_prefer_correct_trade_count() -> None:
"""
Test Hyperopt.calculate_loss()
"""
hyperopt = _HYPEROPT
StrategyResolver({'strategy': 'DefaultStrategy'})
correct = hyperopt.calculate_loss(1, hyperopt.target_trades, 20)
over = hyperopt.calculate_loss(1, hyperopt.target_trades + 100, 20)
under = hyperopt.calculate_loss(1, hyperopt.target_trades - 100, 20)
assert over > correct
assert under > correct
def test_loss_calculation_prefer_shorter_trades() -> None:
"""
Test Hyperopt.calculate_loss()
"""
hyperopt = _HYPEROPT
shorter = hyperopt.calculate_loss(1, 100, 20)
longer = hyperopt.calculate_loss(1, 100, 30)
assert shorter < longer
def test_loss_calculation_has_limited_profit() -> None:
hyperopt = _HYPEROPT
correct = hyperopt.calculate_loss(hyperopt.expected_max_profit, hyperopt.target_trades, 20)
over = hyperopt.calculate_loss(hyperopt.expected_max_profit * 2, hyperopt.target_trades, 20)
under = hyperopt.calculate_loss(hyperopt.expected_max_profit / 2, hyperopt.target_trades, 20)
assert over == correct
assert under > correct
def test_log_results_if_loss_improves(capsys) -> None:
hyperopt = _HYPEROPT
hyperopt.current_best_loss = 2
hyperopt.log_results(
{
'loss': 1,
'current_tries': 1,
'total_tries': 2,
'result': 'foo'
}
)
out, err = capsys.readouterr()
assert ' 1/2: foo. Loss 1.00000'in out
def test_no_log_if_loss_does_not_improve(caplog) -> None:
hyperopt = _HYPEROPT
hyperopt.current_best_loss = 2
hyperopt.log_results(
{
'loss': 3,
}
)
assert caplog.record_tuples == []
def test_fmin_best_results(mocker, default_conf, caplog) -> None:
fmin_result = {
"macd_below_zero": 0,
"adx": 1,
"adx-value": 15.0,
"fastd": 1,
"fastd-value": 40.0,
"green_candle": 1,
"mfi": 0,
"over_sar": 0,
"rsi": 1,
"rsi-value": 37.0,
"trigger": 2,
"uptrend_long_ema": 1,
"uptrend_short_ema": 0,
"uptrend_sma": 0,
"stoploss": -0.1,
"roi_t1": 1,
"roi_t2": 2,
"roi_t3": 3,
"roi_p1": 1,
"roi_p2": 2,
"roi_p3": 3,
}
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value=fmin_result)
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best parameters:',
'"adx": {\n "enabled": true,\n "value": 15.0\n },',
'"fastd": {\n "enabled": true,\n "value": 40.0\n },',
'"green_candle": {\n "enabled": true\n },',
'"macd_below_zero": {\n "enabled": false\n },',
'"mfi": {\n "enabled": false\n },',
'"over_sar": {\n "enabled": false\n },',
'"roi_p1": 1.0,',
'"roi_p2": 2.0,',
'"roi_p3": 3.0,',
'"roi_t1": 1.0,',
'"roi_t2": 2.0,',
'"roi_t3": 3.0,',
'"rsi": {\n "enabled": true,\n "value": 37.0\n },',
'"stoploss": -0.1,',
'"trigger": {\n "type": "faststoch10"\n },',
'"uptrend_long_ema": {\n "enabled": true\n },',
'"uptrend_short_ema": {\n "enabled": false\n },',
'"uptrend_sma": {\n "enabled": false\n }',
'ROI table:\n{0: 6.0, 3.0: 3.0, 5.0: 1.0, 6.0: 0}',
'Best Result:\nfoo'
]
for line in exists:
assert line in caplog.text
def test_fmin_throw_value_error(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', side_effect=ValueError())
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best Result:',
'Sorry, Hyperopt was not able to find good parameters. Please try with more epochs '
'(param: -e).',
]
for line in exists:
assert line in caplog.text
def test_resuming_previous_hyperopt_results_succeeds(mocker, default_conf) -> None:
trials = create_trials(mocker)
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': False})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.len', return_value=len(trials.results))
mock_read = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.read_trials',
return_value=trials
)
mock_save = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.save_trials',
return_value=None
)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_read.assert_called_once()
mock_save.assert_called_once()
current_tries = hyperopt.current_tries
total_tries = hyperopt.total_tries
assert current_tries == len(trials.results)
assert total_tries == (current_tries + len(trials.results))
def test_save_trials_saves_trials(mocker, caplog) -> None:
create_trials(mocker)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
hyperopt = _HYPEROPT
mocker.patch('freqtrade.optimize.hyperopt.open', return_value=hyperopt.trials_file)
hyperopt.save_trials()
assert log_has(
'Saving Trials to \'freqtrade/tests/optimize/ut_trials.pickle\'',
caplog.record_tuples
)
mock_dump.assert_called_once()
def test_read_trials_returns_trials_file(mocker, caplog) -> None:
trials = create_trials(mocker)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.pickle.load', return_value=trials)
mock_open = mocker.patch('freqtrade.optimize.hyperopt.open', return_value=mock_load)
hyperopt = _HYPEROPT
hyperopt_trial = hyperopt.read_trials()
assert log_has(
'Reading Trials from \'freqtrade/tests/optimize/ut_trials.pickle\'',
caplog.record_tuples
)
assert hyperopt_trial == trials
mock_open.assert_called_once()
mock_load.assert_called_once()
def test_roi_table_generation() -> None:
params = {
'roi_t1': 5,
'roi_t2': 10,
'roi_t3': 15,
'roi_p1': 1,
'roi_p2': 2,
'roi_p3': 3,
}
hyperopt = _HYPEROPT
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_fmin(mocker, default_conf) -> None:
trials = create_trials(mocker)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': False})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
hyperopt = Hyperopt(conf)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_fmin.assert_called_once()
def test_start_uses_mongotrials(mocker, default_conf) -> None:
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
mock_mongotrials = mocker.patch(
'freqtrade.optimize.hyperopt.MongoTrials',
return_value=create_trials(mocker)
)
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': True})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
hyperopt = Hyperopt(conf)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_mongotrials.assert_called_once()
mock_fmin.assert_called_once()
# test log_trials_result
# test buy_strategy_generator def populate_buy_trend
# test optimizer if 'ro_t1' in params
def test_format_results():
"""
Test Hyperopt.format_results()
"""
trades = [
('BTC_ETH', 2, 2, 123),
('BTC_LTC', 1, 1, 123),
('BTC_XRP', -1, -2, -246)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
df = pd.DataFrame.from_records(trades, columns=labels)
x = Hyperopt.format_results(df)
assert x.find(' 66.67%')
def test_signal_handler(mocker):
"""
Test Hyperopt.signal_handler()
"""
m = MagicMock()
mocker.patch('sys.exit', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.save_trials', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.log_trials_result', m)
hyperopt = _HYPEROPT
hyperopt.signal_handler(9, None)
assert m.call_count == 3
def test_has_space():
"""
Test Hyperopt.has_space() method
"""
_HYPEROPT.config.update({'spaces': ['buy', 'roi']})
assert _HYPEROPT.has_space('roi')
assert _HYPEROPT.has_space('buy')
assert not _HYPEROPT.has_space('stoploss')
_HYPEROPT.config.update({'spaces': ['all']})
assert _HYPEROPT.has_space('buy')
def test_populate_indicators() -> None:
"""
Test Hyperopt.populate_indicators()
"""
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
dataframe = _HYPEROPT.populate_indicators(dataframes['BTC_UNITEST'])
# Check if some indicators are generated. We will not test all of them
assert 'adx' in dataframe
assert 'ao' in dataframe
assert 'cci' in dataframe
def test_buy_strategy_generator() -> None:
"""
Test Hyperopt.buy_strategy_generator()
"""
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
dataframe = _HYPEROPT.populate_indicators(dataframes['BTC_UNITEST'])
populate_buy_trend = _HYPEROPT.buy_strategy_generator(
{
'uptrend_long_ema': {
'enabled': True
},
'macd_below_zero': {
'enabled': True
},
'uptrend_short_ema': {
'enabled': True
},
'mfi': {
'enabled': True,
'value': 20
},
'fastd': {
'enabled': True,
'value': 20
},
'adx': {
'enabled': True,
'value': 20
},
'rsi': {
'enabled': True,
'value': 20
},
'over_sar': {
'enabled': True,
},
'green_candle': {
'enabled': True,
},
'uptrend_sma': {
'enabled': True,
},
'trigger': {
'type': 'lower_bb'
}
}
)
result = populate_buy_trend(dataframe)
# Check if some indicators are generated. We will not test all of them
assert 'buy' in result
assert 1 in result['buy']
def test_generate_optimizer(mocker, default_conf) -> None:
"""
Test Hyperopt.generate_optimizer() function
"""
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
trades = [
('BTC_POWR', 0.023117, 0.000233, 100)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.backtest',
MagicMock(return_value=backtest_result)
)
optimizer_param = {
'adx': {'enabled': False},
'fastd': {'enabled': True, 'value': 35.0},
'green_candle': {'enabled': True},
'macd_below_zero': {'enabled': True},
'mfi': {'enabled': False},
'over_sar': {'enabled': False},
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'roi_t1': 60.0,
'roi_t2': 30.0,
'roi_t3': 20.0,
'rsi': {'enabled': False},
'stoploss': -0.4,
'trigger': {'type': 'macd_cross_signal'},
'uptrend_long_ema': {'enabled': False},
'uptrend_short_ema': {'enabled': True},
'uptrend_sma': {'enabled': True}
}
response_expected = {
'loss': 1.9840569076926293,
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'(0.0231Σ%). Avg duration 100.0 mins.',
'status': 'ok'
}
hyperopt = Hyperopt(conf)
generate_optimizer_value = hyperopt.generate_optimizer(optimizer_param)
assert generate_optimizer_value == response_expected

View File

@@ -0,0 +1,16 @@
# pragma pylint: disable=missing-docstring,W0212
from user_data.hyperopt_conf import hyperopt_optimize_conf
def test_hyperopt_optimize_conf():
hyperopt_conf = hyperopt_optimize_conf()
assert "max_open_trades" in hyperopt_conf
assert "stake_currency" in hyperopt_conf
assert "stake_amount" in hyperopt_conf
assert "minimal_roi" in hyperopt_conf
assert "stoploss" in hyperopt_conf
assert "bid_strategy" in hyperopt_conf
assert "exchange" in hyperopt_conf
assert "pair_whitelist" in hyperopt_conf['exchange']

View File

@@ -0,0 +1,284 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
import json
import os
import uuid
from shutil import copyfile
from freqtrade import optimize
from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import make_testdata_path, download_pairs, \
download_backtesting_testdata, load_tickerdata_file, trim_tickerlist
from freqtrade.tests.conftest import log_has
# Change this if modifying BTC_UNITEST testdatafile
_BTC_UNITTEST_LENGTH = 13681
def _backup_file(file: str, copy_file: bool = False) -> None:
"""
Backup existing file to avoid deleting the user file
:param file: complete path to the file
:param touch_file: create an empty file in replacement
:return: None
"""
file_swp = file + '.swp'
if os.path.isfile(file):
os.rename(file, file_swp)
if copy_file:
copyfile(file_swp, file)
def _clean_test_file(file: str) -> None:
"""
Backup existing file to avoid deleting the user file
:param file: complete path to the file
:return: None
"""
file_swp = file + '.swp'
# 1. Delete file from the test
if os.path.isfile(file):
os.remove(file)
# 2. Rollback to the initial file
if os.path.isfile(file_swp):
os.rename(file_swp, file)
def test_load_data_30min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 30 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_UNITTEST-30.json'
_backup_file(file, copy_file=True)
optimize.load_data(None, pairs=['BTC_UNITTEST'], ticker_interval=30)
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 30 min', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_5min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 5 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_ETH-5.json'
_backup_file(file, copy_file=True)
optimize.load_data(None, pairs=['BTC_ETH'], ticker_interval=5)
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 5 min', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 1 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_ETH-1.json'
_backup_file(file, copy_file=True)
optimize.load_data(None, ticker_interval=1, pairs=['BTC_ETH'])
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 1 min', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_with_new_pair_1min(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 1 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_MEME-1.json'
_backup_file(file)
optimize.load_data(None, ticker_interval=1, pairs=['BTC_MEME'])
assert os.path.isfile(file) is True
assert log_has('Download the pair: "BTC_MEME", Interval: 1 min', caplog.record_tuples)
_clean_test_file(file)
def test_testdata_path() -> None:
assert os.path.join('freqtrade', 'tests', 'testdata') in make_testdata_path(None)
def test_download_pairs(ticker_history, mocker) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
file1_1 = 'freqtrade/tests/testdata/BTC_MEME-1.json'
file1_5 = 'freqtrade/tests/testdata/BTC_MEME-5.json'
file2_1 = 'freqtrade/tests/testdata/BTC_CFI-1.json'
file2_5 = 'freqtrade/tests/testdata/BTC_CFI-5.json'
_backup_file(file1_1)
_backup_file(file1_5)
_backup_file(file2_1)
_backup_file(file2_5)
assert os.path.isfile(file1_1) is False
assert os.path.isfile(file2_1) is False
assert download_pairs(None, pairs=['BTC-MEME', 'BTC-CFI'], ticker_interval=1) is True
assert os.path.isfile(file1_1) is True
assert os.path.isfile(file2_1) is True
# clean files freshly downloaded
_clean_test_file(file1_1)
_clean_test_file(file2_1)
assert os.path.isfile(file1_5) is False
assert os.path.isfile(file2_5) is False
assert download_pairs(None, pairs=['BTC-MEME', 'BTC-CFI'], ticker_interval=5) is True
assert os.path.isfile(file1_5) is True
assert os.path.isfile(file2_5) is True
# clean files freshly downloaded
_clean_test_file(file1_5)
_clean_test_file(file2_5)
def test_download_pairs_exception(ticker_history, mocker, caplog) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
mocker.patch('freqtrade.optimize.__init__.download_backtesting_testdata',
side_effect=BaseException('File Error'))
file1_1 = 'freqtrade/tests/testdata/BTC_MEME-1.json'
file1_5 = 'freqtrade/tests/testdata/BTC_MEME-5.json'
_backup_file(file1_1)
_backup_file(file1_5)
download_pairs(None, pairs=['BTC-MEME'], ticker_interval=1)
# clean files freshly downloaded
_clean_test_file(file1_1)
_clean_test_file(file1_5)
assert log_has('Failed to download the pair: "BTC-MEME", Interval: 1 min', caplog.record_tuples)
def test_download_backtesting_testdata(ticker_history, mocker) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
# Download a 1 min ticker file
file1 = 'freqtrade/tests/testdata/BTC_XEL-1.json'
_backup_file(file1)
download_backtesting_testdata(None, pair="BTC-XEL", interval=1)
assert os.path.isfile(file1) is True
_clean_test_file(file1)
# Download a 5 min ticker file
file2 = 'freqtrade/tests/testdata/BTC_STORJ-5.json'
_backup_file(file2)
download_backtesting_testdata(None, pair="BTC-STORJ", interval=5)
assert os.path.isfile(file2) is True
_clean_test_file(file2)
def test_download_backtesting_testdata2(mocker) -> None:
tick = [{'T': 'bar'}, {'T': 'foo'}]
json_dump_mock = mocker.patch('freqtrade.misc.file_dump_json', return_value=None)
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=tick)
download_backtesting_testdata(None, pair="BTC-UNITEST", interval=1)
download_backtesting_testdata(None, pair="BTC-UNITEST", interval=3)
assert json_dump_mock.call_count == 2
def test_load_tickerdata_file() -> None:
# 7 does not exist in either format.
assert not load_tickerdata_file(None, 'BTC_UNITEST', 7)
# 1 exists only as a .json
tickerdata = load_tickerdata_file(None, 'BTC_UNITEST', 1)
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
# 8 .json is empty and will fail if it's loaded. .json.gz is a copy of 1.json
tickerdata = load_tickerdata_file(None, 'BTC_UNITEST', 8)
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
def test_init(default_conf, mocker) -> None:
conf = {'exchange': {'pair_whitelist': []}}
mocker.patch('freqtrade.optimize.hyperopt_optimize_conf', return_value=conf)
assert {} == optimize.load_data(
'',
pairs=[],
refresh_pairs=True,
ticker_interval=int(default_conf['ticker_interval'])
)
def test_trim_tickerlist() -> None:
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
ticker_list = json.load(data_file)
ticker_list_len = len(ticker_list)
# Test the pattern ^(-\d+)$
# This pattern remove X element from the beginning
timerange = ((None, 'line'), None, 5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_list_len == ticker_len + 5
assert ticker_list[0] is not ticker[0] # The first element should be different
assert ticker_list[-1] is ticker[-1] # The last element must be the same
# Test the pattern ^(\d+)-$
# This pattern keep X element from the end
timerange = (('line', None), 5, None)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 5
assert ticker_list[0] is ticker[0] # The first element must be the same
assert ticker_list[-1] is not ticker[-1] # The last element should be different
# Test the pattern ^(\d+)-(\d+)$
# This pattern extract a window
timerange = (('index', 'index'), 5, 10)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 5
assert ticker_list[0] is not ticker[0] # The first element should be different
assert ticker_list[5] is ticker[0] # The list starts at the index 5
assert ticker_list[9] is ticker[-1] # The list ends at the index 9 (5 elements)
# Test a wrong pattern
# This pattern must return the list unchanged
timerange = ((None, None), None, 5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_list_len == ticker_len
def test_file_dump_json() -> None:
"""
Test file_dump_json()
:return: None
"""
file = 'freqtrade/tests/testdata/test_{id}.json'.format(id=str(uuid.uuid4()))
data = {'bar': 'foo'}
# check the file we will create does not exist
assert os.path.isfile(file) is False
# Create the Json file
file_dump_json(file, data)
# Check the file was create
assert os.path.isfile(file) is True
# Open the Json file created and test the data is in it
with open(file) as data_file:
json_from_file = json.load(data_file)
assert 'bar' in json_from_file
assert json_from_file['bar'] == 'foo'
# Remove the file
_clean_test_file(file)

View File

@@ -0,0 +1,544 @@
# pragma pylint: disable=invalid-sequence-index, invalid-name, too-many-arguments
"""
Unit test file for rpc/rpc.py
"""
from datetime import datetime
from unittest.mock import MagicMock
from sqlalchemy import create_engine
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc import RPC
from freqtrade.state import State
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
# Functions for recurrent object patching
def prec_satoshi(a, b) -> float:
"""
:return: True if A and B differs less than one satoshi.
"""
return abs(a - b) < 0.00000001
# Unit tests
def test_rpc_trade_status(default_conf, ticker, mocker) -> None:
"""
Test rpc_trade_status() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_trade_status()
assert error
assert 'trader is not running' in result
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_trade_status()
assert error
assert 'no active trade' in result
freqtradebot.create_trade()
(error, result) = rpc.rpc_trade_status()
assert not error
trade = result[0]
result_message = [
'*Trade ID:* `1`\n'
'*Current Pair:* '
'[BTC_ETH](https://www.bittrex.com/Market/Index?MarketName=BTC-ETH)\n'
'*Open Since:* `just now`\n'
'*Amount:* `90.99181074`\n'
'*Open Rate:* `0.00001099`\n'
'*Close Rate:* `None`\n'
'*Current Rate:* `0.00001098`\n'
'*Close Profit:* `None`\n'
'*Current Profit:* `-0.59%`\n'
'*Open Order:* `(LIMIT_BUY rem=0.00000000)`'
]
assert result == result_message
assert trade.find('[BTC_ETH]') >= 0
def test_rpc_status_table(default_conf, ticker, mocker) -> None:
"""
Test rpc_status_table() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_status_table()
assert error
assert '*Status:* `trader is not running`' in result
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_status_table()
assert error
assert '*Status:* `no active order`' in result
freqtradebot.create_trade()
(error, result) = rpc.rpc_status_table()
assert 'just now' in result['Since'].all()
assert 'BTC_ETH' in result['Pair'].all()
assert '-0.59%' in result['Profit'].all()
def test_rpc_daily_profit(default_conf, update, ticker, limit_buy_order, limit_sell_order, mocker)\
-> None:
"""
Test rpc_daily_profit() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker, value={'price_usd': 15000.0})
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.create_trade()
trade = Trade.query.first()
assert trade
# Simulate buy & sell
trade.update(limit_buy_order)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
# Try valid data
update.message.text = '/daily 2'
(error, days) = rpc.rpc_daily_profit(7, stake_currency, fiat_display_currency)
assert not error
assert len(days) == 7
for day in days:
# [datetime.date(2018, 1, 11), '0.00000000 BTC', '0.000 USD']
assert (day[1] == '0.00000000 BTC' or
day[1] == '0.00006217 BTC')
assert (day[2] == '0.000 USD' or
day[2] == '0.933 USD')
# ensure first day is current date
assert str(days[0][0]) == str(datetime.utcnow().date())
# Try invalid data
(error, days) = rpc.rpc_daily_profit(0, stake_currency, fiat_display_currency)
assert error
assert days.find('must be an integer greater than 0') >= 0
def test_rpc_trade_statistics(
default_conf, ticker, ticker_sell_up, limit_buy_order, limit_sell_order, mocker) -> None:
"""
Test rpc_trade_statistics() method
"""
patch_get_signal(mocker, (True, False))
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
rpc = RPC(freqtradebot)
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert error
assert stats.find('no closed trade') >= 0
# Create some test data
freqtradebot.create_trade()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert not error
assert prec_satoshi(stats['profit_closed_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_closed_percent'], 6.2)
assert prec_satoshi(stats['profit_closed_fiat'], 0.93255)
assert prec_satoshi(stats['profit_all_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_all_percent'], 6.2)
assert prec_satoshi(stats['profit_all_fiat'], 0.93255)
assert stats['trade_count'] == 1
assert stats['first_trade_date'] == 'just now'
assert stats['latest_trade_date'] == 'just now'
assert stats['avg_duration'] == '0:00:00'
assert stats['best_pair'] == 'BTC_ETH'
assert prec_satoshi(stats['best_rate'], 6.2)
# Test that rpc_trade_statistics can handle trades that lacks
# trade.open_rate (it is set to None)
def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, ticker_sell_up, limit_buy_order,
limit_sell_order):
"""
Test rpc_trade_statistics() method
"""
patch_get_signal(mocker, (True, False))
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.create_trade()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
for trade in Trade.query.order_by(Trade.id).all():
trade.open_rate = None
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert not error
assert prec_satoshi(stats['profit_closed_coin'], 0)
assert prec_satoshi(stats['profit_closed_percent'], 0)
assert prec_satoshi(stats['profit_closed_fiat'], 0)
assert prec_satoshi(stats['profit_all_coin'], 0)
assert prec_satoshi(stats['profit_all_percent'], 0)
assert prec_satoshi(stats['profit_all_fiat'], 0)
assert stats['trade_count'] == 1
assert stats['first_trade_date'] == 'just now'
assert stats['latest_trade_date'] == 'just now'
assert stats['avg_duration'] == '0:00:00'
assert stats['best_pair'] == 'BTC_ETH'
assert prec_satoshi(stats['best_rate'], 6.2)
def test_rpc_balance_handle(default_conf, mocker):
"""
Test rpc_balance() method
"""
mock_balance = [
{
'Currency': 'BTC',
'Balance': 10.0,
'Available': 12.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
},
{
'Currency': 'ETH',
'Balance': 0.0,
'Available': 0.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
}
]
patch_get_signal(mocker, (True, False))
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=mock_balance)
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
(error, res) = rpc.rpc_balance(default_conf['fiat_display_currency'])
assert not error
(trade, x, y, z) = res
assert prec_satoshi(x, 10)
assert prec_satoshi(z, 150000)
assert 'USD' in y
assert len(trade) == 1
assert 'BTC' in trade[0]['currency']
assert prec_satoshi(trade[0]['available'], 12)
assert prec_satoshi(trade[0]['balance'], 10)
assert prec_satoshi(trade[0]['pending'], 0)
assert prec_satoshi(trade[0]['est_btc'], 10)
def test_rpc_start(mocker, default_conf) -> None:
"""
Test rpc_start() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_start()
assert not error
assert '`Starting trader ...`' in result
assert freqtradebot.state == State.RUNNING
(error, result) = rpc.rpc_start()
assert error
assert '*Status:* `already running`' in result
assert freqtradebot.state == State.RUNNING
def test_rpc_stop(mocker, default_conf) -> None:
"""
Test rpc_stop() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_stop()
assert not error
assert '`Stopping trader ...`' in result
assert freqtradebot.state == State.STOPPED
(error, result) = rpc.rpc_stop()
assert error
assert '*Status:* `already stopped`' in result
assert freqtradebot.state == State.STOPPED
def test_rpc_forcesell(default_conf, ticker, mocker) -> None:
"""
Test rpc_forcesell() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
cancel_order_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
cancel_order=cancel_order_mock,
get_order=MagicMock(
return_value={
'closed': True,
'type': 'LIMIT_BUY',
}
)
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == '`trader is not running`'
freqtradebot.state = State.RUNNING
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == 'Invalid argument.'
(error, res) = rpc.rpc_forcesell('all')
assert not error
assert res == ''
freqtradebot.create_trade()
(error, res) = rpc.rpc_forcesell('all')
assert not error
assert res == ''
(error, res) = rpc.rpc_forcesell('1')
assert not error
assert res == ''
freqtradebot.state = State.STOPPED
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == '`trader is not running`'
(error, res) = rpc.rpc_forcesell('all')
assert error
assert res == '`trader is not running`'
freqtradebot.state = State.RUNNING
assert cancel_order_mock.call_count == 0
# make an limit-buy open trade
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
return_value={
'closed': None,
'type': 'LIMIT_BUY'
}
)
# check that the trade is called, which is done
# by ensuring exchange.cancel_order is called
(error, res) = rpc.rpc_forcesell('1')
assert not error
assert res == ''
assert cancel_order_mock.call_count == 1
freqtradebot.create_trade()
# make an limit-sell open trade
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
return_value={
'closed': None,
'type': 'LIMIT_SELL'
}
)
(error, res) = rpc.rpc_forcesell('2')
assert not error
assert res == ''
# status quo, no exchange calls
assert cancel_order_mock.call_count == 1
def test_performance_handle(default_conf, ticker, limit_buy_order,
limit_sell_order, mocker) -> None:
"""
Test rpc_performance() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.create_trade()
trade = Trade.query.first()
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
(error, res) = rpc.rpc_performance()
assert not error
assert len(res) == 1
assert res[0]['pair'] == 'BTC_ETH'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit'], 6.2)
def test_rpc_count(mocker, default_conf, ticker) -> None:
"""
Test rpc_count() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
rpc = RPC(freqtradebot)
(error, trades) = rpc.rpc_count()
nb_trades = len(trades)
assert not error
assert nb_trades == 0
# Create some test data
freqtradebot.create_trade()
(error, trades) = rpc.rpc_count()
nb_trades = len(trades)
assert not error
assert nb_trades == 1

View File

@@ -0,0 +1,139 @@
"""
Unit test file for rpc/rpc_manager.py
"""
import logging
from copy import deepcopy
from unittest.mock import MagicMock
from freqtrade.rpc.rpc_manager import RPCManager
from freqtrade.rpc.telegram import Telegram
from freqtrade.tests.conftest import log_has, get_patched_freqtradebot
def test_rpc_manager_object() -> None:
"""
Test the Arguments object has the mandatory methods
:return: None
"""
assert hasattr(RPCManager, '_init')
assert hasattr(RPCManager, 'send_msg')
assert hasattr(RPCManager, 'cleanup')
def test__init__(mocker, default_conf) -> None:
"""
Test __init__() method
"""
init_mock = mocker.patch('freqtrade.rpc.rpc_manager.RPCManager._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
assert rpc_manager.freqtrade == freqtradebot
assert rpc_manager.registered_modules == []
assert rpc_manager.telegram is None
assert init_mock.call_count == 1
def test_init_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test _init() method with Telegram disabled
"""
caplog.set_level(logging.DEBUG)
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
rpc_manager = RPCManager(freqtradebot)
assert not log_has('Enabling rpc.telegram ...', caplog.record_tuples)
assert rpc_manager.registered_modules == []
assert rpc_manager.telegram is None
def test_init_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test _init() method with Telegram enabled
"""
caplog.set_level(logging.DEBUG)
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
assert log_has('Enabling rpc.telegram ...', caplog.record_tuples)
len_modules = len(rpc_manager.registered_modules)
assert len_modules == 1
assert 'telegram' in rpc_manager.registered_modules
assert isinstance(rpc_manager.telegram, Telegram)
def test_cleanup_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test cleanup() method with Telegram disabled
"""
caplog.set_level(logging.DEBUG)
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.cleanup', MagicMock())
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.cleanup()
assert not log_has('Cleaning up rpc.telegram ...', caplog.record_tuples)
assert telegram_mock.call_count == 0
def test_cleanup_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test cleanup() method with Telegram enabled
"""
caplog.set_level(logging.DEBUG)
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.cleanup', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
# Check we have Telegram as a registered modules
assert 'telegram' in rpc_manager.registered_modules
rpc_manager.cleanup()
assert log_has('Cleaning up rpc.telegram ...', caplog.record_tuples)
assert 'telegram' not in rpc_manager.registered_modules
assert telegram_mock.call_count == 1
def test_send_msg_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test send_msg() method with Telegram disabled
"""
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.send_msg('test')
assert log_has('test', caplog.record_tuples)
assert telegram_mock.call_count == 0
def test_send_msg_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test send_msg() method with Telegram disabled
"""
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.send_msg('test')
assert log_has('test', caplog.record_tuples)
assert telegram_mock.call_count == 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,34 @@
import json
import pytest
from pandas import DataFrame
from freqtrade.analyze import Analyze
from freqtrade.strategy.default_strategy import DefaultStrategy
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
return Analyze.parse_ticker_dataframe(json.load(data_file))
def test_default_strategy_structure():
assert hasattr(DefaultStrategy, 'minimal_roi')
assert hasattr(DefaultStrategy, 'stoploss')
assert hasattr(DefaultStrategy, 'ticker_interval')
assert hasattr(DefaultStrategy, 'populate_indicators')
assert hasattr(DefaultStrategy, 'populate_buy_trend')
assert hasattr(DefaultStrategy, 'populate_sell_trend')
def test_default_strategy(result):
strategy = DefaultStrategy()
assert type(strategy.minimal_roi) is dict
assert type(strategy.stoploss) is float
assert type(strategy.ticker_interval) is int
indicators = strategy.populate_indicators(result)
assert type(indicators) is DataFrame
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
assert type(strategy.populate_sell_trend(indicators)) is DataFrame

View File

@@ -0,0 +1,118 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
import logging
import os
import pytest
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.resolver import StrategyResolver
def test_search_strategy():
default_location = os.path.join(os.path.dirname(
os.path.realpath(__file__)), '..', '..', 'strategy'
)
assert isinstance(
StrategyResolver._search_strategy(default_location, 'DefaultStrategy'), IStrategy
)
assert StrategyResolver._search_strategy(default_location, 'NotFoundStrategy') is None
def test_load_strategy(result):
resolver = StrategyResolver()
resolver._load_strategy('TestStrategy')
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
def test_load_strategy_custom_directory(result):
resolver = StrategyResolver()
extra_dir = os.path.join('some', 'path')
with pytest.raises(
FileNotFoundError,
match=r".*No such file or directory: '{}'".format(extra_dir)):
resolver._load_strategy('TestStrategy', extra_dir)
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
def test_load_not_found_strategy():
strategy = StrategyResolver()
with pytest.raises(ImportError,
match=r'Impossible to load Strategy \'NotFoundStrategy\'.'
r' This class does not exist or contains Python code errors'):
strategy._load_strategy('NotFoundStrategy')
def test_strategy(result):
resolver = StrategyResolver({'strategy': 'DefaultStrategy'})
assert hasattr(resolver.strategy, 'minimal_roi')
assert resolver.strategy.minimal_roi[0] == 0.04
assert hasattr(resolver.strategy, 'stoploss')
assert resolver.strategy.stoploss == -0.10
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
assert hasattr(resolver.strategy, 'populate_buy_trend')
dataframe = resolver.strategy.populate_buy_trend(resolver.strategy.populate_indicators(result))
assert 'buy' in dataframe.columns
assert hasattr(resolver.strategy, 'populate_sell_trend')
dataframe = resolver.strategy.populate_sell_trend(resolver.strategy.populate_indicators(result))
assert 'sell' in dataframe.columns
def test_strategy_override_minimal_roi(caplog):
caplog.set_level(logging.INFO)
config = {
'strategy': 'DefaultStrategy',
'minimal_roi': {
"0": 0.5
}
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'minimal_roi')
assert resolver.strategy.minimal_roi[0] == 0.5
assert ('freqtrade.strategy.resolver',
logging.INFO,
'Override strategy \'minimal_roi\' with value in config file.'
) in caplog.record_tuples
def test_strategy_override_stoploss(caplog):
caplog.set_level(logging.INFO)
config = {
'strategy': 'DefaultStrategy',
'stoploss': -0.5
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'stoploss')
assert resolver.strategy.stoploss == -0.5
assert ('freqtrade.strategy.resolver',
logging.INFO,
'Override strategy \'stoploss\' with value in config file: -0.5.'
) in caplog.record_tuples
def test_strategy_override_ticker_interval(caplog):
caplog.set_level(logging.INFO)
config = {
'strategy': 'DefaultStrategy',
'ticker_interval': 60
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'ticker_interval')
assert resolver.strategy.ticker_interval == 60
assert ('freqtrade.strategy.resolver',
logging.INFO,
'Override strategy \'ticker_interval\' with value in config file: 60.'
) in caplog.record_tuples

View File

@@ -0,0 +1,146 @@
# pragma pylint: disable=missing-docstring,C0103,protected-access
import freqtrade.tests.conftest as tt # test tools
# whitelist, blacklist, filtering, all of that will
# eventually become some rules to run on a generic ACL engine
# perhaps try to anticipate that by using some python package
def whitelist_conf():
config = tt.default_conf()
config['stake_currency'] = 'BTC'
config['exchange']['pair_whitelist'] = [
'BTC_ETH',
'BTC_TKN',
'BTC_TRST',
'BTC_SWT',
'BTC_BCC'
]
config['exchange']['pair_blacklist'] = [
'BTC_BLK'
]
return config
def get_market_summaries():
return [{
'MarketName': 'BTC-TKN',
'High': 0.00000919,
'Low': 0.00000820,
'Volume': 74339.61396015,
'Last': 0.00000820,
'BaseVolume': 1664,
'TimeStamp': '2014-07-09T07:19:30.15',
'Bid': 0.00000820,
'Ask': 0.00000831,
'OpenBuyOrders': 15,
'OpenSellOrders': 15,
'PrevDay': 0.00000821,
'Created': '2014-03-20T06:00:00',
'DisplayMarketName': ''
}, {
'MarketName': 'BTC-ETH',
'High': 0.00000072,
'Low': 0.00000001,
'Volume': 166340678.42280999,
'Last': 0.00000005,
'BaseVolume': 42,
'TimeStamp': '2014-07-09T07:21:40.51',
'Bid': 0.00000004,
'Ask': 0.00000005,
'OpenBuyOrders': 18,
'OpenSellOrders': 18,
'PrevDay': 0.00000002,
'Created': '2014-05-30T07:57:49.637',
'DisplayMarketName': ''
}, {
'MarketName': 'BTC-BLK',
'High': 0.00000072,
'Low': 0.00000001,
'Volume': 166340678.42280999,
'Last': 0.00000005,
'BaseVolume': 3,
'TimeStamp': '2014-07-09T07:21:40.51',
'Bid': 0.00000004,
'Ask': 0.00000005,
'OpenBuyOrders': 18,
'OpenSellOrders': 18,
'PrevDay': 0.00000002,
'Created': '2014-05-30T07:57:49.637',
'DisplayMarketName': ''
}]
def get_health():
return [{'Currency': 'ETH', 'IsActive': True},
{'Currency': 'TKN', 'IsActive': True},
{'Currency': 'BLK', 'IsActive': True}]
def get_health_empty():
return []
def test_refresh_market_pair_not_in_whitelist(mocker):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health)
refreshedwhitelist = freqtradebot._refresh_whitelist(
conf['exchange']['pair_whitelist'] + ['BTC_XXX']
)
# List ordered by BaseVolume
whitelist = ['BTC_ETH', 'BTC_TKN']
# Ensure all except those in whitelist are removed
assert whitelist == refreshedwhitelist
def test_refresh_whitelist(mocker):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health)
refreshedwhitelist = freqtradebot._refresh_whitelist(conf['exchange']['pair_whitelist'])
# List ordered by BaseVolume
whitelist = ['BTC_ETH', 'BTC_TKN']
# Ensure all except those in whitelist are removed
assert whitelist == refreshedwhitelist
def test_refresh_whitelist_dynamic(mocker):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
get_wallet_health=get_health,
get_market_summaries=get_market_summaries
)
# argument: use the whitelist dynamically by exchange-volume
whitelist = ['BTC_TKN', 'BTC_ETH']
refreshedwhitelist = freqtradebot._refresh_whitelist(
freqtradebot._gen_pair_whitelist(conf['stake_currency'])
)
assert whitelist == refreshedwhitelist
def test_refresh_whitelist_dynamic_empty(mocker):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health_empty)
# argument: use the whitelist dynamically by exchange-volume
whitelist = []
conf['exchange']['pair_whitelist'] = []
freqtradebot._refresh_whitelist(whitelist)
pairslist = conf['exchange']['pair_whitelist']
assert set(whitelist) == set(pairslist)

View File

@@ -1,53 +1,194 @@
# pragma pylint: disable=missing-docstring,W0621
import json
# pragma pylint: disable=missing-docstring, C0103
"""
Unit test file for analyse.py
"""
import datetime
import logging
from unittest.mock import MagicMock
import arrow
import pytest
from pandas import DataFrame
from freqtrade.analyze import parse_ticker_dataframe, populate_buy_trend, populate_indicators, \
get_signal, SignalType, populate_sell_trend
from freqtrade.analyze import Analyze, SignalType
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.tests.conftest import log_has
# Avoid to reinit the same object again and again
_ANALYZE = Analyze({'strategy': 'DefaultStrategy'})
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
return parse_ticker_dataframe(json.load(data_file))
def test_signaltype_object() -> None:
"""
Test the SignalType object has the mandatory Constants
:return: None
"""
assert hasattr(SignalType, 'BUY')
assert hasattr(SignalType, 'SELL')
def test_analyze_object() -> None:
"""
Test the Analyze object has the mandatory methods
:return: None
"""
assert hasattr(Analyze, 'parse_ticker_dataframe')
assert hasattr(Analyze, 'populate_indicators')
assert hasattr(Analyze, 'populate_buy_trend')
assert hasattr(Analyze, 'populate_sell_trend')
assert hasattr(Analyze, 'analyze_ticker')
assert hasattr(Analyze, 'get_signal')
assert hasattr(Analyze, 'should_sell')
assert hasattr(Analyze, 'min_roi_reached')
def test_dataframe_correct_length(result):
dataframe = Analyze.parse_ticker_dataframe(result)
assert len(result.index) == len(dataframe.index)
def test_dataframe_correct_columns(result):
assert result.columns.tolist() == \
['close', 'high', 'low', 'open', 'date', 'volume']
def test_dataframe_correct_length(result):
assert len(result.index) == 14382
['date', 'close', 'high', 'low', 'open', 'volume']
def test_populates_buy_trend(result):
dataframe = populate_buy_trend(populate_indicators(result))
# Load the default strategy for the unit test, because this logic is done in main.py
dataframe = _ANALYZE.populate_buy_trend(_ANALYZE.populate_indicators(result))
assert 'buy' in dataframe.columns
def test_populates_sell_trend(result):
dataframe = populate_sell_trend(populate_indicators(result))
# Load the default strategy for the unit test, because this logic is done in main.py
dataframe = _ANALYZE.populate_sell_trend(_ANALYZE.populate_indicators(result))
assert 'sell' in dataframe.columns
def test_returns_latest_buy_signal(mocker):
buydf = DataFrame([{'buy': 1, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
assert get_signal('BTC-ETH', SignalType.BUY)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
buydf = DataFrame([{'buy': 0, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
assert not get_signal('BTC-ETH', SignalType.BUY)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (True, False)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, True)
def test_returns_latest_sell_signal(mocker):
selldf = DataFrame([{'sell': 1, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=selldf)
assert get_signal('BTC-ETH', SignalType.SELL)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
)
)
selldf = DataFrame([{'sell': 0, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=selldf)
assert not get_signal('BTC-ETH', SignalType.SELL)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, True)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (True, False)
def test_get_signal_empty(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=None)
assert (False, False) == _ANALYZE.get_signal('foo', int(default_conf['ticker_interval']))
assert log_has('Empty ticker history for pair foo', caplog.record_tuples)
def test_get_signal_exception_valueerror(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
side_effect=ValueError('xyz')
)
)
assert (False, False) == _ANALYZE.get_signal('foo', int(default_conf['ticker_interval']))
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog.record_tuples)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([])
)
)
assert (False, False) == _ANALYZE.get_signal('xyz', int(default_conf['ticker_interval']))
assert log_has('Empty dataframe for pair xyz', caplog.record_tuples)
def test_get_signal_old_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
# FIX: The get_signal function has hardcoded 10, which we must inturn hardcode
oldtime = arrow.utcnow() - datetime.timedelta(minutes=11)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame(ticks)
)
)
assert (False, False) == _ANALYZE.get_signal('xyz', int(default_conf['ticker_interval']))
assert log_has(
'Outdated history for pair xyz. Last tick is 11 minutes old',
caplog.record_tuples
)
def test_get_signal_handles_exceptions(mocker):
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
side_effect=Exception('invalid ticker history ')
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, False)
def test_parse_ticker_dataframe(ticker_history, ticker_history_without_bv):
columns = ['date', 'close', 'high', 'low', 'open', 'volume']
# Test file with BV data
dataframe = Analyze.parse_ticker_dataframe(ticker_history)
assert dataframe.columns.tolist() == columns
# Test file without BV data
dataframe = Analyze.parse_ticker_dataframe(ticker_history_without_bv)
assert dataframe.columns.tolist() == columns
def test_tickerdata_to_dataframe(default_conf) -> None:
"""
Test Analyze.tickerdata_to_dataframe() method
"""
analyze = Analyze(default_conf)
timerange = ((None, 'line'), None, -100)
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange)
tickerlist = {'BTC_UNITEST': tick}
data = analyze.tickerdata_to_dataframe(tickerlist)
assert len(data['BTC_UNITEST']) == 100

View File

@@ -0,0 +1,154 @@
# pragma pylint: disable=missing-docstring, C0103
"""
Unit test file for arguments.py
"""
import argparse
import logging
import pytest
from freqtrade.arguments import Arguments
def test_arguments_object() -> None:
"""
Test the Arguments object has the mandatory methods
:return: None
"""
assert hasattr(Arguments, 'get_parsed_arg')
assert hasattr(Arguments, 'parse_args')
assert hasattr(Arguments, 'parse_timerange')
assert hasattr(Arguments, 'scripts_options')
# Parse common command-line-arguments. Used for all tools
def test_parse_args_none() -> None:
arguments = Arguments([], '')
assert isinstance(arguments, Arguments)
assert isinstance(arguments.parser, argparse.ArgumentParser)
assert isinstance(arguments.parser, argparse.ArgumentParser)
def test_parse_args_defaults() -> None:
args = Arguments([], '').get_parsed_arg()
assert args.config == 'config.json'
assert args.dynamic_whitelist is None
assert args.loglevel == logging.INFO
def test_parse_args_config() -> None:
args = Arguments(['-c', '/dev/null'], '').get_parsed_arg()
assert args.config == '/dev/null'
args = Arguments(['--config', '/dev/null'], '').get_parsed_arg()
assert args.config == '/dev/null'
def test_parse_args_verbose() -> None:
args = Arguments(['-v'], '').get_parsed_arg()
assert args.loglevel == logging.DEBUG
args = Arguments(['--verbose'], '').get_parsed_arg()
assert args.loglevel == logging.DEBUG
def test_scripts_options() -> None:
arguments = Arguments(['-p', 'BTC_ETH'], '')
arguments.scripts_options()
args = arguments.get_parsed_arg()
assert args.pair == 'BTC_ETH'
def test_parse_args_version() -> None:
with pytest.raises(SystemExit, match=r'0'):
Arguments(['--version'], '').get_parsed_arg()
def test_parse_args_invalid() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['-c'], '').get_parsed_arg()
def test_parse_args_strategy() -> None:
args = Arguments(['--strategy', 'SomeStrategy'], '').get_parsed_arg()
assert args.strategy == 'SomeStrategy'
def test_parse_args_strategy_invalid() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['--strategy'], '').get_parsed_arg()
def test_parse_args_strategy_path() -> None:
args = Arguments(['--strategy-path', '/some/path'], '').get_parsed_arg()
assert args.strategy_path == '/some/path'
def test_parse_args_strategy_path_invalid() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['--strategy-path'], '').get_parsed_arg()
def test_parse_args_dynamic_whitelist() -> None:
args = Arguments(['--dynamic-whitelist'], '').get_parsed_arg()
assert args.dynamic_whitelist == 20
def test_parse_args_dynamic_whitelist_10() -> None:
args = Arguments(['--dynamic-whitelist', '10'], '').get_parsed_arg()
assert args.dynamic_whitelist == 10
def test_parse_args_dynamic_whitelist_invalid_values() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['--dynamic-whitelist', 'abc'], '').get_parsed_arg()
def test_parse_timerange_incorrect() -> None:
assert ((None, 'line'), None, -200) == Arguments.parse_timerange('-200')
assert (('line', None), 200, None) == Arguments.parse_timerange('200-')
with pytest.raises(Exception, match=r'Incorrect syntax.*'):
Arguments.parse_timerange('-')
def test_parse_args_backtesting_invalid() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['backtesting --ticker-interval'], '').get_parsed_arg()
with pytest.raises(SystemExit, match=r'2'):
Arguments(['backtesting --ticker-interval', 'abc'], '').get_parsed_arg()
def test_parse_args_backtesting_custom() -> None:
args = [
'-c', 'test_conf.json',
'backtesting',
'--live',
'--ticker-interval', '1',
'--refresh-pairs-cached']
call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == 'test_conf.json'
assert call_args.live is True
assert call_args.loglevel == logging.INFO
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval == 1
assert call_args.refresh_pairs is True
def test_parse_args_hyperopt_custom() -> None:
args = [
'-c', 'test_conf.json',
'hyperopt',
'--epochs', '20',
'--spaces', 'buy'
]
call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == 'test_conf.json'
assert call_args.epochs == 20
assert call_args.loglevel == logging.INFO
assert call_args.subparser == 'hyperopt'
assert call_args.spaces == ['buy']
assert call_args.func is not None

View File

@@ -1,154 +0,0 @@
# pragma pylint: disable=missing-docstring,W0212
import logging
import os
from typing import Tuple, Dict
import arrow
import pytest
from pandas import DataFrame
from tabulate import tabulate
from freqtrade import exchange
from freqtrade.analyze import parse_ticker_dataframe, populate_indicators, \
populate_buy_trend, populate_sell_trend
from freqtrade.exchange import Bittrex
from freqtrade.main import min_roi_reached
from freqtrade.misc import load_config
from freqtrade.persistence import Trade
from freqtrade.tests import load_backtesting_data
logger = logging.getLogger(__name__)
def format_results(results: DataFrame):
return ('Made {:6d} buys. Average profit {: 5.2f}%. '
'Total profit was {: 7.3f}. Average duration {:5.1f} mins.').format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5,
)
def preprocess(backdata) -> Dict[str, DataFrame]:
processed = {}
for pair, pair_data in backdata.items():
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
return processed
def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with backtesting data
:return: tuple containing min_date, max_date
"""
min_date, max_date = None, None
for values in data.values():
sorted_values = sorted(values, key=lambda d: arrow.get(d['T']))
if not min_date or sorted_values[0]['T'] < min_date:
min_date = sorted_values[0]['T']
if not max_date or sorted_values[-1]['T'] > max_date:
max_date = sorted_values[-1]['T']
return arrow.get(min_date), arrow.get(max_date)
def generate_text_table(data: Dict[str, Dict], results: DataFrame, stake_currency) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
tabular_data = []
headers = ['pair', 'buy count', 'avg profit', 'total profit', 'avg duration']
for pair in data:
result = results[results.currency == pair]
tabular_data.append([
pair,
len(result.index),
'{:.2f}%'.format(result.profit.mean() * 100.0),
'{:.08f} {}'.format(result.profit.sum(), stake_currency),
'{:.2f}'.format(result.duration.mean() * 5),
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
'{:.2f}%'.format(results.profit.mean() * 100.0),
'{:.08f} {}'.format(results.profit.sum(), stake_currency),
'{:.2f}'.format(results.duration.mean() * 5),
])
return tabulate(tabular_data, headers=headers)
def backtest(backtest_conf, processed, mocker):
trades = []
exchange._API = Bittrex({'key': '', 'secret': ''})
mocker.patch.dict('freqtrade.main._CONF', backtest_conf)
for pair, pair_data in processed.items():
pair_data['buy'] = 0
pair_data['sell'] = 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
# for each buy point
for row in ticker[ticker.buy == 1].itertuples(index=True):
trade = Trade(
open_rate=row.close,
open_date=row.date,
amount=backtest_conf['stake_amount'],
fee=exchange.get_fee() * 2
)
# calculate win/lose forwards from buy point
for row2 in ticker[row.Index:].itertuples(index=True):
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
current_profit = trade.calc_profit(row2.close)
trades.append((pair, current_profit, row2.Index - row.Index))
break
labels = ['currency', 'profit', 'duration']
return DataFrame.from_records(trades, columns=labels)
@pytest.mark.skipif(not os.environ.get('BACKTEST'), reason="BACKTEST not set")
def test_backtest(backtest_conf, mocker):
print('')
exchange._API = Bittrex({'key': '', 'secret': ''})
# Load configuration file based on env variable
conf_path = os.environ.get('BACKTEST_CONFIG')
if conf_path:
print('Using config: {} ...'.format(conf_path))
config = load_config(conf_path)
else:
config = backtest_conf
# Parse ticker interval
ticker_interval = int(os.environ.get('BACKTEST_TICKER_INTERVAL') or 5)
print('Using ticker_interval: {} ...'.format(ticker_interval))
data = {}
if os.environ.get('BACKTEST_LIVE'):
print('Downloading data for all pairs in whitelist ...')
for pair in config['exchange']['pair_whitelist']:
data[pair] = exchange.get_ticker_history(pair, ticker_interval)
else:
print('Using local backtesting data (ignoring whitelist in given config)...')
data = load_backtesting_data(ticker_interval)
print('Using stake_currency: {} ...\nUsing stake_amount: {} ...'.format(
config['stake_currency'], config['stake_amount']
))
# Print timeframe
min_date, max_date = get_timeframe(data)
print('Measuring data from {} up to {} ...'.format(
min_date.isoformat(), max_date.isoformat()
))
# Execute backtest and print results
results = backtest(config, preprocess(data), mocker)
print('====================== BACKTESTING REPORT ======================================\n\n'
'NOTE: This Report doesn\'t respect the limits of max_open_trades, \n'
' so the projected values should be taken with a grain of salt.\n')
print(generate_text_table(data, results, config['stake_currency']))

View File

@@ -0,0 +1,336 @@
# pragma pylint: disable=protected-access, invalid-name
"""
Unit test file for configuration.py
"""
import json
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from jsonschema import ValidationError
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.tests.conftest import log_has
def test_configuration_object() -> None:
"""
Test the Constants object has the mandatory Constants
"""
assert hasattr(Configuration, 'load_config')
assert hasattr(Configuration, '_load_config_file')
assert hasattr(Configuration, '_validate_config')
assert hasattr(Configuration, '_load_common_config')
assert hasattr(Configuration, '_load_backtesting_config')
assert hasattr(Configuration, '_load_hyperopt_config')
assert hasattr(Configuration, 'get_config')
def test_load_config_invalid_pair(default_conf, mocker) -> None:
"""
Test the configuration validator with an invalid PAIR format
"""
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'].append('BTC-ETH')
with pytest.raises(ValidationError, match=r'.*does not match.*'):
configuration = Configuration([])
configuration._validate_config(conf)
def test_load_config_missing_attributes(default_conf, mocker) -> None:
"""
Test the configuration validator with a missing attribute
"""
conf = deepcopy(default_conf)
conf.pop('exchange')
with pytest.raises(ValidationError, match=r'.*\'exchange\' is a required property.*'):
configuration = Configuration([])
configuration._validate_config(conf)
def test_load_config_file(default_conf, mocker, caplog) -> None:
"""
Test Configuration._load_config_file() method
"""
file_mock = mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
configuration = Configuration([])
validated_conf = configuration._load_config_file('somefile')
assert file_mock.call_count == 1
assert validated_conf.items() >= default_conf.items()
assert 'internals' in validated_conf
assert log_has('Validating configuration ...', caplog.record_tuples)
def test_load_config_file_exception(mocker, caplog) -> None:
"""
Test Configuration._load_config_file() method
"""
mocker.patch(
'freqtrade.configuration.open',
MagicMock(side_effect=FileNotFoundError('File not found'))
)
configuration = Configuration([])
with pytest.raises(SystemExit):
configuration._load_config_file('somefile')
assert log_has(
'Config file "somefile" not found. Please create your config file',
caplog.record_tuples
)
def test_load_config(default_conf, mocker) -> None:
"""
Test Configuration.load_config() without any cli params
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = Arguments([], '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('strategy') == 'DefaultStrategy'
assert validated_conf.get('strategy_path') is None
assert 'dynamic_whitelist' not in validated_conf
assert 'dry_run_db' not in validated_conf
def test_load_config_with_params(default_conf, mocker) -> None:
"""
Test Configuration.load_config() with cli params used
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--strategy-path', '/some/path',
'--dry-run-db',
]
args = Arguments(args, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('dynamic_whitelist') == 10
assert validated_conf.get('strategy') == 'TestStrategy'
assert validated_conf.get('strategy_path') == '/some/path'
assert validated_conf.get('dry_run_db') is True
def test_load_custom_strategy(default_conf, mocker) -> None:
"""
Test Configuration.load_config() without any cli params
"""
custom_conf = deepcopy(default_conf)
custom_conf.update({
'strategy': 'CustomStrategy',
'strategy_path': '/tmp/strategies',
})
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(custom_conf)
))
args = Arguments([], '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('strategy') == 'CustomStrategy'
assert validated_conf.get('strategy_path') == '/tmp/strategies'
def test_show_info(default_conf, mocker, caplog) -> None:
"""
Test Configuration.show_info()
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--dry-run-db'
]
args = Arguments(args, '').get_parsed_arg()
configuration = Configuration(args)
configuration.get_config()
assert log_has(
'Parameter --dynamic-whitelist detected. '
'Using dynamically generated whitelist. '
'(not applicable with Backtesting and Hyperopt)',
caplog.record_tuples
)
assert log_has(
'Parameter --dry-run-db detected ...',
caplog.record_tuples
)
assert log_has(
'Dry_run will use the DB file: "tradesv3.dry_run.sqlite"',
caplog.record_tuples
)
# Test the Dry run condition
configuration.config.update({'dry_run': False})
configuration._load_common_config(configuration.config)
assert log_has(
'Dry run is disabled. (--dry_run_db ignored)',
caplog.record_tuples
)
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
args = Arguments(args, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation' not in config
assert not log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' not in config
assert 'export' not in config
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1',
'--live',
'--realistic-simulation',
'--refresh-pairs-cached',
'--timerange', ':100',
'--export', '/bar/foo'
]
args = Arguments(args, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1 ...',
caplog.record_tuples
)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation'in config
assert log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
assert 'refresh_pairs'in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'hyperopt',
'--epochs', '10',
'--use-mongodb',
'--spaces', 'all',
]
args = Arguments(args, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert 'epochs' in config
assert int(config['epochs']) == 10
assert log_has('Parameter --epochs detected ...', caplog.record_tuples)
assert log_has('Will run Hyperopt with for 10 epochs ...', caplog.record_tuples)
assert 'mongodb' in config
assert config['mongodb'] is True
assert log_has('Parameter --use-mongodb detected ...', caplog.record_tuples)
assert 'spaces' in config
assert config['spaces'] == ['all']
assert log_has('Parameter -s/--spaces detected: [\'all\']', caplog.record_tuples)

View File

@@ -0,0 +1,25 @@
"""
Unit test file for constants.py
"""
from freqtrade import constants
def test_constant_object() -> None:
"""
Test the Constants object has the mandatory Constants
"""
assert hasattr(constants, 'CONF_SCHEMA')
assert hasattr(constants, 'DYNAMIC_WHITELIST')
assert hasattr(constants, 'PROCESS_THROTTLE_SECS')
assert hasattr(constants, 'TICKER_INTERVAL')
assert hasattr(constants, 'HYPEROPT_EPOCH')
assert hasattr(constants, 'RETRY_TIMEOUT')
assert hasattr(constants, 'DEFAULT_STRATEGY')
def test_conf_schema() -> None:
"""
Test the CONF_SCHEMA is from the right type
"""
assert isinstance(constants.CONF_SCHEMA, dict)

View File

@@ -0,0 +1,34 @@
# pragma pylint: disable=missing-docstring, C0103
import pandas
from freqtrade.analyze import Analyze
from freqtrade.optimize import load_data
from freqtrade.strategy.resolver import StrategyResolver
_pairs = ['BTC_ETH']
def load_dataframe_pair(pairs):
ld = load_data(None, ticker_interval=5, pairs=pairs)
assert isinstance(ld, dict)
assert isinstance(pairs[0], str)
dataframe = ld[pairs[0]]
analyze = Analyze({'strategy': 'DefaultStrategy'})
dataframe = analyze.analyze_ticker(dataframe)
return dataframe
def test_dataframe_load():
StrategyResolver({'strategy': 'DefaultStrategy'})
dataframe = load_dataframe_pair(_pairs)
assert isinstance(dataframe, pandas.core.frame.DataFrame)
def test_dataframe_columns_exists():
StrategyResolver({'strategy': 'DefaultStrategy'})
dataframe = load_dataframe_pair(_pairs)
assert 'high' in dataframe.columns
assert 'low' in dataframe.columns
assert 'close' in dataframe.columns

View File

@@ -1,35 +0,0 @@
# pragma pylint: disable=missing-docstring,C0103
from unittest.mock import MagicMock
import pytest
from freqtrade.exchange import validate_pairs
def test_validate_pairs(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[
'BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT', 'BTC_BCC',
])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
validate_pairs(default_conf['exchange']['pair_whitelist'])
def test_validate_pairs_not_available(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
with pytest.raises(RuntimeError, match=r'not available'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
def test_validate_pairs_not_compatible(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=['BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT'])
default_conf['stake_currency'] = 'ETH'
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
with pytest.raises(RuntimeError, match=r'not compatible'):
validate_pairs(default_conf['exchange']['pair_whitelist'])

View File

@@ -0,0 +1,135 @@
# pragma pylint: disable=missing-docstring, too-many-arguments, too-many-ancestors,
# pragma pylint: disable=protected-access, C0103
import time
from unittest.mock import MagicMock
import pytest
from freqtrade.fiat_convert import CryptoFiat, CryptoToFiatConverter
def test_pair_convertion_object():
pair_convertion = CryptoFiat(
crypto_symbol='btc',
fiat_symbol='usd',
price=12345.0
)
# Check the cache duration is 6 hours
assert pair_convertion.CACHE_DURATION == 6 * 60 * 60
# Check a regular usage
assert pair_convertion.crypto_symbol == 'BTC'
assert pair_convertion.fiat_symbol == 'USD'
assert pair_convertion.price == 12345.0
assert pair_convertion.is_expired() is False
# Update the expiration time (- 2 hours) and check the behavior
pair_convertion._expiration = time.time() - 2 * 60 * 60
assert pair_convertion.is_expired() is True
# Check set price behaviour
time_reference = time.time() + pair_convertion.CACHE_DURATION
pair_convertion.set_price(price=30000.123)
assert pair_convertion.is_expired() is False
assert pair_convertion._expiration >= time_reference
assert pair_convertion.price == 30000.123
def test_fiat_convert_is_supported():
fiat_convert = CryptoToFiatConverter()
assert fiat_convert._is_supported_fiat(fiat='USD') is True
assert fiat_convert._is_supported_fiat(fiat='usd') is True
assert fiat_convert._is_supported_fiat(fiat='abc') is False
assert fiat_convert._is_supported_fiat(fiat='ABC') is False
def test_fiat_convert_add_pair():
fiat_convert = CryptoToFiatConverter()
pair_len = len(fiat_convert._pairs)
assert pair_len == 0
fiat_convert._add_pair(crypto_symbol='btc', fiat_symbol='usd', price=12345.0)
pair_len = len(fiat_convert._pairs)
assert pair_len == 1
assert fiat_convert._pairs[0].crypto_symbol == 'BTC'
assert fiat_convert._pairs[0].fiat_symbol == 'USD'
assert fiat_convert._pairs[0].price == 12345.0
fiat_convert._add_pair(crypto_symbol='btc', fiat_symbol='Eur', price=13000.2)
pair_len = len(fiat_convert._pairs)
assert pair_len == 2
assert fiat_convert._pairs[1].crypto_symbol == 'BTC'
assert fiat_convert._pairs[1].fiat_symbol == 'EUR'
assert fiat_convert._pairs[1].price == 13000.2
def test_fiat_convert_find_price(mocker):
api_mock = MagicMock(return_value={
'price_usd': 12345.0,
'price_eur': 13000.2
})
mocker.patch('freqtrade.fiat_convert.Market.ticker', api_mock)
fiat_convert = CryptoToFiatConverter()
with pytest.raises(ValueError, match=r'The fiat ABC is not supported.'):
fiat_convert._find_price(crypto_symbol='BTC', fiat_symbol='ABC')
with pytest.raises(ValueError, match=r'The crypto symbol XRP is not supported.'):
fiat_convert.get_price(crypto_symbol='XRP', fiat_symbol='USD')
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=12345.0)
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='USD') == 12345.0
assert fiat_convert.get_price(crypto_symbol='btc', fiat_symbol='usd') == 12345.0
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=13000.2)
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='EUR') == 13000.2
def test_fiat_convert_get_price(mocker):
api_mock = MagicMock(return_value={
'price_usd': 28000.0,
'price_eur': 15000.0
})
mocker.patch('freqtrade.fiat_convert.Market.ticker', api_mock)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=28000.0)
fiat_convert = CryptoToFiatConverter()
with pytest.raises(ValueError, match=r'The fiat US DOLLAR is not supported.'):
fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='US Dollar')
# Check the value return by the method
pair_len = len(fiat_convert._pairs)
assert pair_len == 0
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='USD') == 28000.0
assert fiat_convert._pairs[0].crypto_symbol == 'BTC'
assert fiat_convert._pairs[0].fiat_symbol == 'USD'
assert fiat_convert._pairs[0].price == 28000.0
assert fiat_convert._pairs[0]._expiration is not 0
assert len(fiat_convert._pairs) == 1
# Verify the cached is used
fiat_convert._pairs[0].price = 9867.543
expiration = fiat_convert._pairs[0]._expiration
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='USD') == 9867.543
assert fiat_convert._pairs[0]._expiration == expiration
# Verify the cache expiration
expiration = time.time() - 2 * 60 * 60
fiat_convert._pairs[0]._expiration = expiration
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='USD') == 28000.0
assert fiat_convert._pairs[0]._expiration is not expiration
def test_fiat_convert_without_network():
# Because CryptoToFiatConverter is a Singleton we reset the value of _coinmarketcap
fiat_convert = CryptoToFiatConverter()
CryptoToFiatConverter._coinmarketcap = None
assert fiat_convert._coinmarketcap is None
assert fiat_convert._find_price(crypto_symbol='BTC', fiat_symbol='USD') == 0.0

File diff suppressed because it is too large Load Diff

View File

@@ -1,163 +0,0 @@
# pragma pylint: disable=missing-docstring,W0212
import logging
import os
from functools import reduce
from math import exp
from operator import itemgetter
import pytest
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
from pandas import DataFrame
from freqtrade import exchange
from freqtrade.exchange import Bittrex
from freqtrade.tests import load_backtesting_data
from freqtrade.tests.test_backtesting import backtest, format_results
from freqtrade.tests.test_backtesting import preprocess
from freqtrade.vendor.qtpylib.indicators import crossed_above
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1100
TOTAL_TRIES = 4
# pylint: disable=C0103
current_tries = 0
def buy_strategy_generator(params):
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_hyperopt(backtest_conf, mocker):
mocked_buy_trend = mocker.patch('freqtrade.tests.test_backtesting.populate_buy_trend')
backdata = load_backtesting_data()
processed = preprocess(backdata)
exchange._API = Bittrex({'key': '', 'secret': ''})
def optimizer(params):
mocked_buy_trend.side_effect = buy_strategy_generator(params)
results = backtest(backtest_conf, processed, mocker)
result = format_results(results)
total_profit = results.profit.sum() * 1000
trade_count = len(results.index)
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
profit_loss = max(0, 1 - total_profit / 10000) # max profit 10000
# pylint: disable=W0603
global current_tries
current_tries += 1
print('{:5d}/{}: {}'.format(current_tries, TOTAL_TRIES, result))
return {
'loss': trade_loss + profit_loss,
'status': STATUS_OK,
'result': result
}
space = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'stochf_cross'},
{'type': 'ht_sine'},
]),
}
trials = Trials()
best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=TOTAL_TRIES, trials=trials)
print('\n\n\n\n==================== HYPEROPT BACKTESTING REPORT ==============================')
print('Best parameters {}'.format(best))
newlist = sorted(trials.results, key=itemgetter('loss'))
print('Result: {}'.format(newlist[0]['result']))
if __name__ == '__main__':
# for profiling with cProfile and line_profiler
pytest.main([__file__, '-s'])

View File

@@ -0,0 +1,13 @@
import pandas as pd
from freqtrade.indicator_helpers import went_up, went_down
def test_went_up():
series = pd.Series([1, 2, 3, 1])
assert went_up(series).equals(pd.Series([False, True, True, False]))
def test_went_down():
series = pd.Series([1, 2, 3, 1])
assert went_down(series).equals(pd.Series([False, False, False, True]))

View File

@@ -1,233 +1,93 @@
# pragma pylint: disable=missing-docstring,C0103
import copy
"""
Unit test file for main.py
"""
import logging
from unittest.mock import MagicMock
import pytest
import requests
from sqlalchemy import create_engine
from freqtrade.exchange import Exchanges
from freqtrade.analyze import SignalType
from freqtrade.main import create_trade, handle_trade, init, \
get_target_bid, _process
from freqtrade.misc import get_state, State, FreqtradeException
from freqtrade.persistence import Trade
from freqtrade.main import main, set_loggers
from freqtrade.tests.conftest import log_has
def test_process_trade_creation(default_conf, ticker, health, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
get_wallet_health=health,
buy=MagicMock(return_value='mocked_limit_buy'))
init(default_conf, create_engine('sqlite://'))
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert not trades
result = _process()
assert result is True
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert len(trades) == 1
trade = trades[0]
assert trade is not None
assert trade.stake_amount == default_conf['stake_amount']
assert trade.is_open
assert trade.open_date is not None
assert trade.exchange == Exchanges.BITTREX.name
assert trade.open_rate == 0.072661
assert trade.amount == 0.6864067381401302
def test_parse_args_backtesting(mocker) -> None:
"""
Test that main() can start backtesting and also ensure we can pass some specific arguments
further argument parsing is done in test_arguments.py
"""
backtesting_mock = mocker.patch('freqtrade.optimize.backtesting.start', MagicMock())
main(['backtesting'])
assert backtesting_mock.call_count == 1
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.live is False
assert call_args.loglevel == 20
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval is None
def test_process_exchange_failures(default_conf, ticker, health, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
sleep_mock = mocker.patch('time.sleep', side_effect=lambda _: None)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
get_wallet_health=health,
buy=MagicMock(side_effect=requests.exceptions.RequestException))
init(default_conf, create_engine('sqlite://'))
result = _process()
assert result is False
assert sleep_mock.has_calls()
def test_main_start_hyperopt(mocker) -> None:
"""
Test that main() can start hyperopt
"""
hyperopt_mock = mocker.patch('freqtrade.optimize.hyperopt.start', MagicMock())
main(['hyperopt'])
assert hyperopt_mock.call_count == 1
call_args = hyperopt_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.loglevel == 20
assert call_args.subparser == 'hyperopt'
assert call_args.func is not None
def test_process_runtime_error(default_conf, ticker, health, mocker):
msg_mock = MagicMock()
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=msg_mock)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
get_wallet_health=health,
buy=MagicMock(side_effect=RuntimeError))
init(default_conf, create_engine('sqlite://'))
assert get_state() == State.RUNNING
def test_set_loggers() -> None:
"""
Test set_loggers() update the logger level for third-party libraries
"""
previous_value1 = logging.getLogger('requests.packages.urllib3').level
previous_value2 = logging.getLogger('telegram').level
result = _process()
assert result is False
assert get_state() == State.STOPPED
assert 'RuntimeError' in msg_mock.call_args_list[-1][0][0]
set_loggers()
value1 = logging.getLogger('requests.packages.urllib3').level
assert previous_value1 is not value1
assert value1 is logging.INFO
value2 = logging.getLogger('telegram').level
assert previous_value2 is not value2
assert value2 is logging.INFO
def test_process_trade_handling(default_conf, ticker, limit_buy_order, health, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch('freqtrade.main.get_signal',
side_effect=lambda *args: False if args[1] == SignalType.SELL else True)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
get_wallet_health=health,
buy=MagicMock(return_value='mocked_limit_buy'),
get_order=MagicMock(return_value=limit_buy_order))
init(default_conf, create_engine('sqlite://'))
def test_main(mocker, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
"""
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(
side_effect=KeyboardInterrupt
),
clean=MagicMock(),
)
args = ['-c', 'config.json.example']
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert not trades
result = _process()
assert result is True
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert len(trades) == 1
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit) as pytest_wrapped_e:
main(args)
log_has('Starting freqtrade', caplog.record_tuples)
log_has('Got SIGINT, aborting ...', caplog.record_tuples)
assert pytest_wrapped_e.type == SystemExit
assert pytest_wrapped_e.value.code == 42
result = _process()
assert result is False
def test_create_trade(default_conf, ticker, limit_buy_order, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_limit_buy'))
# Save state of current whitelist
whitelist = copy.deepcopy(default_conf['exchange']['pair_whitelist'])
init(default_conf, create_engine('sqlite://'))
trade = create_trade(15.0)
Trade.session.add(trade)
Trade.session.flush()
assert trade is not None
assert trade.stake_amount == 15.0
assert trade.is_open
assert trade.open_date is not None
assert trade.exchange == Exchanges.BITTREX.name
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
assert trade.open_rate == 0.07256061
assert trade.amount == 206.43811673387373
assert whitelist == default_conf['exchange']['pair_whitelist']
def test_create_trade_no_stake_amount(default_conf, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_limit_buy'),
get_balance=MagicMock(return_value=default_conf['stake_amount'] * 0.5))
with pytest.raises(FreqtradeException, match=r'.*stake amount.*'):
create_trade(default_conf['stake_amount'])
def test_create_trade_no_pairs(default_conf, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_limit_buy'))
with pytest.raises(FreqtradeException, match=r'.*No pair in whitelist.*'):
conf = copy.deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = []
mocker.patch.dict('freqtrade.main._CONF', conf)
create_trade(default_conf['stake_amount'])
def test_handle_trade(default_conf, limit_buy_order, limit_sell_order, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
'bid': 0.17256061,
'ask': 0.172661,
'last': 0.17256061
}),
buy=MagicMock(return_value='mocked_limit_buy'),
sell=MagicMock(return_value='mocked_limit_sell'))
init(default_conf, create_engine('sqlite://'))
trade = create_trade(15.0)
trade.update(limit_buy_order)
Trade.session.add(trade)
Trade.session.flush()
trade = Trade.query.filter(Trade.is_open.is_(True)).first()
assert trade
handle_trade(trade)
assert trade.open_order_id == 'mocked_limit_sell'
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
assert trade.close_rate == 0.0802134
assert trade.close_profit == 0.10046755
assert trade.close_date is not None
def test_close_trade(default_conf, ticker, limit_buy_order, limit_sell_order, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
mocker.patch.multiple('freqtrade.rpc', init=MagicMock(), send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_limit_buy'))
# Create trade and sell it
init(default_conf, create_engine('sqlite://'))
trade = create_trade(15.0)
Trade.session.add(trade)
trade.update(limit_buy_order)
trade = Trade.query.filter(Trade.is_open.is_(True)).first()
assert trade
trade.update(limit_sell_order)
trade = Trade.query.filter(Trade.is_open.is_(False)).first()
assert trade
with pytest.raises(ValueError, match=r'.*closed trade.*'):
handle_trade(trade)
def test_balance_fully_ask_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 0.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 20
def test_balance_fully_last_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 10
def test_balance_bigger_last_ask(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 5, 'last': 10}) == 5
# Test the BaseException case
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.worker',
MagicMock(side_effect=BaseException)
)
with pytest.raises(SystemExit):
main(args)
log_has('Got fatal exception!', caplog.record_tuples)

View File

@@ -1,149 +1,71 @@
# pragma pylint: disable=missing-docstring,C0103
import json
import os
import time
from argparse import Namespace
from copy import deepcopy
"""
Unit test file for misc.py
"""
import datetime
from unittest.mock import MagicMock
import pytest
from jsonschema import ValidationError
from freqtrade.misc import throttle, parse_args, start_backtesting, load_config
from freqtrade.analyze import Analyze
from freqtrade.misc import (shorten_date, datesarray_to_datetimearray,
common_datearray, file_dump_json)
from freqtrade.optimize.__init__ import load_tickerdata_file
def test_throttle():
def func():
return 42
start = time.time()
result = throttle(func, 0.1)
end = time.time()
assert result == 42
assert end - start > 0.1
result = throttle(func, -1)
assert result == 42
def test_shorten_date() -> None:
"""
Test shorten_date() function
:return: None
"""
str_data = '1 day, 2 hours, 3 minutes, 4 seconds ago'
str_shorten_data = '1 d, 2 h, 3 min, 4 sec ago'
assert shorten_date(str_data) == str_shorten_data
def test_parse_args_defaults():
args = parse_args([])
assert args is not None
assert args.config == 'config.json'
assert args.dynamic_whitelist is False
assert args.loglevel == 20
def test_datesarray_to_datetimearray(ticker_history):
"""
Test datesarray_to_datetimearray() function
:return: None
"""
dataframes = Analyze.parse_ticker_dataframe(ticker_history)
dates = datesarray_to_datetimearray(dataframes['date'])
assert isinstance(dates[0], datetime.datetime)
assert dates[0].year == 2017
assert dates[0].month == 11
assert dates[0].day == 26
assert dates[0].hour == 8
assert dates[0].minute == 50
date_len = len(dates)
assert date_len == 3
def test_parse_args_invalid():
with pytest.raises(SystemExit, match=r'2'):
parse_args(['-c'])
def test_common_datearray(default_conf, mocker) -> None:
"""
Test common_datearray()
:return: None
"""
analyze = Analyze(default_conf)
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = analyze.tickerdata_to_dataframe(tickerlist)
dates = common_datearray(dataframes)
assert dates.size == dataframes['BTC_UNITEST']['date'].size
assert dates[0] == dataframes['BTC_UNITEST']['date'][0]
assert dates[-1] == dataframes['BTC_UNITEST']['date'][-1]
def test_parse_args_config():
args = parse_args(['-c', '/dev/null'])
assert args is not None
assert args.config == '/dev/null'
args = parse_args(['--config', '/dev/null'])
assert args is not None
assert args.config == '/dev/null'
def test_parse_args_verbose():
args = parse_args(['-v'])
assert args is not None
assert args.loglevel == 10
def test_parse_args_dynamic_whitelist():
args = parse_args(['--dynamic-whitelist'])
assert args is not None
assert args.dynamic_whitelist is True
def test_parse_args_backtesting(mocker):
backtesting_mock = mocker.patch('freqtrade.misc.start_backtesting', MagicMock())
args = parse_args(['backtesting'])
assert args is None
assert backtesting_mock.call_count == 1
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.live is False
assert call_args.loglevel == 20
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval == 5
def test_parse_args_backtesting_invalid():
with pytest.raises(SystemExit, match=r'2'):
parse_args(['--ticker-interval'])
with pytest.raises(SystemExit, match=r'2'):
parse_args(['--ticker-interval', 'abc'])
def test_parse_args_backtesting_custom(mocker):
backtesting_mock = mocker.patch('freqtrade.misc.start_backtesting', MagicMock())
args = parse_args(['-c', 'test_conf.json', 'backtesting', '--live', '--ticker-interval', '1'])
assert args is None
assert backtesting_mock.call_count == 1
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == 'test_conf.json'
assert call_args.live is True
assert call_args.loglevel == 20
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval == 1
def test_start_backtesting(mocker):
pytest_mock = mocker.patch('pytest.main', MagicMock())
env_mock = mocker.patch('os.environ', {})
args = Namespace(
config='config.json',
live=True,
loglevel=20,
ticker_interval=1,
)
start_backtesting(args)
assert env_mock == {
'BACKTEST': 'true',
'BACKTEST_LIVE': 'true',
'BACKTEST_CONFIG': 'config.json',
'BACKTEST_TICKER_INTERVAL': '1',
}
assert pytest_mock.call_count == 1
main_call_args = pytest_mock.call_args[0][0]
assert main_call_args[0] == '-s'
assert main_call_args[1].endswith(os.path.join('freqtrade', 'tests', 'test_backtesting.py'))
def test_load_config(default_conf, mocker):
file_mock = mocker.patch('freqtrade.misc.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
validated_conf = load_config('somefile')
assert file_mock.call_count == 1
assert validated_conf.items() >= default_conf.items()
def test_load_config_invalid_pair(default_conf, mocker):
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'].append('BTC-ETH')
mocker.patch('freqtrade.misc.open', mocker.mock_open(read_data=json.dumps(conf)))
with pytest.raises(ValidationError, match=r'.*does not match.*'):
load_config('somefile')
def test_load_config_missing_attributes(default_conf, mocker):
conf = deepcopy(default_conf)
conf.pop('exchange')
mocker.patch('freqtrade.misc.open', mocker.mock_open(read_data=json.dumps(conf)))
with pytest.raises(ValidationError, match=r'.*\'exchange\' is a required property.*'):
load_config('somefile')
def test_file_dump_json(mocker) -> None:
"""
Test file_dump_json()
:return: None
"""
file_open = mocker.patch('freqtrade.misc.open', MagicMock())
json_dump = mocker.patch('json.dump', MagicMock())
file_dump_json('somefile', [1, 2, 3])
assert file_open.call_count == 1
assert json_dump.call_count == 1

View File

@@ -1,15 +1,133 @@
# pragma pylint: disable=missing-docstring
# pragma pylint: disable=missing-docstring, C0103
import os
import pytest
from sqlalchemy import create_engine
from freqtrade.exchange import Exchanges
from freqtrade.persistence import Trade
from freqtrade.persistence import Trade, init, clean_dry_run_db
def test_update(limit_buy_order, limit_sell_order):
@pytest.fixture(scope='function')
def init_persistence(default_conf):
init(default_conf)
def test_init_create_session(default_conf, mocker):
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
# Check if init create a session
init(default_conf)
assert hasattr(Trade, 'session')
assert 'Session' in type(Trade.session).__name__
def test_init_dry_run_db(default_conf, mocker):
default_conf.update({'dry_run_db': True})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
init(default_conf)
assert os.path.isfile(dry_run_db) is True
# Delete the file made for this unitest and rollback to the previous
# tradesv3.dry_run.sqlite file
# 1. Delete file from the test
if os.path.isfile(dry_run_db):
os.remove(dry_run_db)
# 2. Rollback to the initial file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
def test_init_dry_run_without_db(default_conf, mocker):
default_conf.update({'dry_run_db': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
init(default_conf)
assert os.path.isfile(dry_run_db) is False
# Rollback to the initial 'tradesv3.dry_run.sqlite' file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
def test_init_prod_db(default_conf, mocker):
default_conf.update({'dry_run': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
# First, protect the existing 'tradesv3.sqlite' (Do not delete user data)
prod_db = 'tradesv3.sqlite'
prod_db_swp = prod_db + '.swp'
if os.path.isfile(prod_db):
os.rename(prod_db, prod_db_swp)
# Check if the new tradesv3.sqlite was created
init(default_conf)
assert os.path.isfile(prod_db) is True
# Delete the file made for this unitest and rollback to the previous tradesv3.sqlite file
# 1. Delete file from the test
if os.path.isfile(prod_db):
os.remove(prod_db)
# Rollback to the initial 'tradesv3.sqlite' file
if os.path.isfile(prod_db_swp):
os.rename(prod_db_swp, prod_db)
@pytest.mark.usefixtures("init_persistence")
def test_update_with_bittrex(limit_buy_order, limit_sell_order):
"""
On this test we will buy and sell a crypto currency.
Buy
- Buy: 90.99181073 Crypto at 0.00001099 BTC
(90.99181073*0.00001099 = 0.0009999 BTC)
- Buying fee: 0.25%
- Total cost of buy trade: 0.001002500 BTC
((90.99181073*0.00001099) + ((90.99181073*0.00001099)*0.0025))
Sell
- Sell: 90.99181073 Crypto at 0.00001173 BTC
(90.99181073*0.00001173 = 0,00106733394 BTC)
- Selling fee: 0.25%
- Total cost of sell trade: 0.001064666 BTC
((90.99181073*0.00001173) - ((90.99181073*0.00001173)*0.0025))
Profit/Loss: +0.000062166 BTC
(Sell:0.001064666 - Buy:0.001002500)
Profit/Loss percentage: 0.0620
((0.001064666/0.001002500)-1 = 6.20%)
:param limit_buy_order:
:param limit_sell_order:
:return:
"""
trade = Trade(
pair='BTC_ETH',
stake_amount=1.00,
fee=0.1,
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
assert trade.open_order_id is None
@@ -20,18 +138,56 @@ def test_update(limit_buy_order, limit_sell_order):
trade.open_order_id = 'something'
trade.update(limit_buy_order)
assert trade.open_order_id is None
assert trade.open_rate == 0.07256061
assert trade.open_rate == 0.00001099
assert trade.close_profit is None
assert trade.close_date is None
trade.open_order_id = 'something'
trade.update(limit_sell_order)
assert trade.open_order_id is None
assert trade.open_rate == 0.07256061
assert trade.close_profit == 0.00546755
assert trade.close_rate == 0.00001173
assert trade.close_profit == 0.06201057
assert trade.close_date is not None
@pytest.mark.usefixtures("init_persistence")
def test_calc_open_close_trade_price(limit_buy_order, limit_sell_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'something'
trade.update(limit_buy_order)
assert trade.calc_open_trade_price() == 0.001002500
trade.update(limit_sell_order)
assert trade.calc_close_trade_price() == 0.0010646656
# Profit in BTC
assert trade.calc_profit() == 0.00006217
# Profit in percent
assert trade.calc_profit_percent() == 0.06201057
@pytest.mark.usefixtures("init_persistence")
def test_calc_close_trade_price_exception(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'something'
trade.update(limit_buy_order)
assert trade.calc_close_trade_price() == 0.0
@pytest.mark.usefixtures("init_persistence")
def test_update_open_order(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
@@ -54,6 +210,7 @@ def test_update_open_order(limit_buy_order):
assert trade.close_date is None
@pytest.mark.usefixtures("init_persistence")
def test_update_invalid_order(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
@@ -64,3 +221,146 @@ def test_update_invalid_order(limit_buy_order):
limit_buy_order['type'] = 'invalid'
with pytest.raises(ValueError, match=r'Unknown order type'):
trade.update(limit_buy_order)
@pytest.mark.usefixtures("init_persistence")
def test_calc_open_trade_price(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'open_trade'
trade.update(limit_buy_order) # Buy @ 0.00001099
# Get the open rate price with the standard fee rate
assert trade.calc_open_trade_price() == 0.001002500
# Get the open rate price with a custom fee rate
assert trade.calc_open_trade_price(fee=0.003) == 0.001003000
@pytest.mark.usefixtures("init_persistence")
def test_calc_close_trade_price(limit_buy_order, limit_sell_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'close_trade'
trade.update(limit_buy_order) # Buy @ 0.00001099
# Get the close rate price with a custom close rate and a regular fee rate
assert trade.calc_close_trade_price(rate=0.00001234) == 0.0011200318
# Get the close rate price with a custom close rate and a custom fee rate
assert trade.calc_close_trade_price(rate=0.00001234, fee=0.003) == 0.0011194704
# Test when we apply a Sell order, and ask price with a custom fee rate
trade.update(limit_sell_order)
assert trade.calc_close_trade_price(fee=0.005) == 0.0010619972
@pytest.mark.usefixtures("init_persistence")
def test_calc_profit(limit_buy_order, limit_sell_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'profit_percent'
trade.update(limit_buy_order) # Buy @ 0.00001099
# Custom closing rate and regular fee rate
# Higher than open rate
assert trade.calc_profit(rate=0.00001234) == 0.00011753
# Lower than open rate
assert trade.calc_profit(rate=0.00000123) == -0.00089086
# Custom closing rate and custom fee rate
# Higher than open rate
assert trade.calc_profit(rate=0.00001234, fee=0.003) == 0.00011697
# Lower than open rate
assert trade.calc_profit(rate=0.00000123, fee=0.003) == -0.00089092
# Test when we apply a Sell order. Sell higher than open rate @ 0.00001173
trade.update(limit_sell_order)
assert trade.calc_profit() == 0.00006217
# Test with a custom fee rate on the close trade
assert trade.calc_profit(fee=0.003) == 0.00006163
@pytest.mark.usefixtures("init_persistence")
def test_calc_profit_percent(limit_buy_order, limit_sell_order):
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
)
trade.open_order_id = 'profit_percent'
trade.update(limit_buy_order) # Buy @ 0.00001099
# Get percent of profit with a custom rate (Higher than open rate)
assert trade.calc_profit_percent(rate=0.00001234) == 0.1172387
# Get percent of profit with a custom rate (Lower than open rate)
assert trade.calc_profit_percent(rate=0.00000123) == -0.88863827
# Test when we apply a Sell order. Sell higher than open rate @ 0.00001173
trade.update(limit_sell_order)
assert trade.calc_profit_percent() == 0.06201057
# Test with a custom fee rate on the close trade
assert trade.calc_profit_percent(fee=0.003) == 0.0614782
def test_clean_dry_run_db(default_conf):
init(default_conf, create_engine('sqlite://'))
# Simulate dry_run entries
trade = Trade(
pair='BTC_ETH',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
open_rate=0.123,
exchange='BITTREX',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='BTC_ETC',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
open_rate=0.123,
exchange='BITTREX',
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='BTC_ETC',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
open_rate=0.123,
exchange='BITTREX',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
# We have 3 entries: 2 dry_run, 1 prod
assert len(Trade.query.filter(Trade.open_order_id.isnot(None)).all()) == 3
clean_dry_run_db()
# We have now only the prod
assert len(Trade.query.filter(Trade.open_order_id.isnot(None)).all()) == 1

View File

@@ -1,58 +0,0 @@
# pragma pylint: disable=missing-docstring, too-many-arguments, too-many-ancestors, C0103
from unittest.mock import MagicMock
from copy import deepcopy
from freqtrade.rpc import init, cleanup, send_msg
def test_init_telegram_enabled(default_conf, mocker):
module_list = []
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', module_list)
telegram_mock = mocker.patch('freqtrade.rpc.telegram.init', MagicMock())
init(default_conf)
assert telegram_mock.call_count == 1
assert 'telegram' in module_list
def test_init_telegram_disabled(default_conf, mocker):
module_list = []
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', module_list)
telegram_mock = mocker.patch('freqtrade.rpc.telegram.init', MagicMock())
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
init(conf)
assert telegram_mock.call_count == 0
assert 'telegram' not in module_list
def test_cleanup_telegram_enabled(mocker):
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', ['telegram'])
telegram_mock = mocker.patch('freqtrade.rpc.telegram.cleanup', MagicMock())
cleanup()
assert telegram_mock.call_count == 1
def test_cleanup_telegram_disabled(mocker):
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', [])
telegram_mock = mocker.patch('freqtrade.rpc.telegram.cleanup', MagicMock())
cleanup()
assert telegram_mock.call_count == 0
def test_send_msg_telegram_enabled(mocker):
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', ['telegram'])
telegram_mock = mocker.patch('freqtrade.rpc.telegram.send_msg', MagicMock())
send_msg('test')
assert telegram_mock.call_count == 1
def test_send_msg_telegram_disabled(mocker):
mocker.patch('freqtrade.rpc.REGISTERED_MODULES', [])
telegram_mock = mocker.patch('freqtrade.rpc.telegram.send_msg', MagicMock())
send_msg('test')
assert telegram_mock.call_count == 0

View File

@@ -1,541 +0,0 @@
# pragma pylint: disable=missing-docstring, too-many-arguments, too-many-ancestors, C0103
import re
from datetime import datetime
from random import randint
from unittest.mock import MagicMock
from sqlalchemy import create_engine
from telegram import Update, Message, Chat
from telegram.error import NetworkError
from freqtrade import __version__
from freqtrade.main import init, create_trade
from freqtrade.misc import update_state, State, get_state
from freqtrade.persistence import Trade
from freqtrade.rpc import telegram
from freqtrade.rpc.telegram import authorized_only, is_enabled, send_msg, _status, _status_table, \
_profit, _forcesell, _performance, _count, _start, _stop, _balance, _version, _help
def test_is_enabled(default_conf, mocker):
mocker.patch.dict('freqtrade.rpc.telegram._CONF', default_conf)
default_conf['telegram']['enabled'] = False
assert is_enabled() is False
def test_init_disabled(default_conf, mocker):
mocker.patch.dict('freqtrade.rpc.telegram._CONF', default_conf)
default_conf['telegram']['enabled'] = False
telegram.init(default_conf)
def test_authorized_only(default_conf, mocker):
mocker.patch.dict('freqtrade.rpc.telegram._CONF', default_conf)
chat = Chat(0, 0)
update = Update(randint(1, 100))
update.message = Message(randint(1, 100), 0, datetime.utcnow(), chat)
state = {'called': False}
@authorized_only
def dummy_handler(*args, **kwargs) -> None:
state['called'] = True
dummy_handler(MagicMock(), update)
assert state['called'] is True
def test_authorized_only_unauthorized(default_conf, mocker):
mocker.patch.dict('freqtrade.rpc.telegram._CONF', default_conf)
chat = Chat(0xdeadbeef, 0)
update = Update(randint(1, 100))
update.message = Message(randint(1, 100), 0, datetime.utcnow(), chat)
state = {'called': False}
@authorized_only
def dummy_handler(*args, **kwargs) -> None:
state['called'] = True
dummy_handler(MagicMock(), update)
assert state['called'] is False
def test_authorized_only_exception(default_conf, mocker):
mocker.patch.dict('freqtrade.rpc.telegram._CONF', default_conf)
update = Update(randint(1, 100))
update.message = Message(randint(1, 100), 0, datetime.utcnow(), Chat(0, 0))
@authorized_only
def dummy_handler(*args, **kwargs) -> None:
raise Exception('test')
dummy_handler(MagicMock(), update)
def test_status_handle(default_conf, update, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker)
init(default_conf, create_engine('sqlite://'))
update_state(State.STOPPED)
_status(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'trader is not running' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
update_state(State.RUNNING)
_status(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'no active trade' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
# Create some test data
trade = create_trade(15.0)
assert trade
Trade.session.add(trade)
Trade.session.flush()
# Trigger status while we have a fulfilled order for the open trade
_status(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert '[BTC_ETH]' in msg_mock.call_args_list[0][0][0]
def test_status_table_handle(default_conf, update, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple(
'freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_order_id'))
init(default_conf, create_engine('sqlite://'))
update_state(State.STOPPED)
_status_table(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'trader is not running' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
update_state(State.RUNNING)
_status_table(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'no active order' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
# Create some test data
trade = create_trade(15.0)
assert trade
Trade.session.add(trade)
Trade.session.flush()
_status_table(bot=MagicMock(), update=update)
text = re.sub('</?pre>', '', msg_mock.call_args_list[-1][0][0])
line = text.split("\n")
fields = re.sub('[ ]+', ' ', line[2].strip()).split(' ')
assert int(fields[0]) == 1
assert fields[1] == 'BTC_ETH'
assert msg_mock.call_count == 1
def test_profit_handle(default_conf, update, ticker, limit_buy_order, limit_sell_order, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker)
init(default_conf, create_engine('sqlite://'))
_profit(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'no closed trade' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
# Create some test data
trade = create_trade(15.0)
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
_profit(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'no closed trade' in msg_mock.call_args_list[-1][0][0]
msg_mock.reset_mock()
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
Trade.session.add(trade)
Trade.session.flush()
_profit(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert '*ROI:* `1.50701325 (10.05%)`' in msg_mock.call_args_list[-1][0][0]
assert 'Best Performing:* `BTC_ETH: 10.05%`' in msg_mock.call_args_list[-1][0][0]
def test_forcesell_handle(default_conf, update, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
rpc_mock = mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker)
init(default_conf, create_engine('sqlite://'))
# Create some test data
trade = create_trade(15.0)
assert trade
Trade.session.add(trade)
Trade.session.flush()
update.message.text = '/forcesell 1'
_forcesell(bot=MagicMock(), update=update)
assert rpc_mock.call_count == 2
assert 'Selling [BTC/ETH]' in rpc_mock.call_args_list[-1][0][0]
assert '0.07256061 (profit: ~-0.64%)' in rpc_mock.call_args_list[-1][0][0]
def test_forcesell_all_handle(default_conf, update, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
rpc_mock = mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=MagicMock())
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker)
init(default_conf, create_engine('sqlite://'))
# Create some test data
for _ in range(4):
Trade.session.add(create_trade(15.0))
Trade.session.flush()
rpc_mock.reset_mock()
update.message.text = '/forcesell all'
_forcesell(bot=MagicMock(), update=update)
assert rpc_mock.call_count == 4
for args in rpc_mock.call_args_list:
assert '0.07256061 (profit: ~-0.64%)' in args[0][0]
def test_forcesell_handle_invalid(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock())
init(default_conf, create_engine('sqlite://'))
# Trader is not running
update_state(State.STOPPED)
update.message.text = '/forcesell 1'
_forcesell(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'not running' in msg_mock.call_args_list[0][0][0]
# No argument
msg_mock.reset_mock()
update_state(State.RUNNING)
update.message.text = '/forcesell'
_forcesell(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'Invalid argument' in msg_mock.call_args_list[0][0][0]
# Invalid argument
msg_mock.reset_mock()
update_state(State.RUNNING)
update.message.text = '/forcesell 123456'
_forcesell(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'Invalid argument.' in msg_mock.call_args_list[0][0][0]
def test_performance_handle(
default_conf, update, ticker, limit_buy_order, limit_sell_order, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch('freqtrade.main.rpc.send_msg', MagicMock())
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker)
init(default_conf, create_engine('sqlite://'))
# Create some test data
trade = create_trade(15.0)
assert trade
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Simulate fulfilled LIMIT_SELL order for trade
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
Trade.session.add(trade)
Trade.session.flush()
_performance(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'Performance' in msg_mock.call_args_list[0][0][0]
assert '<code>BTC_ETH\t10.05%</code>' in msg_mock.call_args_list[0][0][0]
def test_count_handle(default_conf, update, ticker, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
buy=MagicMock(return_value='mocked_order_id'))
init(default_conf, create_engine('sqlite://'))
update_state(State.STOPPED)
_count(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'not running' in msg_mock.call_args_list[0][0][0]
msg_mock.reset_mock()
update_state(State.RUNNING)
# Create some test data
Trade.session.add(create_trade(15.0))
Trade.session.flush()
msg_mock.reset_mock()
_count(bot=MagicMock(), update=update)
msg = '<pre> current max\n--------- -----\n 1 {}</pre>'.format(
default_conf['max_open_trades']
)
assert msg in msg_mock.call_args_list[0][0][0]
def test_performance_handle_invalid(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch('freqtrade.main.get_signal', side_effect=lambda s, t: True)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
validate_pairs=MagicMock())
init(default_conf, create_engine('sqlite://'))
# Trader is not running
update_state(State.STOPPED)
_performance(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert 'not running' in msg_mock.call_args_list[0][0][0]
def test_start_handle(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=default_conf,
init=MagicMock())
init(default_conf, create_engine('sqlite://'))
update_state(State.STOPPED)
assert get_state() == State.STOPPED
_start(bot=MagicMock(), update=update)
assert get_state() == State.RUNNING
assert msg_mock.call_count == 0
def test_start_handle_already_running(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=default_conf,
init=MagicMock())
init(default_conf, create_engine('sqlite://'))
update_state(State.RUNNING)
assert get_state() == State.RUNNING
_start(bot=MagicMock(), update=update)
assert get_state() == State.RUNNING
assert msg_mock.call_count == 1
assert 'already running' in msg_mock.call_args_list[0][0][0]
def test_stop_handle(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=default_conf,
init=MagicMock())
init(default_conf, create_engine('sqlite://'))
update_state(State.RUNNING)
assert get_state() == State.RUNNING
_stop(bot=MagicMock(), update=update)
assert get_state() == State.STOPPED
assert msg_mock.call_count == 1
assert 'Stopping trader' in msg_mock.call_args_list[0][0][0]
def test_stop_handle_already_stopped(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
_CONF=default_conf,
init=MagicMock())
init(default_conf, create_engine('sqlite://'))
update_state(State.STOPPED)
assert get_state() == State.STOPPED
_stop(bot=MagicMock(), update=update)
assert get_state() == State.STOPPED
assert msg_mock.call_count == 1
assert 'already stopped' in msg_mock.call_args_list[0][0][0]
def test_balance_handle(default_conf, update, mocker):
mock_balance = [{
'Currency': 'BTC',
'Balance': 10.0,
'Available': 12.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
}, {
'Currency': 'ETH',
'Balance': 0.0,
'Available': 0.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
}]
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
get_balances=MagicMock(return_value=mock_balance))
_balance(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert '*Currency*: BTC' in msg_mock.call_args_list[0][0][0]
assert 'Balance' in msg_mock.call_args_list[0][0][0]
def test_help_handle(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
_help(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert '*/help:* `This help message`' in msg_mock.call_args_list[0][0][0]
def test_version_handle(default_conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock(),
send_msg=msg_mock)
_version(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
assert '*Version:* `{}`'.format(__version__) in msg_mock.call_args_list[0][0][0]
def test_send_msg(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock())
bot = MagicMock()
send_msg('test', bot)
assert not bot.method_calls
bot.reset_mock()
default_conf['telegram']['enabled'] = True
send_msg('test', bot)
assert len(bot.method_calls) == 1
def test_send_msg_network_error(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
mocker.patch.multiple('freqtrade.rpc.telegram',
_CONF=default_conf,
init=MagicMock())
default_conf['telegram']['enabled'] = True
bot = MagicMock()
bot.send_message = MagicMock(side_effect=NetworkError('Oh snap'))
send_msg('test', bot)
# Bot should've tried to send it twice
assert len(bot.method_calls) == 2

View File

@@ -0,0 +1,14 @@
"""
Unit test file for constants.py
"""
from freqtrade.state import State
def test_state_object() -> None:
"""
Test the State object has the mandatory states
:return: None
"""
assert hasattr(State, 'RUNNING')
assert hasattr(State, 'STOPPED')

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More