Compare commits

...

698 Commits

Author SHA1 Message Date
Matthias
0afd5a7385 Improve stoploss documentation
closes #8492
2023-04-12 18:13:16 +02:00
Matthias
2131205db6 Bump tag length to 255 2023-04-12 07:19:36 +02:00
Matthias
b2b19915e6 Limit enter_tag and exit_reason to their actual field lenght
closes #8486
2023-04-12 07:19:36 +02:00
Matthias
bba6f8e133 Use length constant for tests 2023-04-12 07:19:36 +02:00
Matthias
a6d2233b95 Use constant for custom field lengths 2023-04-11 21:05:14 +02:00
Matthias
9857675a5e Update torch import 2023-04-11 19:38:24 +02:00
Robert Caulk
4ab047dfa7
Merge pull request #8297 from Yinon-Polak/feat/add-pytorch-model-support
Feat/add pytorch model support
2023-04-11 15:40:12 +02:00
Matthias
476ed938f5 Extract custom_tag limit from interface file 2023-04-11 07:26:38 +02:00
Matthias
40ffac9de0 Prevent random test failures by freezing time for certain tests 2023-04-10 19:45:24 +02:00
Matthias
b892d373cd Improve timerange parsing when accepting values from API 2023-04-10 19:45:24 +02:00
Matthias
c3647e49ad
Merge pull request #8484 from freqtrade/dependabot/pip/develop/nbconvert-7.3.1
Bump nbconvert from 7.2.10 to 7.3.1
2023-04-10 19:38:12 +02:00
Matthias
37ed37dc76
Merge pull request #8485 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.6
Bump mkdocs-material from 9.1.5 to 9.1.6
2023-04-10 19:37:54 +02:00
Matthias
5cb688c112
Merge pull request #8482 from freqtrade/dependabot/pip/develop/websockets-11.0.1
Bump websockets from 11.0 to 11.0.1
2023-04-10 19:37:37 +02:00
Matthias
3e394d0612
Merge pull request #8480 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.9
Bump sqlalchemy from 2.0.8 to 2.0.9
2023-04-10 19:37:17 +02:00
dependabot[bot]
c4c2298686
Bump mkdocs-material from 9.1.5 to 9.1.6
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.5 to 9.1.6.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.5...9.1.6)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 16:17:10 +00:00
dependabot[bot]
8564dc10b2
Bump nbconvert from 7.2.10 to 7.3.1
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.10 to 7.3.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.10...v7.3.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 16:16:42 +00:00
Matthias
3fb892fcb8
Merge pull request #8483 from freqtrade/dependabot/pip/develop/ruff-0.0.261
Bump ruff from 0.0.260 to 0.0.261
2023-04-10 18:16:24 +02:00
Matthias
9968348324
Merge pull request #8481 from freqtrade/dependabot/pip/develop/ccxt-3.0.59
Bump ccxt from 3.0.58 to 3.0.59
2023-04-10 18:15:44 +02:00
dependabot[bot]
fa293c54f8
Bump websockets from 11.0 to 11.0.1
Bumps [websockets](https://github.com/aaugustin/websockets) from 11.0 to 11.0.1.
- [Release notes](https://github.com/aaugustin/websockets/releases)
- [Commits](https://github.com/aaugustin/websockets/compare/11.0...11.0.1)

---
updated-dependencies:
- dependency-name: websockets
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 15:46:40 +00:00
Matthias
95449ca886
Merge pull request #8478 from freqtrade/dependabot/pip/develop/schedule-1.2.0
Bump schedule from 1.1.0 to 1.2.0
2023-04-10 17:45:44 +02:00
Matthias
70fa4a53cd
pre-commit - bump sqlalchemy 2023-04-10 17:45:23 +02:00
dependabot[bot]
467c63ff01
Bump ruff from 0.0.260 to 0.0.261
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.260 to 0.0.261.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.260...v0.0.261)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 15:25:04 +00:00
Matthias
b8a9c200fe
Merge pull request #8479 from freqtrade/dependabot/pip/develop/pre-commit-3.2.2
Bump pre-commit from 3.2.1 to 3.2.2
2023-04-10 17:24:02 +02:00
Matthias
7c10af65a1
Merge pull request #8477 from freqtrade/dependabot/pip/develop/plotly-5.14.1
Bump plotly from 5.14.0 to 5.14.1
2023-04-10 16:44:35 +02:00
Matthias
e2cd23b1d2 Remove deprecated pandas option 2023-04-10 16:33:56 +02:00
dependabot[bot]
0d408d3d43
Bump ccxt from 3.0.58 to 3.0.59
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.58 to 3.0.59.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.58...3.0.59)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 14:20:19 +00:00
dependabot[bot]
2309197771
Bump sqlalchemy from 2.0.8 to 2.0.9
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.8 to 2.0.9.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 14:20:14 +00:00
dependabot[bot]
66fe9abce0
Bump pre-commit from 3.2.1 to 3.2.2
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.2.1 to 3.2.2.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.2.1...v3.2.2)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 14:20:03 +00:00
dependabot[bot]
200c18f3e4
Bump schedule from 1.1.0 to 1.2.0
Bumps [schedule](https://github.com/dbader/schedule) from 1.1.0 to 1.2.0.
- [Release notes](https://github.com/dbader/schedule/releases)
- [Changelog](https://github.com/dbader/schedule/blob/master/HISTORY.rst)
- [Commits](https://github.com/dbader/schedule/compare/1.1.0...1.2.0)

---
updated-dependencies:
- dependency-name: schedule
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 14:19:59 +00:00
dependabot[bot]
351b5f6e65
Bump plotly from 5.14.0 to 5.14.1
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.14.0 to 5.14.1.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.14.0...v5.14.1)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 14:19:56 +00:00
Matthias
605cc20a21
Merge pull request #8459 from freqtrade/feat/kvstore
Add initial bot start time to /profit endpoint
2023-04-10 14:49:01 +02:00
Matthias
f73d2a5371 Ensure bot_start is called when visualizing results 2023-04-10 14:48:02 +02:00
Matthias
485a074674
Merge pull request #8472 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.12
Bump types-python-dateutil from 2.8.19.11 to 2.8.19.12
2023-04-10 14:42:53 +02:00
Matthias
865cf5232b
Merge pull request #8471 from freqtrade/dependabot/pip/develop/mypy-1.2.0
Bump mypy from 1.1.1 to 1.2.0
2023-04-10 14:42:35 +02:00
Matthias
95a24c3133
Merge pull request #8467 from freqtrade/dependabot/pip/develop/orjson-3.8.10
Bump orjson from 3.8.9 to 3.8.10
2023-04-10 14:41:25 +02:00
Matthias
6833059c70
Merge pull request #8474 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.5
Bump pypa/gh-action-pypi-publish from 1.8.4 to 1.8.5
2023-04-10 08:03:55 +02:00
Matthias
3833dc0b78
pre-commit - bump dateutil 2023-04-10 07:54:01 +02:00
Matthias
e0d3c771db
Merge pull request #8465 from freqtrade/dependabot/pip/develop/ccxt-3.0.58
Bump ccxt from 3.0.50 to 3.0.58
2023-04-10 07:53:21 +02:00
dependabot[bot]
5a18ab0784
Bump mypy from 1.1.1 to 1.2.0
Bumps [mypy](https://github.com/python/mypy) from 1.1.1 to 1.2.0.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v1.1.1...v1.2.0)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 05:51:33 +00:00
Matthias
1d66f82b1d
Merge pull request #8469 from freqtrade/dependabot/pip/develop/filelock-3.11.0
Bump filelock from 3.10.6 to 3.11.0
2023-04-10 07:50:48 +02:00
Matthias
2e765fe6d1
Merge pull request #8470 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.11
Bump pymdown-extensions from 9.10 to 9.11
2023-04-10 07:50:25 +02:00
Matthias
21ea02bbcf
Merge pull request #8466 from freqtrade/dependabot/pip/develop/pytest-7.3.0
Bump pytest from 7.2.2 to 7.3.0
2023-04-10 07:49:57 +02:00
dependabot[bot]
2ea0157197
Bump pypa/gh-action-pypi-publish from 1.8.4 to 1.8.5
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.4 to 1.8.5.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.4...v1.8.5)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:57:51 +00:00
dependabot[bot]
03352f3b62
Bump types-python-dateutil from 2.8.19.11 to 2.8.19.12
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.11 to 2.8.19.12.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:57:04 +00:00
dependabot[bot]
26eb4f7fe6
Bump pymdown-extensions from 9.10 to 9.11
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.10 to 9.11.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.10...9.11)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:56:57 +00:00
dependabot[bot]
7e1f3aa545
Bump filelock from 3.10.6 to 3.11.0
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.10.6 to 3.11.0.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.10.6...3.11.0)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:56:51 +00:00
dependabot[bot]
14532e3a56
Bump orjson from 3.8.9 to 3.8.10
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.9 to 3.8.10.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.9...3.8.10)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:56:42 +00:00
dependabot[bot]
a449f7c78c
Bump pytest from 7.2.2 to 7.3.0
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.2.2 to 7.3.0.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.2.2...7.3.0)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:56:38 +00:00
dependabot[bot]
8854ef8cba
Bump ccxt from 3.0.50 to 3.0.58
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.50 to 3.0.58.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.50...3.0.58)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-10 03:56:33 +00:00
Matthias
526943f29e Remove freqUI alpha warning 2023-04-09 19:44:38 +02:00
Matthias
df51111c33 Always show strategy summary 2023-04-09 08:53:36 +02:00
Matthias
dd8900a1c6 Improve ordering of backtest output 2023-04-09 08:53:36 +02:00
Matthias
5404905d28 Fix typos in docs 2023-04-08 17:13:51 +02:00
Matthias
bed51fa790 Properly build specific Torch image 2023-04-08 17:00:25 +02:00
Matthias
f5a5c2d6b9 Improve imports 2023-04-08 16:44:33 +02:00
Matthias
a102cfdfc9 Add new /profit fields to API 2023-04-08 16:41:25 +02:00
Matthias
be72670ca2 Add documentation about /profit change 2023-04-08 16:40:14 +02:00
Matthias
cf2cb94f8d Add bot start date to /profit output 2023-04-08 16:38:44 +02:00
Matthias
fa3a81b022 convert Keys to enum 2023-04-08 16:28:50 +02:00
Matthias
7ff30c6df8 Add additional, typesafe getters 2023-04-08 16:24:38 +02:00
Matthias
7751768b2e Store initial_time value 2023-04-08 16:13:16 +02:00
Matthias
9c2cdd4fb9
Merge pull request #8388 from freqtrade/patch-pair-colon-bug
Bug fix: FreqAI backtest target setting
2023-04-08 14:16:41 +02:00
robcaulk
69b9b35a08 Merge remote-tracking branch 'origin/develop' into feat/add-pytorch-model-support 2023-04-08 13:22:25 +02:00
robcaulk
c2c97d9f78 make a fake pair_dict instead of MagicMocking it 2023-04-08 13:20:29 +02:00
robcaulk
48d3c8e62e fix model loading from disk bug, improve doc, clarify installation/docker instructions, add a torch tag to the freqairl docker image. Fix seriously outdated prediction_model docstrings 2023-04-08 12:09:53 +02:00
Matthias
ac817b7808 Improve docstrings for key-value store 2023-04-08 10:09:31 +02:00
Matthias
4d4f4bf23e Add test for key_value_store 2023-04-08 10:07:21 +02:00
Matthias
c083723698 Add initial version of key value store 2023-04-08 10:07:03 +02:00
Matthias
f8d89c46e5 Don't reset open_order_id if the order didn't cancel 2023-04-07 19:49:13 +02:00
Matthias
1952e453bb Improved formatting for fetch order_or_stop calls 2023-04-07 17:35:11 +02:00
Matthias
77985fa591 Update thread name for uvicorn worker 2023-04-07 14:49:53 +02:00
Matthias
a75d891007 Ensure minimum sqlalchemy version is respected 2023-04-07 14:45:06 +02:00
Matthias
dae3f72be7 Bump Dockerfile to latest 3.10 2023-04-07 14:11:31 +02:00
Matthias
f03a99918a Ensure hyper param file can be loaded
closes #8452
2023-04-04 20:04:28 +02:00
Yinon Polak
a655524221 pytorch mlp rename input to fix mypy error 2023-04-04 12:24:29 +03:00
Yinon Polak
26738370c7 pytorch mlp add explicit annotation to fix mypy error 2023-04-04 12:12:02 +03:00
Matthias
fe02f611fb Fix typo in reinforcement learning
closes #8431
2023-04-04 06:46:35 +02:00
Matthias
1b10a3a2bf Merge branch 'develop' of github.com:freqtrade/freqtrade into develop 2023-04-03 20:24:58 +02:00
Matthias
92a060c5b4 Make stop_price_parameter configurable by exchange 2023-04-03 20:18:57 +02:00
Matthias
096fd1916c
Merge pull request #8445 from freqtrade/dependabot/pip/develop/tensorboard-2.12.1
Bump tensorboard from 2.12.0 to 2.12.1
2023-04-03 19:14:29 +02:00
Matthias
fb09a16127
Merge pull request #8438 from freqtrade/dependabot/pip/develop/types-tabulate-0.9.0.2
Bump types-tabulate from 0.9.0.1 to 0.9.0.2
2023-04-03 18:12:30 +02:00
Yinon Polak
6b204c97ed fix pytorch data convertor type hints 2023-04-03 19:02:07 +03:00
Yinon Polak
0c4574b3b7 prevent mypy error, explicitly unpack input list of pytorch mlp model, 2023-04-03 18:10:47 +03:00
Yinon Polak
d9d9993179 add documentation 2023-04-03 17:06:39 +03:00
Yinon Polak
7b494c8333 add documentation to pytorch data convertor 2023-04-03 16:39:49 +03:00
Yinon Polak
bc9454e0f9 add device to data convertor class doc 2023-04-03 16:36:38 +03:00
Yinon Polak
36a0a14a23 clean code 2023-04-03 16:26:42 +03:00
Yinon Polak
c137666230 fix imports 2023-04-03 16:03:15 +03:00
Matthias
7fed0782d5
pre-commit types-tabulate 2023-04-03 14:19:11 +02:00
Yinon Polak
bd3b70293f add pytorch data convertor 2023-04-03 15:19:10 +03:00
dependabot[bot]
30fc24bd8c
Bump types-tabulate from 0.9.0.1 to 0.9.0.2
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.9.0.1 to 0.9.0.2.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 12:18:15 +00:00
Matthias
7e3de178e1
Merge pull request #8447 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.11
Bump types-python-dateutil from 2.8.19.10 to 2.8.19.11
2023-04-03 14:17:24 +02:00
Matthias
0c9c9fff0e
Merge branch 'develop' into dependabot/pip/develop/types-python-dateutil-2.8.19.11 2023-04-03 13:41:10 +02:00
Matthias
b96f6670e3
pre-commit dateutil 2023-04-03 13:28:17 +02:00
Matthias
6e02743256
Merge pull request #8446 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.17
Bump types-requests from 2.28.11.16 to 2.28.11.17
2023-04-03 13:27:31 +02:00
Matthias
2b4fa92d09
Merge pull request #8444 from freqtrade/dependabot/pip/develop/ruff-0.0.260
Bump ruff from 0.0.259 to 0.0.260
2023-04-03 11:40:07 +02:00
Matthias
be250230b6
Merge pull request #8443 from freqtrade/dependabot/pip/develop/plotly-5.14.0
Bump plotly from 5.13.1 to 5.14.0
2023-04-03 11:39:42 +02:00
Matthias
5d33ffc015
Merge pull request #8442 from freqtrade/dependabot/pip/develop/orjson-3.8.9
Bump orjson from 3.8.8 to 3.8.9
2023-04-03 11:04:17 +02:00
Matthias
b48498f27f
Types pre-commit 2023-04-03 10:16:56 +02:00
Matthias
e582d8bacb
Merge pull request #8434 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.8
Bump sqlalchemy from 2.0.7 to 2.0.8
2023-04-03 10:16:00 +02:00
dependabot[bot]
ff40ee655b
Bump types-python-dateutil from 2.8.19.10 to 2.8.19.11
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.10 to 2.8.19.11.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:49:24 +00:00
dependabot[bot]
57deaad806
Bump types-requests from 2.28.11.16 to 2.28.11.17
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.16 to 2.28.11.17.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:49:21 +00:00
dependabot[bot]
7779b82277
Bump tensorboard from 2.12.0 to 2.12.1
Bumps [tensorboard](https://github.com/tensorflow/tensorboard) from 2.12.0 to 2.12.1.
- [Release notes](https://github.com/tensorflow/tensorboard/releases)
- [Changelog](https://github.com/tensorflow/tensorboard/blob/2.12.1/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorboard/compare/2.12.0...2.12.1)

---
updated-dependencies:
- dependency-name: tensorboard
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:49:18 +00:00
dependabot[bot]
2bd2058afa
Bump ruff from 0.0.259 to 0.0.260
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.259 to 0.0.260.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.259...v0.0.260)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:49:12 +00:00
dependabot[bot]
bf7936b0af
Bump plotly from 5.13.1 to 5.14.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.13.1 to 5.14.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.13.1...v5.14.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:48:50 +00:00
dependabot[bot]
8236bbfd48
Bump orjson from 3.8.8 to 3.8.9
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.8 to 3.8.9.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.8...3.8.9)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 07:48:43 +00:00
Matthias
4dc13ac16a
Merge pull request #8437 from freqtrade/dependabot/pip/develop/ccxt-3.0.50
Bump ccxt from 3.0.37 to 3.0.50
2023-04-03 09:47:27 +02:00
Matthias
eb5423469a
Merge pull request #8435 from freqtrade/dependabot/pip/develop/xgboost-1.7.5
Bump xgboost from 1.7.4 to 1.7.5
2023-04-03 09:47:09 +02:00
Matthias
43496d7929
bump sqlalchemy pre-commit 2023-04-03 09:46:32 +02:00
Matthias
92c70b6b90
Merge pull request #8441 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.4
Bump pypa/gh-action-pypi-publish from 1.8.3 to 1.8.4
2023-04-03 09:45:51 +02:00
Matthias
77897c7d6b
Merge pull request #8439 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.5
Bump mkdocs-material from 9.1.4 to 9.1.5
2023-04-03 09:45:26 +02:00
Matthias
531861573a
Merge pull request #8436 from freqtrade/dependabot/pip/develop/types-cachetools-5.3.0.5
Bump types-cachetools from 5.3.0.4 to 5.3.0.5
2023-04-03 09:45:10 +02:00
Matthias
c9b904eb0e Fix typos in documentation 2023-04-03 06:49:30 +02:00
Matthias
372f1cb37f Reduce verbosity for stop orders 2023-04-03 06:37:31 +02:00
Matthias
a3acdd5240 apply stop-reserve to minimum limits only when necessary
it's unnecessary for amount - but necessary for Cost / price limits.
2023-04-03 06:37:31 +02:00
Matthias
e6a125719e Slightly refactor _get_stake_amount_limit 2023-04-03 06:37:31 +02:00
Matthias
78a1551798 Reorder get_stake_limit 2023-04-03 06:37:31 +02:00
Matthias
6f79d14c9c
pre-commit - bump cachetools 2023-04-03 06:37:15 +02:00
Matthias
28d8722fa7
Merge pull request #8433 from freqtrade/dependabot/pip/develop/websockets-11.0
Bump websockets from 10.4 to 11.0
2023-04-03 06:36:30 +02:00
dependabot[bot]
2715b2ccf0
Bump pypa/gh-action-pypi-publish from 1.8.3 to 1.8.4
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.3 to 1.8.4.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.3...v1.8.4)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:58:12 +00:00
dependabot[bot]
2ea575cb31
Bump mkdocs-material from 9.1.4 to 9.1.5
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.4 to 9.1.5.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.4...9.1.5)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:57:30 +00:00
dependabot[bot]
1b31c54162
Bump ccxt from 3.0.37 to 3.0.50
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.37 to 3.0.50.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.37...3.0.50)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:57:19 +00:00
dependabot[bot]
e289c10b6c
Bump types-cachetools from 5.3.0.4 to 5.3.0.5
Bumps [types-cachetools](https://github.com/python/typeshed) from 5.3.0.4 to 5.3.0.5.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:57:10 +00:00
dependabot[bot]
26ed1ca07c
Bump xgboost from 1.7.4 to 1.7.5
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.4 to 1.7.5.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.4...v1.7.5)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:57:05 +00:00
dependabot[bot]
b1e20bcd1e
Bump sqlalchemy from 2.0.7 to 2.0.8
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.7 to 2.0.8.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:57:00 +00:00
dependabot[bot]
12a73bc151
Bump websockets from 10.4 to 11.0
Bumps [websockets](https://github.com/aaugustin/websockets) from 10.4 to 11.0.
- [Release notes](https://github.com/aaugustin/websockets/releases)
- [Commits](https://github.com/aaugustin/websockets/compare/10.4...11.0)

---
updated-dependencies:
- dependency-name: websockets
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-03 03:56:46 +00:00
Matthias
19e112f399
Merge pull request #8427 from initrv/typo-fix-constants
Typo fix constants
2023-04-02 07:42:15 +02:00
initrv
cccf4f305b fix randomize_starting_position typo 2023-04-02 03:42:05 +03:00
Matthias
dc7e834911 Fix some type issues 2023-04-01 20:17:56 +02:00
Matthias
a630799984
Merge pull request #8423 from freqtrade/add-profit-trade-history
make trade_type value more explicit, add profit to trade_history dict
2023-04-01 15:19:54 +02:00
Matthias
916e1bbc7c
Merge pull request #8412 from freqtrade/fix/partial_stops
support partially filled stops
2023-04-01 15:18:42 +02:00
Robert Caulk
631cb44f5c ensure python code block renders 2023-04-01 15:16:48 +02:00
Robert Caulk
367186cc34 Update freqai-feature-engineering.md
The `metadata` section of `freqai-feature-engineering.md` had a misplaced whitespace in front of the title. 

This PR removes the whitespace.
2023-04-01 15:16:43 +02:00
robcaulk
92f34f262e make trade_type value more explicit, add profit to trade_history dict 2023-04-01 10:05:58 +02:00
Matthias
5e13b48648
Merge pull request #8386 from freqtrade/feature/price_to_precision_round
price to precision rounding
2023-03-31 07:20:10 +02:00
Matthias
6dfb1a1d14 Improve docker regular build caching 2023-03-31 06:49:12 +02:00
Matthias
f8330800d1 Improve docker arm builds 2023-03-31 06:49:02 +02:00
Matthias
3ec7c72da1 Bump develop version to 2023.4.dev 2023-03-30 07:06:23 +02:00
robcaulk
355fde3bca revert setting dk to live in test_plot_feature_importances 2023-03-29 22:01:54 +02:00
Matthias
fa7c29fe9f Update producer docs to reflect proper datatype
closes #8419
2023-03-29 20:43:23 +02:00
Matthias
861c577138 Support partially filled stop orders
closes #8374
2023-03-29 07:05:39 +02:00
Matthias
e062a74e70 Add test for partial stop order canceling
part of #8374
2023-03-29 06:57:17 +02:00
Matthias
c330c493d5 test for Handle stop on exchange partial filled
part of #8374
2023-03-29 06:57:17 +02:00
Matthias
8a49d62068 Don't update liquidation price for closed trades 2023-03-29 06:49:22 +02:00
Matthias
a642524928 Improve integration test correctness 2023-03-29 06:48:00 +02:00
Matthias
eb96490c99 Improve some more stoploss tests 2023-03-28 20:28:05 +02:00
Matthias
6282b42741 Remove further Magicmock trade 2023-03-28 19:38:43 +02:00
Matthias
513df4515b Improve stoploss tests 2023-03-28 19:19:55 +02:00
Matthias
411e21f430 Improve stop test 2023-03-28 18:13:26 +02:00
Matthias
f0b5f95fd6 Remove missleading comment 2023-03-28 18:10:26 +02:00
Matthias
736c396d98 Use correct amount for stoploss test 2023-03-28 16:45:54 +02:00
Yinon Polak
5a7ca35c6b declare class names in FreqaiExampleHybridStrategy 2023-03-28 16:24:49 +03:00
Yinon Polak
077a947972 clean code 2023-03-28 15:18:10 +03:00
Yinon Polak
8ac3a94358 add note to pytorch docs - setting class names for classifiers 2023-03-28 15:17:40 +03:00
Yinon Polak
dfbebdea9b improve comment on class_names in freqai interface 2023-03-28 14:44:44 +03:00
Yinon Polak
b795a70102 fix config example in pytorch mlp documentation 2023-03-28 14:44:43 +03:00
Yinon Polak
026b6a39a9 bugfix skip test split when empty 2023-03-28 14:40:23 +03:00
Matthias
2860e817bd Update cached binance leverage Tiers 2023-03-28 07:05:37 +02:00
Matthias
19b78fbc22 Override ccxt's marketOrderRequiresPrice settings for gate 2023-03-28 06:57:18 +02:00
Matthias
cde432fef0 Enable gate market orders
closes #8368
2023-03-28 06:56:11 +02:00
Matthias
8ae44c204e
Merge pull request #8361 from TheJoeSchr/feature/trades-feather
featherdatahandler: implement trades_store/_trades_load
2023-03-27 21:05:30 +02:00
Matthias
ed0e7ead31 Fix wrong import 2023-03-27 20:36:05 +02:00
Matthias
3928051baf Revert unneeded formatting changes 2023-03-27 20:35:26 +02:00
Matthias
e35c85000e Excude raspberry from catboost installs
closes #8404
2023-03-27 20:19:23 +02:00
robcaulk
3cabcabcbd ensure labels are properly defined in backtesting 2023-03-27 15:23:01 +02:00
Matthias
85776db692
Merge pull request #8401 from freqtrade/dependabot/pip/develop/ccxt-3.0.37
Bump ccxt from 3.0.36 to 3.0.37
2023-03-27 11:02:44 +02:00
Matthias
ce81af08d8
Merge pull request #8398 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.4
Bump mkdocs-material from 9.1.3 to 9.1.4
2023-03-27 11:00:57 +02:00
Matthias
5aa6c1dfae
Merge pull request #8402 from freqtrade/dependabot/pip/develop/pydantic-1.10.7
Bump pydantic from 1.10.6 to 1.10.7
2023-03-27 11:00:40 +02:00
dependabot[bot]
4f4dfa2a59
Bump pydantic from 1.10.6 to 1.10.7
Bumps [pydantic](https://github.com/pydantic/pydantic) from 1.10.6 to 1.10.7.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/v1.10.7/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v1.10.6...v1.10.7)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 07:50:06 +00:00
dependabot[bot]
90669e0ba9
Bump ccxt from 3.0.36 to 3.0.37
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.36 to 3.0.37.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.36...3.0.37)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 07:49:56 +00:00
Matthias
bc9f6d30c1
Merge pull request #8391 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.16
Bump types-requests from 2.28.11.15 to 2.28.11.16
2023-03-27 09:47:34 +02:00
Matthias
4ae2333306
Merge pull request #8399 from freqtrade/dependabot/pip/develop/filelock-3.10.6
Bump filelock from 3.10.0 to 3.10.6
2023-03-27 09:47:16 +02:00
Matthias
8c63e3dc4f
Merge pull request #8396 from freqtrade/dependabot/pip/develop/cryptography-40.0.1
Bump cryptography from 39.0.2 to 40.0.1
2023-03-27 09:47:02 +02:00
Matthias
b0dddd35ca
Merge pull request #8395 from freqtrade/dependabot/pip/develop/pre-commit-3.2.1
Bump pre-commit from 3.2.0 to 3.2.1
2023-03-27 09:45:57 +02:00
Matthias
96ba75179b
Merge pull request #8400 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.3
Bump pypa/gh-action-pypi-publish from 1.8.1 to 1.8.3
2023-03-27 08:28:18 +02:00
Matthias
2589717375
Merge pull request #8397 from freqtrade/dependabot/pip/develop/orjson-3.8.8
Bump orjson from 3.8.7 to 3.8.8
2023-03-27 08:00:46 +02:00
dependabot[bot]
bc0816aa66
Bump cryptography from 39.0.2 to 40.0.1
Bumps [cryptography](https://github.com/pyca/cryptography) from 39.0.2 to 40.0.1.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/39.0.2...40.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 05:15:59 +00:00
dependabot[bot]
1743ad7946
Bump pre-commit from 3.2.0 to 3.2.1
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.2.0 to 3.2.1.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.2.0...v3.2.1)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 05:14:04 +00:00
Matthias
9367cbcfd3
Merge pull request #8390 from freqtrade/dependabot/pip/develop/ccxt-3.0.36
Bump ccxt from 3.0.23 to 3.0.36
2023-03-27 07:10:39 +02:00
Matthias
43a7b9236b
Merge pull request #8393 from freqtrade/dependabot/pip/develop/ruff-0.0.259
Bump ruff from 0.0.257 to 0.0.259
2023-03-27 07:00:38 +02:00
Matthias
4891174a71 list-data should sort pairs also in timerange mode 2023-03-27 06:44:36 +02:00
Matthias
8845f765db
pre-commit - bump requests 2023-03-27 06:25:11 +02:00
dependabot[bot]
7e11bce4f4
Bump pypa/gh-action-pypi-publish from 1.8.1 to 1.8.3
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.1 to 1.8.3.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.1...v1.8.3)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:58:02 +00:00
dependabot[bot]
8955e09175
Bump filelock from 3.10.0 to 3.10.6
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.10.0 to 3.10.6.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.10.0...3.10.6)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:58:00 +00:00
dependabot[bot]
d13ea71a58
Bump mkdocs-material from 9.1.3 to 9.1.4
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.3 to 9.1.4.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.3...9.1.4)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:57:55 +00:00
dependabot[bot]
b72f61080b
Bump orjson from 3.8.7 to 3.8.8
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.7 to 3.8.8.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.7...3.8.8)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:57:46 +00:00
dependabot[bot]
75c31cc8cc
Bump ruff from 0.0.257 to 0.0.259
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.257 to 0.0.259.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.257...v0.0.259)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:57:14 +00:00
dependabot[bot]
1b3d9efedd
Bump types-requests from 2.28.11.15 to 2.28.11.16
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.15 to 2.28.11.16.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:56:55 +00:00
dependabot[bot]
2f8f60373e
Bump ccxt from 3.0.23 to 3.0.36
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.23 to 3.0.36.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.23...3.0.36)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 03:56:49 +00:00
robcaulk
55781e7f10 fix tests 2023-03-26 19:22:52 +02:00
Matthias
72284317c2 Fix failing backtest test 2023-03-26 18:21:21 +02:00
Matthias
80a27bc0db Fix random uvicorn error 2023-03-26 18:18:52 +02:00
Matthias
1c9abd9e35 Properly respect can_short flag in backtesting
closes  #8387
2023-03-26 17:27:52 +02:00
Matthias
c14ac8a205 Properly handle non-replaced first entry orders 2023-03-26 16:46:41 +02:00
Matthias
b09fb5826f don't use "can_short" in backtesting to determine application of leverage 2023-03-26 16:21:51 +02:00
Matthias
fb1541bdf6 Explicitly close loop in async tests 2023-03-26 16:21:51 +02:00
Matthias
444d18aa39 Revert binance PO fix, since ccxt has fixed this bug. 2023-03-26 16:21:51 +02:00
Matthias
91ab4abba8
Merge pull request #8389 from escanoro/patch-1
typo:  above should be below
2023-03-26 15:45:29 +02:00
escanoro
16057da6cc
typo: above should be below 2023-03-26 14:09:41 +02:00
Matthias
d97500581d
Merge pull request #8379 from xmatthias/type_sendmsg
Type sendmsg
2023-03-26 14:09:01 +02:00
robcaulk
f1e831a7b8 fix bug in backtest target setting 2023-03-26 13:43:59 +02:00
Matthias
31a396bc25
Merge pull request #8272 from paranoidandy/bot-loop-start-every-candle-bt
Make strategy.bot_loop_start run once per candle in backtest
2023-03-26 13:21:08 +02:00
Matthias
7cdcd97c26 Update tests for new logic. 2023-03-26 11:30:44 +02:00
Matthias
73b59df77b Merge branch 'develop' into pr/paranoidandy/8272 2023-03-26 11:22:24 +02:00
Matthias
86aef7cf9d Add current_time to bot_loop_start callbak 2023-03-26 11:22:19 +02:00
Matthias
159090c0e7 Add explicit tests for TRUNCATE mode 2023-03-26 11:14:34 +02:00
Matthias
0cb28f3d82 Use kwarg for rounding_mode, update tests with additional parameter 2023-03-26 11:00:41 +02:00
Matthias
d0d0cbe1d1 Implement price_to_precision logic for stoploss 2023-03-26 10:37:18 +02:00
Matthias
02078456fc Merge branch 'develop' into pr/asuiu/8296 2023-03-26 10:28:02 +02:00
Matthias
01dfb1cba8 Revert having price_rounding_mode as configuration 2023-03-26 10:24:47 +02:00
Matthias
ee205ddc86 Improve trade.from_json when stops are used 2023-03-25 20:26:56 +01:00
Matthias
298f5685ee Reuse existing "cancel_stoploss" call 2023-03-25 20:06:21 +01:00
Matthias
486d8a48a0 Fix docs (buffer_train_data_candles is an integer, not a boolean)
closes #8384
2023-03-25 19:36:28 +01:00
Matthias
d426077445 Merge branch 'develop' of github.com:freqtrade/freqtrade into develop 2023-03-25 16:33:07 +01:00
Matthias
9aa455fcd4
Merge pull request #8364 from freqtrade/robcaulk-patch-1
Update freqai_interface.py
2023-03-25 16:27:25 +01:00
Robert Caulk
d9c8b322ce
Update freqai_interface.py 2023-03-25 13:37:07 +01:00
robcaulk
68154a1f52 document why users cant arbitrarily change parameter spaces... 2023-03-25 11:57:52 +01:00
Matthias
f7c1ee6d3e add precision values to api schema 2023-03-25 11:55:47 +01:00
Matthias
9c6a49436b Export amount/price precisions per trade 2023-03-25 11:42:19 +01:00
Matthias
75464c22f5
Merge pull request #8382 from linquanisaac/develop
docs(protections): fix typo
2023-03-25 11:36:35 +01:00
linquanisaac
cdd44a4005 docs(protections): fix typo 2023-03-25 17:19:58 +08:00
Matthias
34313a7af6 Merge remote-tracking branch 'origin/develop' into type_sendmsg 2023-03-25 09:23:00 +01:00
Matthias
4053ee4581
Merge pull request #8380 from freqtrade/fix/talibinstall
use github to download guess instead of gnu.org
2023-03-25 09:22:43 +01:00
Matthias
56170dba19 use github to download guess instead of gnu.org
gnu.org seems down rn (dns does no longer resolve),
and doesn't have good uptime history
2023-03-25 08:55:36 +01:00
Matthias
79a2de7a64 Reduce impact of short outages 2023-03-25 08:31:35 +01:00
Matthias
c0a57d352f send base_currency with messages that need it. 2023-03-25 08:16:07 +01:00
Matthias
cbdd86d777 Fix test failures due to additional field 2023-03-24 21:05:10 +01:00
Matthias
281dd7785e Fix some remaining type errors 2023-03-24 20:56:18 +01:00
Matthias
ad58bac810 Type WS messagetypes 2023-03-24 20:54:28 +01:00
Matthias
8928d3616a Improve msgtypes 2023-03-24 20:47:53 +01:00
Matthias
e8cffeeffd Update RPCStatusMessage type 2023-03-24 20:36:29 +01:00
Matthias
76d289f0ce Don't overwrite types 2023-03-24 20:35:01 +01:00
Matthias
245ae99273 Further typing ... 2023-03-24 20:33:00 +01:00
Matthias
70ad7b42b1 Improve msg typing 2023-03-24 20:33:00 +01:00
Matthias
0ece73578c Add typedDict for RPC messages
Currently not fully functional.
2023-03-24 20:33:00 +01:00
Matthias
b317524ed7 protect adjust_trade_position from crashing in case of unsafe code 2023-03-24 20:27:45 +01:00
Yinon Polak
8903ba5d89 fix enf of file 2023-03-24 20:35:55 +03:00
Matthias
469166636c Set initial stoploss when creating the order
This ensures that a trade never has "None" as stoploss
2023-03-24 07:27:45 +01:00
Yinon Polak
eabd321281 small docs change 2023-03-23 15:59:57 +02:00
Yinon Polak
45c6ae446f small docs change 2023-03-23 15:04:29 +02:00
Yinon Polak
952e641213 small docs change 2023-03-23 12:43:37 +02:00
Yinon Polak
c44b5b1b3a add pytorch parameters to parameter table docs 2023-03-23 12:41:20 +02:00
Yinon Polak
fc8625c5c5 add pytorch classes uml diagram 2023-03-23 12:13:27 +02:00
Matthias
150c5510c7 Don''t fully fail bot when invalid price value is reached
closes #8300
2023-03-22 19:46:07 +01:00
Yinon Polak
36a005754a add pytorch documentation 2023-03-22 18:15:57 +02:00
Yinon Polak
479aafc331 rename Torch to PyTorch 2023-03-22 17:50:00 +02:00
Robert Caulk
bdf19f1d66
Update freqai_interface.py 2023-03-21 22:44:56 +01:00
Matthias
8cf3e9f91b Accept "insufficient funds" error on set_leverage from stop calls
closes #8341
2023-03-21 19:29:27 +01:00
Matthias
ebebcb886c Move build-system to the top of pyproject.toml 2023-03-21 19:28:26 +01:00
Matthias
36c45fd14f Remove unused argument from set_leverage 2023-03-21 19:14:09 +01:00
Joe Schr
0128b63c1c add 'feather' to AVAILABLE_DATAHANDLERS_TRADES 2023-03-21 19:13:32 +01:00
Joe Schr
e16db814fa featherdatahandler: implement trades_store/_trades_load 2023-03-21 17:56:51 +01:00
Yinon Polak
f81e3d8667 sort imports 2023-03-21 16:42:13 +02:00
Yinon Polak
b9c7d338b3 fix test_start_backtesting 2023-03-21 16:38:05 +02:00
Yinon Polak
4f93106755 Merge remote-tracking branch 'origin/feat/add-pytorch-model-support' into feat/add-pytorch-model-support 2023-03-21 16:26:42 +02:00
Yinon Polak
02bccd0097 add pytorch mlp models to test_start_backtesting 2023-03-21 16:20:35 +02:00
robcaulk
1ba01746a0 organize pytorch files 2023-03-21 15:09:54 +01:00
Yinon Polak
83a7d888bc type hint init in pytorch mlp classes 2023-03-21 15:19:34 +02:00
Yinon Polak
eba82360fa skip pytorch tests on python 3.11 and intel based mac os 2023-03-21 15:18:05 +02:00
Yinon Polak
3fa23860c0 skip pytorch tests on python 3.11 and intel based mac os 2023-03-21 14:34:27 +02:00
Yinon Polak
a80afc8f1b add optional target tensor squeezing to pytorch trainer 2023-03-21 13:20:54 +02:00
Yinon Polak
97339e14cf round up divisions in calc_n_epochs 2023-03-21 12:29:05 +02:00
Yinon Polak
443263803c unsqueeze target tensor when 1 dimensional 2023-03-21 11:42:05 +02:00
Yinon Polak
9906e7d646 clean code 2023-03-21 11:23:45 +02:00
Yinon Polak
e8f040bfbd add class_name attribute to freqai interface 2023-03-20 20:38:43 +02:00
Matthias
97c420b2df Add explicit test for okx lev_prep 2023-03-20 19:27:48 +01:00
Yinon Polak
a4b617e482 type hints fixes 2023-03-20 20:22:28 +02:00
Matthias
7b5e322ef2
Merge pull request #8360 from freqtrade/okx_stop
Okx stoploss on exchange
2023-03-20 19:19:59 +01:00
Yinon Polak
c06cd38951 clean code 2023-03-20 19:55:39 +02:00
Yinon Polak
0a55753faf move default attributes of pytorch classifier to initializer,
to prevent mypy from complaining
2023-03-20 19:40:36 +02:00
Yinon Polak
6b4d9f97c1 clean code 2023-03-20 19:28:30 +02:00
Matthias
639987cbab Prevent parameter reuse 2023-03-20 18:19:17 +01:00
Matthias
56c2aa89bc
Merge pull request #8344 from freqtrade/fix/db_concurrent
Fix db concurrent problem
2023-03-20 18:17:09 +01:00
Yinon Polak
bf4aa91aab Merge remote-tracking branch 'origin/feat/add-pytorch-model-support' into feat/add-pytorch-model-support
# Conflicts:
#	freqtrade/freqai/base_models/PyTorchModelTrainer.py
#	freqtrade/freqai/prediction_models/PyTorchClassifier.py
#	freqtrade/freqai/prediction_models/PyTorchMLPClassifier.py
#	freqtrade/freqai/prediction_models/PyTorchMLPModel.py
#	tests/freqai/test_freqai_interface.py
2023-03-20 18:44:24 +02:00
Yinon Polak
500c401b75 improve pytorch classifier documentation 2023-03-20 18:41:04 +02:00
Yinon Polak
81a2cbb4eb fix tests 2023-03-20 18:41:04 +02:00
Yinon Polak
0510cf4491 add config params to tests 2023-03-20 18:41:04 +02:00
Yinon Polak
68728409aa add pytorch regressor test 2023-03-20 18:41:04 +02:00
Yinon Polak
c00ffcee59 fix pytorch classifier test 2023-03-20 18:41:04 +02:00
Yinon Polak
9aec1ddb17 sort imports 2023-03-20 18:41:04 +02:00
Yinon Polak
d98890f32e sort imports 2023-03-20 18:41:04 +02:00
Yinon Polak
f659f8e309 remove unused imports 2023-03-20 18:41:04 +02:00
Yinon Polak
54db239175 add pytorch regressor example 2023-03-20 18:41:04 +02:00
Yinon Polak
601c37f862 refactor classifiers class names 2023-03-20 18:41:04 +02:00
Yinon Polak
501e746c52 improve mlp documentation 2023-03-20 18:41:04 +02:00
Yinon Polak
d04146d1b1 improve mlp documentation 2023-03-20 18:41:04 +02:00
Yinon Polak
ea08931ab3 add mlp documentation 2023-03-20 18:41:04 +02:00
Yinon Polak
ddd1b5c0ff modify feedforward net, move layer norm to start of thr block 2023-03-20 18:41:04 +02:00
Yinon Polak
e08d8190ae fix test 2023-03-20 18:41:04 +02:00
Yinon Polak
fbf7049ac5 sort imports 2023-03-20 18:41:04 +02:00
Yinon Polak
2a1a8c0e64 fix test 2023-03-20 18:41:04 +02:00
Yinon Polak
833aaf8e10 create children class to PyTorchClassifier to implement the fit method where we initialize the trainer and model objects 2023-03-20 18:41:04 +02:00
Yinon Polak
566346dd87 classifier test - set model file extension 2023-03-20 18:41:03 +02:00
Yinon Polak
d0a33d2ee7 fix tests 2023-03-20 18:41:03 +02:00
robcaulk
fab505be1b cheat flake8 for now until we can refactor save into the model class 2023-03-20 18:41:03 +02:00
Yinon Polak
2f386913ac refactor classifiers class names 2023-03-20 11:54:17 +02:00
Matthias
4f4bfdac4d Adjustments to okx stoploss 2023-03-20 09:00:00 +01:00
Matthias
8b6ea32c4c
Merge pull request #8357 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.21.0
Bump pytest-asyncio from 0.20.3 to 0.21.0
2023-03-20 08:59:19 +01:00
Matthias
ff497d5c90
Merge pull request #8356 from freqtrade/dependabot/pip/develop/fastapi-0.95.0
Bump fastapi from 0.94.0 to 0.95.0
2023-03-20 08:54:49 +01:00
Matthias
c05db6742c
Merge pull request #8351 from freqtrade/dependabot/pip/develop/ccxt-3.0.23
Bump ccxt from 2.9.12 to 3.0.23
2023-03-20 08:52:12 +01:00
Matthias
75f75f3881
Merge pull request #8358 from freqtrade/dependabot/pip/develop/ast-comments-1.0.1
Bump ast-comments from 1.0.0 to 1.0.1
2023-03-20 08:51:56 +01:00
dependabot[bot]
a4e4310d40
Bump pytest-asyncio from 0.20.3 to 0.21.0
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.20.3 to 0.21.0.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.20.3...v0.21.0)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 07:11:18 +00:00
Matthias
dfc3524334
Merge pull request #8355 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.1
Bump pypa/gh-action-pypi-publish from 1.7.1 to 1.8.1
2023-03-20 08:10:17 +01:00
Matthias
a0913588b8
Merge pull request #8353 from freqtrade/dependabot/pip/develop/pre-commit-3.2.0
Bump pre-commit from 3.1.1 to 3.2.0
2023-03-20 08:10:04 +01:00
Matthias
c56b344077
Merge pull request #8354 from freqtrade/dependabot/pip/develop/ruff-0.0.257
Bump ruff from 0.0.255 to 0.0.257
2023-03-20 08:09:08 +01:00
dependabot[bot]
cb1f971d4b
Bump ccxt from 2.9.12 to 3.0.23
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.9.12 to 3.0.23.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/2.9.12...3.0.23)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 06:39:13 +00:00
Matthias
78e64be04e
Merge pull request #8349 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.7
Bump sqlalchemy from 2.0.5.post1 to 2.0.7
2023-03-20 07:38:07 +01:00
dependabot[bot]
3175121030
Bump ast-comments from 1.0.0 to 1.0.1
Bumps [ast-comments](https://github.com/t3rn0/ast-comments) from 1.0.0 to 1.0.1.
- [Release notes](https://github.com/t3rn0/ast-comments/releases)
- [Commits](https://github.com/t3rn0/ast-comments/compare/1.0.0...1.0.1)

---
updated-dependencies:
- dependency-name: ast-comments
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 05:47:55 +00:00
dependabot[bot]
8d649988ca
Bump fastapi from 0.94.0 to 0.95.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.94.0 to 0.95.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.94.0...0.95.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 05:47:47 +00:00
Matthias
ec7e7e744b
Merge pull request #8352 from freqtrade/dependabot/pip/develop/uvicorn-0.21.1
Bump uvicorn from 0.21.0 to 0.21.1
2023-03-20 06:46:46 +01:00
Matthias
5c754eb4d3
Merge pull request #8350 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.3
Bump mkdocs-material from 9.1.2 to 9.1.3
2023-03-20 06:46:25 +01:00
Matthias
54d8aa7782 Test stoploss_adjust okx 2023-03-20 06:46:00 +01:00
Matthias
4690244673 Enable okx stop-price types 2023-03-20 06:40:57 +01:00
Matthias
2de5a59d89 Add test for dry-run fetching 2023-03-20 06:38:42 +01:00
Matthias
98685f1c98
Merge pull request #8348 from freqtrade/dependabot/pip/develop/python-rapidjson-1.10
Bump python-rapidjson from 1.9 to 1.10
2023-03-20 06:29:35 +01:00
Matthias
88e93b4902
Merge pull request #8346 from freqtrade/dependabot/pip/develop/nbconvert-7.2.10
Bump nbconvert from 7.2.9 to 7.2.10
2023-03-20 06:29:02 +01:00
Matthias
dcca51985d
sqlalchemy - pre-commit 2023-03-20 06:27:39 +01:00
Matthias
21f2f67ffa
Merge pull request #8347 from freqtrade/dependabot/pip/develop/filelock-3.10.0
Bump filelock from 3.9.0 to 3.10.0
2023-03-20 06:24:50 +01:00
dependabot[bot]
c78342b194
Bump pypa/gh-action-pypi-publish from 1.7.1 to 1.8.1
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.7.1 to 1.8.1.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.7.1...v1.8.1)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:58:15 +00:00
dependabot[bot]
29b9be9bd0
Bump ruff from 0.0.255 to 0.0.257
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.255 to 0.0.257.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.255...v0.0.257)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:57:47 +00:00
dependabot[bot]
4543a1fe02
Bump pre-commit from 3.1.1 to 3.2.0
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.1.1 to 3.2.0.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.1.1...v3.2.0)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:57:33 +00:00
dependabot[bot]
fc7c8cce3c
Bump uvicorn from 0.21.0 to 0.21.1
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.21.0 to 0.21.1.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.21.0...0.21.1)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:57:28 +00:00
dependabot[bot]
7d1559f319
Bump mkdocs-material from 9.1.2 to 9.1.3
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.2 to 9.1.3.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.2...9.1.3)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:57:13 +00:00
dependabot[bot]
a43502093d
Bump sqlalchemy from 2.0.5.post1 to 2.0.7
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.5.post1 to 2.0.7.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:57:07 +00:00
dependabot[bot]
47e84ad106
Bump python-rapidjson from 1.9 to 1.10
Bumps [python-rapidjson](https://github.com/python-rapidjson/python-rapidjson) from 1.9 to 1.10.
- [Release notes](https://github.com/python-rapidjson/python-rapidjson/releases)
- [Changelog](https://github.com/python-rapidjson/python-rapidjson/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-rapidjson/python-rapidjson/compare/v1.9...v1.10)

---
updated-dependencies:
- dependency-name: python-rapidjson
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:56:54 +00:00
dependabot[bot]
5ade5777e8
Bump filelock from 3.9.0 to 3.10.0
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.9.0 to 3.10.0.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.9.0...3.10.0)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:56:49 +00:00
dependabot[bot]
fb0e824a83
Bump nbconvert from 7.2.9 to 7.2.10
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.9 to 7.2.10.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.9...v7.2.10)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 03:56:45 +00:00
Matthias
a7c7f720c0 Add test for okx fetch_stop 2023-03-19 20:03:34 +01:00
Matthias
224f289ec8 OKX Stop: Add some more okx specific logic 2023-03-19 19:45:30 +01:00
Matthias
d84ece7258 Use conditional orders for stop orders 2023-03-19 19:44:35 +01:00
Matthias
6c5dc7e0a9 OKX: improve stop order handling 2023-03-19 19:44:35 +01:00
Matthias
df20757d21 OKX stop: implement proper stoploss fetching 2023-03-19 19:44:35 +01:00
Matthias
a2ce288241 Add okx stoploss on exchange (non-working for futures). 2023-03-19 19:44:35 +01:00
Matthias
ce3efa8f00 Remove pointless asserts 2023-03-19 18:05:08 +01:00
Matthias
c92f28bf6f ruff: Activate UP ruleset 2023-03-19 17:57:56 +01:00
Matthias
222ecdecd2 Improve code quality 2023-03-19 17:50:08 +01:00
Yinon Polak
1c11a5f048 improve mlp documentation 2023-03-19 18:10:57 +02:00
Yinon Polak
903a1dc3e5 improve mlp documentation 2023-03-19 18:04:01 +02:00
Yinon Polak
6f9a8a089c add mlp documentation 2023-03-19 17:45:30 +02:00
Yinon Polak
8bee499328 modify feedforward net, move layer norm to start of thr block 2023-03-19 17:03:36 +02:00
Matthias
236499a195 Reorder push logic for ghcr 2023-03-19 15:47:42 +01:00
Matthias
3d91dd8a98 Support post-only orders for Binance spot
closes #8044
2023-03-19 15:36:35 +01:00
Matthias
9ccc3e52ec Simplify time in force code structure 2023-03-19 15:30:27 +01:00
Matthias
f5f151fcc5 Fix typing error 2023-03-19 15:06:56 +01:00
Matthias
7aa56adf15
Merge pull request #7951 from hippocritical/strategy_utils
strategy_updater
2023-03-19 14:28:36 +01:00
Yinon Polak
719faab4b8 fix test 2023-03-19 15:21:34 +02:00
Yinon Polak
9f477aa3c9 sort imports 2023-03-19 15:09:50 +02:00
Yinon Polak
61ac36c576 fix test 2023-03-19 14:49:12 +02:00
Yinon Polak
366c148c10 create children class to PyTorchClassifier to implement the fit method where we initialize the trainer and model objects 2023-03-19 14:38:49 +02:00
Matthias
bf3f2e4de4 Fix failing test 2023-03-19 11:16:54 +01:00
hippocritical
763f4f4a3e
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-18 20:15:12 +01:00
hippocritical
4925d8f580 Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-03-18 20:07:34 +01:00
hippocritical
b1f88e8861 fixed typo from trades to trade 2023-03-18 20:02:55 +01:00
Yinon Polak
a49f62eecb classifier test - set model file extension 2023-03-18 20:51:30 +02:00
Matthias
62c8dd98d5 Use combination of thread-local and asyncio-aware session context 2023-03-18 19:28:22 +01:00
Matthias
b0a7b64d44 Close sessions after telegram calls 2023-03-18 19:28:22 +01:00
Matthias
d808dd49e8 Fix ruff violation 2023-03-18 19:28:13 +01:00
Matthias
818d2bf92a Fix stoploss on exchange value in /show_config call 2023-03-18 18:02:46 +01:00
Matthias
f98a12c26c
Merge pull request #8343 from freqtrade/freqai/add_pair
Add pair output to "tossed" messages
2023-03-18 18:02:36 +01:00
Matthias
477dc50425 Add pair output to "tossed" messages 2023-03-18 16:32:07 +00:00
Yinon Polak
fab9ff1294 fix tests 2023-03-18 15:27:38 +02:00
Yinon Polak
1c91b4427b Merge remote-tracking branch 'origin/feat/add-pytorch-model-support' into feat/add-pytorch-model-support 2023-03-18 14:14:38 +02:00
Yinon Polak
244662b1a4 set class names attribute in the general classifier testing strategy 2023-03-18 14:12:31 +02:00
Robert Caulk
186fe5933b
Merge pull request #8338 from freqtrade/freqai_exception
Fix exceptions when training fails
2023-03-18 12:56:25 +01:00
Matthias
8ab35bbaf3
Merge pull request #8340 from freqtrade/sqlalchemy2_queyr
remove Sqlalchemy .query usage
2023-03-18 08:10:56 +01:00
Matthias
9044052b4e Fix exceptions when training fails 2023-03-17 18:29:10 +01:00
hippocritical
209811d23a
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-17 08:48:52 +01:00
Matthias
764d5507a3 Fix typo in docker param 2023-03-17 07:05:13 +01:00
Matthias
628f6b8b7c Fix crane docker permissions 2023-03-17 07:05:13 +01:00
Matthias
0d3de07012 use Crane to move images around 2023-03-17 07:05:13 +01:00
Matthias
db0f449d93 Use docker manifest for GHCR builds 2023-03-17 07:05:13 +01:00
Matthias
774eacc561 Attempt push to ghcr.io 2023-03-17 07:05:13 +01:00
Matthias
e3e4fbd5ba Minor test fix 2023-03-16 19:24:37 +01:00
Matthias
b7709126f9 remove .query completely 2023-03-16 18:07:22 +01:00
Matthias
4cfbc55d34 Update remaining tests to get rid of .query 2023-03-16 18:07:06 +01:00
Robert Caulk
00054dcfde
Merge pull request #8307 from initrv/tensorboard-category
Improve tensorboard_log
2023-03-16 11:10:29 +01:00
Matthias
9d6e973e5b remove .query from most tests 2023-03-16 07:25:04 +01:00
Matthias
6ed337faa3 Update several tests to remove .query 2023-03-16 07:04:15 +01:00
Matthias
e579ff9532 Simplify pairlock querying 2023-03-16 06:48:12 +01:00
Matthias
ae361e1d5d Update more .query usages 2023-03-16 06:44:53 +01:00
Matthias
8865af9104 Remove .query from pairlock 2023-03-15 21:21:00 +01:00
Matthias
aa54b77702 Rename _session to sessoin 2023-03-15 21:12:06 +01:00
Matthias
8073989c98 Remove more usages of .query 2023-03-15 21:10:47 +01:00
Matthias
d45599ca3b Fix some type errors 2023-03-15 21:09:25 +01:00
Matthias
b469addffb remove usage of .query from regular models 2023-03-15 21:00:30 +01:00
Matthias
47ab285252 Minor test fix 2023-03-15 20:49:35 +01:00
Matthias
95ff59a21c Improve documentation for get_trades_proxy 2023-03-15 07:23:54 +01:00
Matthias
7e08e3a59a Update example to use get_trades_proxy 2023-03-15 07:22:07 +01:00
robcaulk
4550447409 cheat flake8 for now until we can refactor save into the model class 2023-03-14 21:13:30 +01:00
Matthias
8f29312c9e Minimum re-entry stake should not include stoploss 2023-03-14 08:14:01 +01:00
Matthias
5c280d5649 Improve emergency_exit handling 2023-03-13 20:28:13 +01:00
Matthias
b23cea6e59 Bump ruff to 0.0.255 2023-03-13 20:16:12 +01:00
Matthias
487469680f Use correct exception type for ccxt.InvalidOrder 2023-03-13 20:13:12 +01:00
Matthias
8fd13933c3 Improve variable naming 2023-03-13 19:51:03 +01:00
Matthias
cf70deaf8d Disallow negative liquidation prices
part of #8300
2023-03-13 19:41:39 +01:00
Matthias
3d31eca365 Update Exception to contain more info
part of #8300
2023-03-13 19:40:52 +01:00
Matthias
d723979c42 Move total_trades to explicit variable 2023-03-13 19:21:53 +01:00
Yinon Polak
366740885a reduce mlp number of parameters for testing 2023-03-13 20:18:26 +02:00
Yinon Polak
918889a2bd reduce mlp number of parameters for testing 2023-03-13 20:09:12 +02:00
Matthias
1947fab3d7
Merge pull request #8315 from freqtrade/dependabot/pip/develop/uvicorn-0.21.0
Bump uvicorn from 0.20.0 to 0.21.0
2023-03-13 18:11:13 +01:00
Matthias
cdb97e64ab
Merge pull request #8323 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.7.1
Bump pypa/gh-action-pypi-publish from 1.6.4 to 1.7.1
2023-03-13 18:10:04 +01:00
Matthias
daa59f6248
Merge pull request #8322 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.2
Bump mkdocs-material from 9.1.1 to 9.1.2
2023-03-13 18:08:08 +01:00
Yinon Polak
9c8c30b0e8 add test 2023-03-13 17:17:00 +02:00
initrv
f3a1177bad bring inc back 2023-03-13 17:53:35 +03:00
dependabot[bot]
ad5afd3047
Bump uvicorn from 0.20.0 to 0.21.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.20.0 to 0.21.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.20.0...0.21.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 08:08:57 +00:00
Matthias
458bfcc89b
Merge pull request #8324 from freqtrade/dependabot/pip/develop/urllib3-1.26.15
Bump urllib3 from 1.26.14 to 1.26.15
2023-03-13 09:02:17 +01:00
Matthias
d4122c36ac
Merge pull request #8317 from freqtrade/dependabot/pip/develop/fastapi-0.94.0
Bump fastapi from 0.92.0 to 0.94.0
2023-03-13 09:01:59 +01:00
Matthias
0e663a5bf8 Refresh binance cached leverage tiers 2023-03-13 07:06:59 +01:00
Matthias
562efd1841
Merge pull request #8320 from freqtrade/dependabot/pip/develop/pytest-7.2.2
Bump pytest from 7.2.1 to 7.2.2
2023-03-13 06:59:00 +01:00
Matthias
7baa2b9005
Merge pull request #8321 from freqtrade/dependabot/pip/develop/mypy-1.1.1
Bump mypy from 1.0.1 to 1.1.1
2023-03-13 06:58:32 +01:00
dependabot[bot]
10c5adfa50
Bump fastapi from 0.92.0 to 0.94.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.92.0 to 0.94.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.92.0...0.94.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 05:37:55 +00:00
Matthias
44c4729a9d
Merge pull request #8319 from freqtrade/dependabot/pip/develop/pydantic-1.10.6
Bump pydantic from 1.10.5 to 1.10.6
2023-03-13 06:28:28 +01:00
dependabot[bot]
dc6af9a1a7
Bump urllib3 from 1.26.14 to 1.26.15
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.14 to 1.26.15.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.14...1.26.15)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:54 +00:00
dependabot[bot]
82707be7d0
Bump pypa/gh-action-pypi-publish from 1.6.4 to 1.7.1
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.6.4 to 1.7.1.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.6.4...v1.7.1)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:48 +00:00
dependabot[bot]
b800f27092
Bump mkdocs-material from 9.1.1 to 9.1.2
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.1 to 9.1.2.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.1...9.1.2)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:46 +00:00
dependabot[bot]
31daf72cc6
Bump mypy from 1.0.1 to 1.1.1
Bumps [mypy](https://github.com/python/mypy) from 1.0.1 to 1.1.1.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v1.0.1...v1.1.1)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:40 +00:00
dependabot[bot]
22ebf04daa
Bump pytest from 7.2.1 to 7.2.2
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.2.1 to 7.2.2.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.2.1...7.2.2)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:29 +00:00
dependabot[bot]
52a091e063
Bump pydantic from 1.10.5 to 1.10.6
Bumps [pydantic](https://github.com/pydantic/pydantic) from 1.10.5 to 1.10.6.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/v1.10.6/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v1.10.5...v1.10.6)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-13 03:57:23 +00:00
Yinon Polak
d7ea750823 revert to using model_training_parameters 2023-03-13 00:35:51 +02:00
Yinon Polak
b6096efadd logging change 2023-03-13 00:35:14 +02:00
Yinon Polak
b927c9dc01 remove train loss calculation from estimate_loss 2023-03-13 00:17:34 +02:00
Yinon Polak
523a58d3d6 simplify statement for pytorch file_type extension 2023-03-13 00:16:44 +02:00
Matthias
fbca8e6587 Allow empty pairlock reasons through api
closes #8312
2023-03-12 21:31:08 +01:00
initrv
a10f78e3ef fix increment in case of 0 2023-03-12 23:29:27 +03:00
hippocritical
8987e5f108
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-12 20:14:40 +01:00
Matthias
f584edf809 Improve tests by simply running a full strategy through everything 2023-03-12 16:45:56 +01:00
Matthias
f5848ea891 Add test for successful_buys 2023-03-12 16:29:18 +01:00
Matthias
b5c4f9ebe2 Split updater_tests to be clearer 2023-03-12 16:27:54 +01:00
Matthias
0911cd72a2 Add test for strategy-updater start method 2023-03-12 15:59:14 +01:00
Matthias
d2a412d2c6 Simplify start_strategy_update 2023-03-12 15:47:03 +01:00
Matthias
cb086f79ff Improve doc wording and command parameters 2023-03-12 15:46:44 +01:00
Matthias
d9bff68501
Merge pull request #8311 from froggleston/develop
Fix None limit on pair_candles RPC call
2023-03-12 15:25:30 +01:00
Matthias
5bfee44bba Whitespace fix 2023-03-12 15:24:27 +01:00
Yinon Polak
0012fe36ca sort imports 2023-03-12 16:16:04 +02:00
hippocritical
d186f8f1e1
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-12 14:40:02 +01:00
Yinon Polak
cb17b36981 simplify file_type check comparisons 2023-03-12 14:50:08 +02:00
froggleston
aa283a0447 Fix None limit on pair_candles RPC call 2023-03-12 12:44:12 +00:00
Yinon Polak
f9fdf1c31b generalize mlp model 2023-03-12 14:31:08 +02:00
Yinon Polak
1cf0e7be24 use one iteration on all test and train data for evaluation 2023-03-12 12:48:15 +02:00
initrv
82cb107520 add tensorboard category 2023-03-12 01:32:55 +03:00
Matthias
b23841fbfe Bump ccxt to 2.9.12 2023-03-11 17:35:30 +01:00
Matthias
8726a4645d Don't use deprecated Type construct 2023-03-11 15:15:32 +01:00
Matthias
59d2ff3ffa Simplify handle_cancel_exit 2023-03-11 15:15:10 +01:00
Matthias
39c651e40c Remove pointless reset of close_profit 2023-03-11 15:15:02 +01:00
Matthias
a2336f256b Add profit descriptions
closes #8234
2023-03-11 08:25:45 +01:00
Matthias
a76ca771f8 telegram: Fix sending telegram message with exception 2023-03-10 18:09:05 +01:00
hippocritical
f722823b0d Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-03-10 09:24:08 +01:00
hippocritical
a3988f56b2 Sorry matthias, did not see that you already committed something and did overwrite you.
Added your version to it instead of mine and pushed again (since it was already overwritten by me).
2023-03-10 09:23:56 +01:00
hippocritical
5a467eb969
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-10 09:18:44 +01:00
hippocritical
5f8202e1b5 Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils
# Conflicts:
#	freqtrade/commands/strategy_utils_commands.py
#	tests/test_strategy_updater.py
2023-03-10 09:00:00 +01:00
hippocritical
bfc7f48f17 added checks for python3.8 or lower since ast_comments.unparse() needs python 3.9 or higher.
testing with python 3.8 would make the build fail tests, skipping it there.
2023-03-10 08:59:07 +01:00
Matthias
5b2a291109
Merge pull request #8273 from freqtrade/stop_from_open_lev
Stop from open lev
2023-03-09 19:44:16 +01:00
Matthias
d3a3ddbc61 Check if exchang provides bid/ask via fetch_tickers - and fail with spread filter if it doesn't.
closes #8286
2023-03-09 19:42:43 +01:00
Yinon Polak
8a9f2aedbb improve documentation 2023-03-09 14:55:52 +02:00
Yinon Polak
e88a0d5248 convert single quotes to double quotes 2023-03-09 13:29:11 +02:00
Yinon Polak
2ef11faba7 reformat documentation 2023-03-09 13:25:20 +02:00
Yinon Polak
c9eee2944b reformat documentation 2023-03-09 13:01:04 +02:00
Yinon Polak
6f962362f2 expand pytorch trainer documentation 2023-03-09 12:45:46 +02:00
Yinon Polak
ba5de0cd00 add documentation 2023-03-09 11:21:10 +02:00
Yinon Polak
3081b9402b add documentation 2023-03-09 11:14:54 +02:00
Matthias
30fd1e742e Add 3.8 block for strategyUpdater 2023-03-09 07:46:58 +00:00
Matthias
4d8e3c25bd Merge branch 'develop' into strategy_utils 2023-03-09 07:12:48 +00:00
ASU
1132fa6093 feat: Added price_rounding modes in config 2023-03-09 02:11:31 +02:00
Matthias
29dfb5c169
Merge pull request #8291 from freqtrade/allow-ohlc-removal
allow user to drop ohlc from features in RL
2023-03-08 21:04:34 +01:00
robcaulk
d10ee0979a ensure training_features_list is updated properly 2023-03-08 19:37:11 +01:00
Matthias
0318486bee Update stoploss_from_open documentation for leverage adjustment 2023-03-08 19:35:26 +01:00
Robert Caulk
85e345fc48
Update BaseReinforcementLearningModel.py 2023-03-08 19:29:39 +01:00
Yinon Polak
1597c3aa89 set class names in IStrategy.set_freqai_targets method, also save class name with model meta data 2023-03-08 18:36:44 +02:00
Yinon Polak
7d26df01b8 fix tensor type hint 2023-03-08 16:17:19 +02:00
Yinon Polak
c8296ccb2d sort imports 2023-03-08 16:13:35 +02:00
Yinon Polak
8d60327d60 add missing import 2023-03-08 16:12:47 +02:00
Yinon Polak
04564dc134 add missing import 2023-03-08 16:11:51 +02:00
Yinon Polak
6161b858c4 sort imports 2023-03-08 16:10:25 +02:00
Yinon Polak
1921a07b89 sort imports 2023-03-08 16:08:04 +02:00
Yinon Polak
b65ade51be revert config_freqai_example changes 2023-03-08 16:05:02 +02:00
Yinon Polak
dfbb2e2b35 sort imports 2023-03-08 16:03:36 +02:00
Yinon Polak
1805db2b07 change documentation and small bugfix 2023-03-08 15:38:22 +02:00
Yinon Polak
76fbec0c17 ad multiclass target names encoder to ints 2023-03-08 14:29:38 +02:00
robcaulk
29d337fa02 ensure ohlc is dropped from both train and predict 2023-03-08 11:26:28 +01:00
Matthias
2c7ae756f5 Improve mock behavior 2023-03-08 07:05:59 +01:00
robcaulk
d9dc831772 allow user to drop ohlc from features in RL 2023-03-07 11:33:54 +01:00
Yinon Polak
4241bff32a type hints fixes 2023-03-06 20:15:36 +02:00
Yinon Polak
5dd60eda36 type hints fixes 2023-03-06 19:37:08 +02:00
Yinon Polak
8acdd0b47c type hints fixes 2023-03-06 19:14:54 +02:00
Yinon Polak
125085fbaf add freqai.model_exists pytorch file type support 2023-03-06 18:10:49 +02:00
Yinon Polak
7eedcb9c14 reformat code 2023-03-06 17:56:07 +02:00
Yinon Polak
e6e747bcd8 reformat code 2023-03-06 17:50:02 +02:00
Yinon Polak
348a08f1c4 add todo - currently assuming class labels are strings ['0.0', '1.0' .. n_classes]. need to resolve it per ClassifierModel 2023-03-06 16:41:47 +02:00
Yinon Polak
b1ac2bf515 use data loader, add evaluation on epoch 2023-03-06 16:16:45 +02:00
Matthias
b710bdaf6c
Merge pull request #8284 from freqtrade/dependabot/pip/develop/ccxt-2.9.4
Bump ccxt from 2.8.98 to 2.9.4
2023-03-06 10:49:10 +01:00
Matthias
27fa297209
Merge pull request #8282 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.10
Bump types-python-dateutil from 2.8.19.9 to 2.8.19.10
2023-03-06 09:13:42 +01:00
dependabot[bot]
85e64cd121
Bump ccxt from 2.8.98 to 2.9.4
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.8.98 to 2.9.4.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/2.8.98...2.9.4)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 07:21:23 +00:00
Matthias
0d876d7a89
Merge branch 'develop' into dependabot/pip/develop/types-python-dateutil-2.8.19.10 2023-03-06 08:20:59 +01:00
Matthias
69e5377f3d
Merge pull request #8280 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.5.post1
Bump sqlalchemy from 2.0.4 to 2.0.5.post1
2023-03-06 08:20:17 +01:00
Matthias
532ecaf2c8
Merge pull request #8276 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.10
Bump pymdown-extensions from 9.9.2 to 9.10
2023-03-06 08:07:20 +01:00
Matthias
d779d60812 Expose total_profit_ratio through API 2023-03-06 07:10:02 +01:00
Matthias
c4a80e33ea Fix missing newline in telegram /status 2023-03-06 07:01:25 +01:00
Matthias
cab1b750b3 Improve test accuracy 2023-03-06 06:39:05 +01:00
Matthias
9d285e3dc0 Add total_profit_ratio to telegram output
part of #8234
2023-03-06 06:39:05 +01:00
Matthias
fff08f737f /status msg - improve formatting further 2023-03-06 06:39:05 +01:00
Matthias
ca789b3282 /status - whitespace 2023-03-06 06:39:05 +01:00
Matthias
11eea9b4e1 Fix formatting for /status Realized profit 2023-03-06 06:39:05 +01:00
Matthias
de015a2d7e Improve telegram message formatting 2023-03-06 06:39:05 +01:00
Matthias
4cfc7e4427
Merge pull request #8275 from freqtrade/dependabot/pip/develop/ruff-0.0.254
Bump ruff from 0.0.253 to 0.0.254
2023-03-06 06:38:57 +01:00
Matthias
0a525c6d32
Merge pull request #8274 from freqtrade/dependabot/pip/develop/orjson-3.8.7
Bump orjson from 3.8.6 to 3.8.7
2023-03-06 06:37:43 +01:00
Matthias
ae8c426025
Merge pull request #8278 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.38
Bump prompt-toolkit from 3.0.37 to 3.0.38
2023-03-06 06:37:21 +01:00
dependabot[bot]
0fe72510d5
Bump pymdown-extensions from 9.9.2 to 9.10
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.9.2 to 9.10.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.9.2...9.10)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 05:36:16 +00:00
Matthias
fecb9db072
Merge pull request #8277 from freqtrade/dependabot/pip/develop/cryptography-39.0.2
Bump cryptography from 39.0.1 to 39.0.2
2023-03-06 06:36:16 +01:00
Matthias
30ac648539
Merge pull request #8279 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.1
Bump mkdocs-material from 9.0.15 to 9.1.1
2023-03-06 06:35:31 +01:00
Matthias
25fd4a04d6 Update sqlalchemy QueryPropertyDescriptor to match latest version 2023-03-06 06:34:37 +01:00
Matthias
9750e9ca4e
pre-commit python-dateutil 2023-03-06 06:32:33 +01:00
dependabot[bot]
a57b033745
Bump types-python-dateutil from 2.8.19.9 to 2.8.19.10
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.9 to 2.8.19.10.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:57:27 +00:00
dependabot[bot]
48e16f6aba
Bump sqlalchemy from 2.0.4 to 2.0.5.post1
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.4 to 2.0.5.post1.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:57:18 +00:00
dependabot[bot]
d1d9e25c2e
Bump mkdocs-material from 9.0.15 to 9.1.1
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.15 to 9.1.1.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.15...9.1.1)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:57:03 +00:00
dependabot[bot]
57969f8b01
Bump prompt-toolkit from 3.0.37 to 3.0.38
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.37 to 3.0.38.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.37...3.0.38)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:56:58 +00:00
dependabot[bot]
8484427cf8
Bump cryptography from 39.0.1 to 39.0.2
Bumps [cryptography](https://github.com/pyca/cryptography) from 39.0.1 to 39.0.2.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/39.0.1...39.0.2)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:56:54 +00:00
dependabot[bot]
f4c17be8de
Bump ruff from 0.0.253 to 0.0.254
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.253 to 0.0.254.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.253...v0.0.254)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:56:44 +00:00
dependabot[bot]
0bdd238d7f
Bump orjson from 3.8.6 to 3.8.7
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.6 to 3.8.7.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.6...3.8.7)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-06 03:56:37 +00:00
hippocritical
1bb697e58c Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-03-05 18:48:54 +01:00
hippocritical
b072fae507 added strategy-updater compartment inside utils.md 2023-03-05 18:48:32 +01:00
hippocritical
9fa6bfa655
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-05 16:25:17 +01:00
hippocritical
da44b39423 Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-03-05 16:20:46 +01:00
hippocritical
d0d6f53dec fixed github formatting errors 2023-03-05 16:19:26 +01:00
Yinon Polak
751b205618 initial commit 2023-03-05 16:59:24 +02:00
Matthias
d80760d20c bump ccxt to 2.8.98 2023-03-05 14:16:53 +01:00
hippocritical
5dd919b7ad
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-05 12:30:26 +01:00
Matthias
108a578772 Update tests to latest rpc changes 2023-03-04 20:17:19 +01:00
Matthias
9444bbb6f3 /maxentries should be in single tics. 2023-03-04 20:09:39 +01:00
Matthias
7c0c98a368 Properly format first entry value, too. 2023-03-04 20:08:20 +01:00
Matthias
c1d395a7d8 Revert "Bump ccxt to 2.8.88"
This reverts commit 51c15d894b.
2023-03-04 20:02:20 +01:00
Matthias
3f6795962f Update bybit orderbook test 2023-03-04 19:49:59 +01:00
Matthias
60e651b481 Updat bybit ohlcv data to v5 2023-03-04 19:49:37 +01:00
Matthias
548db18857 Improve wording on partial exit notifications 2023-03-04 19:27:55 +01:00
Matthias
aec11618ce Telegram improved formatting 2023-03-04 18:28:15 +01:00
Matthias
f0cbb4f949 Expose relative realized profit 2023-03-04 18:20:31 +01:00
Matthias
027e023443 Stop from open with leverage 2023-03-04 18:02:47 +01:00
Matthias
51c15d894b Bump ccxt to 2.8.88
closes #8270
2023-03-04 15:27:01 +01:00
Andy Lawless
b262f0b374 Update docs re: bot_loop_start in backtest 2023-03-03 20:46:43 +00:00
Andy Lawless
a3dee9350f Move bot_loop_start call to run on every candle 2023-03-03 20:37:05 +00:00
Matthias
d0045673fa Add explicit test for stoploss_from_open 2023-03-03 20:32:33 +01:00
hippocritical
d92971cca1
Merge branch 'freqtrade:develop' into strategy_utils 2023-03-03 18:56:00 +01:00
hippocritical
87b7513401 fixed --strategy-list
moved ast comments to requirements.txt >=1.0.0 (since that is the first version that adds the comments unparsing)
2023-03-03 18:53:09 +01:00
Matthias
c03c3a5706 improve order REPR display 2023-03-03 18:12:41 +01:00
Matthias
9573974c47 Update deprecations document 2023-03-03 06:36:35 +01:00
Matthias
6e9ff5fdd8
Merge pull request #8202 from freqtrade/remove-populate-any-indicators
remove populate_any_indicators
2023-03-03 06:33:25 +01:00
Matthias
022f85095e Show Number of exits
part of #8234
2023-03-03 06:31:40 +01:00
Matthias
6a0848a3a9
Merge pull request #8267 from freqtrade/python_3.11
Python 3.11
2023-03-03 06:31:33 +01:00
Matthias
13376fdad8
Merge pull request #8220 from eSAMTrade/remove-redundant-dependencies
removed redundant dependencies from environment.yml
2023-03-03 06:25:22 +01:00
Matthias
5b0c143713 Update some comments about 3.11 2023-03-02 19:39:31 +01:00
Matthias
5d0e14b564 Don't mock full modules 2023-03-02 18:23:49 +01:00
Matthias
38050b5346 Simplify "model-run" conditions 2023-03-02 18:23:49 +01:00
Matthias
b1a5776f14 Skip reinforcement learning for python 3.11 2023-03-02 18:23:49 +01:00
Matthias
7a7f16b658 Skip catboost tests on py3.11 2023-03-02 18:23:49 +01:00
Matthias
684d310ea0 Limit catboost to python <3.11 2023-03-02 18:23:49 +01:00
Matthias
49bfa556bf Update CI to test against python 3.11 2023-03-02 18:23:49 +01:00
Matthias
e228733f1a
Merge pull request #8264 from xmatthias/sqlalchemy_2
Sqlalchemy 2
2023-03-02 18:23:01 +01:00
Matthias
103bd9e2f2 keep Trade.session private 2023-03-02 07:26:50 +01:00
Matthias
ba38a826e9 Update missing mocks 2023-03-02 06:46:17 +01:00
Matthias
8103656ae1 Bump mypy in pre-commit 2023-03-02 06:36:03 +01:00
Matthias
b980f45b2b Fix test mypy errors 2023-03-02 06:23:01 +01:00
Matthias
b4b8dde4fb Add sqlalchemy to pre-commit dependencies 2023-03-01 20:41:49 +01:00
Matthias
59d57d3466 Improve test resiliance 2023-03-01 20:32:56 +01:00
Matthias
f0f72fdd33 Don't define "mapped" on LocalTrade class 2023-03-01 20:32:32 +01:00
Matthias
388dfec50b Remove last type error 2023-03-01 20:32:32 +01:00
Matthias
874413ccc5 Fix some style violations 2023-03-01 20:32:32 +01:00
Matthias
4a35d32b6a Improve trade stop types 2023-03-01 20:32:32 +01:00
Matthias
a1166b1077 allow null fee on calc_base_close 2023-03-01 20:32:32 +01:00
Matthias
e5c9cde36f Update trades_proxy typing 2023-03-01 20:32:32 +01:00
Matthias
b5f55c9b14 Improve type safety in backtesting 2023-03-01 20:32:32 +01:00
Matthias
7c09c01788 Add some more typehints 2023-03-01 20:32:32 +01:00
Matthias
0f914cf2bd Use Mapped for LocalTrade
this won't initialize sqlalchemy, as the base class is not inheriting from sqlalchemy.
2023-03-01 20:32:32 +01:00
Matthias
d175ab495b Move SessionType to base module 2023-03-01 20:32:32 +01:00
Matthias
f2f4158974 Bump sqlalchemy to 2.0.4 2023-03-01 20:32:32 +01:00
Matthias
764001a4c2 Don't reuse variable 2023-03-01 20:32:32 +01:00
Matthias
b65cff0adc Update "Query" type 2023-03-01 20:32:32 +01:00
Matthias
db4f4498dc Experimentally type query property ... 2023-03-01 20:32:32 +01:00
Matthias
c2c039151c Improve typesafety around trade object 2023-03-01 20:32:32 +01:00
Matthias
8765e3a4d6 Fix some Type issues 2023-03-01 20:32:32 +01:00
Matthias
f6b3998bbd Fix backtesting type incompatibilities 2023-03-01 20:32:32 +01:00
Matthias
0691bbaad9 Update some db types 2023-03-01 20:32:32 +01:00
Matthias
101d9ab87f Improvements - tests runnable again 2023-03-01 20:32:32 +01:00
Matthias
65a5cf64df Re-type session 2023-03-01 20:32:32 +01:00
Matthias
608a7c2d38 Add safe_close_rate 2023-03-01 20:32:31 +01:00
Matthias
e59eaf33e0 Update _session to session 2023-03-01 20:32:31 +01:00
Matthias
47b66f3220 More fun with types 2023-03-01 20:32:31 +01:00
Matthias
491f49388c "Mapped" for trade_model 2023-03-01 20:32:31 +01:00
Matthias
bb116456a9 Update Types for Order object 2023-03-01 20:32:31 +01:00
Matthias
13b1a3e737 Properly pairlock columns using mapped 2023-03-01 20:32:31 +01:00
Matthias
98791752a9 Update TradeModels to mapped_column 2023-03-01 20:32:31 +01:00
Matthias
0bd9b00132 Pairlock to mappedColumn 2023-03-01 20:32:31 +01:00
Matthias
39a658eac2 Update DeclarativeBase 2023-03-01 20:32:31 +01:00
Matthias
3c019e0e16 tentative augmented typing of Trade object 2023-03-01 20:32:31 +01:00
Matthias
41e27ba621 Enhance some type info 2023-03-01 20:32:31 +01:00
Matthias
3a9d83f86c Mypy: define sqlalchemy plugin 2023-03-01 20:32:31 +01:00
Matthias
9d455f58b1 Improve some trade model Types 2023-03-01 20:32:31 +01:00
Matthias
829e10ff87 Improve Type for models.py 2023-03-01 20:32:31 +01:00
Matthias
b62830031f Dummy-type query objects 2023-03-01 20:32:31 +01:00
Matthias
a553a9923a Update types for pairlock 2023-03-01 20:32:31 +01:00
dependabot[bot]
a629d455fb Bump sqlalchemy from 1.4.46 to 2.0.3
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.46 to 2.0.3.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-01 20:32:31 +01:00
Matthias
feabed30a3 Update remaining exchange mock occurances 2023-03-01 20:27:15 +01:00
Matthias
2ca8b0b12e Update more exchange mocks to use EXMS 2023-03-01 20:27:15 +01:00
Matthias
bcdf4e0fe8 Use variable for exchange mocks to shorten lines 2023-03-01 20:27:15 +01:00
Matthias
78e5ec13bb Use absolute path for generic mocks 2023-03-01 20:27:15 +01:00
Matthias
8b51f5f563 Lowercase exchange ID 2023-03-01 20:27:15 +01:00
Matthias
756c284ecd
Merge pull request #8225 from freqtrade/ruff2
Ruff - add PTH rule and subsequent changes
2023-03-01 20:27:06 +01:00
Matthias
d1b2e38ae9 if a stoploss order exists, always allow canceling that 2023-02-28 20:39:17 +01:00
Matthias
dd10dec73d Improve variable wording 2023-02-28 20:31:02 +01:00
Matthias
f822f1795a Reduce /status verbosity 2023-02-28 19:54:56 +01:00
Matthias
386915378b Improve /status message (show Total profit) 2023-02-28 19:54:47 +01:00
Matthias
2f1c5cf143 Remove pointless pylint rules 2023-02-28 18:22:17 +01:00
Matthias
3706d28125 use pytest.approx in favor of "prec_satoshi" ... 2023-02-28 18:20:37 +01:00
Matthias
0707e70183 Remove deprecated current_profit from api responses 2023-02-28 18:20:37 +01:00
Matthias
bebee15d10 Improve TradeSchema readability 2023-02-28 18:20:36 +01:00
Matthias
5660036f47
Merge pull request #8245 from eSAMTrade/bugfix-8244
Fix last_process related bug in RPC.health (BUG-#8231)
2023-02-28 18:18:53 +01:00
Matthias
262f03bc92 Add backtest warning for market_direction feature 2023-02-28 17:26:38 +01:00
Matthias
244fd0e731
Merge pull request #8184 from LangLazy/feature
Feature market direction
2023-02-28 17:22:31 +01:00
Matthias
fe6af0ef5d
Merge pull request #8258 from freqtrade/dependabot/pip/develop/xgboost-1.7.4
Bump xgboost from 1.7.3 to 1.7.4
2023-02-28 12:06:17 +01:00
Matthias
fd63f50221
Merge pull request #8257 from freqtrade/dependabot/pip/develop/ccxt-2.8.54
Bump ccxt from 2.8.17 to 2.8.54
2023-02-28 12:05:42 +01:00
Matthias
5c13fbb0b8
Merge pull request #8256 from freqtrade/dependabot/pip/develop/types-cachetools-5.3.0.4
Bump types-cachetools from 5.3.0.0 to 5.3.0.4
2023-02-28 12:02:39 +01:00
Matthias
9a5b090894
pre-commit cachetools 2023-02-28 11:23:11 +01:00
dependabot[bot]
5a3f23f00c
Bump types-cachetools from 5.3.0.0 to 5.3.0.4
Bumps [types-cachetools](https://github.com/python/typeshed) from 5.3.0.0 to 5.3.0.4.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 09:26:32 +00:00
Matthias
8b347dfdcf
Merge pull request #8259 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.9
Bump types-python-dateutil from 2.8.19.8 to 2.8.19.9
2023-02-28 10:25:35 +01:00
Matthias
deca5479f0
pre-commit dateutil-types 2023-02-28 10:05:38 +01:00
Matthias
2ea71d466c
Merge pull request #8255 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.37
Bump prompt-toolkit from 3.0.36 to 3.0.37
2023-02-28 09:53:24 +01:00
Matthias
200f5ac157
Merge pull request #8252 from freqtrade/dependabot/pip/develop/ruff-0.0.253
Bump ruff from 0.0.252 to 0.0.253
2023-02-28 09:53:06 +01:00
Matthias
9e77effacb
Merge pull request #8253 from freqtrade/dependabot/pip/develop/pre-commit-3.1.1
Bump pre-commit from 3.1.0 to 3.1.1
2023-02-28 09:52:35 +01:00
Matthias
f5f883202d
Merge pull request #8254 from freqtrade/dependabot/pip/develop/plotly-5.13.1
Bump plotly from 5.13.0 to 5.13.1
2023-02-28 09:52:02 +01:00
dependabot[bot]
594757d27d
Bump types-python-dateutil from 2.8.19.8 to 2.8.19.9
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.8 to 2.8.19.9.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:58 +00:00
dependabot[bot]
fed5d87cfd
Bump xgboost from 1.7.3 to 1.7.4
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.3 to 1.7.4.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.3...v1.7.4)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:55 +00:00
dependabot[bot]
adf5b7f233
Bump ccxt from 2.8.17 to 2.8.54
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.8.17 to 2.8.54.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/2.8.17...2.8.54)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:48 +00:00
dependabot[bot]
1b4c831469
Bump prompt-toolkit from 3.0.36 to 3.0.37
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.36 to 3.0.37.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.36...3.0.37)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:40 +00:00
dependabot[bot]
78e7ab92d8
Bump plotly from 5.13.0 to 5.13.1
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.13.0 to 5.13.1.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.13.0...v5.13.1)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:35 +00:00
dependabot[bot]
6e45e998ac
Bump pre-commit from 3.1.0 to 3.1.1
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.1.0 to 3.1.1.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.1.0...v3.1.1)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:29 +00:00
dependabot[bot]
a75e9f193f
Bump ruff from 0.0.252 to 0.0.253
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.252 to 0.0.253.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.252...v0.0.253)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-28 05:52:21 +00:00
Matthias
0899e5cb83 Improve documentation wording 2023-02-28 06:41:18 +01:00
Rahul
39331b59ed Fixed issues raised in PR 2023-02-27 22:51:22 +00:00
Matthias
65d1598a90 Show absolute profit in /status command 2023-02-27 21:17:02 +01:00
Matthias
46b987042b Include realized_profit in api output 2023-02-27 20:47:07 +01:00
Matthias
75d1dd2793 Properly round Stake currencies in telegram message 2023-02-27 20:47:07 +01:00
Matthias
e5c68661fe Simplify code line wrapping 2023-02-27 19:57:28 +01:00
Matthias
e482feed7d Further improve behavior for telegram /status with stop on exchange 2023-02-27 19:40:02 +01:00
Matthias
87fe4108a2 Fix order numeration to also work with stoploss on exchange 2023-02-27 18:24:19 +01:00
Matthias
02c831a4e7 Improve Note wording
closes #8235
2023-02-27 18:04:21 +01:00
ASU
bcd416c83d Removed unresolved FreqTrade typehint 2023-02-27 16:18:24 +02:00
ASU
1d5608d627 Fix last_process related bug in RPC.health 2023-02-27 12:14:38 +02:00
Matthias
79a14bcbe7
Merge pull request #8237 from freqtrade/dependabot/pip/develop/types-tabulate-0.9.0.1
Bump types-tabulate from 0.9.0.0 to 0.9.0.1
2023-02-27 10:44:54 +01:00
Matthias
81bc515e5d
Bump tabulate types for pre-commit 2023-02-27 10:00:41 +01:00
dependabot[bot]
201522f1b1
Bump types-tabulate from 0.9.0.0 to 0.9.0.1
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.9.0.0 to 0.9.0.1.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 07:10:51 +00:00
Matthias
44b1005077
Merge pull request #8240 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.15
Bump types-requests from 2.28.11.13 to 2.28.11.15
2023-02-27 08:02:57 +01:00
Matthias
48b21d00d2
bump pre-commit requests 2023-02-27 07:12:12 +01:00
dependabot[bot]
e83eefb71d
Bump types-requests from 2.28.11.13 to 2.28.11.15
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.13 to 2.28.11.15.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 06:10:08 +00:00
Matthias
345a47ede7
Merge pull request #8238 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.8
Bump types-python-dateutil from 2.8.19.6 to 2.8.19.8
2023-02-27 07:06:51 +01:00
Matthias
03d41bdf46
Merge pull request #8243 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.15
Bump mkdocs-material from 9.0.13 to 9.0.15
2023-02-27 06:32:31 +01:00
Matthias
05f3884722
bump pre-commit dateutil 2023-02-27 06:25:13 +01:00
Matthias
aaa0f49f31
Merge pull request #8241 from freqtrade/dependabot/pip/develop/ruff-0.0.252
Bump ruff from 0.0.251 to 0.0.252
2023-02-27 06:24:24 +01:00
dependabot[bot]
a4423778d5
Bump mkdocs-material from 9.0.13 to 9.0.15
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.13 to 9.0.15.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.13...9.0.15)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 03:58:01 +00:00
dependabot[bot]
2a7f86bfb4
Bump ruff from 0.0.251 to 0.0.252
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.251 to 0.0.252.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.251...v0.0.252)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 03:57:22 +00:00
dependabot[bot]
cc78054b8c
Bump types-python-dateutil from 2.8.19.6 to 2.8.19.8
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.6 to 2.8.19.8.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 03:56:57 +00:00
ASU
7e7ae144a9 Merge branch 'develop' into remove-redundant-dependencies 2023-02-26 04:29:30 +02:00
Matthias
84d905a648 Fix missed test 2023-02-25 17:39:18 +01:00
ASU
32ce819889 Removed environment.yml and updated documentation 2023-02-25 18:23:07 +02:00
Matthias
26315b6bc2 add PTH ruff selection 2023-02-25 17:17:05 +01:00
Matthias
d014e4590e use Path.open() instead of open 2023-02-25 17:15:54 +01:00
ASU
7bcae7b665 removed redundant dependencies from environment.yml 2023-02-25 00:26:20 +02:00
robcaulk
fd4e27d889 remove populate_any_indicators 2023-02-21 14:22:40 +01:00
Rahul Gudise
2261cbd92e fixed command regex and updated documentation 2023-02-20 16:22:17 -05:00
Rahul Gudise
3033e27466 Added documentation for new telegram command 2023-02-20 15:53:29 -05:00
Rahul
8927a92eaf fixed lint issue 2023-02-19 16:11:21 +00:00
Rahul
5fb539190d addressed some issues mentioned in PR 2023-02-18 23:50:02 +00:00
Rahul Gudise
ade64f25d3 fixed formatting 2023-02-17 17:08:39 -05:00
Rahul
72af1912ca added new text 2023-02-17 22:01:00 +00:00
hippocritical
08ca0f7c0f
Merge branch 'freqtrade:develop' into strategy_utils 2023-02-17 21:07:23 +01:00
hippocritical
bcef00edee changed to ast_comments, added tests for comments. 2023-02-17 21:04:26 +01:00
hippocritical
06edc5c044 changed to ast_comments, added tests for comments. 2023-02-17 21:01:09 +01:00
Rahul
1a74ede126 Merge branch 'feature' of github.com:LangLazy/freqtrade into feature 2023-02-16 17:54:20 -05:00
Rahul Gudise
07c886a2b1
Merge branch 'freqtrade:develop' into feature 2023-02-16 17:54:14 -05:00
Rahul
b73089deb8 fixed a test 2023-02-16 17:51:50 -05:00
hippocritical
69a63975c1
Merge branch 'freqtrade:develop' into strategy_utils 2023-02-12 20:11:15 +01:00
Rahul
a3cc001f1b initial commit 2023-02-11 18:31:25 -05:00
hippocritical
feb6accc6c Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-01-05 22:56:29 +01:00
hippocritical
4435c4fd0d removed prints for strategy could not be loaded
Changed logic to contain much less if conditions

currently still missing:
Webhook terminology, Telegram notification settings, Strategy/Config settings
2023-01-05 22:56:06 +01:00
hippocritical
e55638ed03
Merge branch 'freqtrade:develop' into strategy_utils 2023-01-04 23:52:35 +01:00
hippocritical
ed55296d20 removed prints for strategy could not be loaded
Changed logic to contain much less if conditions

currently still missing:
Webhook terminology, Telegram notification settings, Strategy/Config settings
2023-01-04 23:49:33 +01:00
hippocritical
71ec32ac9e removed prints for strategy could not be loaded
changed back to ast, astor is not really needed.
2023-01-02 23:35:51 +01:00
hippocritical
697fad0ac4 Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2023-01-02 20:46:05 +01:00
hippocritical
0817e1698f requirements thinned out again
StrategyResolver.search_all_objects(enum_failed) set to False since we got no use in True
shortened update_code call
added modified_code8 test which currently still fails. (and thereby is commented out)
2023-01-02 20:45:56 +01:00
hippocritical
61d7129d7c
Update freqtrade/commands/strategy_utils_commands.py
Co-authored-by: Matthias <xmatthias@outlook.com>
2023-01-02 16:51:05 +01:00
Matthias
df25dbc048 Don't require a configuration for strategy-updater 2023-01-02 08:52:18 +01:00
Matthias
a712c5d42c Improve if formatting 2023-01-02 08:52:01 +01:00
Matthias
e89609dc3a
Fix crash due to invalid parameter 2023-01-02 08:51:54 +01:00
hippocritical
66f7c91357 Adding tests
added more code inside NameUpdater to grab more variables.
2023-01-01 22:03:45 +01:00
hippocritical
762dd4f024 Adding tests
added more code inside NameUpdater to grab more variables.
2023-01-01 18:57:38 +01:00
hippocritical
a51e44eea3 Adding tests 2023-01-01 12:37:15 +01:00
hippocritical
82218d01f4 sped up the function generic_visit that now skips unnecessary fields
added mentioning of skipped class names since they could not be found
2022-12-30 21:49:09 +01:00
hippocritical
a6356c2821 Merge remote-tracking branch 'origin/strategy_utils' into strategy_utils 2022-12-29 22:32:02 +01:00
hippocritical
c6f045afa9 fixing issues of the maintainer
found a bug meaning elts could contain lists of elts (now recurively gone through)

Next in line: writing tests based on StrategyUpdater.update_code
2022-12-29 22:31:33 +01:00
hippocritical
126b8dac07
Merge branch 'freqtrade:develop' into strategy_utils 2022-12-27 22:34:24 +01:00
hippocritical
70e9fa6136 implementing the strategy_updater in a first version 2022-12-27 20:43:43 +01:00
193 changed files with 10300 additions and 4964 deletions

View File

@ -16,7 +16,8 @@ on:
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
repository-projects: read
jobs:
build_linux:
@ -24,7 +25,7 @@ jobs:
strategy:
matrix:
os: [ ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -115,7 +116,7 @@ jobs:
strategy:
matrix:
os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -212,7 +213,7 @@ jobs:
strategy:
matrix:
os: [ windows-latest ]
python-version: ["3.8", "3.9", "3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -321,7 +322,6 @@ jobs:
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v3
@ -425,7 +425,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.6.4
uses: pypa/gh-action-pypi-publish@v1.8.5
if: (github.event_name == 'release')
with:
user: __token__
@ -433,7 +433,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.6.4
uses: pypa/gh-action-pypi-publish@v1.8.5
if: (github.event_name == 'release')
with:
user: __token__
@ -466,12 +466,13 @@ jobs:
- name: Build and test and push docker images
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker_multi.sh
deploy_arm:
permissions:
packages: write
needs: [ deploy ]
# Only run on 64bit machines
runs-on: [self-hosted, linux, ARM64]
@ -494,8 +495,9 @@ jobs:
- name: Build and test and push docker images
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
GHCR_USERNAME: ${{ github.actor }}
GHCR_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
build_helpers/publish_docker_arm64.sh

View File

@ -8,16 +8,17 @@ repos:
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v0.991"
rev: "v1.0.1"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.3.0.0
- types-cachetools==5.3.0.5
- types-filelock==3.2.7
- types-requests==2.28.11.13
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.6
- types-requests==2.28.11.17
- types-tabulate==0.9.0.2
- types-python-dateutil==2.8.19.12
- SQLAlchemy==2.0.9
# stages: [push]
- repo: https://github.com/pycqa/isort
@ -29,7 +30,7 @@ repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
# Ruff version.
rev: 'v0.0.251'
rev: 'v0.0.255'
hooks:
- id: ruff

View File

@ -1,4 +1,4 @@
FROM python:3.10.10-slim-bullseye as base
FROM python:3.10.11-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@ -8,8 +8,8 @@ if [ -n "$2" ] || [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub \
&& curl 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.guess' -o config.guess \
&& curl 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.sub' -o config.sub \
&& ./configure --prefix=${INSTALL_LOC}/ \
&& make
if [ $? -ne 0 ]; then

View File

@ -8,12 +8,17 @@ import yaml
pre_commit_file = Path('.pre-commit-config.yaml')
require_dev = Path('requirements-dev.txt')
require = Path('requirements.txt')
with require_dev.open('r') as rfile:
requirements = rfile.readlines()
with require.open('r') as rfile:
requirements.extend(rfile.readlines())
# Extract types only
type_reqs = [r.strip('\n') for r in requirements if r.startswith('types-')]
type_reqs = [r.strip('\n') for r in requirements if r.startswith(
'types-') or r.startswith('SQLAlchemy')]
with pre_commit_file.open('r') as file:
f = yaml.load(file, Loader=yaml.FullLoader)

View File

@ -3,18 +3,22 @@
# Use BuildKit, otherwise building on ARM fails
export DOCKER_BUILDKIT=1
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
GHCR_IMAGE_NAME=ghcr.io/freqtrade/freqtrade
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_FREQAI_TORCH=${TAG_FREQAI}torch
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
TAG_FREQAI_RL_ARM=${TAG_FREQAI_RL}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@ -38,13 +42,13 @@ if [ $? -ne 0 ]; then
echo "failed building multiarch images"
return 1
fi
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
# Tag image for upload and next build step
docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker tag freqtrade:$TAG_FREQAI_RL_ARM ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
@ -59,7 +63,6 @@ fi
docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
@ -82,14 +85,35 @@ docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
# Create special Torch tag - which is identical to the RL tag.
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_TORCH} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_TORCH}
# copy images to ghcr.io
alias crane="docker run --rm -i -v $(pwd)/.crane:/home/nonroot/.docker/ gcr.io/go-containerregistry/crane"
mkdir .crane
chmod a+rwx .crane
echo "${GHCR_TOKEN}" | crane auth login ghcr.io -u "${GHCR_USERNAME}" --password-stdin
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_RL}
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_TORCH}
crane copy ${IMAGE_NAME}:${TAG_FREQAI} ${GHCR_IMAGE_NAME}:${TAG_FREQAI}
crane copy ${IMAGE_NAME}:${TAG_PLOT} ${GHCR_IMAGE_NAME}:${TAG_PLOT}
crane copy ${IMAGE_NAME}:${TAG} ${GHCR_IMAGE_NAME}:${TAG}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
echo 'Tagging image as latest'
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:latest
crane copy ${IMAGE_NAME}:latest ${GHCR_IMAGE_NAME}:latest
fi
docker images
rm -rf .crane
# Cleanup old images from arm64 node.
docker image prune -a --force --filter "until=24h"

View File

@ -2,6 +2,8 @@
# The below assumes a correctly setup docker buildx environment
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
@ -11,7 +13,6 @@ TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
echo "Running for ${TAG}"
CACHE_IMAGE=freqtradeorg/freqtrade_cache
CACHE_TAG=${CACHE_IMAGE}:${TAG_PI}_cache
# Add commit and commit_message to docker container
@ -57,9 +58,9 @@ fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_FREQAI} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -274,19 +274,20 @@ A backtesting result will look like that:
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
========================================================= EXIT REASON STATS ==========================================================
| Exit Reason | Exits | Wins | Draws | Losses |
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| exit_signal | 56 | 36 | 0 | 20 |
| force_exit | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|---------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
==================== EXIT REASON STATS ====================
| Exit Reason | Exits | Wins | Draws | Losses |
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| exit_signal | 56 | 36 | 0 | 20 |
| force_exit | 2 | 0 | 0 | 2 |
================== SUMMARY METRICS ==================
| Metric | Value |
|-----------------------------+---------------------|

View File

@ -12,6 +12,9 @@ This page provides you some basic concepts on how Freqtrade works and operates.
* **Indicators**: Technical indicators (SMA, EMA, RSI, ...).
* **Limit order**: Limit orders which execute at the defined limit price or better.
* **Market order**: Guaranteed to fill, may move price depending on the order size.
* **Current Profit**: Currently pending (unrealized) profit for this trade. This is mainly used throughout the bot and UI.
* **Realized Profit**: Already realized profit. Only relevant in combination with [partial exits](strategy-callbacks.md#adjust-trade-position) - which also explains the calculation logic for this.
* **Total Profit**: Combined realized and unrealized profit. The relative number (%) is calculated against the total investment in this trade.
## Fee handling
@ -57,10 +60,10 @@ This loop will be repeated again and again until the bot is stopped.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Calls `bot_loop_start()` strategy callback.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).

View File

@ -74,3 +74,8 @@ Webhook terminology changed from "sell" to "exit", and from "buy" to "entry", re
* `webhooksell`, `webhookexit` -> `exit`
* `webhooksellfill`, `webhookexitfill` -> `exit_fill`
* `webhooksellcancel`, `webhookexitcancel` -> `exit_cancel`
## Removal of `populate_any_indicators`
version 2023.3 saw the removal of `populate_any_indicators` in favor of split methods for feature engineering and targets. Please read the [migration document](strategy_migration.md#freqai-strategy) for full details.

View File

@ -236,3 +236,161 @@ If you want to predict multiple targets you must specify all labels in the same
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
df['&s-up_or_down'] = np.where( df["close"].shift(-100) == df["close"], 'same', df['&s-up_or_down'])
```
## PyTorch Module
### Quick start
The easiest way to quickly run a pytorch model is with the following command (for regression task):
```bash
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel PyTorchMLPRegressor --strategy-path freqtrade/templates
```
!!! note "Installation/docker"
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
### Structure
#### Model
You can construct your own Neural Network architecture in PyTorch by simply defining your `nn.Module` class inside your custom [`IFreqaiModel` file](#using-different-prediction-models) and then using that class in your `def train()` function. Here is an example of logistic regression model implementation using PyTorch (should be used with nn.BCELoss criterion) for classification tasks.
```python
class LogisticRegression(nn.Module):
def __init__(self, input_size: int):
super().__init__()
# Define your layers
self.linear = nn.Linear(input_size, 1)
self.activation = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Define the forward pass
out = self.linear(x)
out = self.activation(out)
return out
class MyCoolPyTorchClassifier(BasePyTorchClassifier):
"""
This is a custom IFreqaiModel showing how a user might setup their own
custom Neural Network architecture for their training.
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
class_names = self.get_class_names()
self.convert_label_column_to_int(data_dictionary, dk, class_names)
n_features = data_dictionary["train_features"].shape[-1]
model = LogisticRegression(
input_dim=n_features
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer
```
#### Trainer
The `PyTorchModelTrainer` performs the idiomatic PyTorch train loop:
Define our model, loss function, and optimizer, and then move them to the appropriate device (GPU or CPU). Inside the loop, we iterate through the batches in the dataloader, move the data to the device, compute the prediction and loss, backpropagate, and update the model parameters using the optimizer.
In addition, the trainer is responsible for the following:
- saving and loading the model
- converting the data from `pandas.DataFrame` to `torch.Tensor`.
#### Integration with Freqai module
Like all freqai models, PyTorch models inherit `IFreqaiModel`. `IFreqaiModel` declares three abstract methods: `train`, `fit`, and `predict`. we implement these methods in three levels of hierarchy.
From top to bottom:
1. `BasePyTorchModel` - Implements the `train` method. all `BasePyTorch*` inherit it. responsible for general data preparation (e.g., data normalization) and calling the `fit` method. Sets `device` attribute used by children classes. Sets `model_type` attribute used by the parent class.
2. `BasePyTorch*` - Implements the `predict` method. Here, the `*` represents a group of algorithms, such as classifiers or regressors. responsible for data preprocessing, predicting, and postprocessing if needed.
3. `PyTorch*Classifier` / `PyTorch*Regressor` - implements the `fit` method. responsible for the main train flaw, where we initialize the trainer and model objects.
![image](assets/freqai_pytorch-diagram.png)
#### Full example
Building a PyTorch regressor using MLP (multilayer perceptron) model, MSELoss criterion, and AdamW optimizer.
```python
class PyTorchMLPRegressor(BasePyTorchRegressor):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
target_tensor_type=torch.float,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary)
return trainer
```
Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. The `fit` method specifies the training building blocks: model, optimizer, criterion, and trainer. We inherit both `BasePyTorchRegressor` and `BasePyTorchModel`, where the former implements the `predict` method that is suitable for our regression task, and the latter implements the train method.
??? Note "Setting Class Names for Classifiers"
When using classifiers, the user must declare the class names (or targets) by overriding the `IFreqaiModel.class_names` attribute. This is achieved by setting `self.freqai.class_names` in the FreqAI strategy inside the `set_freqai_targets` method.
For example, if you are using a binary classifier to predict price movements as up or down, you can set the class names as follows:
```python
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
return dataframe
```
To see a full example, you can refer to the [classifier test strategy class](https://github.com/freqtrade/freqtrade/blob/develop/tests/strategy/strats/freqai_test_classifier.py).

View File

@ -6,8 +6,8 @@ Low level feature engineering is performed in the user strategy within a set of
| Function | Description |
|---------------|-------------|
| `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering_expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering_expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
@ -182,11 +182,11 @@ In total, the number of features the user of the presented example strat has cre
$= 3 * 3 * 3 * 2 * 2 = 108$.
### Gain finer control over `feature_engineering_*` functions with `metadata`
### Gain finer control over `feature_engineering_*` functions with `metadata`
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
```py
```python
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
if metadata["tf"] == "1h":
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)

View File

@ -46,7 +46,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| `shuffle_after_split` | Split the data into train and test sets, and then shuffle both sets individually. <br> **Datatype:** Boolean. <br> Default: `False`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Boolean. <br> Default: `False`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Integer. <br> Default: `0`.
### Data split parameters
@ -84,6 +84,28 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
| `drop_ohlc_from_features` | Do not include the normalized ohlc data in the feature set passed to the agent during training (ohlc will still be used for driving the environment in all cases) <br> **Datatype:** Boolean. <br> **Default:** `False`
### PyTorch parameters
#### general
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `learning_rate` | Learning rate to be passed to the optimizer. <br> **Datatype:** float. <br> Default: `3e-4`.
| `model_kwargs` | Parameters to be passed to the model class. <br> **Datatype:** dict. <br> Default: `{}`.
| `trainer_kwargs` | Parameters to be passed to the trainer class. <br> **Datatype:** dict. <br> Default: `{}`.
#### trainer_kwargs
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `max_iters` | The number of training iterations to run. iteration here refers to the number of times we call self.optimizer.step(). used to calculate n_epochs. <br> **Datatype:** int. <br> Default: `100`.
| `batch_size` | The size of the batches to use during training.. <br> **Datatype:** int. <br> Default: `64`.
| `max_n_eval_batches` | The maximum number batches to use for evaluation.. <br> **Datatype:** int, optional. <br> Default: `None`.
### Additional parameters

View File

@ -55,7 +55,7 @@ where `ReinforcementLearner` will use the templated `ReinforcementLearner` from
dataframe["&-action"] = 0
```
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
Most of the function remains the same as for typical Regressors, however, the function below shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
```python
def feature_engineering_standard(self, dataframe, **kwargs):
@ -176,9 +176,11 @@ As you begin to modify the strategy and the prediction model, you will quickly r
factor = 100
pair = self.pair.replace(':', '')
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
rsi_now = self.raw_features[f"%-rsi-period_10_shift-1_{pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
@ -246,13 +248,13 @@ FreqAI also provides a built in episodic summary logger called `self.tensorboard
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
self.tensorboard_log("invalid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)`. In this case the metric values are not incremented.
### Choosing a base environment

View File

@ -128,6 +128,9 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
???+ danger "Continual learning enforces a constant parameter space"
Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis).
## Hyperopt
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):

View File

@ -71,6 +71,10 @@ pip install -r requirements-freqai.txt
!!! Note
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since it does not provide wheels for this platform.
!!! Note "python 3.11"
Some dependencies (Catboost, Torch) currently don't support python 3.11. Freqtrade therefore only supports python 3.10 for these models/dependencies.
Tests involving these dependencies are skipped on 3.11.
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.

View File

@ -149,7 +149,7 @@ The below example assumes a timeframe of 1 hour:
* Locks each pair after selling for an additional 5 candles (`CooldownPeriod`), giving other pairs a chance to get filled.
* Stops trading for 4 hours (`4 * 1h candles`) if the last 2 days (`48 * 1h candles`) had 20 trades, which caused a max-drawdown of more than 20%. (`MaxDrawdown`).
* Stops trading if more than 4 stoploss occur for all pairs within a 1 day (`24 * 1h candles`) limit (`StoplossGuard`).
* Locks all pairs that had 4 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs that had 2 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
``` python

View File

@ -290,10 +290,8 @@ cd freqtrade
#### Freqtrade install: Conda Environment
Prepare conda-freqtrade environment, using file `environment.yml`, which exist in main freqtrade directory
```bash
conda env create -n freqtrade-conda -f environment.yml
conda create --name freqtrade python=3.10
```
!!! Note "Creating Conda Environment"
@ -302,12 +300,9 @@ conda env create -n freqtrade-conda -f environment.yml
```bash
# choose your own packages
conda env create -n [name of the environment] [python version] [packages]
# point to file with packages
conda env create -n [name of the environment] -f [file]
```
#### Enter/exit freqtrade-conda environment
#### Enter/exit freqtrade environment
To check available environments, type
@ -319,7 +314,7 @@ Enter installed environment
```bash
# enter conda environment
conda activate freqtrade-conda
conda activate freqtrade
# exit conda environment - don't do it now
conda deactivate
@ -329,6 +324,7 @@ Install last python dependencies with pip
```bash
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt
python3 -m pip install -e .
```
@ -336,7 +332,7 @@ Patch conda libta-lib (Linux only)
```bash
# Ensure that the environment is active!
conda activate freqtrade-conda
conda activate freqtrade
cd build_helpers
bash install_ta-lib.sh ${CONDA_PREFIX} nosudo
@ -355,8 +351,8 @@ conda env list
# activate base environment
conda activate
# activate freqtrade-conda environment
conda activate freqtrade-conda
# activate freqtrade environment
conda activate freqtrade
#deactivate any conda environments
conda deactivate

View File

@ -42,14 +42,14 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
| `producers` | **Required.** List of producers <br> **Datatype:** Array.
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br> **Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br> **Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br> **Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br>*Defaults to `8080`.*<br> **Datatype:** Integer
| `producers.secure` | **Optional.** Use ssl in websockets connection. Default False.<br> **Datatype:** string
| `producers.ws_token` | **Required.** `ws_token` as configured on the producer.<br> **Datatype:** string
| | **Optional settings**
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br> **Datatype:** Integer - in seconds.
| `wait_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `ping_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `sleep_time` | Sleep time before retrying to connect.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `False`.*<br> **Datatype:** Boolean.
| `message_size_limit` | Size limit per message<br>*Defaults to `8`.*<br> **Datatype:** Integer - Megabytes.
Instead of (or as well as) calculating indicators in `populate_indicators()` the follower instance listens on the connection to a producer instance's messages (or multiple producer instances in advanced configurations) and requests the producer's most recently analyzed dataframes for each pair in the active whitelist.

View File

@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==9.0.13
mkdocs-material==9.1.6
mdx_truly_sane_lists==1.3
pymdown-extensions==9.9.2
pymdown-extensions==9.11
jinja2==3.1.2

View File

@ -9,9 +9,6 @@ This same command can also be used to update freqUI, should there be a new relea
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
!!! info "Alpha release"
FreqUI is still considered an alpha release - if you encounter bugs or inconsistencies please open a [FreqUI issue](https://github.com/freqtrade/frequi/issues/new/choose).
!!! Note "developers"
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.

View File

@ -23,10 +23,22 @@ These modes can be configured with these values:
'stoploss_on_exchange_limit_ratio': 0.99
```
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gate (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
Stoploss on exchange is only supported for the following exchanges, and not all exchanges support both stop-limit and stop-market.
The Order-type will be ignored if only one mode is available.
| Exchange | stop-loss type |
|----------|-------------|
| Binance | limit |
| Binance Futures | market, limit |
| Huobi | limit |
| kraken | market, limit |
| Gate | limit |
| Okx | limit |
| Kucoin | stop-limit, stop-market|
!!! Note "Tight stoploss"
<ins>Do not set too low/tight stoploss value when using stop loss on exchange!</ins>
If set to low/tight you will have greater risk of missing fill on the order and stoploss will not work.
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio

View File

@ -51,7 +51,8 @@ During hyperopt, this runs only once at startup.
## Bot loop start
A simple callback which is called once at the start of every bot throttling iteration (roughly every 5 seconds, unless configured differently).
A simple callback which is called once at the start of every bot throttling iteration in dry/live mode (roughly every 5
seconds, unless configured differently) or once per candle in backtest/hyperopt mode.
This can be used to perform calculations which are pair independent (apply to all pairs), loading of external data, etc.
``` python
@ -61,11 +62,12 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
def bot_loop_start(self, **kwargs) -> None:
def bot_loop_start(self, current_time: datetime, **kwargs) -> None:
"""
Called at the start of the bot iteration (one loop).
Might be used to perform pair-independent tasks
(e.g. gather some remote resource for comparison)
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
"""
if self.config['runmode'].value in ('live', 'dry_run'):
@ -316,11 +318,11 @@ class AwesomeStrategy(IStrategy):
# evaluate highest to lowest, so that highest possible stop is used
if current_profit > 0.40:
return stoploss_from_open(0.25, current_profit, is_short=trade.is_short)
return stoploss_from_open(0.25, current_profit, is_short=trade.is_short, leverage=trade.leverage)
elif current_profit > 0.25:
return stoploss_from_open(0.15, current_profit, is_short=trade.is_short)
return stoploss_from_open(0.15, current_profit, is_short=trade.is_short, leverage=trade.leverage)
elif current_profit > 0.20:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short, leverage=trade.leverage)
# return maximum stoploss value, keeping current stoploss price unchanged
return 1

View File

@ -881,7 +881,7 @@ All columns of the informative dataframe will be available on the returning data
### *stoploss_from_open()*
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the open price instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired percentage above the open price.
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the entry point instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired trade profit above the entry point.
??? Example "Returning a stoploss relative to the open price from the custom stoploss function"
@ -889,6 +889,8 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit, False)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
This function will consider leverage - so at 10x leverage, the actual stoploss would be 0.7% above $100 (0.7% * 10x = 7%).
``` python
@ -907,7 +909,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short, leverage=trade.leverage)
return 1
@ -954,12 +956,14 @@ In some situations it may be confusing to deal with stops relative to current ra
## Additional data (Wallets)
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
The strategy provides access to the `wallets` object. This contains the current balances on the exchange.
!!! Note
Wallets is not available during backtesting / hyperopt.
!!! Note "Backtesting / Hyperopt"
Wallets behaves differently depending on the function it's called.
Within `populate_*()` methods, it'll return the full wallet as configured.
Within [callbacks](strategy-callbacks.md), you'll get the wallet state corresponding to the actual simulated wallet at that point in the simulation process.
Please always check if `Wallets` is available to avoid failures during backtesting.
Please always check if `wallets` is available to avoid failures during backtesting.
``` python
if self.wallets:
@ -1036,11 +1040,10 @@ from datetime import timedelta, datetime, timezone
# Within populate indicators (or populate_buy):
if self.config['runmode'].value in ('live', 'dry_run'):
# fetch closed trades for the last 2 days
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=2),
Trade.is_open.is_(False),
]).all()
# fetch closed trades for the last 2 days
trades = Trade.get_trades_proxy(
pair=metadata['pair'], is_open=False,
open_date=datetime.now(timezone.utc) - timedelta(days=2))
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
sumprofit = sum(trade.close_profit for trade in trades)
if sumprofit < 0:

View File

@ -152,7 +152,7 @@ You can create your own keyboard in `config.json`:
!!! Note "Supported Commands"
Only the following commands are allowed. Command arguments are not supported!
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopentry`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopentry`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`, `/marketdir`
## Telegram commands
@ -179,6 +179,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/count` | Displays number of trades used and available
| `/locks` | Show currently locked pairs.
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
| `/marketdir [long | short | even | none]` | Updates the user managed variable that represents the current market direction. If no direction is provided, the currently set direction will be displayed.
| **Modify Trade states** |
| `/forceexit <trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
@ -242,7 +243,7 @@ Enter Tag is configurable via Strategy.
> **Enter Tag:** Awesome Long Signal
> **Open Rate:** `0.00007489`
> **Current Rate:** `0.00007489`
> **Current Profit:** `12.95%`
> **Unrealized Profit:** `12.95%`
> **Stoploss:** `0.00007389 (-0.02%)`
### /status table
@ -278,6 +279,7 @@ Return a summary of your profit/loss and performance.
> ∙ `33.095 EUR`
>
> **Total Trade Count:** `138`
> **Bot started:** `2022-07-11 18:40:44`
> **First Trade opened:** `3 days ago`
> **Latest Trade opened:** `2 minutes ago`
> **Avg. Duration:** `2:33:45`
@ -291,6 +293,7 @@ The relative profit of `15.2 Σ%` is be based on the starting capital - so in th
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
Bot started date will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.
### /forceexit <trade_id>
@ -416,3 +419,27 @@ ARDR/ETH 0.366667 0.143059 -0.01
### /version
> **Version:** `0.14.3`
### /marketdir
If a market direction is provided the command updates the user managed variable that represents the current market direction.
This variable is not set to any valid market direction on bot startup and must be set by the user. The example below is for `/marketdir long`:
```
Successfully updated marketdirection from none to long.
```
If no market direction is provided the command outputs the currently set market directions. The example below is for `/marketdir`:
```
Currently set marketdirection: even
```
You can use the market direction in your strategy via `self.market_direction`.
!!! Warning "Bot restarts"
Please note that the market direction is not persisted, and will be reset after a bot restart/reload.
!!! Danger "Backtesting"
As this value/variable is intended to be changed manually in dry/live trading.
Strategies using `market_direction` will probably not produce reliable, reproducible results (changes to this variable will not be reflected for backtesting). Use at your own risk.

View File

@ -955,3 +955,47 @@ Print trades with id 2 and 3 as json
``` bash
freqtrade show-trades --db-url sqlite:///tradesv3.sqlite --trade-ids 2 3 --print-json
```
### Strategy-Updater
Updates listed strategies or all strategies within the strategies folder to be v3 compliant.
If the command runs without --strategy-list then all strategies inside the strategies folder will be converted.
Your original strategy will remain available in the `user_data/strategies_orig_updater/` directory.
!!! Warning "Conversion results"
Strategy updater will work on a "best effort" approach. Please do your due diligence and verify the results of the conversion.
We also recommend to run a python formatter (e.g. `black`) to format results in a sane manner.
```
usage: freqtrade strategy-updater [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
options:
-h, --help show this help message and exit
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a space-separated list of strategies to
backtest. Please note that timeframe needs to be set
either in config or via command line. When using this
together with `--export trades`, the strategy-name is
injected into the filename (so `backtest-data.json`
becomes `backtest-data-SampleStrategy.json`
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH, --data-dir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```

View File

@ -26,7 +26,7 @@ Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib-0.4.25-cp38-cp38-win_amd64.whl` (make sure to use the version matching your python version).
Freqtrade provides these dependencies for the latest 3 Python versions (3.8, 3.9 and 3.10) and for 64bit Windows.
Freqtrade provides these dependencies for the latest 3 Python versions (3.8, 3.9, 3.10 and 3.11) and for 64bit Windows.
Other versions must be downloaded from the above link.
``` powershell

View File

@ -1,74 +0,0 @@
name: freqtrade
channels:
- conda-forge
# - defaults
dependencies:
# 1/4 req main
- python>=3.8,<=3.10
- numpy
- pandas
- pip
- py-find-1st
- aiohttp
- SQLAlchemy
- python-telegram-bot<20.0.0
- arrow
- cachetools
- requests
- urllib3
- jsonschema
- TA-Lib
- tabulate
- jinja2
- blosc
- sdnotify
- fastapi
- uvicorn
- pyjwt
- aiofiles
- psutil
- colorama
- questionary
- prompt-toolkit
- schedule
- python-dateutil
- joblib
- pyarrow
# ============================
# 2/4 req dev
- coveralls
- mypy
- pytest
- pytest-asyncio
- pytest-cov
- pytest-mock
- isort
- nbconvert
# ============================
# 3/4 req hyperopt
- scipy
- scikit-learn<1.2.0
- filelock
- scikit-optimize
- progressbar2
# ============================
# 4/4 req plot
- plotly
- jupyter
- pip:
- pycoingecko
# - py_find_1st
- tables
- pytest-random-order
- ccxt
- ruff
- -e .
# - python-rapidjso

View File

@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2023.3.dev'
__version__ = '2023.4.dev'
if 'dev' in __version__:
from pathlib import Path

View File

@ -22,5 +22,6 @@ from freqtrade.commands.optimize_commands import (start_backtesting, start_backt
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
from freqtrade.commands.strategy_utils_commands import start_strategy_update
from freqtrade.commands.trade_commands import start_trading
from freqtrade.commands.webserver_commands import start_webserver

View File

@ -40,8 +40,8 @@ def setup_analyze_configuration(args: Dict[str, Any], method: RunMode) -> Dict[s
if (not Path(signals_file).exists()):
raise OperationalException(
(f"Cannot find latest backtest signals file: {signals_file}."
"Run backtesting with `--export signals`.")
f"Cannot find latest backtest signals file: {signals_file}."
"Run backtesting with `--export signals`."
)
return config

View File

@ -111,10 +111,13 @@ ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
"list-data", "hyperopt-list", "hyperopt-show", "backtest-filter",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv",
"strategy-updater"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
ARGS_STRATEGY_UTILS = ["strategy_list", "strategy_path", "recursive_strategy_search"]
class Arguments:
"""
@ -198,8 +201,8 @@ class Arguments:
start_list_freqAI_models, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_config, start_new_strategy, start_plot_dataframe,
start_plot_profit, start_show_trades, start_test_pairlist,
start_trading, start_webserver)
start_plot_profit, start_show_trades, start_strategy_update,
start_test_pairlist, start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@ -440,3 +443,11 @@ class Arguments:
parents=[_common_parser])
webserver_cmd.set_defaults(func=start_webserver)
self._build_args(optionlist=ARGS_WEBSERVER, parser=webserver_cmd)
# Add strategy_updater subcommand
strategy_updater_cmd = subparsers.add_parser('strategy-updater',
help='updates outdated strategy'
'files to the current version',
parents=[_common_parser])
strategy_updater_cmd.set_defaults(func=start_strategy_update)
self._build_args(optionlist=ARGS_STRATEGY_UTILS, parser=strategy_updater_cmd)

View File

@ -204,11 +204,14 @@ def start_list_data(args: Dict[str, Any]) -> None:
pair, timeframe, candle_type,
*dhc.ohlcv_data_min_max(pair, timeframe, candle_type)
) for pair, timeframe, candle_type in paircombs]
print(tabulate([
(pair, timeframe, candle_type,
start.strftime(DATETIME_PRINT_FORMAT),
end.strftime(DATETIME_PRINT_FORMAT))
for pair, timeframe, candle_type, start, end in paircombs1
for pair, timeframe, candle_type, start, end in sorted(
paircombs1,
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2]))
],
headers=("Pair", "Timeframe", "Type", 'From', 'To'),
tablefmt='psql', stralign='right'))

View File

@ -1,7 +1,7 @@
import logging
from typing import Any, Dict
from sqlalchemy import func
from sqlalchemy import func, select
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.enums import RunMode
@ -20,7 +20,7 @@ def start_convert_db(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
init_db(config['db_url'])
session_target = Trade._session
session_target = Trade.session
init_db(config['db_url_from'])
logger.info("Starting db migration.")
@ -36,16 +36,16 @@ def start_convert_db(args: Dict[str, Any]) -> None:
session_target.commit()
for pairlock in PairLock.query:
for pairlock in PairLock.get_all_locks():
pairlock_count += 1
make_transient(pairlock)
session_target.add(pairlock)
session_target.commit()
# Update sequences
max_trade_id = session_target.query(func.max(Trade.id)).scalar()
max_order_id = session_target.query(func.max(Order.id)).scalar()
max_pairlock_id = session_target.query(func.max(PairLock.id)).scalar()
max_trade_id = session_target.scalar(select(func.max(Trade.id)))
max_order_id = session_target.scalar(select(func.max(Order.id)))
max_pairlock_id = session_target.scalar(select(func.max(PairLock.id)))
set_sequence_ids(session_target.get_bind(),
trade_id=max_trade_id,

View File

@ -0,0 +1,55 @@
import logging
import sys
import time
from pathlib import Path
from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.strategyupdater import StrategyUpdater
logger = logging.getLogger(__name__)
def start_strategy_update(args: Dict[str, Any]) -> None:
"""
Start the strategy updating script
:param args: Cli args from Arguments()
:return: None
"""
if sys.version_info == (3, 8): # pragma: no cover
sys.exit("Freqtrade strategy updater requires Python version >= 3.9")
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
filtered_strategy_objs = []
if args['strategy_list']:
filtered_strategy_objs = [
strategy_obj for strategy_obj in strategy_objs
if strategy_obj['name'] in args['strategy_list']
]
else:
# Use all available entries.
filtered_strategy_objs = strategy_objs
processed_locations = set()
for strategy_obj in filtered_strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
start_conversion(strategy_obj, config)
def start_conversion(strategy_obj, config):
print(f"Conversion of {Path(strategy_obj['location']).name} started.")
instance_strategy_updater = StrategyUpdater()
start = time.perf_counter()
instance_strategy_updater.start(config, strategy_obj)
elapsed = time.perf_counter() - start
print(f"Conversion of {Path(strategy_obj['location']).name} took {elapsed:.1f} seconds.")

View File

@ -27,10 +27,7 @@ def _extend_validator(validator_class):
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
yield from validate_properties(validator, properties, instance, schema)
return validators.extend(
validator_class, {'properties': set_defaults}

View File

@ -58,7 +58,7 @@ def load_config_file(path: str) -> Dict[str, Any]:
"""
try:
# Read config from stdin if requested in the options
with open(path) if path != '-' else sys.stdin as file:
with Path(path).open() if path != '-' else sys.stdin as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(

View File

@ -116,7 +116,7 @@ class TimeRange:
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
if not text:
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),

View File

@ -36,9 +36,10 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', '
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
AVAILABLE_PROTECTIONS = ['CooldownPeriod', 'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5']
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['feather', 'parquet']
AVAILABLE_PROTECTIONS = ['CooldownPeriod',
'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5', 'feather']
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['parquet']
BACKTEST_BREAKDOWNS = ['day', 'week', 'month']
BACKTEST_CACHE_AGE = ['none', 'day', 'week', 'month']
BACKTEST_CACHE_DEFAULT = 'day'
@ -63,6 +64,7 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
CUSTOM_TAG_MAX_LENGTH = 255
ENV_VAR_PREFIX = 'FREQTRADE__'
@ -588,6 +590,7 @@ CONF_SCHEMA = {
"rl_config": {
"type": "object",
"properties": {
"drop_ohlc_from_features": {"type": "boolean", "default": False},
"train_cycles": {"type": "integer"},
"max_trade_duration_candles": {"type": "integer"},
"add_state_info": {"type": "boolean", "default": False},
@ -596,7 +599,7 @@ CONF_SCHEMA = {
"model_type": {"type": "string", "default": "PPO"},
"policy_type": {"type": "string", "default": "MlpPolicy"},
"net_arch": {"type": "array", "default": [128, 128]},
"randomize_startinng_position": {"type": "boolean", "default": False},
"randomize_starting_position": {"type": "boolean", "default": False},
"model_reward_parameters": {
"type": "object",
"properties": {

View File

@ -246,14 +246,8 @@ def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
"""
Compatibility support for older backtest data.
"""
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
df['open_date'] = pd.to_datetime(df['open_date'], utc=True)
df['close_date'] = pd.to_datetime(df['close_date'], utc=True)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = False
@ -346,7 +340,7 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
return df_final[df_final['open_trades'] > max_open_trades]
def trade_list_to_dataframe(trades: List[LocalTrade]) -> pd.DataFrame:
def trade_list_to_dataframe(trades: Union[List[Trade], List[LocalTrade]]) -> pd.DataFrame:
"""
Convert list of Trade objects to pandas Dataframe
:param trades: List of trade objects
@ -373,7 +367,7 @@ def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataF
filters = []
if strategy:
filters.append(Trade.strategy == strategy)
trades = trade_list_to_dataframe(Trade.get_trades(filters).all())
trades = trade_list_to_dataframe(list(Trade.get_trades(filters).all()))
return trades

View File

@ -34,7 +34,7 @@ def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
cols = DEFAULT_DATAFRAME_COLUMNS
df = DataFrame(ohlcv, columns=cols)
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
df['date'] = to_datetime(df['date'], unit='ms', utc=True)
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats

View File

@ -21,6 +21,7 @@ from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.exchange.types import OrderBook
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager
from freqtrade.rpc.rpc_types import RPCAnalyzedDFMsg
from freqtrade.util import PeriodicCache
@ -118,8 +119,7 @@ class DataProvider:
:param new_candle: This is a new candle
"""
if self.__rpc:
self.__rpc.send_msg(
{
msg: RPCAnalyzedDFMsg = {
'type': RPCMessageType.ANALYZED_DF,
'data': {
'key': pair_key,
@ -127,7 +127,7 @@ class DataProvider:
'la': datetime.now(timezone.utc)
}
}
)
self.__rpc.send_msg(msg)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,

View File

@ -24,9 +24,9 @@ def _load_signal_candles(backtest_dir: Path):
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_signals.pkl")
try:
scp = open(scpf, "rb")
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
with scpf.open("rb") as scp:
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
except Exception as e:
logger.error("Cannot load signal candles from pickled results: ", e)

View File

@ -4,7 +4,7 @@ from typing import Optional
from pandas import DataFrame, read_feather, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
from freqtrade.enums import CandleType
from .idatahandler import IDataHandler
@ -63,10 +63,7 @@ class FeatherDataHandler(IDataHandler):
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
return pairdata
def ohlcv_append(
@ -92,12 +89,11 @@ class FeatherDataHandler(IDataHandler):
:param data: List of Lists containing trade data,
column sequence as in DEFAULT_TRADES_COLUMNS
"""
# filename = self._pair_trades_filename(self._datadir, pair)
filename = self._pair_trades_filename(self._datadir, pair)
self.create_dir_if_needed(filename)
raise NotImplementedError()
# array = pa.array(data)
# array
# feather.write_feather(data, filename)
tradesdata = DataFrame(data, columns=DEFAULT_TRADES_COLUMNS)
tradesdata.to_feather(filename, compression_level=9, compression='lz4')
def trades_append(self, pair: str, data: TradeList):
"""
@ -116,14 +112,13 @@ class FeatherDataHandler(IDataHandler):
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
raise NotImplementedError()
# filename = self._pair_trades_filename(self._datadir, pair)
# tradesdata = misc.file_load_json(filename)
filename = self._pair_trades_filename(self._datadir, pair)
if not filename.exists():
return []
# if not tradesdata:
# return []
tradesdata = read_feather(filename)
# return tradesdata
return tradesdata.values.tolist()
@classmethod
def _get_file_extension(cls):

View File

@ -75,10 +75,7 @@ class JsonDataHandler(IDataHandler):
return DataFrame(columns=self._columns)
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
return pairdata
def ohlcv_append(

View File

@ -62,10 +62,7 @@ class ParquetDataHandler(IDataHandler):
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
return pairdata
def ohlcv_append(

View File

@ -5,6 +5,7 @@ from freqtrade.enums.exitchecktuple import ExitCheckTuple
from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.marketstatetype import MarketDirection
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.pricetype import PriceType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType

View File

@ -0,0 +1,15 @@
from enum import Enum
class MarketDirection(Enum):
"""
Enum for various market directions.
"""
LONG = "long"
SHORT = "short"
EVEN = "even"
NONE = "none"
def __str__(self):
# convert to string
return self.value

View File

@ -4,6 +4,7 @@ from enum import Enum
class RPCMessageType(str, Enum):
STATUS = 'status'
WARNING = 'warning'
EXCEPTION = 'exception'
STARTUP = 'startup'
ENTRY = 'entry'

View File

@ -8,15 +8,15 @@ from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange_utils import (amount_to_contract_precision, amount_to_contracts,
amount_to_precision, available_exchanges,
ccxt_exchanges, contracts_to_amount,
date_minus_candles, is_exchange_known_ccxt,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.exchange_utils import (ROUND_DOWN, ROUND_UP, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
available_exchanges, ccxt_exchanges,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds,
validate_exchange, validate_exchanges)
from freqtrade.exchange.gate import Gate
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.huobi import Huobi

View File

@ -23,7 +23,7 @@ class Binance(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"stoploss_order_types": {"limit": "stop_loss_limit"},
"order_time_in_force": ['GTC', 'FOK', 'IOC'],
"order_time_in_force": ["GTC", "FOK", "IOC", "PO"],
"ohlcv_candle_limit": 1000,
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
@ -31,6 +31,7 @@ class Binance(Exchange):
}
_ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
"order_time_in_force": ["GTC", "FOK", "IOC"],
"tickers_have_price": False,
"floor_leverage": True,
"stop_price_type_field": "workingType",
@ -195,7 +196,7 @@ class Binance(Exchange):
leverage_tiers_path = (
Path(__file__).parent / 'binance_leverage_tiers.json'
)
with open(leverage_tiers_path) as json_file:
with leverage_tiers_path.open() as json_file:
return json_load(json_file)
else:
try:

File diff suppressed because it is too large Load Diff

View File

@ -27,11 +27,10 @@ class Bybit(Exchange):
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"ohlcv_candle_limit": 200,
"ohlcv_has_history": False,
}
_ft_has_futures: Dict = {
"ohlcv_candle_limit": 200,
"ohlcv_has_history": True,
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
@ -115,7 +114,7 @@ class Bybit(Exchange):
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
return data
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
if self.trading_mode != TradingMode.SPOT:
params = {'leverage': leverage}
self.set_margin_mode(pair, self.margin_mode, accept_fail=True, params=params)

View File

@ -30,13 +30,14 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFun
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, remove_credentials, retrier,
retrier_async)
from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.exchange.exchange_utils import (ROUND, ROUND_DOWN, ROUND_UP, CcxtModuleType,
amount_to_contract_precision, amount_to_contracts,
amount_to_precision, contracts_to_amount,
date_minus_candles, is_exchange_known_ccxt,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds)
from freqtrade.exchange.types import OHLCVResponse, OrderBook, Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
@ -59,8 +60,8 @@ class Exchange:
# or by specifying them in the configuration.
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"stop_price_param": "stopPrice",
"order_time_in_force": ["GTC"],
"time_in_force_parameter": "timeInForce",
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_has_history": True, # Some exchanges (Kraken) don't provide history via ohlcv
@ -69,6 +70,7 @@ class Exchange:
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
"ohlcv_volume_currency": "base", # "base" or "quote"
"tickers_have_quoteVolume": True,
"tickers_have_bid_ask": True, # bid / ask empty for fetch_tickers
"tickers_have_price": True,
"trades_pagination": "time", # Possible are "time" or "id"
"trades_pagination_arg": "since",
@ -80,6 +82,8 @@ class Exchange:
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
# Override createMarketBuyOrderRequiresPrice where ccxt has it wrong
"marketOrderRequiresPrice": False,
}
_ft_has: Dict = {}
_ft_has_futures: Dict = {}
@ -205,6 +209,8 @@ class Exchange:
and self._api_async.session):
logger.debug("Closing async ccxt session.")
self.loop.run_until_complete(self._api_async.close())
if self.loop and not self.loop.is_closed():
self.loop.close()
def validate_config(self, config):
# Check if timeframe is available
@ -730,12 +736,14 @@ class Exchange:
"""
return amount_to_precision(amount, self.get_precision_amount(pair), self.precisionMode)
def price_to_precision(self, pair: str, price: float) -> float:
def price_to_precision(self, pair: str, price: float, *, rounding_mode: int = ROUND) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Rounds up
Returns the price rounded to the precision the Exchange accepts.
The default price_rounding_mode in conf is ROUND.
For stoploss calculations, must use ROUND_UP for longs, and ROUND_DOWN for shorts.
"""
return price_to_precision(price, self.get_precision_price(pair), self.precisionMode)
return price_to_precision(price, self.get_precision_price(pair),
self.precisionMode, rounding_mode=rounding_mode)
def price_get_one_pip(self, pair: str, price: float) -> float:
"""
@ -758,12 +766,12 @@ class Exchange:
return self._get_stake_amount_limit(pair, price, stoploss, 'min', leverage)
def get_max_pair_stake_amount(self, pair: str, price: float, leverage: float = 1.0) -> float:
max_stake_amount = self._get_stake_amount_limit(pair, price, 0.0, 'max')
max_stake_amount = self._get_stake_amount_limit(pair, price, 0.0, 'max', leverage)
if max_stake_amount is None:
# * Should never be executed
raise OperationalException(f'{self.name}.get_max_pair_stake_amount should'
'never set max_stake_amount to None')
return max_stake_amount / leverage
return max_stake_amount
def _get_stake_amount_limit(
self,
@ -781,43 +789,41 @@ class Exchange:
except KeyError:
raise ValueError(f"Can't get market information for symbol {pair}")
if isMin:
# reserve some percent defined in config (5% default) + stoploss
margin_reserve: float = 1.0 + self._config.get('amount_reserve_percent',
DEFAULT_AMOUNT_RESERVE_PERCENT)
stoploss_reserve = (
margin_reserve / (1 - abs(stoploss)) if abs(stoploss) != 1 else 1.5
)
# it should not be more than 50%
stoploss_reserve = max(min(stoploss_reserve, 1.5), 1)
else:
margin_reserve = 1.0
stoploss_reserve = 1.0
stake_limits = []
limits = market['limits']
if (limits['cost'][limit] is not None):
stake_limits.append(
self._contracts_to_amount(
pair,
limits['cost'][limit]
)
self._contracts_to_amount(pair, limits['cost'][limit]) * stoploss_reserve
)
if (limits['amount'][limit] is not None):
stake_limits.append(
self._contracts_to_amount(
pair,
limits['amount'][limit] * price
)
self._contracts_to_amount(pair, limits['amount'][limit]) * price * margin_reserve
)
if not stake_limits:
return None if isMin else float('inf')
# reserve some percent defined in config (5% default) + stoploss
amount_reserve_percent = 1.0 + self._config.get('amount_reserve_percent',
DEFAULT_AMOUNT_RESERVE_PERCENT)
amount_reserve_percent = (
amount_reserve_percent / (1 - abs(stoploss)) if abs(stoploss) != 1 else 1.5
)
# it should not be more than 50%
amount_reserve_percent = max(min(amount_reserve_percent, 1.5), 1)
# The value returned should satisfy both limits: for amount (base currency) and
# for cost (quote, stake currency), so max() is used here.
# See also #2575 at github.
return self._get_stake_amount_considering_leverage(
max(stake_limits) * amount_reserve_percent,
max(stake_limits) if isMin else min(stake_limits),
leverage or 1.0
) if isMin else min(stake_limits)
)
def _get_stake_amount_considering_leverage(self, stake_amount: float, leverage: float) -> float:
"""
@ -1018,10 +1024,10 @@ class Exchange:
# Order handling
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
if self.trading_mode != TradingMode.SPOT:
self.set_margin_mode(pair, self.margin_mode)
self._set_leverage(leverage, pair)
self.set_margin_mode(pair, self.margin_mode, accept_fail)
self._set_leverage(leverage, pair, accept_fail)
def _get_params(
self,
@ -1033,12 +1039,18 @@ class Exchange:
) -> Dict:
params = self._params.copy()
if time_in_force != 'GTC' and ordertype != 'market':
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: time_in_force.upper()})
params.update({'timeInForce': time_in_force.upper()})
if reduceOnly:
params.update({'reduceOnly': True})
return params
def _order_needs_price(self, ordertype: str) -> bool:
return (
ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False)
or self._ft_has.get('marketOrderRequiresPrice', False)
)
def create_order(
self,
*,
@ -1061,8 +1073,7 @@ class Exchange:
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
needs_price = (ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False))
needs_price = self._order_needs_price(ordertype)
rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
if not reduceOnly:
@ -1086,7 +1097,7 @@ class Exchange:
f'Tried to {side} amount {amount} at rate {rate}.'
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise ExchangeError(
raise InvalidOrderException(
f'Could not create {ordertype} {side} order on market {pair}. '
f'Tried to {side} amount {amount} at rate {rate}. '
f'Message: {e}') from e
@ -1105,11 +1116,11 @@ class Exchange:
"""
if not self._ft_has.get('stoploss_on_exchange'):
raise OperationalException(f"stoploss is not implemented for {self.name}.")
price_param = self._ft_has['stop_price_param']
return (
order.get('stopPrice', None) is None
or ((side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice'])))
order.get(price_param, None) is None
or ((side == "sell" and stop_loss > float(order[price_param])) or
(side == "buy" and stop_loss < float(order[price_param])))
)
def _get_stop_order_type(self, user_order_type) -> Tuple[str, str]:
@ -1136,14 +1147,21 @@ class Exchange:
"sell" else (stop_price >= limit_rate))
# Ensure rate is less than stop price
if bad_stop_price:
raise OperationalException(
'In stoploss limit order, stop price should be more than limit price')
# This can for example happen if the stop / liquidation price is set to 0
# Which is possible if a market-order closes right away.
# The InvalidOrderException will bubble up to exit_positions, where it will be
# handled gracefully.
raise InvalidOrderException(
"In stoploss limit order, stop price should be more than limit price. "
f"Stop price: {stop_price}, Limit price: {limit_rate}, "
f"Limit Price pct: {limit_price_pct}"
)
return limit_rate
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
# Verify if stopPrice works for your exchange!
params.update({'stopPrice': stop_price})
# Verify if stopPrice works for your exchange, else configure stop_price_param
params.update({self._ft_has['stop_price_param']: stop_price})
return params
@retrier(retries=0)
@ -1169,12 +1187,12 @@ class Exchange:
user_order_type = order_types.get('stoploss', 'market')
ordertype, user_order_type = self._get_stop_order_type(user_order_type)
stop_price_norm = self.price_to_precision(pair, stop_price)
round_mode = ROUND_DOWN if side == 'buy' else ROUND_UP
stop_price_norm = self.price_to_precision(pair, stop_price, rounding_mode=round_mode)
limit_rate = None
if user_order_type == 'limit':
limit_rate = self._get_stop_limit_rate(stop_price, order_types, side)
limit_rate = self.price_to_precision(pair, limit_rate)
limit_rate = self.price_to_precision(pair, limit_rate, rounding_mode=round_mode)
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
@ -1200,7 +1218,7 @@ class Exchange:
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
self._lev_prep(pair, leverage, side)
self._lev_prep(pair, leverage, side, accept_fail=True)
order = self._api.create_order(symbol=pair, type=ordertype, side=side,
amount=amount, price=limit_rate, params=params)
self._log_exchange_response('create_stoploss_order', order)
@ -2525,7 +2543,6 @@ class Exchange:
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""
@ -2543,7 +2560,7 @@ class Exchange:
self._log_exchange_response('set_leverage', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except ccxt.BadRequest as e:
except (ccxt.BadRequest, ccxt.InsufficientFunds) as e:
if not accept_fail:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
@ -2754,10 +2771,10 @@ class Exchange:
raise OperationalException(
f"{self.name} does not support {self.margin_mode} {self.trading_mode}")
isolated_liq = None
liquidation_price = None
if self._config['dry_run'] or not self.exchange_has("fetchPositions"):
isolated_liq = self.dry_run_liquidation_price(
liquidation_price = self.dry_run_liquidation_price(
pair=pair,
open_rate=open_rate,
is_short=is_short,
@ -2772,16 +2789,16 @@ class Exchange:
positions = self.fetch_positions(pair)
if len(positions) > 0:
pos = positions[0]
isolated_liq = pos['liquidationPrice']
liquidation_price = pos['liquidationPrice']
if isolated_liq is not None:
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
isolated_liq = (
isolated_liq - buffer_amount
if liquidation_price is not None:
buffer_amount = abs(open_rate - liquidation_price) * self.liquidation_buffer
liquidation_price_buffer = (
liquidation_price - buffer_amount
if is_short else
isolated_liq + buffer_amount
liquidation_price + buffer_amount
)
return isolated_liq
return max(liquidation_price_buffer, 0.0)
else:
return None

View File

@ -2,11 +2,12 @@
Exchange support utils
"""
from datetime import datetime, timedelta, timezone
from math import ceil
from math import ceil, floor
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGITS, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
from freqtrade.util import FtPrecise
@ -219,35 +220,51 @@ def amount_to_contract_precision(
return amount
def price_to_precision(price: float, price_precision: Optional[float],
precisionMode: Optional[int]) -> float:
def price_to_precision(
price: float,
price_precision: Optional[float],
precisionMode: Optional[int],
*,
rounding_mode: int = ROUND,
) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Returns the price rounded to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
which does not support rounding up.
For stoploss calculations, must use ROUND_UP for longs, and ROUND_DOWN for shorts.
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
!!! Rounds up
:param price: price to convert
:param price_precision: price precision to use. Used from markets[pair]['precision']['price']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:param rounding_mode: rounding mode to use. Defaults to ROUND
:return: price rounded up to the precision the Exchange accepts
"""
if price_precision is not None and precisionMode is not None:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=price_precision,
# counting_mode=self.precisionMode,
# ))
if precisionMode == TICK_SIZE:
if rounding_mode == ROUND:
ticks = price / price_precision
rounded_ticks = round(ticks)
return rounded_ticks * price_precision
precision = FtPrecise(price_precision)
price_str = FtPrecise(price)
missing = price_str % precision
if not missing == FtPrecise("0"):
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = price_precision
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return round(float(str(price_str - missing + precision)), 14)
return price
elif precisionMode in (SIGNIFICANT_DIGITS, DECIMAL_PLACES):
ndigits = round(price_precision)
if rounding_mode == ROUND:
return round(price, ndigits)
ticks = price * (10**ndigits)
if rounding_mode == ROUND_UP:
return ceil(ticks) / (10**ndigits)
if rounding_mode == TRUNCATE:
return int(ticks) / (10**ndigits)
if rounding_mode == ROUND_DOWN:
return floor(ticks) / (10**ndigits)
raise ValueError(f"Unknown rounding_mode {rounding_mode}")
raise ValueError(f"Unknown precisionMode {precisionMode}")
return price

View File

@ -5,7 +5,6 @@ from typing import Any, Dict, List, Optional, Tuple
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, PriceType, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback2
@ -28,10 +27,13 @@ class Gate(Exchange):
"order_time_in_force": ['GTC', 'IOC'],
"stoploss_order_types": {"limit": "limit"},
"stoploss_on_exchange": True,
"marketOrderRequiresPrice": True,
}
_ft_has_futures: Dict = {
"needs_trading_fees": True,
"marketOrderRequiresPrice": False,
"tickers_have_bid_ask": False,
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
"stop_price_type_field": "price_type",
@ -49,14 +51,6 @@ class Gate(Exchange):
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
def validate_ordertypes(self, order_types: Dict) -> None:
if self.trading_mode != TradingMode.FUTURES:
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
super().validate_stop_ordertypes(order_types)
def _get_params(
self,
side: BuySell,
@ -74,8 +68,7 @@ class Gate(Exchange):
)
if ordertype == 'market' and self.trading_mode == TradingMode.FUTURES:
params['type'] = 'market'
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: 'IOC'})
params.update({'timeInForce': 'IOC'})
return params
def get_trades_for_order(self, order_id: str, pair: str, since: datetime,

View File

@ -12,6 +12,7 @@ from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, Invali
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.exchange_utils import ROUND_DOWN, ROUND_UP
from freqtrade.exchange.types import Tickers
@ -109,6 +110,7 @@ class Kraken(Exchange):
if self.trading_mode == TradingMode.FUTURES:
params.update({'reduceOnly': True})
round_mode = ROUND_DOWN if side == 'buy' else ROUND_UP
if order_types.get('stoploss', 'market') == 'limit':
ordertype = "stop-loss-limit"
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
@ -116,11 +118,11 @@ class Kraken(Exchange):
limit_rate = stop_price * limit_price_pct
else:
limit_rate = stop_price * (2 - limit_price_pct)
params['price2'] = self.price_to_precision(pair, limit_rate)
params['price2'] = self.price_to_precision(pair, limit_rate, rounding_mode=round_mode)
else:
ordertype = "stop-loss"
stop_price = self.price_to_precision(pair, stop_price)
stop_price = self.price_to_precision(pair, stop_price, rounding_mode=round_mode)
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
@ -158,7 +160,6 @@ class Kraken(Exchange):
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""

View File

@ -1,14 +1,16 @@
import logging
from typing import Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.enums.pricetype import PriceType
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exceptions import (DDosProtection, OperationalException, RetryableOrderError,
TemporaryError)
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
@ -24,11 +26,14 @@ class Okx(Exchange):
"ohlcv_candle_limit": 100, # Warning, special case with data prior to X months
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
"stoploss_order_types": {"limit": "limit"},
"stoploss_on_exchange": True,
"stop_price_param": "stopLossPrice",
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
"stop_price_type_field": "tpTriggerPxType",
"stop_price_type_field": "slTriggerPxType",
"stop_price_type_value_mapping": {
PriceType.LAST: "last",
PriceType.MARK: "index",
@ -121,10 +126,9 @@ class Okx(Exchange):
return params
@retrier
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
try:
# TODO-lev: Test me properly (check mgnMode passed)
res = self._api.set_leverage(
leverage=leverage,
symbol=pair,
@ -157,3 +161,61 @@ class Okx(Exchange):
pair_tiers = self._leverage_tiers[pair]
return pair_tiers[-1]['maxNotional'] / leverage
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = super()._get_stop_params(side, ordertype, stop_price)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
params['posSide'] = self._get_posSide(side, True)
return params
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
if self._config['dry_run']:
return self.fetch_dry_run_order(order_id)
try:
params1 = {'stop': True}
order_reg = self._api.fetch_order(order_id, pair, params=params1)
self._log_exchange_response('fetch_stoploss_order', order_reg)
return order_reg
except ccxt.OrderNotFound:
pass
params2 = {'stop': True, 'ordType': 'conditional'}
for method in (self._api.fetch_open_orders, self._api.fetch_closed_orders,
self._api.fetch_canceled_orders):
try:
orders = method(pair, params=params2)
orders_f = [order for order in orders if order['id'] == order_id]
if orders_f:
order = orders_f[0]
if (order['status'] == 'closed'
and (real_order_id := order.get('info', {}).get('ordId')) is not None):
# Once a order triggered, we fetch the regular followup order.
order_reg = self.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order_reg)
order_reg['id_stop'] = order_reg['id']
order_reg['id'] = order_id
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
return order_reg
order['type'] = 'stoploss'
return order
except ccxt.BaseError:
pass
raise RetryableOrderError(
f'StoplossOrder not found (pair: {pair} id: {order_id}).')
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if order['type'] == 'stop':
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']
def cancel_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
params1 = {'stop': True}
# 'ordType': 'conditional'
#
return self.cancel_order(
order_id=order_id,
pair=pair,
params=params1,
)

View File

@ -47,7 +47,7 @@ class Base3ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
self.tensorboard_log(self.actions._member_names_[action], category="actions")
trade_type = None
if self.is_tradesignal(action):
@ -66,7 +66,7 @@ class Base3ActionRLEnv(BaseEnvironment):
elif action == Actions.Sell.value and not self.can_short:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
trade_type = "exit"
self._last_trade_tick = None
else:
print("case not defined")
@ -74,7 +74,7 @@ class Base3ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
'type': trade_type, 'profit': self.get_unrealized_profit()})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -48,20 +48,10 @@ class Base4ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
self.tensorboard_log(self.actions._member_names_[action], category="actions")
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
@ -69,16 +59,16 @@ class Base4ActionRLEnv(BaseEnvironment):
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
trade_type = "enter_long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
trade_type = "enter_short"
self._last_trade_tick = self._current_tick
elif action == Actions.Exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
trade_type = "exit"
self._last_trade_tick = None
else:
print("case not defined")
@ -86,7 +76,7 @@ class Base4ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
'type': trade_type, 'profit': self.get_unrealized_profit()})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -49,20 +49,10 @@ class Base5ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
self.tensorboard_log(self.actions._member_names_[action], category="actions")
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
@ -70,21 +60,21 @@ class Base5ActionRLEnv(BaseEnvironment):
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
trade_type = "enter_long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
trade_type = "enter_short"
self._last_trade_tick = self._current_tick
elif action == Actions.Long_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
trade_type = "exit_long"
self._last_trade_tick = None
elif action == Actions.Short_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
trade_type = "exit_short"
self._last_trade_tick = None
else:
print("case not defined")
@ -92,7 +82,7 @@ class Base5ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
'type': trade_type, 'profit': self.get_unrealized_profit()})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -137,7 +137,8 @@ class BaseEnvironment(gym.Env):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
def tensorboard_log(self, metric: str, value: Optional[Union[int, float]] = None,
inc: Optional[bool] = None, category: str = "custom"):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
@ -149,17 +150,24 @@ class BaseEnvironment(gym.Env):
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
self.tensorboard_log("invalid")
return -2
:param metric: metric to be tracked and incremented
:param value: value to increment `metric` by
:param inc: sets whether the `value` is incremented or not
:param value: `metric` value
:param inc: (deprecated) sets whether the `value` is incremented or not
:param category: `metric` category
"""
if not inc or metric not in self.tensorboard_metrics:
self.tensorboard_metrics[metric] = value
increment = True if value is None else False
value = 1 if increment else value
if category not in self.tensorboard_metrics:
self.tensorboard_metrics[category] = {}
if not increment or metric not in self.tensorboard_metrics[category]:
self.tensorboard_metrics[category][metric] = value
else:
self.tensorboard_metrics[metric] += value
self.tensorboard_metrics[category][metric] += value
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}

View File

@ -114,6 +114,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
# normalize all data based on train_dataset only
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
data_dictionary = dk.normalize_data(data_dictionary)
# data cleaning/analysis
@ -148,12 +149,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
env_info = self.pack_env_dict(dk.pair)
self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train,
**env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df,
prices=prices_test,
**env_info))
self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
@ -238,6 +235,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
filtered_dataframe, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = self.drop_ohlc_from_df(filtered_dataframe, dk)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
@ -285,7 +285,6 @@ class BaseReinforcementLearningModel(IFreqaiModel):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# %-raw_volume_gen_shift-2_ETH/USDT_1h
# price data for model training and evaluation
tf = self.config['timeframe']
rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
@ -318,8 +317,24 @@ class BaseReinforcementLearningModel(IFreqaiModel):
prices_test.rename(columns=rename_dict, inplace=True)
prices_test.reset_index(drop=True)
train_df = self.drop_ohlc_from_df(train_df, dk)
test_df = self.drop_ohlc_from_df(test_df, dk)
return prices_train, prices_test
def drop_ohlc_from_df(self, df: DataFrame, dk: FreqaiDataKitchen):
"""
Given a dataframe, drop the ohlc data
"""
drop_list = ['%-raw_open', '%-raw_low', '%-raw_high', '%-raw_close']
if self.rl_config["drop_ohlc_from_features"]:
df.drop(drop_list, axis=1, inplace=True)
feature_list = dk.training_features_list
dk.training_features_list = [e for e in feature_list if e not in drop_list]
return df
def load_model_from_disk(self, dk: FreqaiDataKitchen) -> Any:
"""
Can be used by user if they are trying to limit_ram_usage *and*

View File

@ -13,7 +13,7 @@ class TensorboardCallback(BaseCallback):
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super(TensorboardCallback, self).__init__(verbose)
super().__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
@ -46,14 +46,12 @@ class TensorboardCallback(BaseCallback):
local_info = self.locals["infos"][0]
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for info in local_info:
if info not in ["episode", "terminal_observation"]:
self.logger.record(f"_info/{info}", local_info[info])
for metric in local_info:
if metric not in ["episode", "terminal_observation"]:
self.logger.record(f"info/{metric}", local_info[metric])
for info in tensorboard_metrics:
if info in [action.name for action in self.actions]:
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
else:
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
for category in tensorboard_metrics:
for metric in tensorboard_metrics[category]:
self.logger.record(f"{category}/{metric}", tensorboard_metrics[category][metric])
return True

View File

@ -0,0 +1,147 @@
import logging
from typing import Dict, List, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch
from pandas import DataFrame
from torch.nn import functional as F
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class BasePyTorchClassifier(BasePyTorchModel):
"""
A PyTorch implementation of a classifier.
User must implement fit method
Important!
- User must declare the target class names in the strategy,
under IStrategy.set_freqai_targets method.
for example, in your strategy:
```
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
return dataframe
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.class_name_to_index = None
self.index_to_class_name = None
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
:raises ValueError: if 'class_names' doesn't exist in model meta_data.
"""
class_names = self.model.model_meta_data.get("class_names", None)
if not class_names:
raise ValueError(
"Missing class names. "
"self.model.model_meta_data['class_names'] is None."
)
if not self.class_name_to_index:
self.init_class_names_to_index_mapping(class_names)
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
)
logits = self.model.model(x)
probs = F.softmax(logits, dim=-1)
predicted_classes = torch.argmax(probs, dim=-1)
predicted_classes_str = self.decode_class_names(predicted_classes)
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
return (pred_df, dk.do_predict)
def encode_class_names(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str],
):
"""
encode class name, str -> int
assuming first column of *_labels data frame to be the target column
containing the class names
"""
target_column_name = dk.label_list[0]
for split in self.splits:
label_df = data_dictionary[f"{split}_labels"]
self.assert_valid_class_names(label_df[target_column_name], class_names)
label_df[target_column_name] = list(
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
)
@staticmethod
def assert_valid_class_names(
target_column: pd.Series,
class_names: List[str]
):
non_defined_labels = set(target_column) - set(class_names)
if len(non_defined_labels) != 0:
raise OperationalException(
f"Found non defined labels: {non_defined_labels}, ",
f"expecting labels: {class_names}"
)
def decode_class_names(self, class_ints: torch.Tensor) -> List[str]:
"""
decode class name, int -> str
"""
return list(map(lambda x: self.index_to_class_name[x.item()], class_ints))
def init_class_names_to_index_mapping(self, class_names):
self.class_name_to_index = {s: i for i, s in enumerate(class_names)}
self.index_to_class_name = {i: s for i, s in enumerate(class_names)}
logger.info(f"encoded class name to index: {self.class_name_to_index}")
def convert_label_column_to_int(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str]
):
self.init_class_names_to_index_mapping(class_names)
self.encode_class_names(data_dictionary, dk, class_names)
def get_class_names(self) -> List[str]:
if not self.class_names:
raise ValueError(
"self.class_names is empty, "
"set self.freqai.class_names = ['class a', 'class b', 'class c'] "
"inside IStrategy.set_freqai_targets method."
)
return self.class_names

View File

@ -0,0 +1,83 @@
import logging
from abc import ABC, abstractmethod
from time import time
from typing import Any
import torch
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
logger = logging.getLogger(__name__)
class BasePyTorchModel(IFreqaiModel, ABC):
"""
Base class for PyTorch type models.
User *must* inherit from this class and set fit() and predict() and
data_convertor property.
"""
def __init__(self, **kwargs):
super().__init__(config=kwargs["config"])
self.dd.model_type = "pytorch"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
test_size = self.freqai_info.get('data_split_parameters', {}).get('test_size')
self.splits = ["train", "test"] if test_size != 0 else ["train"]
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
model = self.fit(data_dictionary, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model
@property
@abstractmethod
def data_convertor(self) -> PyTorchDataConvertor:
"""
a class responsible for converting `*_features` & `*_labels` pandas dataframes
to pytorch tensors.
"""
raise NotImplementedError("Abstract property")

View File

@ -0,0 +1,49 @@
import logging
from typing import Tuple
import numpy as np
import numpy.typing as npt
from pandas import DataFrame
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class BasePyTorchRegressor(BasePyTorchModel):
"""
A PyTorch implementation of a regressor.
User must implement fit method
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
)
y = self.model.model(x)
pred_df = DataFrame(y.detach().numpy(), columns=[dk.label_list[0]])
return (pred_df, dk.do_predict)

View File

@ -126,7 +126,7 @@ class FreqaiDataDrawer:
"""
exists = self.global_metadata_path.is_file()
if exists:
with open(self.global_metadata_path, "r") as fp:
with self.global_metadata_path.open("r") as fp:
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
return metatada_dict
return {}
@ -139,7 +139,7 @@ class FreqaiDataDrawer:
"""
exists = self.pair_dictionary_path.is_file()
if exists:
with open(self.pair_dictionary_path, "r") as fp:
with self.pair_dictionary_path.open("r") as fp:
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
else:
logger.info("Could not find existing datadrawer, starting from scratch")
@ -152,7 +152,7 @@ class FreqaiDataDrawer:
if self.freqai_info.get('write_metrics_to_disk', False):
exists = self.metric_tracker_path.is_file()
if exists:
with open(self.metric_tracker_path, "r") as fp:
with self.metric_tracker_path.open("r") as fp:
self.metric_tracker = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
logger.info("Loading existing metric tracker from disk.")
else:
@ -166,7 +166,7 @@ class FreqaiDataDrawer:
exists = self.historic_predictions_path.is_file()
if exists:
try:
with open(self.historic_predictions_path, "rb") as fp:
with self.historic_predictions_path.open("rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
@ -176,7 +176,7 @@ class FreqaiDataDrawer:
except EOFError:
logger.warning(
'Historical prediction file was corrupted. Trying to load backup file.')
with open(self.historic_predictions_bkp_path, "rb") as fp:
with self.historic_predictions_bkp_path.open("rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
@ -189,7 +189,7 @@ class FreqaiDataDrawer:
"""
Save historic predictions pickle to disk
"""
with open(self.historic_predictions_path, "wb") as fp:
with self.historic_predictions_path.open("wb") as fp:
cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL)
# create a backup
@ -200,16 +200,16 @@ class FreqaiDataDrawer:
Save metric tracker of all pair metrics collected.
"""
with self.save_lock:
with open(self.metric_tracker_path, 'w') as fp:
with self.metric_tracker_path.open('w') as fp:
rapidjson.dump(self.metric_tracker, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_drawer_to_disk(self):
def save_drawer_to_disk(self) -> None:
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with self.save_lock:
with open(self.pair_dictionary_path, 'w') as fp:
with self.pair_dictionary_path.open('w') as fp:
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
@ -218,7 +218,7 @@ class FreqaiDataDrawer:
Save global metadata json to disk
"""
with self.save_lock:
with open(self.global_metadata_path, 'w') as fp:
with self.global_metadata_path.open('w') as fp:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
@ -424,7 +424,7 @@ class FreqaiDataDrawer:
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
return
@ -446,7 +446,7 @@ class FreqaiDataDrawer:
dump(model, save_path / f"{dk.model_filename}_model.joblib")
elif self.model_type == 'keras':
model.save(save_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None:
@ -457,7 +457,7 @@ class FreqaiDataDrawer:
dk.data["training_features_list"] = dk.training_features_list
dk.data["label_list"] = dk.label_list
# store the metadata
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
# save the train data to file so we can check preds for area of applicability later
@ -471,7 +471,7 @@ class FreqaiDataDrawer:
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
cloudpickle.dump(
dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb")
dk.pca, (dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("wb")
)
self.model_dictionary[coin] = model
@ -491,12 +491,12 @@ class FreqaiDataDrawer:
Load only metadata into datakitchen to increase performance during
presaved backtesting (prediction file loading).
"""
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any:
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any: # noqa: C901
"""
loads all data required to make a prediction on a sub-train time range
:returns:
@ -514,7 +514,7 @@ class FreqaiDataDrawer:
dk.data = self.meta_data_dictionary[coin]["meta_data"]
dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin]["train_df"]
else:
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.data_dictionary["train_features"] = pd.read_pickle(
@ -537,6 +537,11 @@ class FreqaiDataDrawer:
self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
elif self.model_type == 'pytorch':
import torch
zip = torch.load(dk.data_path / f"{dk.model_filename}_model.zip")
model = zip["pytrainer"]
model = model.load_from_checkpoint(zip)
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
@ -552,7 +557,7 @@ class FreqaiDataDrawer:
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
dk.pca = cloudpickle.load(
open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb")
(dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("rb")
)
return model

View File

@ -251,7 +251,7 @@ class FreqaiDataKitchen:
(drop_index == 0) & (drop_index_labels == 0)
]
logger.info(
f"dropped {len(unfiltered_df) - len(filtered_df)} training points"
f"{self.pair}: dropped {len(unfiltered_df) - len(filtered_df)} training points"
f" due to NaNs in populated dataset {len(unfiltered_df)}."
)
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
@ -675,7 +675,7 @@ class FreqaiDataKitchen:
]
logger.info(
f"SVM tossed {len(y_pred) - kept_points.sum()}"
f"{self.pair}: SVM tossed {len(y_pred) - kept_points.sum()}"
f" test points from {len(y_pred)} total points."
)
@ -949,7 +949,7 @@ class FreqaiDataKitchen:
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f"DI tossed {len(do_predict) - do_predict.sum()} predictions for "
f"{self.pair}: DI tossed {len(do_predict) - do_predict.sum()} predictions for "
"being too far from training data."
)
@ -1291,7 +1291,7 @@ class FreqaiDataKitchen:
return dataframe
def use_strategy_to_populate_indicators(
def use_strategy_to_populate_indicators( # noqa: C901
self,
strategy: IStrategy,
corr_dataframes: dict = {},
@ -1315,128 +1315,59 @@ class FreqaiDataKitchen:
dataframe: DataFrame = dataframe containing populated indicators
"""
# this is a hack to check if the user is using the populate_any_indicators function
# check if the user is using the deprecated populate_any_indicators function
new_version = inspect.getsource(strategy.populate_any_indicators) == (
inspect.getsource(IStrategy.populate_any_indicators))
if new_version:
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
if not new_version:
raise OperationalException(
"You are using the `populate_any_indicators()` function"
" which was deprecated on March 1, 2023. Please refer "
"to the strategy migration guide to use the new "
"feature_engineering_* methods: \n"
"https://www.freqtrade.io/en/stable/strategy_migration/#freqai-strategy \n"
"And the feature_engineering_* documentation: \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
)
for tf in tfs:
if tf not in base_dataframes:
base_dataframes[tf] = pd.DataFrame()
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
# ensure corr pairs are always last
for corr_pair in corr_pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)
return dataframe
else:
# the user is using the populate_any_indicators functions which is deprecated
df = self.use_strategy_to_populate_indicators_old_version(
strategy, corr_dataframes, base_dataframes, pair,
prediction_dataframe, do_corr_pairs)
return df
def use_strategy_to_populate_indicators_old_version(
self,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
pair: str = "",
prediction_dataframe: DataFrame = pd.DataFrame(),
do_corr_pairs: bool = True,
) -> DataFrame:
"""
Use the user defined strategy for populating indicators during retrain
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the df pair dataframes
(for user defined timeframes)
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
:param metadata: dict = strategy furnished pair metadata
:return:
dataframe: DataFrame = dataframe containing populated indicators
"""
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
# so we create empty dictionaries, which allows us to pass None to
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
for tf in tfs:
if tf not in base_dataframes:
base_dataframes[tf] = pd.DataFrame()
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
for tf in tfs:
base_dataframes[tf] = None
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = None
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()
sgi = False
for tf in tfs:
if tf == tfs[-1]:
sgi = True # doing this last allows user to use all tf raw prices in labels
dataframe = strategy.populate_any_indicators(
pair,
dataframe.copy(),
tf,
informative=base_dataframes[tf],
set_generalized_indicators=sgi
)
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
# ensure corr pairs are always last
for corr_pair in pairs:
for corr_pair in corr_pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
for tf in tfs:
if pairs and do_corr_pairs:
dataframe = strategy.populate_any_indicators(
corr_pair,
dataframe.copy(),
tf,
informative=corr_dataframes[corr_pair][tf]
)
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
if self.live:
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)

View File

@ -1,4 +1,3 @@
import inspect
import logging
import threading
import time
@ -84,6 +83,7 @@ class IFreqaiModel(ABC):
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
self.class_names: List[str] = [] # used in classification subclasses
self.pair_it = 0
self.pair_it_train = 0
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
@ -105,8 +105,10 @@ class IFreqaiModel(ABC):
self.data_provider: Optional[DataProvider] = None
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
self.can_short = True # overridden in start() with strategy.can_short
self.warned_deprecated_populate_any_indicators = False
self.model: Any = None
if self.ft_params.get('principal_component_analysis', False) and self.continual_learning:
self.ft_params.update({'principal_component_analysis': False})
logger.warning('User tried to use PCA with continual learning. Deactivating PCA.')
record_params(config, self.full_path)
@ -138,9 +140,6 @@ class IFreqaiModel(ABC):
self.data_provider = strategy.dp
self.can_short = strategy.can_short
# check if the strategy has deprecated populate_any_indicators function
self.check_deprecated_populate_any_indicators(strategy)
if self.live:
self.inference_timer('start')
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
@ -159,8 +158,7 @@ class IFreqaiModel(ABC):
dk = self.start_backtesting(dataframe, metadata, self.dk, strategy)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
else:
logger.info(
"Backtesting using historic predictions (live models)")
logger.info("Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk)
dataframe = dk.return_dataframe
@ -309,7 +307,7 @@ class IFreqaiModel(ABC):
if check_features:
self.dd.load_metadata(dk)
dataframe_dummy_features = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe.tail(1), pair=metadata["pair"]
strategy, prediction_dataframe=dataframe.tail(1), pair=pair
)
dk.find_features(dataframe_dummy_features)
self.check_if_feature_list_matches_strategy(dk)
@ -319,7 +317,7 @@ class IFreqaiModel(ABC):
else:
if populate_indicators:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
strategy, prediction_dataframe=dataframe, pair=pair
)
populate_indicators = False
@ -335,6 +333,10 @@ class IFreqaiModel(ABC):
dataframe_train = dk.slice_dataframe(tr_train, dataframe_base_train)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe_base_backtest)
dataframe_train = dk.remove_special_chars_from_feature_names(dataframe_train)
dataframe_backtest = dk.remove_special_chars_from_feature_names(dataframe_backtest)
dk.get_unique_classes_from_labels(dataframe_train)
if not self.model_exists(dk):
dk.find_features(dataframe_train)
dk.find_labels(dataframe_train)
@ -344,13 +346,14 @@ class IFreqaiModel(ABC):
except Exception as msg:
logger.warning(
f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.")
f"Message: {msg}, skipping.", exc_info=True)
self.model = None
self.dd.pair_dict[pair]["trained_timestamp"] = int(
tr_train.stopts)
if self.plot_features:
if self.plot_features and self.model is not None:
plot_feature_importance(self.model, pair, dk, self.plot_features)
if self.save_backtest_models:
if self.save_backtest_models and self.model is not None:
logger.info('Saving backtest model to disk.')
self.dd.save_data(self.model, pair, dk)
else:
@ -491,7 +494,7 @@ class IFreqaiModel(ABC):
"strategy is furnishing the same features as the pretrained"
"model. In case of --strategy-list, please be aware that FreqAI "
"requires all strategies to maintain identical "
"populate_any_indicator() functions"
"feature_engineering_* functions"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
@ -569,8 +572,9 @@ class IFreqaiModel(ABC):
file_type = ".joblib"
elif self.dd.model_type == 'keras':
file_type = ".h5"
elif 'stable_baselines' in self.dd.model_type or 'sb3_contrib' == self.dd.model_type:
elif self.dd.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
file_type = ".zip"
path_to_modelfile = Path(dk.data_path / f"{dk.model_filename}_model{file_type}")
file_exists = path_to_modelfile.is_file()
if file_exists:
@ -603,7 +607,7 @@ class IFreqaiModel(ABC):
:param strategy: IStrategy = user defined strategy object
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
:param data_load_timerange: TimeRange = the amount of data to be loaded
for populate_any_indicators
for populating indicators
(larger than new_trained_timerange so that
new_trained_timerange does not contain any NaNs)
"""
@ -809,7 +813,7 @@ class IFreqaiModel(ABC):
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
"is included in the column names when you are creating features "
"in `populate_any_indicators()`.")
"in `feature_engineering_*` functions.")
self.get_corr_dataframes = not bool(self.corr_dataframes)
elif self.corr_dataframes:
dataframe = dk.attach_corr_pair_columns(
@ -936,26 +940,6 @@ class IFreqaiModel(ABC):
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
return dk
def check_deprecated_populate_any_indicators(self, strategy: IStrategy):
"""
Check and warn if the deprecated populate_any_indicators function is used.
:param strategy: strategy object
"""
if not self.warned_deprecated_populate_any_indicators:
self.warned_deprecated_populate_any_indicators = True
old_version = inspect.getsource(strategy.populate_any_indicators) != (
inspect.getsource(IStrategy.populate_any_indicators))
if old_version:
logger.warning("DEPRECATION WARNING: "
"You are using the deprecated populate_any_indicators function. "
"This function will raise an error on March 1 2023. "
"Please update your strategy by using "
"the new feature_engineering functions. See \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
"for details.")
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.

View File

@ -14,16 +14,20 @@ logger = logging.getLogger(__name__)
class CatboostClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
train_data = Pool(

View File

@ -15,16 +15,20 @@ logger = logging.getLogger(__name__)
class CatboostClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
cbc = CatBoostClassifier(

View File

@ -14,16 +14,20 @@ logger = logging.getLogger(__name__)
class CatboostRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
train_data = Pool(

View File

@ -15,16 +15,20 @@ logger = logging.getLogger(__name__)
class CatboostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
cbr = CatBoostRegressor(

View File

@ -12,16 +12,20 @@ logger = logging.getLogger(__name__)
class LightGBMClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:

View File

@ -13,16 +13,20 @@ logger = logging.getLogger(__name__)
class LightGBMClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
lgb = LGBMClassifier(**self.model_training_parameters)

View File

@ -12,18 +12,20 @@ logger = logging.getLogger(__name__)
class LightGBMRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:

View File

@ -13,16 +13,20 @@ logger = logging.getLogger(__name__)
class LightGBMRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
lgb = LGBMRegressor(**self.model_training_parameters)

View File

@ -0,0 +1,89 @@
from typing import Any, Dict
import torch
from freqtrade.freqai.base_models.BasePyTorchClassifier import BasePyTorchClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.torch.PyTorchDataConvertor import (DefaultPyTorchDataConvertor,
PyTorchDataConvertor)
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
class PyTorchMLPClassifier(BasePyTorchClassifier):
"""
This class implements the fit method of IFreqaiModel.
in the fit method we initialize the model and trainer objects.
the only requirement from the model is to be aligned to PyTorchClassifier
predict method that expects the model to predict a tensor of type long.
parameters are passed via `model_training_parameters` under the freqai
section in the config file. e.g:
{
...
"freqai": {
...
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
},
"model_kwargs": {
"hidden_dim": 512,
"dropout_percent": 0.2,
"n_layer": 1,
},
}
}
}
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(
target_tensor_type=torch.long,
squeeze_target_tensor=True
)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:raises ValueError: If self.class_names is not defined in the parent class.
"""
class_names = self.get_class_names()
self.convert_label_column_to_int(data_dictionary, dk, class_names)
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=len(class_names),
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@ -0,0 +1,83 @@
from typing import Any, Dict
import torch
from freqtrade.freqai.base_models.BasePyTorchRegressor import BasePyTorchRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.torch.PyTorchDataConvertor import (DefaultPyTorchDataConvertor,
PyTorchDataConvertor)
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
class PyTorchMLPRegressor(BasePyTorchRegressor):
"""
This class implements the fit method of IFreqaiModel.
in the fit method we initialize the model and trainer objects.
the only requirement from the model is to be aligned to PyTorchRegressor
predict method that expects the model to predict tensor of type float.
the trainer defines the training loop.
parameters are passed via `model_training_parameters` under the freqai
section in the config file. e.g:
{
...
"freqai": {
...
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
},
"model_kwargs": {
"hidden_dim": 512,
"dropout_percent": 0.2,
"n_layer": 1,
},
}
}
}
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@ -100,7 +100,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
self.tensorboard_log("is_valid")
self.tensorboard_log("invalid", category="actions")
return -2
pnl = self.get_unrealized_profit()

View File

@ -18,16 +18,20 @@ logger = logging.getLogger(__name__)
class XGBoostClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
X = data_dictionary["train_features"].to_numpy()

View File

@ -18,16 +18,20 @@ logger = logging.getLogger(__name__)
class XGBoostRFClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
X = data_dictionary["train_features"].to_numpy()

View File

@ -12,16 +12,20 @@ logger = logging.getLogger(__name__)
class XGBoostRFRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
X = data_dictionary["train_features"]

View File

@ -12,16 +12,20 @@ logger = logging.getLogger(__name__)
class XGBoostRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
X = data_dictionary["train_features"]

View File

@ -13,16 +13,20 @@ logger = logging.getLogger(__name__)
class XGBoostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
xgb = XGBRegressor(**self.model_training_parameters)

View File

@ -0,0 +1,67 @@
from abc import ABC, abstractmethod
from typing import List, Optional
import pandas as pd
import torch
class PyTorchDataConvertor(ABC):
"""
This class is responsible for converting `*_features` & `*_labels` pandas dataframes
to pytorch tensors.
"""
@abstractmethod
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
"""
:param df: "*_features" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
@abstractmethod
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
"""
:param df: "*_labels" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
"""
A default conversion that keeps features dataframe shapes.
"""
def __init__(
self,
target_tensor_type: Optional[torch.dtype] = None,
squeeze_target_tensor: bool = False
):
"""
:param target_tensor_type: type of target tensor, for classification use
torch.long, for regressor use torch.float or torch.double.
:param squeeze_target_tensor: controls the target shape, used for loss functions
that requires 0D or 1D.
"""
self._target_tensor_type = target_tensor_type
self._squeeze_target_tensor = squeeze_target_tensor
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
x = torch.from_numpy(df.values).float()
if device:
x = x.to(device)
return [x]
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
y = torch.from_numpy(df.values)
if self._target_tensor_type:
y = y.to(self._target_tensor_type)
if self._squeeze_target_tensor:
y = y.squeeze()
if device:
y = y.to(device)
return [y]

View File

@ -0,0 +1,97 @@
import logging
from typing import List
import torch
from torch import nn
logger = logging.getLogger(__name__)
class PyTorchMLPModel(nn.Module):
"""
A multi-layer perceptron (MLP) model implemented using PyTorch.
This class mainly serves as a simple example for the integration of PyTorch model's
to freqai. It is not optimized at all and should not be used for production purposes.
:param input_dim: The number of input features. This parameter specifies the number
of features in the input data that the MLP will use to make predictions.
:param output_dim: The number of output classes. This parameter specifies the number
of classes that the MLP will predict.
:param hidden_dim: The number of hidden units in each layer. This parameter controls
the complexity of the MLP and determines how many nonlinear relationships the MLP
can represent. Increasing the number of hidden units can increase the capacity of
the MLP to model complex patterns, but it also increases the risk of overfitting
the training data. Default: 256
:param dropout_percent: The dropout rate for regularization. This parameter specifies
the probability of dropping out a neuron during training to prevent overfitting.
The dropout rate should be tuned carefully to balance between underfitting and
overfitting. Default: 0.2
:param n_layer: The number of layers in the MLP. This parameter specifies the number
of layers in the MLP architecture. Adding more layers to the MLP can increase its
capacity to model complex patterns, but it also increases the risk of overfitting
the training data. Default: 1
:returns: The output of the MLP, with shape (batch_size, output_dim)
"""
def __init__(self, input_dim: int, output_dim: int, **kwargs):
super().__init__()
hidden_dim: int = kwargs.get("hidden_dim", 256)
dropout_percent: int = kwargs.get("dropout_percent", 0.2)
n_layer: int = kwargs.get("n_layer", 1)
self.input_layer = nn.Linear(input_dim, hidden_dim)
self.blocks = nn.Sequential(*[Block(hidden_dim, dropout_percent) for _ in range(n_layer)])
self.output_layer = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=dropout_percent)
def forward(self, tensors: List[torch.Tensor]) -> torch.Tensor:
x: torch.Tensor = tensors[0]
x = self.relu(self.input_layer(x))
x = self.dropout(x)
x = self.blocks(x)
x = self.output_layer(x)
return x
class Block(nn.Module):
"""
A building block for a multi-layer perceptron (MLP).
:param hidden_dim: The number of hidden units in the feedforward network.
:param dropout_percent: The dropout rate for regularization.
:returns: torch.Tensor. with shape (batch_size, hidden_dim)
"""
def __init__(self, hidden_dim: int, dropout_percent: int):
super().__init__()
self.ff = FeedForward(hidden_dim)
self.dropout = nn.Dropout(p=dropout_percent)
self.ln = nn.LayerNorm(hidden_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ff(self.ln(x))
x = self.dropout(x)
return x
class FeedForward(nn.Module):
"""
A simple fully-connected feedforward neural network block.
:param hidden_dim: The number of hidden units in the block.
:return: torch.Tensor. with shape (batch_size, hidden_dim)
"""
def __init__(self, hidden_dim: int):
super().__init__()
self.net = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.net(x)

View File

@ -0,0 +1,208 @@
import logging
import math
from pathlib import Path
from typing import Any, Dict, List, Optional
import pandas as pd
import torch
from torch import nn
from torch.optim import Optimizer
from torch.utils.data import DataLoader, TensorDataset
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
from freqtrade.freqai.torch.PyTorchTrainerInterface import PyTorchTrainerInterface
logger = logging.getLogger(__name__)
class PyTorchModelTrainer(PyTorchTrainerInterface):
def __init__(
self,
model: nn.Module,
optimizer: Optimizer,
criterion: nn.Module,
device: str,
init_model: Dict,
data_convertor: PyTorchDataConvertor,
model_meta_data: Dict[str, Any] = {},
**kwargs
):
"""
:param model: The PyTorch model to be trained.
:param optimizer: The optimizer to use for training.
:param criterion: The loss function to use for training.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
:param init_model: A dictionary containing the initial model/optimizer
state_dict and model_meta_data saved by self.save() method.
:param model_meta_data: Additional metadata about the model (optional).
:param data_convertor: convertor from pd.DataFrame to torch.tensor.
:param max_iters: The number of training iterations to run.
iteration here refers to the number of times we call
self.optimizer.step(). used to calculate n_epochs.
:param batch_size: The size of the batches to use during training.
:param max_n_eval_batches: The maximum number batches to use for evaluation.
"""
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.model_meta_data = model_meta_data
self.device = device
self.max_iters: int = kwargs.get("max_iters", 100)
self.batch_size: int = kwargs.get("batch_size", 64)
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
self.data_convertor = data_convertor
if init_model:
self.load_from_checkpoint(init_model)
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]):
"""
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param splits: splits to use in training, splits must contain "train",
optional "test" could be added by setting freqai.data_split_parameters.test_size > 0
in the config file.
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
"""
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary, splits)
epochs = self.calc_n_epochs(
n_obs=len(data_dictionary["train_features"]),
batch_size=self.batch_size,
n_iters=self.max_iters
)
for epoch in range(1, epochs + 1):
# training
losses = []
for i, batch_data in enumerate(data_loaders_dictionary["train"]):
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
train_loss = sum(losses) / len(losses)
log_message = f"epoch {epoch}/{epochs}: train loss {train_loss:.4f}"
# evaluation
if "test" in splits:
test_loss = self.estimate_loss(
data_loaders_dictionary,
self.max_n_eval_batches,
"test"
)
log_message += f" ; test loss {test_loss:.4f}"
logger.info(log_message)
@torch.no_grad()
def estimate_loss(
self,
data_loader_dictionary: Dict[str, DataLoader],
max_n_eval_batches: Optional[int],
split: str,
) -> float:
self.model.eval()
n_batches = 0
losses = []
for i, batch_data in enumerate(data_loader_dictionary[split]):
if max_n_eval_batches and i > max_n_eval_batches:
n_batches += 1
break
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
losses.append(loss.item())
self.model.train()
return sum(losses) / len(losses)
def create_data_loaders_dictionary(
self,
data_dictionary: Dict[str, pd.DataFrame],
splits: List[str]
) -> Dict[str, DataLoader]:
"""
Converts the input data to PyTorch tensors using a data loader.
"""
data_loader_dictionary = {}
for split in splits:
x = self.data_convertor.convert_x(data_dictionary[f"{split}_features"])
y = self.data_convertor.convert_y(data_dictionary[f"{split}_labels"])
dataset = TensorDataset(*x, *y)
data_loader = DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=True,
num_workers=0,
)
data_loader_dictionary[split] = data_loader
return data_loader_dictionary
@staticmethod
def calc_n_epochs(n_obs: int, batch_size: int, n_iters: int) -> int:
"""
Calculates the number of epochs required to reach the maximum number
of iterations specified in the model training parameters.
the motivation here is that `max_iters` is easier to optimize and keep stable,
across different n_obs - the number of data points.
"""
n_batches = math.ceil(n_obs // batch_size)
epochs = math.ceil(n_iters // n_batches)
if epochs <= 10:
logger.warning("User set `max_iters` in such a way that the trainer will only perform "
f" {epochs} epochs. Please consider increasing this value accordingly")
if epochs <= 1:
logger.warning("Epochs set to 1. Please review your `max_iters` value")
epochs = 1
return epochs
def save(self, path: Path):
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
"""
torch.save({
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"model_meta_data": self.model_meta_data,
"pytrainer": self
}, path)
def load(self, path: Path):
checkpoint = torch.load(path)
return self.load_from_checkpoint(checkpoint)
def load_from_checkpoint(self, checkpoint: Dict):
"""
when using continual_learning, DataDrawer will load the dictionary
(containing state dicts and model_meta_data) by calling torch.load(path).
you can access this dict from any class that inherits IFreqaiModel by calling
get_init_model method.
"""
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
self.model_meta_data = checkpoint["model_meta_data"]
return self

View File

@ -0,0 +1,53 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List
import pandas as pd
import torch
from torch import nn
class PyTorchTrainerInterface(ABC):
@abstractmethod
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]) -> None:
"""
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param splits: splits to use in training, splits must contain "train",
optional "test" could be added by setting freqai.data_split_parameters.test_size > 0
in the config file.
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
"""
@abstractmethod
def save(self, path: Path) -> None:
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
"""
def load(self, path: Path) -> nn.Module:
"""
:param path: path to zip file.
:returns: pytorch model.
"""
checkpoint = torch.load(path)
return self.load_from_checkpoint(checkpoint)
@abstractmethod
def load_from_checkpoint(self, checkpoint: Dict) -> nn.Module:
"""
when using continual_learning, DataDrawer will load the dictionary
(containing state dicts and model_meta_data) by calling torch.load(path).
you can access this dict from any class that inherits IFreqaiModel by calling
get_init_model method.
:checkpoint checkpoint: dict containing the model & optimizer state dicts,
model_meta_data, etc..
"""

View File

@ -211,7 +211,7 @@ def record_params(config: Dict[str, Any], full_path: Path) -> None:
"pairs": config.get('exchange', {}).get('pair_whitelist')
}
with open(params_record_path, "w") as handle:
with params_record_path.open("w") as handle:
rapidjson.dump(
run_params,
handle,

View File

@ -21,15 +21,19 @@ from freqtrade.enums import (ExitCheckTuple, ExitType, RPCMessageType, RunMode,
State, TradingMode)
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
InvalidOrderException, PricingError)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
from freqtrade.exchange import (ROUND_DOWN, ROUND_UP, timeframe_to_minutes, timeframe_to_next_date,
timeframe_to_seconds)
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.mixins import LoggingMixin
from freqtrade.persistence import Order, PairLocks, Trade, init_db
from freqtrade.persistence.key_value_store import set_startup_time
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager
from freqtrade.rpc.external_message_consumer import ExternalMessageConsumer
from freqtrade.rpc.rpc_types import (RPCBuyMsg, RPCCancelMsg, RPCProtectionMsg, RPCSellCancelMsg,
RPCSellMsg)
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import FtPrecise
@ -127,19 +131,19 @@ class FreqtradeBot(LoggingMixin):
for minutes in [0, 15, 30, 45]:
t = str(time(time_slot, minutes, 2))
self._schedule.every().day.at(t).do(update)
self.last_process = datetime(1970, 1, 1, tzinfo=timezone.utc)
self.last_process: Optional[datetime] = None
self.strategy.ft_bot_start()
# Initialize protections AFTER bot start - otherwise parameters are not loaded.
self.protections = ProtectionManager(self.config, self.strategy.protections)
def notify_status(self, msg: str) -> None:
def notify_status(self, msg: str, msg_type=RPCMessageType.STATUS) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
via RPC about changes in the bot status.
"""
self.rpc.send_msg({
'type': RPCMessageType.STATUS,
'type': msg_type,
'status': msg
})
@ -179,6 +183,7 @@ class FreqtradeBot(LoggingMixin):
performs startup tasks
"""
migrate_binance_futures_names(self.config)
set_startup_time()
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
# Update older trades with precision and precision mode
@ -212,7 +217,8 @@ class FreqtradeBot(LoggingMixin):
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
self.strategy.gather_informative_pairs())
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)(
current_time=datetime.now(timezone.utc))
self.strategy.analyze(self.active_pair_whitelist)
@ -586,7 +592,7 @@ class FreqtradeBot(LoggingMixin):
min_entry_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_entry_rate,
self.strategy.stoploss)
0.0)
min_exit_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_exit_rate,
self.strategy.stoploss)
@ -594,7 +600,7 @@ class FreqtradeBot(LoggingMixin):
stake_available = self.wallets.get_available_stake_amount()
logger.debug(f"Calling adjust_trade_position for pair {trade.pair}")
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None)(
default_retval=None, supress_error=True)(
trade=trade,
current_time=datetime.now(timezone.utc), current_rate=current_entry_rate,
current_profit=current_entry_profit, min_stake=min_entry_stake,
@ -633,7 +639,7 @@ class FreqtradeBot(LoggingMixin):
return
remaining = (trade.amount - amount) * current_exit_rate
if remaining < min_exit_stake:
if min_exit_stake and remaining < min_exit_stake:
logger.info(f"Remaining amount of {remaining} would be smaller "
f"than the minimum of {min_exit_stake}.")
return
@ -700,7 +706,8 @@ class FreqtradeBot(LoggingMixin):
pos_adjust = trade is not None
enter_limit_requested, stake_amount, leverage = self.get_valid_enter_price_and_stake(
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_)
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_,
pos_adjust)
if not stake_amount:
return False
@ -809,6 +816,9 @@ class FreqtradeBot(LoggingMixin):
precision_mode=self.exchange.precisionMode,
contract_size=self.exchange.get_contract_size(pair),
)
stoploss = self.strategy.stoploss if not self.edge else self.edge.get_stoploss(pair)
trade.adjust_stop_loss(trade.open_rate, stoploss, initial=True)
else:
# This is additional buy, we reset fee_open_currency so timeout checking can work
trade.is_open = True
@ -818,7 +828,7 @@ class FreqtradeBot(LoggingMixin):
trade.orders.append(order_obj)
trade.recalc_trade_from_orders()
Trade.query.session.add(trade)
Trade.session.add(trade)
Trade.commit()
# Updating wallets
@ -841,16 +851,18 @@ class FreqtradeBot(LoggingMixin):
def cancel_stoploss_on_exchange(self, trade: Trade) -> Trade:
# First cancelling stoploss on exchange ...
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
if trade.stoploss_order_id:
try:
logger.info(f"Canceling stoploss on exchange for {trade}")
co = self.exchange.cancel_stoploss_order_with_result(
trade.stoploss_order_id, trade.pair, trade.amount)
trade.update_order(co)
self.update_trade_state(trade, trade.stoploss_order_id, co, stoploss_order=True)
# Reset stoploss order id.
trade.stoploss_order_id = None
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id} "
f"for pair {trade.pair}")
return trade
def get_valid_enter_price_and_stake(
@ -860,7 +872,12 @@ class FreqtradeBot(LoggingMixin):
trade: Optional[Trade],
order_adjust: bool,
leverage_: Optional[float],
pos_adjust: bool,
) -> Tuple[float, float, float]:
"""
Validate and eventually adjust (within limits) limit, amount and leverage
:return: Tuple with (price, amount, leverage)
"""
if price:
enter_limit_requested = price
@ -906,7 +923,9 @@ class FreqtradeBot(LoggingMixin):
# We do however also need min-stake to determine leverage, therefore this is ignored as
# edge-case for now.
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, enter_limit_requested, self.strategy.stoploss, leverage)
pair, enter_limit_requested,
self.strategy.stoploss if not pos_adjust else 0.0,
leverage)
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, enter_limit_requested, leverage)
@ -930,12 +949,11 @@ class FreqtradeBot(LoggingMixin):
return enter_limit_requested, stake_amount, leverage
def _notify_enter(self, trade: Trade, order: Order, order_type: Optional[str] = None,
def _notify_enter(self, trade: Trade, order: Order, order_type: str,
fill: bool = False, sub_trade: bool = False) -> None:
"""
Sends rpc notification when a entry order occurred.
"""
msg_type = RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY
open_rate = order.safe_price
if open_rate is None:
@ -946,9 +964,9 @@ class FreqtradeBot(LoggingMixin):
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=False)
msg = {
msg: RPCBuyMsg = {
'trade_id': trade.id,
'type': msg_type,
'type': RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'exchange': trade.exchange.capitalize(),
@ -960,6 +978,7 @@ class FreqtradeBot(LoggingMixin):
'order_type': order_type,
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': order.safe_amount_after_fee if fill else (order.amount or trade.amount),
'open_date': trade.open_date or datetime.utcnow(),
@ -978,7 +997,7 @@ class FreqtradeBot(LoggingMixin):
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=False)
msg = {
msg: RPCCancelMsg = {
'trade_id': trade.id,
'type': RPCMessageType.ENTRY_CANCEL,
'buy_tag': trade.enter_tag,
@ -990,7 +1009,9 @@ class FreqtradeBot(LoggingMixin):
'limit': trade.open_rate,
'order_type': order_type,
'stake_amount': trade.stake_amount,
'open_rate': trade.open_rate,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date,
@ -1013,12 +1034,16 @@ class FreqtradeBot(LoggingMixin):
trades_closed = 0
for trade in trades:
try:
try:
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
trades_closed += 1
Trade.commit()
continue
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
trades_closed += 1
Trade.commit()
continue
except InvalidOrderException as exception:
logger.warning(
f'Unable to handle stoploss on exchange for {trade.pair}: {exception}')
# Check if we can sell our current pair
if trade.open_order_id is None and trade.is_open and self.handle_trade(trade):
trades_closed += 1
@ -1122,8 +1147,7 @@ class FreqtradeBot(LoggingMixin):
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Exiting the trade forcefully')
self.execute_trade_exit(trade, stop_price, exit_check=ExitCheckTuple(
exit_type=ExitType.EMERGENCY_EXIT))
self.emergency_exit(trade, stop_price)
except ExchangeError:
trade.stoploss_order_id = None
@ -1151,7 +1175,8 @@ class FreqtradeBot(LoggingMixin):
logger.warning('Unable to fetch stoploss order: %s', exception)
if stoploss_order:
trade.update_order(stoploss_order)
self.update_trade_state(trade, trade.stoploss_order_id, stoploss_order,
stoploss_order=True)
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
@ -1215,7 +1240,9 @@ class FreqtradeBot(LoggingMixin):
:param order: Current on exchange stoploss order
:return: None
"""
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stoploss_or_liquidation)
stoploss_norm = self.exchange.price_to_precision(
trade.pair, trade.stoploss_or_liquidation,
rounding_mode=ROUND_DOWN if trade.is_short else ROUND_UP)
if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side):
# we check if the update is necessary
@ -1225,13 +1252,8 @@ class FreqtradeBot(LoggingMixin):
# cancelling the current stoploss on exchange first
logger.info(f"Cancelling current stoploss on exchange for pair {trade.pair} "
f"(orderid:{order['id']}) in order to add another one ...")
try:
co = self.exchange.cancel_stoploss_order_with_result(order['id'], trade.pair,
trade.amount)
trade.update_order(co)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {order['id']} "
f"for pair {trade.pair}")
self.cancel_stoploss_on_exchange(trade)
# Create new stoploss order
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
@ -1275,20 +1297,22 @@ class FreqtradeBot(LoggingMixin):
if order['side'] == trade.entry_side:
self.handle_cancel_enter(trade, order, reason)
else:
canceled = self.handle_cancel_exit(
trade, order, reason)
canceled = self.handle_cancel_exit(trade, order, reason)
canceled_count = trade.get_exit_order_count()
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
logger.warning(f'Emergency exiting trade {trade}, as the exit order '
f'timed out {max_timeouts} times.')
try:
self.execute_trade_exit(
trade, order['price'],
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_EXIT))
except DependencyException as exception:
logger.warning(
f'Unable to emergency sell trade {trade.pair}: {exception}')
self.emergency_exit(trade, order['price'])
def emergency_exit(self, trade: Trade, price: float) -> None:
try:
self.execute_trade_exit(
trade, price,
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_EXIT))
except DependencyException as exception:
logger.warning(
f'Unable to emergency exit trade {trade.pair}: {exception}')
def replace_order(self, order: Dict, order_obj: Optional[Order], trade: Trade) -> None:
"""
@ -1315,7 +1339,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=order_obj.price)(
trade=trade, order=order_obj, pair=trade.pair,
current_time=datetime.now(timezone.utc), proposed_rate=proposed_rate,
current_order_rate=order_obj.price, entry_tag=trade.enter_tag,
current_order_rate=order_obj.safe_price, entry_tag=trade.enter_tag,
side=trade.entry_side)
replacing = True
@ -1331,7 +1355,8 @@ class FreqtradeBot(LoggingMixin):
# place new order only if new price is supplied
self.execute_entry(
pair=trade.pair,
stake_amount=(order_obj.remaining * order_obj.price / trade.leverage),
stake_amount=(
order_obj.safe_remaining * order_obj.safe_price / trade.leverage),
price=adjusted_entry_price,
trade=trade,
is_short=trade.is_short,
@ -1345,6 +1370,8 @@ class FreqtradeBot(LoggingMixin):
"""
for trade in Trade.get_open_order_trades():
if not trade.open_order_id:
continue
try:
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
except (ExchangeError):
@ -1369,6 +1396,9 @@ class FreqtradeBot(LoggingMixin):
"""
was_trade_fully_canceled = False
side = trade.entry_side.capitalize()
if not trade.open_order_id:
logger.warning(f"No open order for {trade}.")
return False
# Cancelled orders may have the status of 'canceled' or 'closed'
if order['status'] not in constants.NON_OPEN_EXCHANGE_STATES:
@ -1455,35 +1485,34 @@ class FreqtradeBot(LoggingMixin):
return False
try:
co = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
order = self.exchange.cancel_order_with_result(
order['id'], trade.pair, trade.amount)
except InvalidOrderException:
logger.exception(
f"Could not cancel {trade.exit_side} order {trade.open_order_id}")
return False
trade.close_rate = None
trade.close_rate_requested = None
trade.close_profit = None
trade.close_profit_abs = None
# Set exit_reason for fill message
exit_reason_prev = trade.exit_reason
trade.exit_reason = trade.exit_reason + f", {reason}" if trade.exit_reason else reason
self.update_trade_state(trade, trade.open_order_id, co)
# Order might be filled above in odd timing issues.
if co.get('status') in ('canceled', 'cancelled'):
if order.get('status') in ('canceled', 'cancelled'):
trade.exit_reason = None
trade.open_order_id = None
else:
trade.exit_reason = exit_reason_prev
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
cancelled = True
else:
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
self.update_trade_state(trade, trade.open_order_id, order)
trade.exit_reason = None
trade.open_order_id = None
self.update_trade_state(trade, trade.open_order_id, order)
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
trade.close_rate = None
trade.close_rate_requested = None
self._notify_exit_cancel(
trade,
order_type=self.strategy.order_types['exit'],
@ -1640,13 +1669,13 @@ class FreqtradeBot(LoggingMixin):
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
profit_ratio = trade.calc_profit_ratio(order_rate, amount, trade.open_rate)
else:
order_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
order_rate = trade.safe_close_rate
profit = trade.calc_profit(rate=order_rate) + (0.0 if fill else trade.realized_profit)
profit_ratio = trade.calc_profit_ratio(order_rate)
amount = trade.amount
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
msg: RPCSellMsg = {
'type': (RPCMessageType.EXIT_FILL if fill
else RPCMessageType.EXIT),
'trade_id': trade.id,
@ -1672,6 +1701,7 @@ class FreqtradeBot(LoggingMixin):
'close_date': trade.close_date or datetime.utcnow(),
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency'),
'sub_trade': sub_trade,
'cumulative_profit': trade.realized_profit,
@ -1695,14 +1725,14 @@ class FreqtradeBot(LoggingMixin):
raise DependencyException(
f"Order_obj not found for {order_id}. This should not have happened.")
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_rate: float = trade.safe_close_rate
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.exchange.get_rate(
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
msg: RPCSellCancelMsg = {
'type': RPCMessageType.EXIT_CANCEL,
'trade_id': trade.id,
'exchange': trade.exchange.capitalize(),
@ -1724,6 +1754,7 @@ class FreqtradeBot(LoggingMixin):
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.now(timezone.utc),
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
'sub_trade': sub_trade,
@ -1738,7 +1769,8 @@ class FreqtradeBot(LoggingMixin):
#
def update_trade_state(
self, trade: Trade, order_id: str, action_order: Optional[Dict[str, Any]] = None,
self, trade: Trade, order_id: Optional[str],
action_order: Optional[Dict[str, Any]] = None,
stoploss_order: bool = False, send_msg: bool = True) -> bool:
"""
Checks trades with open orders and updates the amount if necessary
@ -1754,11 +1786,11 @@ class FreqtradeBot(LoggingMixin):
return False
# Update trade with order values
logger.info(f'Found open order for {trade}')
if not stoploss_order:
logger.info(f'Found open order for {trade}')
try:
order = action_order or self.exchange.fetch_order_or_stoploss_order(order_id,
trade.pair,
stoploss_order)
order = action_order or self.exchange.fetch_order_or_stoploss_order(
order_id, trade.pair, stoploss_order)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', order_id, exception)
return False
@ -1787,7 +1819,7 @@ class FreqtradeBot(LoggingMixin):
# TODO: should shorting/leverage be supported by Edge,
# then this will need to be fixed.
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
if order.get('side') == trade.entry_side or trade.amount > 0:
if order.get('side') == trade.entry_side or (trade.amount > 0 and trade.is_open):
# Must also run for partial exits
# TODO: Margin will need to use interest_rate as well.
# interest_rate = self.exchange.get_interest_rate()
@ -1823,21 +1855,27 @@ class FreqtradeBot(LoggingMixin):
self.handle_protections(trade.pair, trade.trade_direction)
elif send_msg and not trade.open_order_id and not stoploss_order:
# Enter fill
self._notify_enter(trade, order, fill=True, sub_trade=sub_trade)
self._notify_enter(trade, order, order.order_type, fill=True, sub_trade=sub_trade)
def handle_protections(self, pair: str, side: LongShort) -> None:
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(pair, datetime.now(timezone.utc), reason='Auto lock')
prot_trig = self.protections.stop_per_pair(pair, side=side)
if prot_trig:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER, }
msg.update(prot_trig.to_json())
msg: RPCProtectionMsg = {
'type': RPCMessageType.PROTECTION_TRIGGER,
'base_currency': self.exchange.get_pair_base_currency(prot_trig.pair),
**prot_trig.to_json() # type: ignore
}
self.rpc.send_msg(msg)
prot_trig_glb = self.protections.global_stop(side=side)
if prot_trig_glb:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL, }
msg.update(prot_trig_glb.to_json())
msg = {
'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
'base_currency': self.exchange.get_pair_base_currency(prot_trig_glb.pair),
**prot_trig_glb.to_json() # type: ignore
}
self.rpc.send_msg(msg)
def apply_fee_conditional(self, trade: Trade, trade_base_currency: str,

View File

@ -6,8 +6,7 @@ import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
from typing.io import IO
from typing import Any, Dict, Iterator, List, Mapping, Optional, TextIO, Union
from urllib.parse import urlparse
import orjson
@ -81,7 +80,7 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool =
else:
if log:
logger.info(f'dumping json to "{filename}"')
with open(filename, 'w') as fp:
with filename.open('w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
logger.debug(f'done json to "{filename}"')
@ -98,12 +97,12 @@ def file_dump_joblib(filename: Path, data: Any, log: bool = True) -> None:
if log:
logger.info(f'dumping joblib to "{filename}"')
with open(filename, 'wb') as fp:
with filename.open('wb') as fp:
joblib.dump(data, fp)
logger.debug(f'done joblib dump to "{filename}"')
def json_load(datafile: IO) -> Any:
def json_load(datafile: Union[gzip.GzipFile, TextIO]) -> Any:
"""
load data with rapidjson
Use this to have a consistent experience,
@ -112,7 +111,7 @@ def json_load(datafile: IO) -> Any:
return rapidjson.load(datafile, number_mode=rapidjson.NM_NATIVE)
def file_load_json(file):
def file_load_json(file: Path):
if file.suffix != ".gz":
gzipfile = file.with_suffix(file.suffix + '.gz')
@ -125,7 +124,7 @@ def file_load_json(file):
pairdata = json_load(datafile)
elif file.is_file():
logger.debug(f"Loading historical data from file {file}")
with open(file) as datafile:
with file.open() as datafile:
pairdata = json_load(datafile)
else:
return None

View File

@ -29,7 +29,7 @@ def get_strategy_run_id(strategy) -> str:
# Include _ft_params_from_file - so changing parameter files cause cache eviction
digest.update(rapidjson.dumps(
strategy._ft_params_from_file, default=str, number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
with Path(strategy.__file__).open('rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()

View File

@ -93,7 +93,7 @@ class Backtesting:
if self.config.get('strategy_list'):
if self.config.get('freqai', {}).get('enabled', False):
logger.warning("Using --strategy-list with FreqAI REQUIRES all strategies "
"to have identical populate_any_indicators.")
"to have identical feature_engineering_* functions.")
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
@ -203,9 +203,10 @@ class Backtesting:
# since a "perfect" stoploss-exit is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
# Update can_short flag
self._can_short = self.trading_mode != TradingMode.SPOT and strategy.can_short
self.strategy.ft_bot_start()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
@ -440,11 +441,8 @@ class Backtesting:
side_1 * abs(self.strategy.trailing_stop_positive / leverage)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(trade.stop_loss_pct / leverage))
if is_short:
assert stop_rate > row[LOW_IDX]
else:
assert stop_rate < row[HIGH_IDX]
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(
(trade.stop_loss_pct or 0.0) / leverage))
# Limit lower-end to candle low to avoid exits below the low.
# This still remains "worst case" - but "worst realistic case".
@ -472,7 +470,7 @@ class Backtesting:
# - (Expected abs profit - open_rate - open_fee) / (fee_close -1)
roi_rate = trade.open_rate * roi / leverage
open_fee_rate = side_1 * trade.open_rate * (1 + side_1 * trade.fee_open)
close_rate = -(roi_rate + open_fee_rate) / (trade.fee_close - side_1 * 1)
close_rate = -(roi_rate + open_fee_rate) / ((trade.fee_close or 0.0) - side_1 * 1)
if is_short:
is_new_roi = row[OPEN_IDX] < close_rate
else:
@ -525,7 +523,7 @@ class Backtesting:
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
stake_available = self.wallets.get_available_stake_amount()
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None)(
default_retval=None, supress_error=True)(
trade=trade, # type: ignore[arg-type]
current_time=current_date, current_rate=current_rate,
current_profit=current_profit, min_stake=min_stake,
@ -563,7 +561,7 @@ class Backtesting:
pos_trade = self._get_exit_for_signal(trade, row, exit_, amount)
if pos_trade is not None:
order = pos_trade.orders[-1]
if self._get_order_filled(order.price, row):
if self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_date, trade)
trade.recalc_trade_from_orders()
self.wallets.update()
@ -664,6 +662,7 @@ class Backtesting:
side=trade.exit_side,
order_type=order_type,
status="open",
ft_price=close_rate,
price=close_rate,
average=close_rate,
amount=amount,
@ -742,12 +741,12 @@ class Backtesting:
proposed_leverage=1.0,
max_leverage=max_leverage,
side=direction, entry_tag=entry_tag,
) if self._can_short else 1.0
) if self.trading_mode != TradingMode.SPOT else 1.0
# Cap leverage between 1.0 and max_leverage.
leverage = min(max(leverage, 1.0), max_leverage)
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, propose_rate, -0.05, leverage=leverage) or 0
pair, propose_rate, -0.05 if not pos_adjust else 0.0, leverage=leverage) or 0
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, propose_rate, leverage=leverage)
stake_available = self.wallets.get_available_stake_amount()
@ -887,6 +886,7 @@ class Backtesting:
order_date=current_time,
order_filled_date=current_time,
order_update_date=current_time,
ft_price=propose_rate,
price=propose_rate,
average=propose_rate,
amount=amount,
@ -895,7 +895,7 @@ class Backtesting:
cost=stake_amount + trade.fee_open,
)
trade.orders.append(order)
if pos_adjust and self._get_order_filled(order.price, row):
if pos_adjust and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
else:
trade.open_order_id = str(self.order_id_counter)
@ -1008,15 +1008,15 @@ class Backtesting:
# only check on new candles for open entry orders
if order.side == trade.entry_side and current_time > order.order_date_utc:
requested_rate = strategy_safe_wrapper(self.strategy.adjust_entry_price,
default_retval=order.price)(
default_retval=order.ft_price)(
trade=trade, # type: ignore[arg-type]
order=order, pair=trade.pair, current_time=current_time,
proposed_rate=row[OPEN_IDX], current_order_rate=order.price,
proposed_rate=row[OPEN_IDX], current_order_rate=order.ft_price,
entry_tag=trade.enter_tag, side=trade.trade_direction
) # default value is current order price
# cancel existing order whenever a new rate is requested (or None)
if requested_rate == order.price:
if requested_rate == order.ft_price:
# assumption: there can't be multiple open entry orders at any given time
return False
else:
@ -1028,8 +1028,12 @@ class Backtesting:
if requested_rate:
self._enter_trade(pair=trade.pair, row=row, trade=trade,
requested_rate=requested_rate,
requested_stake=(order.remaining * order.price / trade.leverage),
requested_stake=(
order.safe_remaining * order.ft_price / trade.leverage),
direction='short' if trade.is_short else 'long')
# Delete trade if no successful entries happened (if placing the new order failed)
if trade.open_order_id is None and trade.nr_of_successful_entries == 0:
return True
self.replaced_entry_orders += 1
else:
# assumption: there can't be multiple open entry orders at any given time
@ -1095,7 +1099,7 @@ class Backtesting:
for trade in list(LocalTrade.bt_trades_open_pp[pair]):
# 3. Process entry orders.
order = trade.select_order(trade.entry_side, is_open=True)
if order and self._get_order_filled(order.price, row):
if order and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
self.wallets.update()
@ -1106,7 +1110,7 @@ class Backtesting:
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.price, row):
if order and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
sub_trade = order.safe_amount_after_fee != trade.amount
@ -1115,7 +1119,7 @@ class Backtesting:
trade.recalc_trade_from_orders()
else:
trade.close_date = current_time
trade.close(order.price, show_msg=False)
trade.close(order.ft_price, show_msg=False)
# logger.debug(f"{pair} - Backtesting exit {trade}")
LocalTrade.close_bt_trade(trade)
@ -1155,6 +1159,8 @@ class Backtesting:
while current_time <= end_date:
open_trade_count_start = LocalTrade.bt_open_open_trade_count
self.check_abort()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)(
current_time=current_time)
for i, pair in enumerate(data):
row_index = indexes[pair]
row = self.validate_row(data, pair, row_index, current_time)

View File

@ -1,4 +1,3 @@
import io
import logging
from copy import deepcopy
from datetime import datetime, timezone
@ -24,6 +23,8 @@ logger = logging.getLogger(__name__)
NON_OPT_PARAM_APPENDIX = " # value loaded from strategy"
HYPER_PARAMS_FILE_FORMAT = rapidjson.NM_NATIVE | rapidjson.NM_NAN
def hyperopt_serializer(x):
if isinstance(x, np.integer):
@ -77,9 +78,18 @@ class HyperoptTools():
with filename.open('w') as f:
rapidjson.dump(final_params, f, indent=2,
default=hyperopt_serializer,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
number_mode=HYPER_PARAMS_FILE_FORMAT
)
@staticmethod
def load_params(filename: Path) -> Dict:
"""
Load parameters from file
"""
with filename.open('r') as f:
params = rapidjson.load(f, number_mode=HYPER_PARAMS_FILE_FORMAT)
return params
@staticmethod
def try_export_params(config: Config, strategy_name: str, params: Dict):
if params.get(FTHYPT_FILEVERSION, 1) >= 2 and not config.get('disableparamexport', False):
@ -190,7 +200,7 @@ class HyperoptTools():
for s in ['buy', 'sell', 'protection',
'roi', 'stoploss', 'trailing', 'max_open_trades']:
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
print(rapidjson.dumps(result_dict, default=str, number_mode=HYPER_PARAMS_FILE_FORMAT))
else:
HyperoptTools._params_pretty_print(params, 'buy', "Buy hyperspace params:",
@ -464,8 +474,8 @@ class HyperoptTools():
return
try:
io.open(csv_file, 'w+').close()
except IOError:
Path(csv_file).open('w+').close()
except OSError:
logger.error(f"Failed to create CSV file: {csv_file}")
return

View File

@ -865,6 +865,11 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if (results.get('results_per_enter_tag') is not None
or results.get('results_per_buy_tag') is not None):
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
@ -884,11 +889,6 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
for period in backtest_breakdown:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results['trades'], period=period)
@ -917,11 +917,11 @@ def show_backtest_results(config: Config, backtest_stats: Dict):
strategy, results, stake_currency,
config.get('backtest_breakdown', []))
if len(backtest_stats['strategy']) > 1:
if len(backtest_stats['strategy']) > 0:
# Print Strategy summary table
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
print(f"{results['backtest_start']} -> {results['backtest_end']} |"
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}")
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)

View File

@ -1,5 +1,6 @@
# flake8: noqa: F401
from freqtrade.persistence.key_value_store import KeyStoreKeys, KeyValueStore
from freqtrade.persistence.models import init_db
from freqtrade.persistence.pairlock_middleware import PairLocks
from freqtrade.persistence.trade_model import LocalTrade, Order, Trade

Some files were not shown because too many files have changed in this diff Show More