convert single quotes to double quotes
This commit is contained in:
parent
2ef11faba7
commit
e88a0d5248
@ -19,9 +19,9 @@ class BasePyTorchModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(config=kwargs['config'])
|
||||
self.dd.model_type = 'pytorch'
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
super().__init__(config=kwargs["config"])
|
||||
self.dd.model_type = "pytorch"
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
|
@ -61,7 +61,7 @@ class PyTorchModelTrainer:
|
||||
"""
|
||||
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
|
||||
epochs = self.calc_n_epochs(
|
||||
n_obs=len(data_dictionary['train_features']),
|
||||
n_obs=len(data_dictionary["train_features"]),
|
||||
batch_size=self.batch_size,
|
||||
n_iters=self.max_iters
|
||||
)
|
||||
@ -73,7 +73,7 @@ class PyTorchModelTrainer:
|
||||
f" train loss {losses['train']:.4f} ; test loss {losses['test']:.4f}"
|
||||
)
|
||||
# training
|
||||
for batch_data in data_loaders_dictionary['train']:
|
||||
for batch_data in data_loaders_dictionary["train"]:
|
||||
xb, yb = batch_data
|
||||
xb = xb.to(self.device)
|
||||
yb = yb.to(self.device)
|
||||
@ -93,12 +93,12 @@ class PyTorchModelTrainer:
|
||||
|
||||
self.model.eval()
|
||||
epochs = self.calc_n_epochs(
|
||||
n_obs=len(data_dictionary['test_features']),
|
||||
n_obs=len(data_dictionary["test_features"]),
|
||||
batch_size=self.batch_size,
|
||||
n_iters=self.eval_iters
|
||||
)
|
||||
loss_dictionary = {}
|
||||
for split in ['train', 'test']:
|
||||
for split in ["train", "test"]:
|
||||
losses = torch.zeros(epochs)
|
||||
for i, batch in enumerate(data_loader_dictionary[split]):
|
||||
xb, yb = batch
|
||||
@ -121,12 +121,12 @@ class PyTorchModelTrainer:
|
||||
Converts the input data to PyTorch tensors using a data loader.
|
||||
"""
|
||||
data_loader_dictionary = {}
|
||||
for split in ['train', 'test']:
|
||||
labels_shape = data_dictionary[f'{split}_labels'].shape
|
||||
for split in ["train", "test"]:
|
||||
labels_shape = data_dictionary[f"{split}_labels"].shape
|
||||
labels_view = labels_shape[0] if labels_shape[1] == 1 else labels_shape
|
||||
dataset = TensorDataset(
|
||||
torch.from_numpy(data_dictionary[f'{split}_features'].values).float(),
|
||||
torch.from_numpy(data_dictionary[f'{split}_labels'].astype(float).values)
|
||||
torch.from_numpy(data_dictionary[f"{split}_features"].values).float(),
|
||||
torch.from_numpy(data_dictionary[f"{split}_labels"].astype(float).values)
|
||||
.long()
|
||||
.view(labels_view)
|
||||
)
|
||||
@ -148,6 +148,7 @@ class PyTorchModelTrainer:
|
||||
Calculates the number of epochs required to reach the maximum number
|
||||
of iterations specified in the model training parameters.
|
||||
"""
|
||||
|
||||
n_batches = n_obs // batch_size
|
||||
epochs = n_iters // n_batches
|
||||
return epochs
|
||||
@ -160,9 +161,9 @@ class PyTorchModelTrainer:
|
||||
"""
|
||||
|
||||
torch.save({
|
||||
'model_state_dict': self.model.state_dict(),
|
||||
'optimizer_state_dict': self.optimizer.state_dict(),
|
||||
'model_meta_data': self.model_meta_data,
|
||||
"model_state_dict": self.model.state_dict(),
|
||||
"optimizer_state_dict": self.optimizer.state_dict(),
|
||||
"model_meta_data": self.model_meta_data,
|
||||
}, path)
|
||||
|
||||
def load_from_file(self, path: Path):
|
||||
|
@ -59,7 +59,7 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
||||
|
||||
self.init_class_names_to_index_mapping(self.class_names)
|
||||
self.encode_classes_name(data_dictionary, dk)
|
||||
n_features = data_dictionary['train_features'].shape[-1]
|
||||
n_features = data_dictionary["train_features"].shape[-1]
|
||||
model = PyTorchMLPModel(
|
||||
input_dim=n_features,
|
||||
hidden_dim=self.n_hidden,
|
||||
|
Loading…
Reference in New Issue
Block a user