60 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from typing import Any, Dict
 | |
| 
 | |
| from catboost import CatBoostClassifier, Pool
 | |
| 
 | |
| from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
 | |
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
 | |
| 
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| class CatboostClassifier(BaseClassifierModel):
 | |
|     """
 | |
|     User created prediction model. The class inherits IFreqaiModel, which
 | |
|     means it has full access to all Frequency AI functionality. Typically,
 | |
|     users would use this to override the common `fit()`, `train()`, or
 | |
|     `predict()` methods to add their custom data handling tools or change
 | |
|     various aspects of the training that cannot be configured via the
 | |
|     top level config.json file.
 | |
|     """
 | |
| 
 | |
|     def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
 | |
|         """
 | |
|         User sets up the training and test data to fit their desired model here
 | |
|         :param data_dictionary: the dictionary holding all data for train, test,
 | |
|             labels, weights
 | |
|         :param dk: The datakitchen object for the current coin/model
 | |
|         """
 | |
| 
 | |
|         train_data = Pool(
 | |
|             data=data_dictionary["train_features"],
 | |
|             label=data_dictionary["train_labels"],
 | |
|             weight=data_dictionary["train_weights"],
 | |
|         )
 | |
|         if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
 | |
|             test_data = None
 | |
|         else:
 | |
|             test_data = Pool(
 | |
|                 data=data_dictionary["test_features"],
 | |
|                 label=data_dictionary["test_labels"],
 | |
|                 weight=data_dictionary["test_weights"],
 | |
|             )
 | |
| 
 | |
|         cbr = CatBoostClassifier(
 | |
|             allow_writing_files=True,
 | |
|             loss_function='MultiClass',
 | |
|             train_dir=Path(dk.data_path),
 | |
|             **self.model_training_parameters,
 | |
|         )
 | |
| 
 | |
|         init_model = self.get_init_model(dk.pair)
 | |
| 
 | |
|         cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
 | |
|                 log_cout=sys.stdout, log_cerr=sys.stderr)
 | |
| 
 | |
|         return cbr
 |