reformat documentation
This commit is contained in:
parent
c9eee2944b
commit
2ef11faba7
@ -26,29 +26,6 @@ class PyTorchModelTrainer:
|
||||
model_meta_data: Dict[str, Any] = {},
|
||||
):
|
||||
"""
|
||||
A class for training PyTorch models.
|
||||
Implements the training loop logic, load/save methods.
|
||||
|
||||
fit method - training loop logic:
|
||||
- Calculates the predicted output for the batch using the PyTorch model.
|
||||
- Calculates the loss between the predicted and actual output using a loss function.
|
||||
- Computes the gradients of the loss with respect to the model's parameters using
|
||||
backpropagation.
|
||||
- Updates the model's parameters using an optimizer.
|
||||
|
||||
save method:
|
||||
called by DataDrawer
|
||||
- Saving any nn.Module state_dict
|
||||
- Saving model_meta_data, this dict should contain any additional data that the
|
||||
user needs to store. e.g class_names for classification models.
|
||||
|
||||
load method:
|
||||
currently DataDrawer is responsible for the actual loading.
|
||||
when using continual_learning the DataDrawer will load the dict
|
||||
(saved by self.save(path)). and this class will populate the necessary
|
||||
state_dict of the self.model & self.optimizer and self.model_meta_data.
|
||||
|
||||
|
||||
:param model: The PyTorch model to be trained.
|
||||
:param optimizer: The optimizer to use for training.
|
||||
:param criterion: The loss function to use for training.
|
||||
@ -76,7 +53,11 @@ class PyTorchModelTrainer:
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, pd.DataFrame]):
|
||||
"""
|
||||
General training loop.
|
||||
- Calculates the predicted output for the batch using the PyTorch model.
|
||||
- Calculates the loss between the predicted and actual output using a loss function.
|
||||
- Computes the gradients of the loss with respect to the model's parameters using
|
||||
backpropagation.
|
||||
- Updates the model's parameters using an optimizer.
|
||||
"""
|
||||
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
|
||||
epochs = self.calc_n_epochs(
|
||||
@ -172,6 +153,12 @@ class PyTorchModelTrainer:
|
||||
return epochs
|
||||
|
||||
def save(self, path: Path):
|
||||
"""
|
||||
- Saving any nn.Module state_dict
|
||||
- Saving model_meta_data, this dict should contain any additional data that the
|
||||
user needs to store. e.g class_names for classification models.
|
||||
"""
|
||||
|
||||
torch.save({
|
||||
'model_state_dict': self.model.state_dict(),
|
||||
'optimizer_state_dict': self.optimizer.state_dict(),
|
||||
@ -183,7 +170,14 @@ class PyTorchModelTrainer:
|
||||
return self.load_from_checkpoint(checkpoint)
|
||||
|
||||
def load_from_checkpoint(self, checkpoint: Dict):
|
||||
self.model.load_state_dict(checkpoint['model_state_dict'])
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
||||
"""
|
||||
when using continual_learning, DataDrawer will load the dictionary
|
||||
(containing state dicts and model_meta_data) by calling torch.load(path).
|
||||
you can access this dict from any class that inherits IFreqaiModel by calling
|
||||
get_init_model method.
|
||||
"""
|
||||
|
||||
self.model.load_state_dict(checkpoint["model_state_dict"])
|
||||
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
||||
self.model_meta_data = checkpoint["model_meta_data"]
|
||||
return self
|
||||
|
Loading…
Reference in New Issue
Block a user