reformat documentation

This commit is contained in:
Yinon Polak 2023-03-09 13:25:20 +02:00
parent c9eee2944b
commit 2ef11faba7

View File

@ -26,29 +26,6 @@ class PyTorchModelTrainer:
model_meta_data: Dict[str, Any] = {},
):
"""
A class for training PyTorch models.
Implements the training loop logic, load/save methods.
fit method - training loop logic:
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
save method:
called by DataDrawer
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
load method:
currently DataDrawer is responsible for the actual loading.
when using continual_learning the DataDrawer will load the dict
(saved by self.save(path)). and this class will populate the necessary
state_dict of the self.model & self.optimizer and self.model_meta_data.
:param model: The PyTorch model to be trained.
:param optimizer: The optimizer to use for training.
:param criterion: The loss function to use for training.
@ -76,7 +53,11 @@ class PyTorchModelTrainer:
def fit(self, data_dictionary: Dict[str, pd.DataFrame]):
"""
General training loop.
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
"""
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
epochs = self.calc_n_epochs(
@ -172,6 +153,12 @@ class PyTorchModelTrainer:
return epochs
def save(self, path: Path):
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
@ -183,7 +170,14 @@ class PyTorchModelTrainer:
return self.load_from_checkpoint(checkpoint)
def load_from_checkpoint(self, checkpoint: Dict):
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
"""
when using continual_learning, DataDrawer will load the dictionary
(containing state dicts and model_meta_data) by calling torch.load(path).
you can access this dict from any class that inherits IFreqaiModel by calling
get_init_model method.
"""
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
self.model_meta_data = checkpoint["model_meta_data"]
return self