small corrections and typo fixes to hyperopt documentation
This commit is contained in:
parent
f14d6249e0
commit
55a1f604d6
@ -51,12 +51,12 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
return dataframe
|
||||
```
|
||||
|
||||
Your hyperopt file must contains `guards` to find the right value for
|
||||
Your hyperopt file must contain `guards` to find the right value for
|
||||
`(dataframe['adx'] > 65)` & and `(dataframe['plus_di'] > 0.5)`. That
|
||||
means you will need to enable/disable triggers.
|
||||
|
||||
In our case the `SPACE` and `populate_buy_trend` in your strategy file
|
||||
will be look like:
|
||||
will look like:
|
||||
```python
|
||||
space = {
|
||||
'rsi': hp.choice('rsi', [
|
||||
@ -105,7 +105,7 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
|
||||
|
||||
### 2. Update the hyperopt config file
|
||||
Hyperopt is using a dedicated config file. At this moment hyperopt
|
||||
Hyperopt is using a dedicated config file. Currently hyperopt
|
||||
cannot use your config file. It is also made on purpose to allow you
|
||||
testing your strategy with different configurations.
|
||||
|
||||
@ -127,19 +127,21 @@ If it's a guard, you will add a line like this:
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
```
|
||||
This says, "*one of guards is RSI, it can have two values, enabled or
|
||||
This says, "*one of the guards is RSI, it can have two values, enabled or
|
||||
disabled. If it is enabled, try different values for it between 20 and 40*".
|
||||
|
||||
So, the part of the strategy builder using the above setting looks like
|
||||
this:
|
||||
|
||||
```
|
||||
if params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
```
|
||||
|
||||
It checks if Hyperopt wants the RSI guard to be enabled for this
|
||||
round `params['rsi']['enabled']` and if it is, then it will add a
|
||||
condition that says RSI must be < than the value hyperopt picked
|
||||
for this evaluation, that is given in the `params['rsi']['value']`.
|
||||
condition that says RSI must be smaller than the value hyperopt picked
|
||||
for this evaluation, which is given in the `params['rsi']['value']`.
|
||||
|
||||
That's it. Now you can add new parts of strategies to Hyperopt and it
|
||||
will try all the combinations with all different values in the search
|
||||
@ -148,8 +150,7 @@ for best working algo.
|
||||
|
||||
### Add a new Indicators
|
||||
If you want to test an indicator that isn't used by the bot currently,
|
||||
you need to add it to your strategy file (example: [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py))
|
||||
inside the `populate_indicators()` method.
|
||||
you need to add it to the `populate_indicators()` method in `hyperopt.py`.
|
||||
|
||||
## Execute Hyperopt
|
||||
Once you have updated your hyperopt configuration you can run it.
|
||||
@ -158,17 +159,19 @@ it will take time you will have the result (more than 30 mins).
|
||||
|
||||
We strongly recommend to use `screen` to prevent any connection loss.
|
||||
```bash
|
||||
python3 ./freqtrade/main.py -c config.json hyperopt
|
||||
python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
||||
```
|
||||
|
||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||
running at least several thousand evaluations.
|
||||
|
||||
### Execute hyperopt with different ticker-data source
|
||||
If you would like to learn parameters using an alternate ticke-data that
|
||||
If you would like to hyperopt parameters using an alternate ticker data that
|
||||
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
|
||||
use data from directory `user_data/data`.
|
||||
|
||||
### Running hyperopt with smaller testset
|
||||
|
||||
Use the --timeperiod argument to change how much of the testset
|
||||
Use the `--timeperiod` argument to change how much of the testset
|
||||
you want to use. The last N ticks/timeframes will be used.
|
||||
Example:
|
||||
|
||||
@ -267,7 +270,6 @@ customizable value.
|
||||
- You should **ignore** the guard "mfi" (`"mfi"` is `"enabled": false`)
|
||||
- and so on...
|
||||
|
||||
|
||||
You have to look inside your strategy file into `buy_strategy_generator()`
|
||||
method, what those values match to.
|
||||
|
||||
@ -277,7 +279,7 @@ at `adx`-block, that translates to the following code block:
|
||||
(dataframe['adx'] > 15.0)
|
||||
```
|
||||
|
||||
So translating your whole hyperopt result to as the new buy-signal
|
||||
Translating your whole hyperopt result to as the new buy-signal
|
||||
would be the following:
|
||||
```
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
|
Loading…
Reference in New Issue
Block a user