Merge pull request #513 from gcarq/arrays_for_backtesting
Make backtesting 5x faster
This commit is contained in:
commit
1134c81aad
@ -296,18 +296,17 @@ def min_roi_reached(trade: Trade, current_rate: float, current_time: datetime) -
|
||||
strategy = Strategy()
|
||||
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
if strategy.stoploss is not None and current_profit < float(strategy.stoploss):
|
||||
if strategy.stoploss is not None and current_profit < strategy.stoploss:
|
||||
logger.debug('Stop loss hit.')
|
||||
return True
|
||||
|
||||
# Check if time matches and current rate is above threshold
|
||||
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
|
||||
for duration_string, threshold in strategy.minimal_roi.items():
|
||||
duration = float(duration_string)
|
||||
if time_diff > duration and current_profit > threshold:
|
||||
return True
|
||||
if time_diff < duration:
|
||||
for duration, threshold in strategy.minimal_roi.items():
|
||||
if time_diff <= duration:
|
||||
return False
|
||||
if current_profit > threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
|
@ -67,30 +67,29 @@ def generate_text_table(
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
|
||||
|
||||
def get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args):
|
||||
def get_sell_trade_entry(pair, buy_row, partial_ticker, trade_count_lock, args):
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(open_rate=row.close,
|
||||
open_date=row.Index,
|
||||
trade = Trade(open_rate=buy_row.close,
|
||||
open_date=buy_row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
amount=stake_amount / buy_row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[ticker.index > row.Index][['close', 'sell', 'buy']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
for sell_row in partial_ticker:
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.Index] = trade_count_lock.get(row2.Index, 0) + 1
|
||||
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
||||
|
||||
buy_signal = row2.buy
|
||||
if(should_sell(trade, row2.close, row2.Index, buy_signal, row2.sell)):
|
||||
return row2, (pair,
|
||||
trade.calc_profit_percent(rate=row2.close),
|
||||
trade.calc_profit(rate=row2.close),
|
||||
(row2.Index - row.Index).seconds // 60
|
||||
), row2.Index
|
||||
buy_signal = sell_row.buy
|
||||
if should_sell(trade, sell_row.close, sell_row.date, buy_signal, sell_row.sell):
|
||||
return sell_row, (pair,
|
||||
trade.calc_profit_percent(rate=sell_row.close),
|
||||
trade.calc_profit(rate=sell_row.close),
|
||||
(sell_row.date - buy_row.date).seconds // 60
|
||||
), sell_row.date
|
||||
return None
|
||||
|
||||
|
||||
@ -107,6 +106,7 @@ def backtest(args) -> DataFrame:
|
||||
stoploss: use stoploss
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', True)
|
||||
@ -116,29 +116,26 @@ def backtest(args) -> DataFrame:
|
||||
trade_count_lock: dict = {}
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0
|
||||
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
||||
if 'date' in ticker:
|
||||
ticker.set_index('date', inplace=True)
|
||||
# for each buy point
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = populate_sell_trend(populate_buy_trend(pair_data))[headers]
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
lock_pair_until = None
|
||||
headers = ['buy', 'open', 'close', 'sell']
|
||||
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.Index <= lock_pair_until:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.Index, 0) < max_open_trades:
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Increase lock
|
||||
trade_count_lock[row.Index] = trade_count_lock.get(row.Index, 0) + 1
|
||||
|
||||
ret = get_sell_trade_entry(pair, row, buy_subset, ticker,
|
||||
trade_count_lock, args)
|
||||
ret = get_sell_trade_entry(pair, row, ticker[index+1:], trade_count_lock, args)
|
||||
if ret:
|
||||
row2, trade_entry, next_date = ret
|
||||
lock_pair_until = next_date
|
||||
@ -148,9 +145,9 @@ def backtest(args) -> DataFrame:
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.Index.strftime('%s'),
|
||||
row2.Index.strftime('%s'),
|
||||
row.Index, trade_entry[3]))
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.date, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
if record and record.find('trades') >= 0:
|
||||
|
@ -225,12 +225,12 @@ def calculate_loss(total_profit: float, trade_count: int, trade_duration: float)
|
||||
return trade_loss + profit_loss + duration_loss
|
||||
|
||||
|
||||
def generate_roi_table(params) -> Dict[str, float]:
|
||||
def generate_roi_table(params) -> Dict[int, float]:
|
||||
roi_table = {}
|
||||
roi_table["0"] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[str(params['roi_t3'])] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[str(params['roi_t3'] + params['roi_t2'])] = params['roi_p1']
|
||||
roi_table[str(params['roi_t3'] + params['roi_t2'] + params['roi_t1'])] = 0
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
|
@ -71,11 +71,11 @@ class Strategy(object):
|
||||
|
||||
# Minimal ROI designed for the strategy
|
||||
self.minimal_roi = OrderedDict(sorted(
|
||||
self.custom_strategy.minimal_roi.items(),
|
||||
key=lambda tuple: float(tuple[0]))) # sort after converting to number
|
||||
{int(key): value for (key, value) in self.custom_strategy.minimal_roi.items()}.items(),
|
||||
key=lambda tuple: tuple[0])) # sort after converting to number
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
self.stoploss = self.custom_strategy.stoploss
|
||||
self.stoploss = float(self.custom_strategy.stoploss)
|
||||
|
||||
self.ticker_interval = self.custom_strategy.ticker_interval
|
||||
|
||||
|
@ -255,7 +255,7 @@ def test_roi_table_generation():
|
||||
'roi_p2': 2,
|
||||
'roi_p3': 3,
|
||||
}
|
||||
assert generate_roi_table(params) == {'0': 6, '15': 3, '25': 1, '30': 0}
|
||||
assert generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
# test log_trials_result
|
||||
|
@ -57,7 +57,7 @@ def test_strategy(result):
|
||||
strategy.init({'strategy': 'default_strategy'})
|
||||
|
||||
assert hasattr(strategy.custom_strategy, 'minimal_roi')
|
||||
assert strategy.minimal_roi['0'] == 0.04
|
||||
assert strategy.minimal_roi[0] == 0.04
|
||||
|
||||
assert hasattr(strategy.custom_strategy, 'stoploss')
|
||||
assert strategy.stoploss == -0.10
|
||||
@ -86,7 +86,7 @@ def test_strategy_override_minimal_roi(caplog):
|
||||
strategy.init(config)
|
||||
|
||||
assert hasattr(strategy.custom_strategy, 'minimal_roi')
|
||||
assert strategy.minimal_roi['0'] == 0.5
|
||||
assert strategy.minimal_roi[0] == 0.5
|
||||
assert ('freqtrade.strategy.strategy',
|
||||
logging.INFO,
|
||||
'Override strategy \'minimal_roi\' with value in config file.'
|
||||
@ -142,8 +142,8 @@ def test_strategy_singleton():
|
||||
strategy1.init({'strategy': 'default_strategy'})
|
||||
|
||||
assert hasattr(strategy1.custom_strategy, 'minimal_roi')
|
||||
assert strategy1.minimal_roi['0'] == 0.04
|
||||
assert strategy1.minimal_roi[0] == 0.04
|
||||
|
||||
strategy2 = Strategy()
|
||||
assert hasattr(strategy2.custom_strategy, 'minimal_roi')
|
||||
assert strategy2.minimal_roi['0'] == 0.04
|
||||
assert strategy2.minimal_roi[0] == 0.04
|
||||
|
Loading…
Reference in New Issue
Block a user