initial commit
This commit is contained in:
		
							
								
								
									
										69
									
								
								freqtrade/freqai/base_models/BasePytorchModel.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								freqtrade/freqai/base_models/BasePytorchModel.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,69 @@ | ||||
| import logging | ||||
| from time import time | ||||
| from typing import Any, Dict | ||||
|  | ||||
| import torch | ||||
| from pandas import DataFrame | ||||
|  | ||||
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen | ||||
| from freqtrade.freqai.freqai_interface import IFreqaiModel | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| class BasePytorchModel(IFreqaiModel): | ||||
|     """ | ||||
|     Base class for TensorFlow type models. | ||||
|     User *must* inherit from this class and set fit() and predict(). | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, **kwargs): | ||||
|         super().__init__(config=kwargs['config']) | ||||
|         self.dd.model_type = 'pytorch' | ||||
|         self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||||
|  | ||||
|     def train( | ||||
|         self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs | ||||
|     ) -> Any: | ||||
|         """ | ||||
|         Filter the training data and train a model to it. Train makes heavy use of the datakitchen | ||||
|         for storing, saving, loading, and analyzing the data. | ||||
|         :param unfiltered_df: Full dataframe for the current training period | ||||
|         :param metadata: pair metadata from strategy. | ||||
|         :return: | ||||
|         :model: Trained model which can be used to inference (self.predict) | ||||
|         """ | ||||
|  | ||||
|         logger.info(f"-------------------- Starting training {pair} --------------------") | ||||
|  | ||||
|         start_time = time() | ||||
|  | ||||
|         features_filtered, labels_filtered = dk.filter_features( | ||||
|             unfiltered_df, | ||||
|             dk.training_features_list, | ||||
|             dk.label_list, | ||||
|             training_filter=True, | ||||
|         ) | ||||
|  | ||||
|         # split data into train/test data. | ||||
|         data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered) | ||||
|         if not self.freqai_info.get("fit_live_predictions", 0) or not self.live: | ||||
|             dk.fit_labels() | ||||
|         # normalize all data based on train_dataset only | ||||
|         data_dictionary = dk.normalize_data(data_dictionary) | ||||
|  | ||||
|         # optional additional data cleaning/analysis | ||||
|         self.data_cleaning_train(dk) | ||||
|  | ||||
|         logger.info( | ||||
|             f"Training model on {len(dk.data_dictionary['train_features'].columns)} features" | ||||
|         ) | ||||
|         logger.info(f"Training model on {len(data_dictionary['train_features'])} data points") | ||||
|  | ||||
|         model = self.fit(data_dictionary, dk) | ||||
|         end_time = time() | ||||
|  | ||||
|         logger.info(f"-------------------- Done training {pair} " | ||||
|                     f"({end_time - start_time:.2f} secs) --------------------") | ||||
|  | ||||
|         return model | ||||
							
								
								
									
										51
									
								
								freqtrade/freqai/base_models/PytorchModelTrainer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								freqtrade/freqai/base_models/PytorchModelTrainer.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,51 @@ | ||||
| import logging | ||||
| from pathlib import Path | ||||
| from typing import Dict | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| class PytorchModelTrainer: | ||||
|     def __init__(self, model: nn.Module, optimizer, init_model: Dict): | ||||
|         self.model = model | ||||
|         self.optimizer = optimizer | ||||
|         if init_model: | ||||
|             self.load_from_checkpoint(init_model) | ||||
|  | ||||
|     def fit(self, tensor_dictionary, max_iters, batch_size): | ||||
|         for iter in range(max_iters): | ||||
|  | ||||
|             # todo add validation evaluation here | ||||
|  | ||||
|             xb, yb = self.get_batch(tensor_dictionary, 'train', batch_size) | ||||
|             logits, loss = self.model(xb, yb) | ||||
|  | ||||
|             self.optimizer.zero_grad(set_to_none=True) | ||||
|             loss.backward() | ||||
|             self.optimizer.step() | ||||
|  | ||||
|     def save(self, path): | ||||
|         torch.save({ | ||||
|             'model_state_dict': self.model.state_dict(), | ||||
|             'optimizer_state_dict': self.optimizer.state_dict(), | ||||
|         }, path) | ||||
|  | ||||
|     def load_from_file(self, path: Path): | ||||
|         checkpoint = torch.load(path) | ||||
|         return self.load_from_checkpoint(checkpoint) | ||||
|  | ||||
|     def load_from_checkpoint(self, checkpoint: Dict): | ||||
|         self.model.load_state_dict(checkpoint['model_state_dict']) | ||||
|         self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) | ||||
|         return self | ||||
|  | ||||
|     @staticmethod | ||||
|     def get_batch(tensor_dictionary: Dict, split: str, batch_size: int): | ||||
|         ix = torch.randint(len(tensor_dictionary[f'{split}_labels']), (batch_size,)) | ||||
|         x = tensor_dictionary[f'{split}_features'][ix] | ||||
|         y = tensor_dictionary[f'{split}_labels'][ix] | ||||
|         return x, y | ||||
|  | ||||
| @@ -446,7 +446,9 @@ class FreqaiDataDrawer: | ||||
|             dump(model, save_path / f"{dk.model_filename}_model.joblib") | ||||
|         elif self.model_type == 'keras': | ||||
|             model.save(save_path / f"{dk.model_filename}_model.h5") | ||||
|         elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type: | ||||
|         elif 'stable_baselines' in self.model_type or\ | ||||
|                 'sb3_contrib' == self.model_type or\ | ||||
|                 'pytorch' == self.model_type: | ||||
|             model.save(save_path / f"{dk.model_filename}_model.zip") | ||||
|  | ||||
|         if dk.svm_model is not None: | ||||
| @@ -537,6 +539,9 @@ class FreqaiDataDrawer: | ||||
|                 self.model_type, self.freqai_info['rl_config']['model_type']) | ||||
|             MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type']) | ||||
|             model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model") | ||||
|         elif self.model_type == 'pytorch': | ||||
|             import torch | ||||
|             model = torch.load(dk.data_path / f"{dk.model_filename}_model.zip") | ||||
|  | ||||
|         if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file(): | ||||
|             dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib") | ||||
|   | ||||
| @@ -0,0 +1,97 @@ | ||||
| import logging | ||||
|  | ||||
| from typing import Dict | ||||
| from typing import Any, Dict, Tuple | ||||
| import numpy.typing as npt | ||||
|  | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import torch | ||||
| from pandas import DataFrame | ||||
|  | ||||
| from torch.nn import functional as F | ||||
|  | ||||
| from freqtrade.freqai.base_models.BasePytorchModel import BasePytorchModel | ||||
| from freqtrade.freqai.base_models.PytorchModelTrainer import PytorchModelTrainer | ||||
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen | ||||
| from freqtrade.freqai.prediction_models.PytorchMLPModel import MLP | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| class PytorchClassifierMultiTarget(BasePytorchModel): | ||||
|  | ||||
|     def __init__(self, **kwargs): | ||||
|         super().__init__(**kwargs) | ||||
|  | ||||
|         # todo move to config | ||||
|         self.n_hidden = 1024 | ||||
|         self.labels = ['0.0', '1.0', '2.0'] | ||||
|         self.max_iters = 100 | ||||
|         self.batch_size = 64 | ||||
|         self.learning_rate = 3e-4 | ||||
|  | ||||
|     def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: | ||||
|         """ | ||||
|         User sets up the training and test data to fit their desired model here | ||||
|         :param tensor_dictionary: the dictionary constructed by DataHandler to hold | ||||
|                                 all the training and test data/labels. | ||||
|         """ | ||||
|         n_features = data_dictionary['train_features'].shape[-1] | ||||
|         tensor_dictionary = self.convert_data_to_tensors(data_dictionary) | ||||
|         model = MLP( | ||||
|             input_dim=n_features, | ||||
|             hidden_dim=self.n_hidden, | ||||
|             output_dim=len(self.labels) | ||||
|         ) | ||||
|         model.to(self.device) | ||||
|         optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate) | ||||
|         init_model = self.get_init_model(dk.pair) | ||||
|         trainer = PytorchModelTrainer(model, optimizer, init_model=init_model) | ||||
|         trainer.fit(tensor_dictionary, self.max_iters, self.batch_size) | ||||
|         return trainer | ||||
|  | ||||
|     def predict( | ||||
|         self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs | ||||
|     ) -> Tuple[DataFrame, npt.NDArray[np.int_]]: | ||||
|         """ | ||||
|         Filter the prediction features data and predict with it. | ||||
|         :param unfiltered_df: Full dataframe for the current backtest period. | ||||
|         :return: | ||||
|         :pred_df: dataframe containing the predictions | ||||
|         :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove | ||||
|         data (NaNs) or felt uncertain about data (PCA and DI index) | ||||
|         """ | ||||
|  | ||||
|         dk.find_features(unfiltered_df) | ||||
|         filtered_df, _ = dk.filter_features( | ||||
|             unfiltered_df, dk.training_features_list, training_filter=False | ||||
|         ) | ||||
|         filtered_df = dk.normalize_data_from_metadata(filtered_df) | ||||
|         dk.data_dictionary["prediction_features"] = filtered_df | ||||
|  | ||||
|         self.data_cleaning_predict(dk) | ||||
|         dk.data_dictionary["prediction_features"] = torch.tensor( | ||||
|             dk.data_dictionary["prediction_features"].values | ||||
|         ).to(self.device) | ||||
|  | ||||
|         logits, _ = self.model.model(dk.data_dictionary["prediction_features"]) | ||||
|         probs = F.softmax(logits, dim=-1) | ||||
|         label_ints = torch.argmax(probs, dim=-1) | ||||
|  | ||||
|         pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.labels) | ||||
|         pred_df = DataFrame(label_ints, columns=dk.label_list).astype(float).astype(str) | ||||
|         pred_df = pd.concat([pred_df, pred_df_prob], axis=1) | ||||
|         return (pred_df, dk.do_predict) | ||||
|  | ||||
|     def convert_data_to_tensors(self, data_dictionary: Dict) -> Dict: | ||||
|         tensor_dictionary = {} | ||||
|         for split in ['train', 'test']: | ||||
|             tensor_dictionary[f'{split}_features'] = torch.tensor( | ||||
|                 data_dictionary[f'{split}_features'].values | ||||
|             ).to(self.device) | ||||
|             tensor_dictionary[f'{split}_labels'] = torch.tensor( | ||||
|                 data_dictionary[f'{split}_labels'].astype(float).values | ||||
|             ).long().to(self.device) | ||||
|  | ||||
|         return tensor_dictionary | ||||
							
								
								
									
										31
									
								
								freqtrade/freqai/prediction_models/PytorchMLPModel.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								freqtrade/freqai/prediction_models/PytorchMLPModel.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,31 @@ | ||||
| import logging | ||||
|  | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.nn import functional as F | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| class MLP(nn.Module): | ||||
|     def __init__(self, input_dim, hidden_dim, output_dim): | ||||
|         super(MLP, self).__init__() | ||||
|         self.input_layer = nn.Linear(input_dim, hidden_dim) | ||||
|         self.hidden_layer = nn.Linear(hidden_dim, hidden_dim) | ||||
|         self.output_layer = nn.Linear(hidden_dim, output_dim) | ||||
|         self.relu = nn.ReLU() | ||||
|         self.dropout = nn.Dropout(p=0.2) | ||||
|  | ||||
|     def forward(self, x, targets=None): | ||||
|         x = self.relu(self.input_layer(x)) | ||||
|         x = self.dropout(x) | ||||
|         x = self.relu(self.hidden_layer(x)) | ||||
|         x = self.dropout(x) | ||||
|         logits = self.output_layer(x) | ||||
|  | ||||
|         if targets is None: | ||||
|             return logits, None | ||||
|  | ||||
|         loss = F.cross_entropy(logits, targets.squeeze()) | ||||
|         return logits, loss | ||||
		Reference in New Issue
	
	Block a user