Logging improvements to Hyperopt (#235)
* make log texts go on new line * remove unnecessary fields from hyperopt log messages * shorten log text in hyperopt * consider making zero trades a failed hyperopt eval * only log from hyperopt when result improves * remove unnecessary temp variables * remove unused result data variables * remove unused import * fix an outdated comment
This commit is contained in:
parent
6768658300
commit
9959d53f5e
@ -8,10 +8,9 @@ from functools import reduce
|
||||
from math import exp
|
||||
from operator import itemgetter
|
||||
|
||||
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
|
||||
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK, STATUS_FAIL
|
||||
from hyperopt.mongoexp import MongoTrials
|
||||
from pandas import DataFrame
|
||||
import numpy as np
|
||||
|
||||
from freqtrade import exchange, optimize
|
||||
from freqtrade.exchange import Bittrex
|
||||
@ -32,9 +31,7 @@ TARGET_TRADES = 1100
|
||||
TOTAL_TRIES = None
|
||||
_CURRENT_TRIES = 0
|
||||
|
||||
TOTAL_PROFIT_TO_BEAT = 0
|
||||
AVG_PROFIT_TO_BEAT = 0
|
||||
AVG_DURATION_TO_BEAT = 100
|
||||
CURRENT_BEST_LOSS = 100
|
||||
|
||||
# this is expexted avg profit * expected trade count
|
||||
# for example 3.5%, 1100 trades, EXPECTED_MAX_PROFIT = 3.85
|
||||
@ -100,15 +97,15 @@ SPACE = {
|
||||
|
||||
|
||||
def log_results(results):
|
||||
"if results is better than _TO_BEAT show it"
|
||||
""" log results if it is better than any previous evaluation """
|
||||
global CURRENT_BEST_LOSS
|
||||
|
||||
current_try = results['current_tries']
|
||||
total_tries = results['total_tries']
|
||||
result = results['result']
|
||||
profit = results['total_profit']
|
||||
|
||||
if profit >= TOTAL_PROFIT_TO_BEAT:
|
||||
logger.info('\n{:5d}/{}: {}'.format(current_try, total_tries, result))
|
||||
if results['loss'] < CURRENT_BEST_LOSS:
|
||||
CURRENT_BEST_LOSS = results['loss']
|
||||
logger.info('{:5d}/{}: {}'.format(
|
||||
results['current_tries'],
|
||||
results['total_tries'],
|
||||
results['result']))
|
||||
else:
|
||||
print('.', end='')
|
||||
sys.stdout.flush()
|
||||
@ -127,37 +124,37 @@ def optimizer(params):
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_count = len(results.index)
|
||||
|
||||
if trade_count == 0:
|
||||
return {
|
||||
'status': STATUS_FAIL,
|
||||
'loss': float('inf')
|
||||
}
|
||||
|
||||
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
|
||||
loss = trade_loss + profit_loss
|
||||
_CURRENT_TRIES += 1
|
||||
|
||||
result_data = {
|
||||
'trade_count': trade_count,
|
||||
'total_profit': total_profit,
|
||||
'trade_loss': trade_loss,
|
||||
'profit_loss': profit_loss,
|
||||
'avg_profit': results.profit_percent.mean() * 100.0,
|
||||
'avg_duration': results.duration.mean() * 5,
|
||||
'loss': loss,
|
||||
'current_tries': _CURRENT_TRIES,
|
||||
'total_tries': TOTAL_TRIES,
|
||||
'result': result,
|
||||
'results': results
|
||||
}
|
||||
log_results(result_data)
|
||||
|
||||
return {
|
||||
'loss': trade_loss + profit_loss,
|
||||
'loss': loss,
|
||||
'status': STATUS_OK,
|
||||
'result': result,
|
||||
'total_profit': total_profit,
|
||||
'avg_profit': result_data['avg_profit'],
|
||||
'avg_profit': results.profit_percent.mean() * 100.0,
|
||||
}
|
||||
|
||||
|
||||
def format_results(results: DataFrame):
|
||||
return ('Made {:6d} buys. Average profit {: 5.2f}%. '
|
||||
'Total profit was {: 11.8f} BTC. Average duration {:5.1f} mins.').format(
|
||||
return ('{:6d} trades. Avg profit {: 5.2f}%. '
|
||||
'Total profit {: 11.8f} BTC. Avg duration {:5.1f} mins.').format(
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
@ -165,10 +162,6 @@ def format_results(results: DataFrame):
|
||||
)
|
||||
|
||||
|
||||
def filter_nan(result, filter_key):
|
||||
return [r for r in result if not np.isnan(r[filter_key])]
|
||||
|
||||
|
||||
def buy_strategy_generator(params):
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
@ -223,7 +216,7 @@ def start(args):
|
||||
# Initialize logger
|
||||
logging.basicConfig(
|
||||
level=args.loglevel,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
format='\n%(message)s',
|
||||
)
|
||||
|
||||
logger.info('Using config: %s ...', args.config)
|
||||
@ -244,9 +237,5 @@ def start(args):
|
||||
best = fmin(fn=optimizer, space=SPACE, algo=tpe.suggest, max_evals=TOTAL_TRIES, trials=trials)
|
||||
logger.info('Best parameters:\n%s', json.dumps(best, indent=4))
|
||||
|
||||
filt_res = filter_nan(trials.results, 'total_profit')
|
||||
filt_res = filter_nan(filt_res, 'avg_profit')
|
||||
|
||||
results = sorted(filt_res, key=itemgetter('loss'))
|
||||
|
||||
results = sorted(trials.results, key=itemgetter('loss'))
|
||||
logger.info('Best Result:\n%s', results[0]['result'])
|
||||
|
Loading…
Reference in New Issue
Block a user