Merge pull request #507 from gcarq/date_indexing_for_backtesting
Date indexing for backtesting
This commit is contained in:
commit
c5400b6c37
@ -33,7 +33,7 @@ def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]
|
||||
|
||||
|
||||
def generate_text_table(
|
||||
data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str:
|
||||
data: Dict[str, Dict], results: DataFrame, stake_currency) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
@ -49,7 +49,7 @@ def generate_text_table(
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_BTC.sum(),
|
||||
result.duration.mean() * ticker_interval,
|
||||
result.duration.mean(),
|
||||
len(result[result.profit_BTC > 0]),
|
||||
len(result[result.profit_BTC < 0])
|
||||
])
|
||||
@ -60,7 +60,7 @@ def generate_text_table(
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
results.duration.mean() * ticker_interval,
|
||||
results.duration.mean(),
|
||||
len(results[results.profit_BTC > 0]),
|
||||
len(results[results.profit_BTC < 0])
|
||||
])
|
||||
@ -71,28 +71,28 @@ def get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args):
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(open_rate=row.close,
|
||||
open_date=row.date,
|
||||
open_date=row.Index,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[ticker.date > row.date][['close', 'date', 'sell']]
|
||||
sell_subset = ticker[ticker.index > row.Index][['close', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
trade_count_lock[row2.Index] = trade_count_lock.get(row2.Index, 0) + 1
|
||||
|
||||
# Buy is on is in the buy_subset there is a row that matches the date
|
||||
# of the sell event
|
||||
buy_signal = not buy_subset[buy_subset.date == row2.date].empty
|
||||
if(should_sell(trade, row2.close, row2.date, buy_signal, row2.sell)):
|
||||
buy_signal = (buy_subset.index == row2.Index).any()
|
||||
if(should_sell(trade, row2.close, row2.Index, buy_signal, row2.sell)):
|
||||
return row2, (pair,
|
||||
trade.calc_profit_percent(rate=row2.close),
|
||||
trade.calc_profit(rate=row2.close),
|
||||
row2.Index - row.Index
|
||||
), row2.date
|
||||
(row2.Index - row.Index).seconds // 60
|
||||
), row2.Index
|
||||
return None
|
||||
|
||||
|
||||
@ -120,22 +120,24 @@ def backtest(args) -> DataFrame:
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0
|
||||
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
||||
if 'date' in ticker:
|
||||
ticker.set_index('date', inplace=True)
|
||||
# for each buy point
|
||||
lock_pair_until = None
|
||||
headers = ['buy', 'open', 'close', 'date', 'sell']
|
||||
headers = ['buy', 'open', 'close', 'sell']
|
||||
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
if lock_pair_until is not None and row.Index <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
if not trade_count_lock.get(row.Index, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Increase lock
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
trade_count_lock[row.Index] = trade_count_lock.get(row.Index, 0) + 1
|
||||
|
||||
ret = get_sell_trade_entry(pair, row, buy_subset, ticker,
|
||||
trade_count_lock, args)
|
||||
@ -148,8 +150,8 @@ def backtest(args) -> DataFrame:
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.Index.strftime('%s'),
|
||||
row2.Index.strftime('%s'),
|
||||
row.Index, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
@ -231,5 +233,5 @@ def start(args):
|
||||
})
|
||||
logger.info(
|
||||
'\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa
|
||||
generate_text_table(data, results, config['stake_currency'], strategy.ticker_interval)
|
||||
generate_text_table(data, results, config['stake_currency'])
|
||||
)
|
||||
|
@ -406,7 +406,7 @@ def optimizer(params):
|
||||
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_count = len(results.index)
|
||||
trade_duration = results.duration.mean() * 5
|
||||
trade_duration = results.duration.mean()
|
||||
|
||||
if trade_count == 0 or trade_duration > MAX_ACCEPTED_TRADE_DURATION:
|
||||
print('.', end='')
|
||||
|
@ -29,12 +29,12 @@ def test_generate_text_table():
|
||||
'loss': [0, 0]
|
||||
}
|
||||
)
|
||||
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5))
|
||||
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
||||
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC'))
|
||||
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC') == (
|
||||
'pair buy count avg profit % total profit BTC avg duration profit loss\n' # noqa
|
||||
'------- ----------- -------------- ------------------ -------------- -------- ------\n' # noqa
|
||||
'BTC_ETH 2 15.00 0.60000000 100.0 2 0\n' # noqa
|
||||
'TOTAL 2 15.00 0.60000000 100.0 2 0') # noqa
|
||||
'BTC_ETH 2 15.00 0.60000000 20.0 2 0\n' # noqa
|
||||
'TOTAL 2 15.00 0.60000000 20.0 2 0') # noqa
|
||||
|
||||
|
||||
def test_get_timeframe(default_strategy):
|
||||
|
Loading…
Reference in New Issue
Block a user