Compare commits

..

675 Commits

Author SHA1 Message Date
robcaulk
755041c134 add noise feature, improve docstrings 2022-08-19 18:35:24 +02:00
robcaulk
98c62dad91 integrate inlier metric function 2022-08-19 15:22:54 +02:00
th0rntwig
52ee7fc981 Add inlier metric computation 2022-08-19 15:22:54 +02:00
Matthias
16af10a5bc Update notebook sample with simplified datadir configuration
closes #7252
2022-08-19 14:05:27 +02:00
Matthias
7d84ef2e2c Remove unused imports 2022-08-19 13:45:10 +02:00
Matthias
b420614d65 Reduce code duplication in datahandlers 2022-08-19 09:33:07 +02:00
Matthias
975bf8fe88 Update Docstring to match actual return values 2022-08-19 09:23:53 +02:00
Matthias
47b3143534 Simplify and fix some tests 2022-08-19 09:10:54 +02:00
Matthias
42eb508515 Attempt fix of #7184 2022-08-19 07:09:46 +02:00
Matthias
76a3e97e05 Add migrations end message
closes #7251
2022-08-19 06:39:51 +02:00
Matthias
70a77ba3d9 Check for "last" availability in PrecisionFilter
closes #7250
2022-08-18 20:07:50 +02:00
Matthias
85b43ec1a1 Remove double-check for "isolated margin" 2022-08-18 15:23:58 +02:00
Matthias
fde469a253 Remove unnecessary check 2022-08-18 14:53:44 +02:00
Matthias
075e9b8526 Log Exchange responses for set_leverage 2022-08-18 09:52:03 +02:00
Matthias
46e8d9a5e4 Reduce verbosity when whitelist is empty 2022-08-18 09:09:37 +02:00
Matthias
18fab86431 Add dock segment about webserver mode for docker 2022-08-18 08:32:15 +02:00
Matthias
0461a89348 Fix test failures 2022-08-18 07:20:49 +02:00
Matthias
66910bfe63 Don't fail if mark candles are missing
closes #7239
2022-08-17 20:01:57 +02:00
Matthias
3983368228 gateio futures is showing base currency in volume! 2022-08-17 14:51:48 +02:00
Matthias
83ca168bb8 Merge pull request #7216 from freqtrade/precise_calcs
Precise calcs
2022-08-17 14:32:02 +02:00
Matthias
c615e1bc62 Avoid loop error during ccxt tests 2022-08-17 14:31:40 +02:00
Matthias
b9667f50cf Fix random test failure 2022-08-17 14:05:12 +02:00
Matthias
e7902bffa0 Remove checks for dataprovider existance - it's available in all modes. 2022-08-17 10:57:25 +02:00
Matthias
e0883a4ea0 Improve doc wording 2022-08-17 10:55:59 +02:00
Matthias
819bc71941 Update docs for freqai docker container 2022-08-17 10:35:56 +02:00
Matthias
463cf66881 Fix bad image name 2022-08-17 10:32:29 +02:00
Matthias
c8d7c2caac Update CI to build and push freqAI images 2022-08-17 10:32:29 +02:00
Matthias
8d182768f9 stoploss should also use trimmed prices 2022-08-17 09:57:11 +02:00
Matthias
0b0e7eaf96 Mutex TTL Cache accesses which can be accessed by multiple threads
Apparently, cachetools is (intentionally) not threadsafe
when using the Caches directly.
It's therefore recommended to wrap these with an explicit lock to avoid
problems.

source: https://github.com/tkem/cachetools/issues/245

closes #7215
2022-08-16 19:48:21 +02:00
Matthias
24690c1918 Don't convert open_rate to precision
this may cause more problems than it solves.
2022-08-16 18:32:00 +02:00
Matthias
3b44dc52e1 Minor corrections 2022-08-16 18:10:48 +02:00
Matthias
ea6bc47d7a gateio default configs should specify unknown_fee_rate 2022-08-16 17:26:53 +02:00
Matthias
5dde011b31 Add unknown_fee_rate to full sample config 2022-08-16 17:23:49 +02:00
Matthias
a1e4fbf313 Run price_to_precision for dry-run orders 2022-08-16 17:23:49 +02:00
Matthias
1ac81aa316 Show message if fee update failed due to missing
closes #7234
2022-08-16 17:09:23 +02:00
Matthias
c865814a8e Merge pull request #7236 from freqtrade/fix-lgbm-warning
Fix input shape for LighGBMClassifier
2022-08-16 13:49:25 +02:00
robcaulk
4c0fda400f fix input shape warning for LGBMClassifier, add sample_weights/eval_weights 2022-08-16 11:41:53 +02:00
Matthias
fa89368c02 Add test for precision backpopulation 2022-08-16 11:11:52 +02:00
Matthias
96d2f61812 Properly round timestamps to avoid constant log messages 2022-08-16 10:22:59 +02:00
Matthias
b8c1cf0107 Fix test leakage if config is available 2022-08-16 10:19:19 +02:00
Matthias
15a1c59a91 Backtesting should cache precisionMode 2022-08-16 10:15:19 +02:00
Matthias
a73e4f8e41 Truncate amount before comparing for closure 2022-08-16 09:49:53 +02:00
Matthias
2fb7a3091d Improve backfill of precisions 2022-08-16 09:32:31 +02:00
Matthias
711b6b1a1a Merge branch 'develop' into precise_calcs 2022-08-16 09:29:39 +02:00
Matthias
a5b438e41e Run price_to_precision for dry-run orders 2022-08-16 09:28:23 +02:00
Matthias
1dd56e35d5 Ensure comparisions align when closing a trade 2022-08-16 08:21:02 +02:00
Matthias
e4b7bcaeab Fix some tests 2022-08-16 08:01:07 +02:00
Matthias
e818797427 Minor fix in amount_to_precision logic 2022-08-15 20:29:05 +02:00
Matthias
c0bdb71810 Update docstring 2022-08-15 20:06:29 +02:00
Matthias
f2b6ff910f Accept wrong pair in get_precision_amount 2022-08-15 20:05:22 +02:00
Matthias
09ee9089fb Merge pull request #6832 from freqtrade/feat/freqai
Freqai: an interface for users to build/train/backtest predictive models and run them live
2022-08-15 20:03:08 +02:00
Matthias
e6af9a6903 Allow empty precisionMode on conversions 2022-08-15 20:00:15 +02:00
Matthias
c3f159bd57 Add precision fields to database 2022-08-15 19:58:40 +02:00
Matthias
22241c55d5 Add methods to get precision_amount from markets 2022-08-15 19:56:25 +02:00
Matthias
15e85797c2 Simplify to_precision tests and imports 2022-08-15 08:51:15 +02:00
Matthias
6c32331740 Move precision calculations to standalone functions 2022-08-15 08:43:58 +02:00
Matthias
053ab12ba6 Merge pull request #7227 from freqtrade/dependabot/pip/develop/plotly-5.10.0
Bump plotly from 5.9.0 to 5.10.0
2022-08-15 08:11:38 +02:00
Matthias
c7e1719215 Fix interface import sorting 2022-08-15 06:53:02 +02:00
Matthias
686b72a82d Merge pull request #7229 from freqtrade/dependabot/pip/develop/ccxt-1.92.20
Bump ccxt from 1.91.93 to 1.92.20
2022-08-15 06:49:54 +02:00
Matthias
398b2946b5 Update test formatting 2022-08-15 06:49:28 +02:00
Matthias
490c3a30ed Merge pull request #7225 from freqtrade/dependabot/pip/develop/nbconvert-6.5.3
Bump nbconvert from 6.5.0 to 6.5.3
2022-08-15 06:32:54 +02:00
Matthias
3caf0f9df3 Merge pull request #7231 from freqtrade/dependabot/pip/develop/orjson-3.7.12
Bump orjson from 3.7.11 to 3.7.12
2022-08-15 06:32:31 +02:00
Matthias
b7b74a430c Merge pull request #7230 from freqtrade/dependabot/pip/develop/mkdocs-material-8.4.0
Bump mkdocs-material from 8.3.9 to 8.4.0
2022-08-15 06:31:40 +02:00
Matthias
4ae9b48d89 Merge pull request #7228 from freqtrade/dependabot/pip/develop/filelock-3.8.0
Bump filelock from 3.7.1 to 3.8.0
2022-08-15 06:31:19 +02:00
dependabot[bot]
dba7d7fd65 Bump ccxt from 1.91.93 to 1.92.20
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.91.93 to 1.92.20.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.91.93...1.92.20)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 04:29:20 +00:00
Matthias
a0c348cf97 Merge pull request #7226 from freqtrade/dependabot/pip/develop/numpy-1.23.2
Bump numpy from 1.23.1 to 1.23.2
2022-08-15 06:28:53 +02:00
Matthias
ce892d4cde Merge pull request #7224 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.40
Bump sqlalchemy from 1.4.39 to 1.4.40
2022-08-15 06:28:17 +02:00
dependabot[bot]
6fb5fbdd30 Bump orjson from 3.7.11 to 3.7.12
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.11 to 3.7.12.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.11...3.7.12)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:56 +00:00
dependabot[bot]
bc79027cf4 Bump mkdocs-material from 8.3.9 to 8.4.0
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.3.9 to 8.4.0.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.3.9...8.4.0)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:51 +00:00
dependabot[bot]
2581acd75e Bump filelock from 3.7.1 to 3.8.0
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.7.1 to 3.8.0.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.7.1...3.8.0)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:36 +00:00
dependabot[bot]
baa0af68b2 Bump plotly from 5.9.0 to 5.10.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.9.0 to 5.10.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.9.0...v5.10.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:33 +00:00
dependabot[bot]
025ff27dd2 Bump numpy from 1.23.1 to 1.23.2
Bumps [numpy](https://github.com/numpy/numpy) from 1.23.1 to 1.23.2.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.23.1...v1.23.2)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:29 +00:00
dependabot[bot]
96c279f86c Bump nbconvert from 6.5.0 to 6.5.3
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.5.0 to 6.5.3.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.5...6.5.3)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:22 +00:00
dependabot[bot]
4b708caa6a Bump sqlalchemy from 1.4.39 to 1.4.40
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.39 to 1.4.40.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-15 03:01:19 +00:00
robcaulk
3f6d427084 add a check for number of training features in tests 2022-08-14 21:46:37 +02:00
robcaulk
006b11e5d5 fix leftover bug in indicator population 2022-08-14 21:42:55 +02:00
robcaulk
8961b8d560 merge in inference timer and historic predictions handling improvements. 2022-08-14 20:31:15 +02:00
robcaulk
ad846cdb76 fix lock bug, update docstring 2022-08-14 20:24:29 +02:00
Matthias
464d99808f Update doc table formatting 2022-08-14 18:22:01 +02:00
Matthias
d442383a15 Fix ta-lib install script 2022-08-14 18:17:17 +02:00
Matthias
a29402ddde Rename and move analysis_lock to data_kitchen 2022-08-14 17:23:14 +02:00
Matthias
3a9ec76c91 Move "freqai.lock" to backend to simplify user interface 2022-08-14 17:19:50 +02:00
Matthias
a5e96881f4 slightly update doc wording 2022-08-14 17:08:29 +02:00
Matthias
c08a89378d Merge pull request #7192 from AchmadFathoni/patch_conda_ta-lib
Add script for patching conda libta-lib
2022-08-14 09:46:33 +02:00
Matthias
e7513c96b3 install py-find-1st from conda forge
closes #7193
2022-08-14 09:36:38 +02:00
Matthias
24f1dc4ecc Update patched ta-lib install for conda 2022-08-14 09:06:04 +02:00
Matthias
044cf8bb2e Allow new whitelist combination in "button" commands 2022-08-14 08:41:25 +02:00
Matthias
22ac291c3a Merge pull request #7211 from ecoppen/rpc/whitelist_options
Optional /whitelist args - sorted, nobase
2022-08-14 08:26:21 +02:00
Robert Caulk
c9c128f781 finalize logo, improve doc, improve algo overview, fix base tensorflowmodel for mypy 2022-08-14 02:49:01 +02:00
Matthias
8d9284a524 Fix docs edit button 2022-08-13 20:20:09 +02:00
Matthias
7a2b4dbb99 Fix docs edit button 2022-08-13 20:16:36 +02:00
robcaulk
58de20af0f make BaseClassifierModel. Add predict_proba to lightgbm 2022-08-13 20:07:31 +02:00
robcaulk
31be707cc8 clean up code, add docstrings 2022-08-13 19:40:24 +02:00
robcaulk
3e38c1b0bd take dynamic sized tail off historic_predictions as return dataframe to strategy. 2022-08-13 19:40:24 +02:00
robcaulk
7d448fd4ac allow fit_live_predictions access to current pair 2022-08-13 19:40:24 +02:00
robcaulk
1f192be43b avoid denormalizing labels twice 2022-08-13 19:40:24 +02:00
robcaulk
b1b76a2dbe debug classifier with predict proba 2022-08-13 19:40:24 +02:00
robcaulk
23cc21ce59 add predict_proba to base classifier, improve historic predictions handling 2022-08-13 19:40:24 +02:00
Matthias
61acbf21d0 Fix broken telegram tests 2022-08-13 15:46:06 +02:00
Matthias
7075b00e20 Remove odd dry run stoploss behavior
closes #7208
2022-08-13 11:37:23 +02:00
Matthias
7c18ec4053 Add missing key to "full" config sample 2022-08-13 11:24:55 +02:00
Matthias
e09fbe9e53 Improve test resiliance 2022-08-13 11:17:22 +02:00
Matthias
d36da95941 Fix bad import 2022-08-13 11:07:58 +02:00
Matthias
82ac8cb41f Add freqai backtesting_load test 2022-08-13 10:48:57 +02:00
Matthias
0b92c30abd Fix typo in test file 2022-08-13 10:19:46 +02:00
Matthias
5aaab75d1c Add test for dynamic_pairlist_expand 2022-08-13 10:18:57 +02:00
Matthias
1ac6ec1446 Fix failing test... 2022-08-13 09:56:21 +02:00
Matthias
b682fc446e Graciously fail if strategy has freqAI code, but freqAI is not enabled. 2022-08-13 09:53:18 +02:00
Matthias
c190d57f1a Test populate_any_indicator interface 2022-08-13 09:48:59 +02:00
Matthias
3918f4abbd Simplify strategy interface by removing explicit self.freqai_info assignment 2022-08-13 09:27:56 +02:00
Matthias
3b827ee60a Add "freqai.enabled" flag to disable freqAI via config flag
aligns with how other optional modules work in freqtrade.
2022-08-13 09:24:04 +02:00
Matthias
49989012ab Bump catboost requirement to latest 2022-08-13 09:20:58 +02:00
Matthias
f6545ebdb8 Disallow backtesting with --strategy-list for now. 2022-08-13 09:10:03 +02:00
Matthias
e3a5b97b45 Update recalc_from_trades to use FtPrecise 2022-08-13 08:43:56 +02:00
Matthias
9513c39a17 Fix migration rounding test 2022-08-13 08:43:56 +02:00
Matthias
3bcb47d75d Remove usage of Decimal 2022-08-13 08:43:56 +02:00
Matthias
902afc2f02 Use FtPrecise in interest calculation 2022-08-13 08:43:56 +02:00
Matthias
da253f12fe Bump CCXT to required version 2022-08-13 08:43:56 +02:00
Matthias
0e61c2d057 Replace Decimal with FtPrecise in trade_model 2022-08-13 08:43:56 +02:00
Matthias
df701b5862 Merge branch 'develop' into feat/freqai 2022-08-13 08:43:24 +02:00
ecoppen
2312b86a66 Update telegram-usage.md
Add the optional arguments to the documentation.
2022-08-12 19:59:08 +01:00
ecoppen
ccc0ad6f64 fix - reload whitelist
Should fix the issue, if not I'll move development to a different computer and get local testing running properly.
2022-08-12 19:58:41 +01:00
ecoppen
923f73a516 nobase -> baseonly 2022-08-12 19:56:46 +01:00
robcaulk
fb4b73ce89 ensure dates are saved 2022-08-12 12:03:44 +02:00
Matthias
b427c7ff13 Use diff. close time to avoid buggy behavior 2022-08-12 07:28:19 +00:00
Matthias
d93bb82193 Add more Commits to failing test 2022-08-12 08:19:40 +02:00
Matthias
aa1bf2adbd Try fix windows testfailure 2022-08-12 06:43:34 +02:00
Matthias
cc885e25ac Improve NAN Handling in RPC 2022-08-11 20:16:07 +02:00
Matthias
de690b0a69 Use PEP440 compatible versioning 2022-08-11 20:08:40 +02:00
Matthias
dd4e44931e Improve NAN handling in RPC module 2022-08-11 15:02:52 +00:00
Matthias
f7502bcc92 slightly update dca_short test 2022-08-11 11:35:24 +00:00
robcaulk
2cae3c42e6 remove trade database analyzer, clean up a bit 2022-08-10 17:43:06 +02:00
ecoppen
ace9626483 Update tests for sorted and nobase
Tests for PR #7211
2022-08-10 15:04:24 +01:00
ecoppen
c0d60c63ab Optional /whitelist args - sorted, nobase
Added two optional arguments for whitelist - `sorted` for alphabetical order and `nobase` for displaying the whitelist without base currency e.g. /USDT.

Updated help with optional commands.

Added a space in an unrelated help message.
2022-08-10 14:56:38 +01:00
Matthias
ed004236ce Add float initializer to FtPrecise 2022-08-10 11:54:07 +00:00
Matthias
e7cb1b7375 Wrap Precise into FtPecise 2022-08-10 11:26:06 +00:00
robcaulk
91d0c91287 improve docs 2022-08-10 11:56:42 +02:00
Matthias
adc8ee88e2 Move periodicCache to Utils package 2022-08-10 08:57:19 +00:00
Matthias
573964b19f Dry Market orders should update "remaining" 2022-08-10 07:12:56 +02:00
Matthias
53251e7140 Merge pull request #7194 from freqtrade/rpc/partial_forceexit
Partial forceExit
2022-08-10 07:12:40 +02:00
Matthias
ce2c9bf26d Slight renaming of variable 2022-08-10 06:44:41 +02:00
Matthias
736884c5a9 Orders should be allowed to have empty fill/remaining values 2022-08-09 20:43:58 +02:00
Matthias
b5c5a95b64 FTX: Use conditionalOrders endpoint to get proper stop-market order id
closes #7165
2022-08-09 20:09:35 +02:00
robcaulk
4289c5c684 update freqai logo 2022-08-09 16:51:57 +02:00
robcaulk
5a16d5a512 Deactivate database analyzer if user does not use sqlite 2022-08-09 16:36:22 +02:00
robcaulk
e7de812948 Allow user to user pair_dict for persistent storage of custom data 2022-08-09 16:03:10 +02:00
robcaulk
aef086b02e Improved dict typing, timeframe parser, collect dates associated with training data points 2022-08-09 15:30:25 +02:00
Matthias
02646a4a08 Update scikit-learn in freqai deps 2022-08-09 06:23:16 +02:00
Matthias
9a82898d6b Merge branch 'develop' into feat/freqai 2022-08-09 06:22:57 +02:00
Matthias
77b3b8a134 Use main exchange instead of creating a separate instance. 2022-08-08 18:34:11 +00:00
Matthias
20b4134787 Properly exclude catboost in ARM 2022-08-08 18:15:18 +00:00
Matthias
8a18609be4 Merge pull request #7201 from freqtrade/dependabot/pip/develop/types-requests-2.28.8
Bump types-requests from 2.28.6 to 2.28.8
2022-08-08 07:18:27 +02:00
Matthias
0c7d862aae types-requests bump pre-commit 2022-08-08 06:54:00 +02:00
Matthias
05fb4de68b Merge pull request #7198 from freqtrade/dependabot/pip/develop/flake8-5.0.4
Bump flake8 from 5.0.1 to 5.0.4
2022-08-08 06:53:09 +02:00
Matthias
21649712a9 Merge pull request #7202 from freqtrade/dependabot/pip/develop/ccxt-1.91.93
Bump ccxt from 1.91.55 to 1.91.93
2022-08-08 06:52:14 +02:00
Matthias
001b6c087a Merge pull request #7199 from freqtrade/dependabot/pip/develop/scikit-learn-1.1.2
Bump scikit-learn from 1.1.1 to 1.1.2
2022-08-08 06:50:09 +02:00
Matthias
77b6025f12 Merge pull request #7200 from freqtrade/dependabot/pip/develop/jsonschema-4.9.1
Bump jsonschema from 4.9.0 to 4.9.1
2022-08-08 06:49:49 +02:00
dependabot[bot]
71c88244fe Bump ccxt from 1.91.55 to 1.91.93
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.91.55 to 1.91.93.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.91.55...1.91.93)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-08 03:01:38 +00:00
dependabot[bot]
97c077171a Bump types-requests from 2.28.6 to 2.28.8
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.6 to 2.28.8.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-08 03:01:28 +00:00
dependabot[bot]
a45a35f38c Bump jsonschema from 4.9.0 to 4.9.1
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.9.0 to 4.9.1.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.9.0...v4.9.1)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-08 03:01:25 +00:00
dependabot[bot]
7fd3f98ae8 Bump scikit-learn from 1.1.1 to 1.1.2
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.1 to 1.1.2.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.1...1.1.2)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-08 03:01:20 +00:00
dependabot[bot]
11a2eb6cc5 Bump flake8 from 5.0.1 to 5.0.4
Bumps [flake8](https://github.com/pycqa/flake8) from 5.0.1 to 5.0.4.
- [Release notes](https://github.com/pycqa/flake8/releases)
- [Commits](https://github.com/pycqa/flake8/compare/5.0.1...5.0.4)

---
updated-dependencies:
- dependency-name: flake8
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-08 03:01:16 +00:00
robcaulk
ea64f43e52 bring back auto DF resizing for okx 2022-08-08 01:13:13 +02:00
robcaulk
67c722c9c8 fix asyncio bug 2022-08-07 14:48:39 +02:00
Matthias
e48e82232d Force response API to js to fix faulty system configs
closes #7147
2022-08-07 10:42:56 +02:00
Matthias
0b2104fc7a Properly increment the api version 2022-08-07 10:13:36 +02:00
Matthias
5182f755f1 Add debug setup documentation
closes #7167
2022-08-07 10:08:48 +02:00
Matthias
6ded2d5b7c Improve forceexit API test 2022-08-07 09:47:11 +02:00
Matthias
d3780b931c Add test passing leverage to execute_entry 2022-08-07 09:47:11 +02:00
Matthias
d1998f7ed0 Fix forceexit calling 2022-08-07 09:47:11 +02:00
Matthias
eff8cd7ecb Add leverage to force_entry 2022-08-07 09:47:11 +02:00
Matthias
daf015d007 extract nested force_exit function to private instance function 2022-08-07 09:47:11 +02:00
Matthias
82aecc81f3 Accept parameters to forceexit 2022-08-07 09:47:11 +02:00
Achmad Fathoni
aaa5349003 Add script for patching conda libta-lib 2022-08-07 13:44:09 +07:00
Matthias
78e129034e Update docs to specify trading limit behaviour
closes #7183
2022-08-06 17:59:08 +02:00
robcaulk
eb8bde37c1 Add lightgbm classifier, add classifier check test, fix classifier bug. 2022-08-06 17:51:21 +02:00
Matthias
bfa859e618 Remove unnecessary method (simplify) 2022-08-06 17:46:58 +02:00
Matthias
5250189f77 Add Rollback function to Trade
simplifies Session work
2022-08-06 17:03:49 +02:00
Matthias
47a30047eb Fix typo 2022-08-06 15:03:10 +02:00
Matthias
b16f57cb0d Minor stylistic fixes 2022-08-06 14:55:46 +02:00
Robert Caulk
c172ce1011 improve flexibility of user defined prediction dataframe 2022-08-06 13:51:19 +02:00
Matthias
45d68222a1 Reduce verbosity of Fiat Converter 2022-08-06 13:18:40 +02:00
Robert Caulk
fdc82f8302 add doc section for classifier 2022-08-06 09:45:26 +02:00
Matthias
f8f1ade163 Reduce function complexity by extracting message sending 2022-08-06 09:21:11 +02:00
Matthias
2687633941 Test iterative sending of /status 2022-08-06 09:16:04 +02:00
Matthias
b12dd15f4f Send multiple messages in /status if required 2022-08-06 09:10:12 +02:00
Robert Caulk
07763d0d4f add classifier, improve model naming scheme 2022-08-06 08:33:55 +02:00
Robert Caulk
ce8fbbf743 ensure loading historical df matches frequi indices 2022-08-06 07:25:59 +02:00
robcaulk
60d782e5c5 remove unnecessary function 2022-08-05 21:31:32 +02:00
robcaulk
a42a060ab5 fix DB once and for all. Make DBSCAN more efficient and robust. 2022-08-05 21:29:03 +02:00
Robert Caulk
a3799c4d5d start frequi with historical data if available 2022-08-05 18:27:47 +02:00
robcaulk
29b7b014e5 fix bug in DB path initialization 2022-08-05 18:19:26 +02:00
robcaulk
db1d367941 fix bug associated to fit_live_predictions_candles 2022-08-05 13:46:20 +02:00
robcaulk
26de992d20 ensure user sets startup candles in backtesting mode 2022-08-05 12:23:14 +02:00
robcaulk
05ec5c5e54 generalize database url path for any db type 2022-08-05 12:19:29 +02:00
Matthias
9545402452 Improve defaults for config builder 2022-08-05 11:58:09 +02:00
Matthias
29e41cc817 Update docs to reflect correct result
closes #7181
2022-08-05 11:15:44 +02:00
Matthias
7675187c37 Use telegram message length to avoid constants 2022-08-05 07:31:19 +02:00
Matthias
cffc769549 Fix /profit endpoint calculations for partial sells
* don't recalculate for closed trades
* include realized_profit in the calculation

part of #7178
2022-08-05 07:26:41 +02:00
Matthias
c6e121ffb4 Update tests with correct usdt mock trades 2022-08-05 07:21:46 +02:00
OGSK
a8541d86fb Edit index of custom_stake_amount 2022-08-05 06:25:21 +02:00
OGSK
debc73b654 Edit Typo Custom-stake-amount
Edit Custom-stake-amount to `custom_stake_amount`
2022-08-05 06:25:08 +02:00
Matthias
c2a3e2776e Merge pull request #7180 from freqtrade/dependabot/docker/python-3.10.6-slim-bullseye
Bump python from 3.10.5-slim-bullseye to 3.10.6-slim-bullseye
2022-08-05 06:24:00 +02:00
dependabot[bot]
df4a5a7573 Bump python from 3.10.5-slim-bullseye to 3.10.6-slim-bullseye
Bumps python from 3.10.5-slim-bullseye to 3.10.6-slim-bullseye.

---
updated-dependencies:
- dependency-name: python
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-05 03:02:12 +00:00
Robert Caulk
51a6b4289f improve DBSCAN performance for subsequent trainings 2022-08-04 17:41:58 +02:00
Robert Caulk
fe1b8515a8 fix bug in DBSCAN, update doc 2022-08-04 17:00:59 +02:00
Matthias
55360b4c08 Merge pull request #7174 from stash86/patch-3
Fix typo
2022-08-04 16:27:22 +02:00
Stefano Ariestasia
febd809119 Fix typo
adjust_trade_position should return stake_amount, not amount
2022-08-04 20:55:52 +09:00
robcaulk
29225e4baf add DBSCAN outlier detection feature, add supporting documentation 2022-08-04 12:15:16 +02:00
Matthias
778833f90e Modify comment in new test-strategies to point out their purpose 2022-08-04 07:17:26 +02:00
Matthias
95327750dc Final abs. profit should not be doubled in rpc messages 2022-08-04 07:07:54 +02:00
robcaulk
eae82d0222 fix bug with database url during backtesting. comment out example trade db analysis. 2022-08-03 16:17:57 +02:00
robcaulk
95d3009a95 give user ability to analyze live trade dataframe inside custom prediction model. Add documentation to explain new functionality 2022-08-02 20:14:02 +02:00
Matthias
9df10c6b5b Merge pull request #7155 from freqtrade/dependabot/pip/develop/scipy-1.9.0
Bump scipy from 1.8.1 to 1.9.0
2022-08-01 19:54:20 +02:00
Matthias
ae0d6f63fa Version bump ccxt to 1.91.55
closes #7151
2022-08-01 19:43:13 +02:00
Matthias
87e5460aed Merge pull request #7157 from freqtrade/dependabot/pip/develop/types-requests-2.28.6
Bump types-requests from 2.28.3 to 2.28.6
2022-08-01 09:46:34 +02:00
Matthias
895ebbfd18 Exclude aarch64 from catboost requirements 2022-08-01 07:34:27 +00:00
Matthias
694bea133b Merge pull request #7156 from freqtrade/dependabot/pip/develop/flake8-5.0.1
Bump flake8 from 4.0.1 to 5.0.1
2022-08-01 08:39:06 +02:00
Matthias
3b90bdf980 Merge pull request #7160 from freqtrade/dependabot/pip/develop/jsonschema-4.9.0
Bump jsonschema from 4.7.2 to 4.9.0
2022-08-01 07:02:30 +02:00
Matthias
d75e0a9820 Fix Flake8 errors after flake update 2022-08-01 06:43:59 +02:00
Matthias
707a4e7c9e types-requests bump pre-commit 2022-08-01 06:41:08 +02:00
dependabot[bot]
f3154a4313 Bump jsonschema from 4.7.2 to 4.9.0
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.7.2 to 4.9.0.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.7.2...v4.9.0)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 04:35:30 +00:00
Matthias
e9b7e1e600 Merge pull request #7161 from freqtrade/dependabot/pip/develop/urllib3-1.26.11
Bump urllib3 from 1.26.10 to 1.26.11
2022-08-01 06:34:37 +02:00
Matthias
70dcff3b23 Merge pull request #7154 from freqtrade/dependabot/pip/develop/ccxt-1.91.52
Bump ccxt from 1.91.29 to 1.91.52
2022-08-01 06:34:16 +02:00
Matthias
dce16909b4 Merge pull request #7162 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.5.1
Bump pypa/gh-action-pypi-publish from 1.5.0 to 1.5.1
2022-08-01 06:33:52 +02:00
Matthias
f82724bbc1 Merge pull request #7158 from freqtrade/dependabot/pip/develop/orjson-3.7.11
Bump orjson from 3.7.8 to 3.7.11
2022-08-01 06:33:34 +02:00
robcaulk
3013282dbf remove non-catboost stuff from schema 2022-08-01 05:39:38 +02:00
dependabot[bot]
97064a9ce3 Bump pypa/gh-action-pypi-publish from 1.5.0 to 1.5.1
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.5.0 to 1.5.1.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.5.0...v1.5.1)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:13:38 +00:00
dependabot[bot]
79b650258e Bump urllib3 from 1.26.10 to 1.26.11
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.10 to 1.26.11.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.11/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.10...1.26.11)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:02:02 +00:00
dependabot[bot]
ed230dd750 Bump orjson from 3.7.8 to 3.7.11
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.8 to 3.7.11.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.8...3.7.11)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:01:52 +00:00
dependabot[bot]
372be54252 Bump types-requests from 2.28.3 to 2.28.6
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.3 to 2.28.6.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:01:46 +00:00
dependabot[bot]
b4ded59c63 Bump flake8 from 4.0.1 to 5.0.1
Bumps [flake8](https://github.com/pycqa/flake8) from 4.0.1 to 5.0.1.
- [Release notes](https://github.com/pycqa/flake8/releases)
- [Commits](https://github.com/pycqa/flake8/compare/4.0.1...5.0.1)

---
updated-dependencies:
- dependency-name: flake8
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:01:43 +00:00
dependabot[bot]
a75fa26caf Bump scipy from 1.8.1 to 1.9.0
Bumps [scipy](https://github.com/scipy/scipy) from 1.8.1 to 1.9.0.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.8.1...v1.9.0)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:01:38 +00:00
dependabot[bot]
7a696f58f9 Bump ccxt from 1.91.29 to 1.91.52
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.91.29 to 1.91.52.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.91.29...1.91.52)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-08-01 03:01:30 +00:00
robcaulk
946d4c7cfc fix trailing whitespace for flake8 2022-07-31 18:39:46 +02:00
robcaulk
4e68626bcb ensure convolutional window is prepended for frequi consistency 2022-07-31 17:51:19 +02:00
robcaulk
d830105605 *BREAKING CHANGE* remove unnecessary arguments from populate_any_indicators(), accommodate tests 2022-07-31 17:05:29 +02:00
robcaulk
153336d424 move corr_pairlist expansion to after expand_pairlist() 2022-07-31 15:45:28 +02:00
Matthias
659870312d Use JSON Schema validation for freaAI schema validation 2022-07-31 15:23:27 +02:00
Matthias
cbb05354a8 Add install variant for freqai 2022-07-31 15:10:01 +02:00
Kavinkumar
a4bada3ebe Partial exit using average price (#6545)
Introduce Partial exits
2022-07-31 14:19:04 +02:00
robcaulk
61693f6c8b fix tests after changing config_example file 2022-07-31 13:20:11 +02:00
robcaulk
e6ebc0443e make single generalized config for freqai. update docs to reflect that. 2022-07-31 13:08:43 +02:00
Matthias
369c6da5d8 Merge pull request #7146 from freqtrade/fix/liquidation
Update liquidation price handling
2022-07-31 08:09:54 +02:00
Matthias
15424169ad Merge pull request #7108 from rzrymiak/develop
Added description heading to README.md
2022-07-31 07:10:37 +02:00
rzrymiak
09e5fb2f55 Removed description header 2022-07-30 22:37:46 +00:00
Robert Caulk
c2eaa3d2cd add image of algorithmic overview to doc 2022-07-30 18:51:00 +02:00
Matthias
bad15f077c Simplify fetch_positions by using already existing method 2022-07-30 17:49:06 +02:00
Matthias
dc82675f00 Add Test for liquidation in stop-loss-reached 2022-07-30 17:28:19 +02:00
Matthias
fc31c890e3 Merge pull request #7135 from freqtrade/rpc/sendmsg
Strategy allow rpc messages
2022-07-30 16:15:00 +02:00
Matthias
d046f0cc5e Improve method wording for liquidation price setter 2022-07-30 16:11:31 +02:00
Matthias
dba7a7257d Use stop_or_liquidation instead of stop_loss 2022-07-30 16:10:16 +02:00
Matthias
845cecd38f Add stoploss or liquidation property 2022-07-30 16:10:16 +02:00
Matthias
4da96bc511 Update docs 2022-07-30 16:10:16 +02:00
Matthias
15752ce3c2 Rename set_stoploss method to be fully private 2022-07-30 16:10:16 +02:00
Matthias
ff4cc5d316 Revamp liquidation test to actually make sense 2022-07-30 16:10:16 +02:00
Matthias
9852733ef7 Improve tests to align with modified logic 2022-07-30 16:10:16 +02:00
Matthias
f57ecb1861 Simplify adjust_stop test 2022-07-30 16:10:16 +02:00
Matthias
8711b7d99f Liquidations cannot be rejected. 2022-07-30 16:10:16 +02:00
Matthias
995be90f91 Liquidation should be a separate exit type 2022-07-30 16:10:16 +02:00
robcaulk
dd8288c090 expose full parameter set for SVM outlier detection. Set default shuffle to false to improve reproducibility 2022-07-30 13:40:05 +02:00
Matthias
d70650b074 Add note for plot-dataframe and current-whitelist
closes #7142
2022-07-30 08:20:22 +02:00
robcaulk
f22b140782 fix backtesting bug, undo move of label stat calc, fix example strat exit logic 2022-07-29 17:27:35 +02:00
robcaulk
08d3ac7ef8 add keras and conv_width to schema and documentation 2022-07-29 08:49:35 +02:00
robcaulk
59624181bd isort BaseRegressionModel imports 2022-07-29 08:23:44 +02:00
robcaulk
c84d54b35e Fix typing issue, avoid using .get() when unnecessary, convert to fstrings 2022-07-29 08:12:50 +02:00
Matthias
efbd83c56d Small type and typo fixes in freqai_interface 2022-07-28 07:24:30 +02:00
Matthias
a2a0d35a24 Update missing typehints 2022-07-28 07:07:40 +02:00
Matthias
3273881282 Merge branch 'develop' into feat/freqai 2022-07-28 06:36:38 +02:00
Matthias
cc3ead9d7b Set required_profit for stoploss guard, allowing to ignore small stoplosses.
closes #7076
2022-07-27 19:52:39 +02:00
Matthias
f31106dc61 Minor comment fixes 2022-07-27 07:27:24 +02:00
Matthias
31ddec8348 Add missing test to confirm backtesting won't send messages 2022-07-27 06:51:56 +02:00
Matthias
2595e40e47 Remove unused test-strategy 2022-07-27 06:47:16 +02:00
Matthias
0adfa4d9ef Add tests for dataprovider send-message methods 2022-07-27 06:34:15 +02:00
Matthias
7bac054668 Add documentation and clarity for send_msg 2022-07-26 20:24:52 +02:00
Matthias
229e8864bb Add send_msg capability to dataprovider 2022-07-26 20:15:49 +02:00
Matthias
bc760b7eb2 Simplify small segment in datadrawer 2022-07-26 19:41:49 +02:00
Matthias
a0b9388757 Bump ccxt to 1.91.29
closes #7132
2022-07-26 17:57:25 +02:00
robcaulk
324e54c015 fix possible memory leak associated with Catboost Pool object 2022-07-26 17:29:29 +02:00
robcaulk
3f149c4067 fix return type in BaseTensorFlowModel 2022-07-26 16:01:54 +02:00
robcaulk
ad25a4cb56 reduce number of pair_dict lookups, remove coin_first 2022-07-26 15:58:40 +02:00
robcaulk
fb4e8430cd isort auto import sorting 2022-07-26 10:51:39 +02:00
robcaulk
e213d0ad55 isolate data_drawer functions from data_kitchen, accommodate tests, add new test 2022-07-26 10:24:14 +02:00
robcaulk
56b17e6f3c allow user to pass test_size = 0 and avoid using eval sets in prediction models 2022-07-25 19:40:13 +02:00
Matthias
4c68bec171 Fix problem in is_cancel_order_result_suitable
fixes #7119
2022-07-25 17:47:52 +02:00
Matthias
ea112fb583 Add test for empty order (cancelled order) 2022-07-25 17:47:28 +02:00
robcaulk
55cf378ec2 remove leftover breakpoint from test file 2022-07-25 17:13:24 +02:00
Robert Caulk
897f18a8c8 ensure proper integer type casting for timestamps. Add check test for backtesting subdaily time periods 2022-07-25 15:07:09 +02:00
Robert Caulk
7b105532d1 fix mypy error and add test for principal component analysis 2022-07-25 11:46:59 +02:00
Robert Caulk
4abc26b582 add test for follow_mode 2022-07-25 10:48:04 +02:00
Robert Caulk
c9d46a5237 finish bringing follow_mode up to date 2022-07-25 09:24:40 +02:00
Matthias
0806f253b1 Merge pull request #7125 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19
Bump types-python-dateutil from 2.8.18 to 2.8.19
2022-07-25 08:43:58 +02:00
Matthias
4b8132f3c6 Merge pull request #7128 from freqtrade/dependabot/pip/develop/mypy-0.971
Bump mypy from 0.961 to 0.971
2022-07-25 08:42:16 +02:00
Matthias
47b52d4bab Bump types-dateutil in pre-commit 2022-07-25 07:58:16 +02:00
dependabot[bot]
40969f20bf Bump types-python-dateutil from 2.8.18 to 2.8.19
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.18 to 2.8.19.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 05:53:15 +00:00
dependabot[bot]
93340f546b Bump mypy from 0.961 to 0.971
Bumps [mypy](https://github.com/python/mypy) from 0.961 to 0.971.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.961...v0.971)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 05:53:10 +00:00
Matthias
b7f5beea40 Merge pull request #7124 from freqtrade/dependabot/pip/develop/mkdocs-1.3.1
Bump mkdocs from 1.3.0 to 1.3.1
2022-07-25 07:52:38 +02:00
Matthias
c0080f2241 Merge pull request #7126 from freqtrade/dependabot/pip/develop/types-requests-2.28.3
Bump types-requests from 2.28.1 to 2.28.3
2022-07-25 07:52:16 +02:00
Matthias
43343d0e55 Revert markdown to 3.3.7 2022-07-25 07:21:12 +02:00
Matthias
3ce46ff09e Bump types-requests in pre-commit 2022-07-25 07:19:21 +02:00
Matthias
fba3c3c649 Merge pull request #7127 from freqtrade/dependabot/pip/develop/ccxt-1.91.22
Bump ccxt from 1.90.89 to 1.91.22
2022-07-25 07:17:14 +02:00
Matthias
bc87171243 Merge pull request #7123 from freqtrade/dependabot/pip/develop/orjson-3.7.8
Bump orjson from 3.7.7 to 3.7.8
2022-07-25 07:17:00 +02:00
dependabot[bot]
f93a3a5fca Bump ccxt from 1.90.89 to 1.91.22
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.90.89 to 1.91.22.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.90.89...1.91.22)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 03:01:52 +00:00
dependabot[bot]
98d0ad76bf Bump types-requests from 2.28.1 to 2.28.3
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.1 to 2.28.3.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 03:01:44 +00:00
dependabot[bot]
d5933fb2af Bump mkdocs from 1.3.0 to 1.3.1
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.3.0 to 1.3.1.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.3.0...1.3.1)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 03:01:37 +00:00
dependabot[bot]
1b49e45222 Bump orjson from 3.7.7 to 3.7.8
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.7 to 3.7.8.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.7...3.7.8)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-25 03:01:32 +00:00
Robert Caulk
ab587747fb first fix for follower path bug 2022-07-24 23:32:24 +02:00
Matthias
520ee3f7a1 Convert freqAI into packages 2022-07-24 17:07:45 +02:00
Matthias
1885deb632 More docstring changes 2022-07-24 16:54:39 +02:00
Matthias
70b7a254af Update some areas to use default docstring formatting 2022-07-24 16:51:48 +02:00
Matthias
61c41fd919 Merge branch 'develop' into feat/freqai 2022-07-24 16:18:58 +02:00
Matthias
83cac7bee2 Improve some more tests by adding proper orders 2022-07-24 10:51:13 +02:00
Matthias
6e691a016d Use leverage-tiers loading in tests 2022-07-24 10:24:59 +02:00
Robert Caulk
88e10f7306 add exception for not passing timerange. Remove hard coded arguments for CatboostPredictionModels. Update docs 2022-07-24 09:01:23 +02:00
Robert Caulk
fff39eff9e fix multitarget bug 2022-07-24 08:42:50 +02:00
Matthias
95f5218ceb Reenable Catboost test (#7118)
* Reenable Catboost test

* Simplify freqAI tests, ensure they use a tempdir for modelstorage
2022-07-24 07:32:13 +02:00
Matthias
2eb1d18c2a Don't load leverage tiers when not necessary 2022-07-23 19:56:38 +02:00
robcaulk
f3d46613ee move prediction denormalization into datakitchen. remove duplicate associated code. avoid normalization/denormalization for string dtypes. 2022-07-23 17:14:33 +02:00
Matthias
81c1aa3c13 Update imports in freqAI sample strategies 2022-07-23 17:08:05 +02:00
Matthias
8a3cffcd1b Remove remaining CustomModel references 2022-07-23 17:08:05 +02:00
Matthias
62f7606d2c Update tests to new variant 2022-07-23 17:08:05 +02:00
Matthias
8fa6e8b4ba Remove freqAI model bridge in favor of self.freqai 2022-07-23 17:08:05 +02:00
robcaulk
c91e23dc50 let user avoid normalizing labels 2022-07-23 16:14:13 +02:00
Matthias
7682c9ace7 Update trade_close test to include orders 2022-07-23 15:27:52 +02:00
Matthias
24a786bedd Update rpc test to contain sell order 2022-07-23 15:23:24 +02:00
Matthias
80845807e1 Improve some test resiliance 2022-07-23 15:14:38 +02:00
Matthias
a02d02ac12 Enhance protections tests to have orders in mock trade 2022-07-23 14:43:52 +02:00
robcaulk
50d630a155 remove unnecessary comments from data_drawer.py 2022-07-23 13:35:44 +02:00
robcaulk
a1cff377ec add record of contribution to data_kitchen.py 2022-07-23 13:32:04 +02:00
robcaulk
c2d6a0e891 add record of contribution to doc and source 2022-07-23 13:04:06 +02:00
robcaulk
3acc869570 improve the dataframe key description, update outdated parts of doc 2022-07-23 12:42:24 +02:00
Matthias
5c4f60f376 Improve configuration table formatting and ordering 2022-07-23 09:11:22 +02:00
Matthias
e97468964a Add support for --timeframe-detail in hyperopt
fix #7070
2022-07-23 08:52:03 +02:00
Matthias
36dc9be7aa Update some docs wording 2022-07-22 20:27:25 +02:00
Matthias
32c3f62934 Fix documentation typo
closes #7115
2022-07-22 19:45:50 +02:00
robcaulk
5559e605b8 small PR conversation resolutions 2022-07-22 17:46:14 +02:00
robcaulk
40f00196eb use cloudpickle in place of pickle. define Paths once in data_drawer. 2022-07-22 17:37:51 +02:00
robcaulk
accc629e32 set separate table sections in doc 2022-07-22 12:44:43 +02:00
robcaulk
98c8a447b2 add LightGBMPredictionMultiModel 2022-07-22 12:40:51 +02:00
robcaulk
afcb0bec00 clean up obsolete comments, move remove_features_from_df to datakitchen 2022-07-22 12:29:20 +02:00
Matthias
0b21750e76 Reorder advanced topics 2022-07-22 07:22:06 +02:00
robcaulk
ac0f484918 add freqai logo to top of doc 2022-07-22 00:02:07 +02:00
robcaulk
3205788bce extend doc to include descriptions of the return values from FreqAI to the strategy 2022-07-21 22:11:46 +02:00
robcaulk
8033e0bf23 add counter to backtesting log so users know how many more pairs and how many more models will need to be trained 2022-07-21 13:22:12 +02:00
robcaulk
183dec866a remove ability to backtest open ended timeranges (safer) 2022-07-21 13:02:52 +02:00
robcaulk
e694ea1cfd make sure backtesting gets the populated indicators with slimmed down user strat 2022-07-21 12:48:09 +02:00
robcaulk
ca4dd58642 remove superceded function from datakitchen 2022-07-21 12:40:54 +02:00
robcaulk
8f86b0deaa *breaking change* simplify user strat by consolidating feature loops into backend 2022-07-21 12:24:22 +02:00
robcaulk
e7337728bf add separator in folder name just incase an asset ends in an integer 2022-07-21 11:25:28 +02:00
robcaulk
c9a6dc88a1 add parameter list/discriptions to doc 2022-07-21 11:11:36 +02:00
Matthias
6c5e48dd4f dev-dependencies should include freqAI 2022-07-21 07:26:44 +02:00
robcaulk
a99c126266 help windows builds pass freqai tests. Add freqai to README.md 2022-07-20 16:14:19 +02:00
robcaulk
4e5d60fdc9 match scikit-learn version to hyperopt required version 2022-07-20 15:54:22 +02:00
robcaulk
921a7ef216 add requirements-freqai.txt to builds 2022-07-20 15:51:25 +02:00
robcaulk
286bd0c40b follow string for adding a strat to tests/strategy/strats 2022-07-20 15:00:02 +02:00
robcaulk
c43935e82a create dedicated minimal freqai test strat 2022-07-20 14:39:28 +02:00
robcaulk
88d769d801 comment out problematic catboost test 2022-07-20 14:18:06 +02:00
robcaulk
d43c146676 add more tests for datakitchen functionalities, add regression tests for freqai_interface train/backtest 2022-07-20 12:56:46 +02:00
Matthias
78f77f6d35 Merge pull request #7101 from freqtrade/dependabot/pip/develop/markdown-3.4.1
Bump markdown from 3.3.7 to 3.4.1
2022-07-20 06:48:28 +02:00
rzrymiak
ac2e8d760e Added description heading to README.md 2022-07-19 14:24:44 -07:00
Matthias
b609dbcd86 Update mdx_truly_sane_lists to be compatible with markdown again 2022-07-19 19:51:03 +02:00
lolong
9c051958a6 Feat/freqai (#7105)
Vectorize weight setting, log training dates

Co-authored-by: robcaulk <rob.caulk@gmail.com>
2022-07-19 17:49:18 +02:00
robcaulk
714d9534b6 start adding tests 2022-07-19 16:16:44 +02:00
Matthias
75e190ff1d Update sell-test without filled buy order 2022-07-19 07:20:36 +02:00
lolong
ed0f8b1189 Improve FreqAI documentation (#7072)
Improve doc + some other small fixes

Co-authored-by: robcaulk <rob.caulk@gmail.com>
2022-07-18 11:57:52 +02:00
Matthias
99d5fbc9c0 Merge pull request #7102 from freqtrade/dependabot/pip/develop/types-requests-2.28.1
Bump types-requests from 2.28.0 to 2.28.1
2022-07-18 08:38:35 +02:00
Matthias
0daa9d3e57 Bump types-requests in pre-commit 2022-07-18 07:56:41 +02:00
Matthias
7365d23db8 Merge pull request #7099 from freqtrade/dependabot/pip/develop/fastapi-0.79.0
Bump fastapi from 0.78.0 to 0.79.0
2022-07-18 07:55:29 +02:00
Matthias
df538f9cd6 Merge pull request #7097 from freqtrade/dependabot/pip/develop/jsonschema-4.7.2
Bump jsonschema from 4.6.2 to 4.7.2
2022-07-18 07:54:55 +02:00
Matthias
9d261c88e6 Merge pull request #7098 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.19.0
Bump pytest-asyncio from 0.18.3 to 0.19.0
2022-07-18 07:54:31 +02:00
Matthias
8a1c95247d Merge pull request #7100 from freqtrade/dependabot/pip/develop/ccxt-1.90.89
Bump ccxt from 1.90.88 to 1.90.89
2022-07-18 07:53:52 +02:00
dependabot[bot]
ea523136fc Bump types-requests from 2.28.0 to 2.28.1
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.0 to 2.28.1.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:49 +00:00
dependabot[bot]
d2ef248781 Bump markdown from 3.3.7 to 3.4.1
Bumps [markdown](https://github.com/Python-Markdown/markdown) from 3.3.7 to 3.4.1.
- [Release notes](https://github.com/Python-Markdown/markdown/releases)
- [Commits](https://github.com/Python-Markdown/markdown/compare/3.3.7...3.4.1)

---
updated-dependencies:
- dependency-name: markdown
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:43 +00:00
dependabot[bot]
f07ad7aa87 Bump ccxt from 1.90.88 to 1.90.89
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.90.88 to 1.90.89.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.90.88...1.90.89)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:40 +00:00
dependabot[bot]
cb63d5e3df Bump fastapi from 0.78.0 to 0.79.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.78.0 to 0.79.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.78.0...0.79.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:31 +00:00
dependabot[bot]
5f820ab0a6 Bump pytest-asyncio from 0.18.3 to 0.19.0
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.18.3 to 0.19.0.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Changelog](https://github.com/pytest-dev/pytest-asyncio/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.18.3...v0.19.0)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:26 +00:00
dependabot[bot]
2c6fb617a6 Bump jsonschema from 4.6.2 to 4.7.2
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.6.2 to 4.7.2.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.6.2...v4.7.2)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-18 03:01:23 +00:00
Robert Caulk
921f3899f0 revert pickle reading for historic predictions 2022-07-17 16:06:36 +02:00
Robert Caulk
41eeb99177 load pickle file for writing 2022-07-17 10:05:21 +02:00
Matthias
46be1b8778 Version bump ccxt to 1.90.88 2022-07-17 07:21:42 +02:00
Matthias
05a5ae4fcf Update plotting to use entry/exit terminology 2022-07-16 22:28:46 +02:00
Robert Caulk
9d184586f1 fix bug in historic prediction saving 2022-07-16 21:16:59 +02:00
Matthias
9347677c60 Uppdate pricecontours test to not recreate backtesting every loop
in hopes to fix random failure
2022-07-16 19:33:26 +02:00
Matthias
3bb4f2c7c2 Merge pull request #6780 from samgermain/dry-taker-or-maker
Dry run taker or maker fees
2022-07-16 18:15:02 +02:00
Matthias
f6bfd89cef Merge branch 'develop' into feat/freqai 2022-07-16 18:14:34 +02:00
Matthias
423af371c0 Simplify calculation by calling "get_fee" only once 2022-07-16 17:59:05 +02:00
Matthias
4172f92bfc simplify dry-run taker/maker selection 2022-07-16 17:25:13 +02:00
Matthias
8b2535a8da Update Typing for fees 2022-07-16 15:42:17 +02:00
Matthias
8d2e22f009 Merge branch 'develop' into pr/samgermain/6780 2022-07-16 15:35:00 +02:00
Matthias
004bf31142 Merge pull request #7093 from freqtrade/fix/gate_futures_stoposs
gateio futures - several fixes
2022-07-16 15:18:32 +02:00
Matthias
3eb2131d0b Merge pull request #7092 from freqtrade/fix/hyperopt_inherit
hyperopt inherit fix
2022-07-16 15:17:14 +02:00
Matthias
bf07d8fe87 Update test to properly patch/mock exchange 2022-07-16 13:57:12 +02:00
Matthias
357000c478 Extract exchange validation to separate method 2022-07-16 13:45:26 +02:00
Matthias
d03dfb3934 Oder cost is real cost (including leverage) 2022-07-16 13:14:21 +02:00
Matthias
ed64e4299b Stoploss orders should also be eligible to update closed fees 2022-07-16 13:14:21 +02:00
Matthias
415780a4fe gateio order cost is not in contracts
closes #7081
2022-07-16 13:14:21 +02:00
Matthias
7b8a5585dd Fetch 2ndary stoploss order once the order triggered. 2022-07-16 13:14:21 +02:00
Matthias
7c4dd4c48c Support fee cost as string
closes #7056
2022-07-16 13:14:21 +02:00
Matthias
40e2da10f3 Add hypeorpt cloudpickle magic
closes #7078
2022-07-16 11:49:33 +02:00
Matthias
e53e530874 Add test showing broken inheritance hyperopt 2022-07-16 11:49:33 +02:00
Matthias
2e642593e5 Update formatting of hyperopt_conf fixture 2022-07-16 11:47:32 +02:00
Matthias
29efe75a6f Update hyperoptable strategy to use V3 interface 2022-07-16 11:47:32 +02:00
Matthias
1c7f60103d Don't use master for publish CI action 2022-07-15 20:26:24 +02:00
Robert Caulk
4ef2ed2f1b Merge pull request #7085 from wagnercosta/feat/freqai
freqai: fix issue when bot restarts with same identifier, does not load predi…
2022-07-15 20:00:53 +02:00
Matthias
fada432f49 Pin markdown docs dependency 2022-07-15 19:48:12 +02:00
Matthias
b657a4df23 Improve hyperopt docs
part of #7088
2022-07-15 19:02:23 +02:00
Wagner Costa Santos
ca2029a46b fix issue when bot restarts with same identifier, does not load prediction history 2022-07-14 18:55:24 -03:00
Matthias
cdc58058d7 Add candletype to notebook example
closes #7084, closes #7073
2022-07-14 19:40:26 +02:00
robcaulk
4141d165ff add BaseTensorFlowModel class 2022-07-12 19:10:09 +02:00
robcaulk
ef409dd345 Add ground work for TensorFlow models, add protections from common mistakes 2022-07-12 18:09:17 +02:00
Robert Caulk
fea63fba12 Fix saving/loading historic predictions 2022-07-12 10:12:50 +02:00
Robert Caulk
8ce6b18318 start collecting indefinite history of predictions. Allow user to generate statistics on these predictions. Direct FreqAI to save these to disk and reload them if available. 2022-07-11 22:01:48 +02:00
Matthias
0669d93f56 Merge pull request #7068 from freqtrade/ccxt_ordertype_validations
Ccxt ordertype validations
2022-07-11 19:41:05 +02:00
Matthias
5c164efdb6 Also check for createLimitOrder as optionals 2022-07-11 16:09:12 +02:00
Matthias
b9ba94d644 Bump ccxt to 1.90.47 2022-07-11 16:07:58 +02:00
Matthias
bf992fd9df Add test for newly added functionality 2022-07-11 14:09:44 +02:00
Matthias
f9d3775d4c Move "candle" logic for message to telegram
this avoids calling this method unless necessary
2022-07-11 14:09:39 +02:00
Matthias
9a3a2f9013 Simplify adding candle to message 2022-07-11 13:55:32 +02:00
Matthias
8e8f026ea7 Telegram candle message should be configurable 2022-07-11 12:14:19 +02:00
Matthias
ed03ef47ef Merge branch 'develop' into pr/SurferAdmin/6916 2022-07-11 11:49:22 +02:00
Matthias
ec3179156c Revert unwanted changes. 2022-07-11 11:48:24 +02:00
Matthias
3fc92b1b21 Create BaseRegression model - designed to reduce code duplication across currently available models. 2022-07-11 11:33:59 +02:00
Matthias
64f89af69e Add Explicit test for "has" checks 2022-07-11 10:43:21 +02:00
Matthias
6ac1aa15f5 Reenable ccxt order checks 2022-07-11 10:36:19 +02:00
Matthias
f8e35d8760 Add TODO to disabled test 2022-07-11 10:30:05 +02:00
Matthias
523d8a84a8 skip "supports market order" for now until CCXT fixes their assignemnt bugs. 2022-07-11 10:22:51 +02:00
Matthias
7d6b3d0e02 Update hyperopt param docs to be clear that non-conclusive parameters will be ignored 2022-07-11 08:17:16 +02:00
Matthias
0600c4d70e Merge pull request #7064 from freqtrade/dependabot/pip/develop/urllib3-1.26.10
Bump urllib3 from 1.26.9 to 1.26.10
2022-07-11 08:16:58 +02:00
Matthias
2bba071b6a Merge pull request #7063 from freqtrade/dependabot/pip/develop/numpy-1.23.1
Bump numpy from 1.23.0 to 1.23.1
2022-07-11 08:16:39 +02:00
Matthias
a4901ae9a7 Merge pull request #7059 from freqtrade/dependabot/pip/develop/pre-commit-2.20.0
Bump pre-commit from 2.19.0 to 2.20.0
2022-07-11 08:16:01 +02:00
Matthias
04ec44edc3 Merge pull request #7065 from freqtrade/dependabot/pip/develop/python-rapidjson-1.8
Bump python-rapidjson from 1.6 to 1.8
2022-07-11 08:15:44 +02:00
Matthias
50d368f3ec Merge pull request #7060 from freqtrade/dependabot/pip/develop/cryptography-37.0.4
Bump cryptography from 37.0.2 to 37.0.4
2022-07-11 08:15:22 +02:00
dependabot[bot]
0bb8c8feba Bump python-rapidjson from 1.6 to 1.8
Bumps [python-rapidjson](https://github.com/python-rapidjson/python-rapidjson) from 1.6 to 1.8.
- [Release notes](https://github.com/python-rapidjson/python-rapidjson/releases)
- [Changelog](https://github.com/python-rapidjson/python-rapidjson/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-rapidjson/python-rapidjson/compare/v1.6...v1.8)

---
updated-dependencies:
- dependency-name: python-rapidjson
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 05:23:01 +00:00
Matthias
9b3032390c Merge pull request #7066 from freqtrade/dependabot/pip/develop/orjson-3.7.7
Bump orjson from 3.7.6 to 3.7.7
2022-07-11 07:22:01 +02:00
dependabot[bot]
c06b524b4e Bump urllib3 from 1.26.9 to 1.26.10
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.9 to 1.26.10.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.10/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.9...1.26.10)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 05:16:14 +00:00
dependabot[bot]
7c6c2c4d6e Bump cryptography from 37.0.2 to 37.0.4
Bumps [cryptography](https://github.com/pyca/cryptography) from 37.0.2 to 37.0.4.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/37.0.2...37.0.4)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 05:15:38 +00:00
dependabot[bot]
7b998378ce Bump numpy from 1.23.0 to 1.23.1
Bumps [numpy](https://github.com/numpy/numpy) from 1.23.0 to 1.23.1.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.23.0...v1.23.1)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 05:15:37 +00:00
Matthias
2bc78fd045 Merge pull request #7062 from freqtrade/dependabot/pip/develop/jsonschema-4.6.2
Bump jsonschema from 4.6.1 to 4.6.2
2022-07-11 07:15:07 +02:00
dependabot[bot]
fa158ba8de Bump pre-commit from 2.19.0 to 2.20.0
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 2.19.0 to 2.20.0.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v2.19.0...v2.20.0)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 05:14:41 +00:00
Matthias
9d453ffa08 Merge pull request #7061 from freqtrade/dependabot/pip/develop/ccxt-1.90.41
Bump ccxt from 1.90.40 to 1.90.41
2022-07-11 07:14:39 +02:00
Matthias
6aac4f9990 Merge pull request #7058 from freqtrade/dependabot/pip/develop/mkdocs-material-8.3.9
Bump mkdocs-material from 8.3.8 to 8.3.9
2022-07-11 07:13:52 +02:00
Matthias
d5e45d9c43 Merge pull request #7057 from freqtrade/dependabot/pip/develop/pytest-mock-3.8.2
Bump pytest-mock from 3.8.1 to 3.8.2
2022-07-11 07:13:29 +02:00
dependabot[bot]
719fa6f8e1 Bump orjson from 3.7.6 to 3.7.7
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.6 to 3.7.7.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.6...3.7.7)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 03:02:39 +00:00
dependabot[bot]
c98786a4f6 Bump jsonschema from 4.6.1 to 4.6.2
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.6.1 to 4.6.2.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.6.1...v4.6.2)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 03:02:17 +00:00
dependabot[bot]
b1d34dba94 Bump ccxt from 1.90.40 to 1.90.41
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.90.40 to 1.90.41.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.90.40...1.90.41)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 03:02:12 +00:00
dependabot[bot]
5070a04a82 Bump mkdocs-material from 8.3.8 to 8.3.9
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.3.8 to 8.3.9.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.3.8...8.3.9)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 03:01:50 +00:00
dependabot[bot]
9086176f73 Bump pytest-mock from 3.8.1 to 3.8.2
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.8.1 to 3.8.2.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.8.1...v3.8.2)

---
updated-dependencies:
- dependency-name: pytest-mock
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-11 03:01:47 +00:00
Matthias
494e0529d2 Update conftest for leverage tiers 2022-07-10 19:31:14 +02:00
Robert Caulk
607455919e Change config parameter names to improve clarity and consistency throughout the code (!!breaking change, please check discord support channel for migration instructions or review templates/FreqaiExampleStrategy.py config_examples/config_freqai_futures.example.json file changes!!) 2022-07-10 12:35:44 +02:00
Matthias
819cc9c0e4 Fully align LightGBM with Catboost 2022-07-10 11:06:18 +02:00
Matthias
58b18770e3 Fix LightGBM missing argument in predict method 2022-07-10 11:05:35 +02:00
Matthias
9313a2d294 Update leverage tiers to latest version 2022-07-10 10:11:39 +02:00
Matthias
59b0fd1166 Merge pull request #7051 from freqtrade/gateio_fee_fix
Gateio fee fix
2022-07-10 09:45:24 +02:00
Matthias
ea5f41aa6d Version bump ccxt 2022-07-10 09:06:19 +02:00
Matthias
2e1061af64 Fix faulty LightGBM model 2022-07-09 08:21:42 +00:00
Matthias
aab59a8caf Bump ccxt to required version 2022-07-09 09:00:12 +02:00
Matthias
c98e7ea055 Revert allowing empty currency for futures 2022-07-09 08:57:15 +02:00
Matthias
b7167ec880 Fix wrong fee calclulation for gateio futures 2022-07-09 08:51:59 +02:00
Matthias
5b733a723d use "fees" for trades responses 2022-07-09 08:51:28 +02:00
Matthias
81f7d77d74 Allow fee currency to be empty for futures 2022-07-09 08:51:28 +02:00
Matthias
2499276fca Refactor calculate_fee_rate to take separate parameters instead of an "Order"
we passed in a trade object anyway
2022-07-09 08:51:28 +02:00
Matthias
e52f82b565 Add leverage to custom_stake_amount callback
closes #7047
2022-07-08 19:44:20 +02:00
Matthias
b39508f64d remove loadMarkets from "required" section,
it's now implied that all ccxt exchanges provide this method.
2022-07-07 19:44:54 +02:00
robcaulk
d9acdc9767 remove excess, increase no model warning clarity 2022-07-06 18:20:21 +02:00
Matthias
2dc46ca0b8 Add cost to partial test buy order 2022-07-06 07:12:13 +02:00
Matthias
dbc3376fe9 Add alias for gate to gateio 2022-07-06 07:12:13 +02:00
Matthias
da9dac64f2 Merge pull request #7045 from freqtrade/remove_abortion
replace the word "abortion" with "denied" in log messages
2022-07-05 20:41:13 +02:00
robcaulk
514f7d491c change rejected to denied 2022-07-05 12:58:43 +02:00
robcaulk
647f9b5460 replace the word abortion with rejected in log messages 2022-07-05 12:49:09 +02:00
robcaulk
4cac67fd66 Catch infrequent issue associated with grabbing first candle 2022-07-05 12:43:33 +02:00
Matthias
6f0721ae2b Update dry-order-fix to use sqlalchemy internals 2022-07-04 17:17:39 +02:00
Matthias
fe8083c7f8 Improve test for dry-run orderclosing 2022-07-04 17:17:01 +02:00
Matthias
6da3fa08e4 Update migrations to also support Postgres
closes #7038
2022-07-04 11:14:59 +02:00
Matthias
edc9a42a4c Merge pull request #7036 from freqtrade/dependabot/pip/develop/uvicorn-0.18.2
Bump uvicorn from 0.18.1 to 0.18.2
2022-07-04 09:11:37 +02:00
Matthias
14fb499a71 Merge pull request #7033 from freqtrade/dependabot/pip/develop/jsonschema-4.6.1
Bump jsonschema from 4.6.0 to 4.6.1
2022-07-04 09:11:19 +02:00
dependabot[bot]
5820fc3b44 Bump jsonschema from 4.6.0 to 4.6.1
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.6.0 to 4.6.1.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.6.0...v4.6.1)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 05:55:44 +00:00
Matthias
fe0a64154d Merge pull request #7037 from freqtrade/dependabot/pip/develop/ccxt-1.89.96
Bump ccxt from 1.89.14 to 1.89.96
2022-07-04 07:54:52 +02:00
Matthias
d993216ec2 Merge pull request #7035 from freqtrade/dependabot/pip/develop/requests-2.28.1
Bump requests from 2.28.0 to 2.28.1
2022-07-04 07:54:36 +02:00
Matthias
f589e13cf2 Merge pull request #7031 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.30
Bump prompt-toolkit from 3.0.29 to 3.0.30
2022-07-04 07:10:06 +02:00
dependabot[bot]
0a8a0c66b4 Bump requests from 2.28.0 to 2.28.1
Bumps [requests](https://github.com/psf/requests) from 2.28.0 to 2.28.1.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.28.0...v2.28.1)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 05:10:00 +00:00
dependabot[bot]
dd21d963fc Bump ccxt from 1.89.14 to 1.89.96
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.89.14 to 1.89.96.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.89.14...1.89.96)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 05:09:28 +00:00
Matthias
a7fa84f681 Merge pull request #7030 from freqtrade/dependabot/pip/develop/orjson-3.7.6
Bump orjson from 3.7.3 to 3.7.6
2022-07-04 07:09:09 +02:00
Matthias
05e8abb934 Merge pull request #7032 from freqtrade/dependabot/pip/develop/python-telegram-bot-13.13
Bump python-telegram-bot from 13.12 to 13.13
2022-07-04 07:08:22 +02:00
dependabot[bot]
9a8d03b1f5 Bump uvicorn from 0.18.1 to 0.18.2
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.18.1 to 0.18.2.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.18.1...0.18.2)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 03:03:02 +00:00
dependabot[bot]
0555d7783c Bump python-telegram-bot from 13.12 to 13.13
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.12 to 13.13.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/v13.13/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.12...v13.13)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 03:02:40 +00:00
dependabot[bot]
b16bb23cc8 Bump prompt-toolkit from 3.0.29 to 3.0.30
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.29 to 3.0.30.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.29...3.0.30)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 03:02:34 +00:00
dependabot[bot]
92d189a84f Bump orjson from 3.7.3 to 3.7.6
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.3 to 3.7.6.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.3...3.7.6)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-07-04 03:02:30 +00:00
Matthias
eda9464d30 Fix docs test 2022-07-03 19:54:29 +02:00
robcaulk
bd3a6ba2fe update backtesting to handle new output framework 2022-07-03 17:34:44 +02:00
robcaulk
8ac8d53c32 All LGBMRegressor model parameters are now set in config 2022-07-03 16:30:01 +02:00
robcaulk
a6077ac7f4 Merge feat/freqai into develop to get new features 2022-07-03 16:17:13 +02:00
Matthias
07aa372e2a Ensure bot_loop_start is called in hyperopt, too
closes #7001
2022-07-03 14:10:59 +02:00
Matthias
c5e6520fee Reorder methods in freqtradebot 2022-07-03 13:35:26 +02:00
robcaulk
4ff0ef7359 fix bug returning multiple targets for training 2022-07-03 12:15:59 +02:00
Matthias
f2fdc21374 Only use exit_tag if exit_type i exit_signal
closes #7027
2022-07-03 11:07:05 +02:00
Matthias
906c7b92fe Add enhance testcase to show problematic exit_reason behavior 2022-07-03 11:05:15 +02:00
robcaulk
ffb39a5029 black formatting on freqai files 2022-07-03 10:59:38 +02:00
Matthias
df8c9fc4e1 Merge pull request #7005 from freqtrade/dependabot/pip/develop/uvicorn-0.18.1
Bump uvicorn from 0.17.6 to 0.18.1
2022-07-03 07:52:09 +02:00
robcaulk
106131ff0f Rehaul organization of return values 2022-07-02 18:09:38 +02:00
robcaulk
93e1410ed9 first step toward cleaning output and enabling multimodel training per pair 2022-07-01 14:00:30 +02:00
robcaulk
6c7d02cb18 expose nu in the SVM outlier detection via svm_nu in config 2022-06-28 15:12:25 +02:00
Matthias
3c1380fbc6 Merge pull request #7009 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.18
Bump types-python-dateutil from 2.8.17 to 2.8.18
2022-06-28 08:02:33 +02:00
Matthias
86f4077024 update dateutil precommit 2022-06-28 07:37:54 +02:00
dependabot[bot]
f2bc35e058 Bump types-python-dateutil from 2.8.17 to 2.8.18
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.17 to 2.8.18.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 20:06:56 +00:00
Matthias
0a5225695a Merge pull request #7016 from freqtrade/dependabot/pip/develop/types-tabulate-0.8.11
Bump types-tabulate from 0.8.9 to 0.8.11
2022-06-27 22:05:45 +02:00
Matthias
74471e41db update tabulate precommit types 2022-06-27 18:23:00 +02:00
dependabot[bot]
8b1798522c Bump types-tabulate from 0.8.9 to 0.8.11
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.8.9 to 0.8.11.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 13:18:58 +00:00
Matthias
7de7425e24 Merge pull request #7007 from freqtrade/dependabot/pip/develop/time-machine-2.7.1
Bump time-machine from 2.7.0 to 2.7.1
2022-06-27 15:18:23 +02:00
Matthias
37dff8dc82 Merge pull request #7018 from freqtrade/dependabot/pip/develop/types-requests-2.28.0
Bump types-requests from 2.27.30 to 2.28.0
2022-06-27 15:17:57 +02:00
Matthias
0c69a08863 update requests precommit 2022-06-27 12:09:27 +02:00
dependabot[bot]
f6e058a327 Bump types-requests from 2.27.30 to 2.28.0
Bumps [types-requests](https://github.com/python/typeshed) from 2.27.30 to 2.28.0.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 09:59:19 +00:00
dependabot[bot]
d60127a6d8 Bump time-machine from 2.7.0 to 2.7.1
Bumps [time-machine](https://github.com/adamchainz/time-machine) from 2.7.0 to 2.7.1.
- [Release notes](https://github.com/adamchainz/time-machine/releases)
- [Changelog](https://github.com/adamchainz/time-machine/blob/main/HISTORY.rst)
- [Commits](https://github.com/adamchainz/time-machine/compare/2.7.0...2.7.1)

---
updated-dependencies:
- dependency-name: time-machine
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 09:59:07 +00:00
Matthias
11a8151653 Merge pull request #7012 from freqtrade/dependabot/pip/develop/types-cachetools-5.2.1
Bump types-cachetools from 5.0.2 to 5.2.1
2022-06-27 11:54:43 +02:00
Matthias
e3abaaa1b7 Merge pull request #7019 from freqtrade/dependabot/pip/develop/pandas-1.4.3
Bump pandas from 1.4.2 to 1.4.3
2022-06-27 11:54:06 +02:00
robcaulk
7dfbd432d1 fix config saving bug, assign priorities to pairs in scanning, sleep the scanning loop to reduce CPU usage 2022-06-27 11:35:33 +02:00
dependabot[bot]
82ef97af7e Bump pandas from 1.4.2 to 1.4.3
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.4.2 to 1.4.3.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/main/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.4.2...v1.4.3)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 07:44:33 +00:00
Matthias
74fdda6846 Merge pull request #7017 from freqtrade/dependabot/pip/develop/ccxt-1.89.14
Bump ccxt from 1.88.15 to 1.89.14
2022-06-27 09:43:29 +02:00
Matthias
9eaf0400fa Merge pull request #7020 from freqtrade/dependabot/pip/develop/orjson-3.7.3
Bump orjson from 3.7.2 to 3.7.3
2022-06-27 09:10:46 +02:00
Matthias
01185ab483 update cachetools precommit 2022-06-27 07:59:26 +02:00
Matthias
8405bf767b Merge pull request #7006 from freqtrade/dependabot/pip/develop/pytest-mock-3.8.1
Bump pytest-mock from 3.7.0 to 3.8.1
2022-06-27 07:43:55 +02:00
dependabot[bot]
9a9d1a8974 Bump orjson from 3.7.2 to 3.7.3
Bumps [orjson](https://github.com/ijl/orjson) from 3.7.2 to 3.7.3.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.7.2...3.7.3)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 05:39:04 +00:00
dependabot[bot]
0ef2c812db Bump ccxt from 1.88.15 to 1.89.14
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.88.15 to 1.89.14.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.88.15...1.89.14)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 05:38:31 +00:00
Matthias
85d1b433bc Merge pull request #7013 from freqtrade/dependabot/pip/develop/tabulate-0.8.10
Bump tabulate from 0.8.9 to 0.8.10
2022-06-27 07:38:20 +02:00
Matthias
d8f616cf35 Merge pull request #7011 from freqtrade/dependabot/pip/develop/plotly-5.9.0
Bump plotly from 5.8.2 to 5.9.0
2022-06-27 07:37:33 +02:00
Matthias
870c25c81f Merge pull request #7010 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.39
Bump sqlalchemy from 1.4.37 to 1.4.39
2022-06-27 07:37:00 +02:00
Matthias
fb3bc189b5 Merge pull request #7008 from freqtrade/dependabot/pip/develop/mkdocs-material-8.3.8
Bump mkdocs-material from 8.3.6 to 8.3.8
2022-06-27 07:36:08 +02:00
dependabot[bot]
6510c8d330 Bump tabulate from 0.8.9 to 0.8.10
Bumps [tabulate](https://github.com/astanin/python-tabulate) from 0.8.9 to 0.8.10.
- [Release notes](https://github.com/astanin/python-tabulate/releases)
- [Changelog](https://github.com/astanin/python-tabulate/blob/master/CHANGELOG)
- [Commits](https://github.com/astanin/python-tabulate/compare/v0.8.9...v0.8.10)

---
updated-dependencies:
- dependency-name: tabulate
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:03:00 +00:00
dependabot[bot]
efee148e43 Bump types-cachetools from 5.0.2 to 5.2.1
Bumps [types-cachetools](https://github.com/python/typeshed) from 5.0.2 to 5.2.1.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:53 +00:00
dependabot[bot]
8b7dc031f7 Bump plotly from 5.8.2 to 5.9.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.8.2 to 5.9.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.8.2...v5.9.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:51 +00:00
dependabot[bot]
963f38a690 Bump sqlalchemy from 1.4.37 to 1.4.39
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.37 to 1.4.39.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:46 +00:00
dependabot[bot]
45db2347dc Bump mkdocs-material from 8.3.6 to 8.3.8
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 8.3.6 to 8.3.8.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/8.3.6...8.3.8)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:29 +00:00
dependabot[bot]
4840c7d2fd Bump pytest-mock from 3.7.0 to 3.8.1
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.7.0 to 3.8.1.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.7.0...v3.8.1)

---
updated-dependencies:
- dependency-name: pytest-mock
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:16 +00:00
dependabot[bot]
92dbb0d366 Bump uvicorn from 0.17.6 to 0.18.1
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.17.6 to 0.18.1.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.17.6...0.18.1)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-27 03:02:07 +00:00
robcaulk
68bafa9517 archive config to the model folder, filter out features before returning dataframe to strategy (to alleviate frequi issues)` 2022-06-26 23:03:48 +02:00
robcaulk
051b99791d reduce unnecessary verbosity, fix error on first training sweep, add LightGBMPredictionModel 2022-06-26 19:04:23 +02:00
Matthias
b5d0bc997d Clarify stoploss behavior when not defining offset
closes #6828
2022-06-24 17:25:33 +02:00
Matthias
ca88ea50c5 Merge pull request #6859 from mkavinkumar1/get
Removed None in dict.get()
2022-06-23 21:45:13 +02:00
Matthias
2b07d34611 Revert several undesired changes 2022-06-23 20:47:51 +02:00
Matthias
8bf0bf10c5 Merge branch 'develop' into pr/SmartManoj/6859 2022-06-23 20:43:35 +02:00
Surfer
06571e99aa Merge branch 'freqtrade:develop' into develop 2022-06-22 09:38:23 -04:00
Surfer
cc4e5b26f0 Merge branch 'freqtrade:develop' into develop 2022-06-21 14:16:03 -04:00
Surfer Admin
e2a94d75b4 Merge branch 'develop' of https://github.com/Surfableio/freqtrade into develop 2022-06-21 14:06:56 -04:00
Surfer Admin
405ea74f16 stopPrice 2022-06-21 14:06:41 -04:00
Robert Caulk
852706cd6b Fix default behavior for expiration_hours 2022-06-21 08:12:51 +02:00
robcaulk
b35c64b6c0 fix bug in backtest, typo in example strat 2022-06-19 16:41:09 +02:00
robcaulk
3599d18ff6 fix bug in follow_mode, thanks @blood4rc 2022-06-18 12:05:28 +02:00
robcaulk
6da7a98857 add docstrings to new functions, remove superceded code 2022-06-17 16:16:23 +02:00
robcaulk
5e914d5756 improve model youth by constantly scanning pairs in dry/live and always training new models. Fix bug in DI return values 2022-06-17 16:06:51 +02:00
robcaulk
f631ae911b add model expiration feature, fix bug in DI return values 2022-06-17 14:55:40 +02:00
Matthias
61040c9f8e Fix freqAI dockerfile not running freqai code ... 2022-06-16 19:35:16 +02:00
robcaulk
0b0688a91e ensure scanning purges models 2022-06-16 16:12:38 +02:00
Matthias
121edc3e42 Add freqAI docker file 2022-06-16 12:36:15 +00:00
Surfer
36f7315481 Merge branch 'freqtrade:develop' into develop 2022-06-16 08:19:57 -04:00
robcaulk
c5de0c49e4 first functional scanning commit 2022-06-16 00:24:18 +02:00
robcaulk
4d472a0ea1 merging datarehaul into scanning branch 2022-06-16 00:22:49 +02:00
Matthias
c981ad4608 Fix missing space 2022-06-12 08:31:02 +02:00
Matthias
75a248cf42 Fstring freqAI sample strategy, remove duplicate features 2022-06-11 19:56:37 +02:00
robcaulk
eb47c74096 merge datarehaul into main freqai branch 2022-06-10 20:26:19 +02:00
robcaulk
d9b79d94e4 increase candle update flexibility to allow long sequential trainings that may last more than one candle 2022-06-07 20:57:10 +02:00
robcaulk
66800c7a45 ensure newest candles are always appended 2022-06-07 20:24:23 +02:00
robcaulk
f8f25e36ef update example config/strat 2022-06-07 19:54:45 +02:00
robcaulk
15d049cffe detect if upper tf candles are new or not, append if so. Correct the epoch for candle update check 2022-06-07 19:49:20 +02:00
robcaulk
cab8f517b4 add lock to datadrawer 2022-06-07 01:07:30 +02:00
robcaulk
4b26b6aaec add lock to any historic data access 2022-06-07 00:54:18 +02:00
Robert Caulk
3c2e314ee5 Fix bugs 2022-06-06 16:26:07 -06:00
Robert Caulk
e6c5e737a2 Fix other bugs 2022-06-06 16:24:32 -06:00
Robert Caulk
bf19055e53 Update function spelling 2022-06-06 15:56:12 -06:00
Robert Caulk
2451ed8c88 Quick bug fix 2022-06-06 15:11:54 -06:00
robcaulk
d6b8801f41 fix follower bug 2022-06-05 04:40:58 +02:00
robcaulk
e8c0dcf9f3 add debug message to timerange 2022-06-03 17:14:07 +02:00
robcaulk
f2762e3b4b fix bug in return_values() 2022-06-03 16:58:51 +02:00
robcaulk
16b4a5b71f rehaul of backend data management - increasing performance by holding history in memory, reducing load on the ratelimit by only pinging exchange once per candle. Improve code readability. 2022-06-03 15:19:46 +02:00
robcaulk
15a971346d catch infinity values when filtering 2022-06-02 17:13:20 +02:00
Robert Caulk
7d41542f93 process_only_new_candles in examplestrat should be True, thanks @Bloodhunter4rc 2022-06-02 07:24:08 -06:00
robcaulk
fea39254d9 fix custom_exit (thanks @paranoidandy) 2022-06-02 14:58:45 +02:00
robcaulk
b37c31cc21 fix ta-lib issue with simultaneous method access 2022-06-02 14:37:40 +02:00
robcaulk
4ac6ef2972 make defining period intervals more user friendly and flexible 2022-06-02 13:45:29 +02:00
robcaulk
ace951bf7e another queue bug fix for fresh starts 2022-06-02 13:28:06 +02:00
robcaulk
833d25bda0 Save data after queue reorg 2022-06-01 08:05:38 +02:00
robcaulk
0b0dd8dd80 Force high priority pair to be trained before anything else. 2022-06-01 07:55:05 +02:00
Surfer Admin
7fe8b7661d Display the signal candle analyzed in telegram. 2022-05-31 15:46:43 -04:00
robcaulk
7523ed825e automatically detect maximum required data based on user fed indicators (to avoid NaNs in dataset for rolling indicators), add new config parameter for backtesting to let users increase their startup_candles to accommodate high timeframe indicators, add docs to explain all. Add new feature for automatic indicator duplication according to user defined intervals (exhibited in example strat and configs now). 2022-05-31 18:42:27 +02:00
robcaulk
9b3b08a2bb let follower purge old model files 2022-05-31 15:37:38 +02:00
robcaulk
bac4ced382 Ensure follower predictions are persistent and uniquely stored 2022-05-31 14:35:04 +02:00
robcaulk
70adf55643 Automatically detect and change follower data_path to accommodate remote systems 2022-05-31 12:35:09 +02:00
robcaulk
0306f5ca13 Add autopurge feature so that FreqAI cleans up after itself when it no longer needs old models on disk 2022-05-31 11:58:21 +02:00
robcaulk
45f4f0f603 ensure follower sends back null arrays in case leader hasnt created a model file yet 2022-05-31 01:48:48 +02:00
robcaulk
29d2f59f12 fix PCA bug 2022-05-31 00:40:45 +02:00
robcaulk
606f18e5c1 Add follow_mode feature so that secondary bots can be launched with the same identifier and load models trained by the leader 2022-05-30 21:35:48 +02:00
robcaulk
5b4c649d43 detect variable sized dataframes coming from strat, adjust our stored/returned data accordingly 2022-05-30 13:55:46 +02:00
robcaulk
e229902381 fix bug in previous commit 2022-05-30 12:48:22 +02:00
robcaulk
a20651efd8 Increase performance by only predicting on most recent candle instead of full strat provided dataframe. Collect predictions and store them so that we can feed true predictions back to strategy (so that frequi isnt updating historic predictions based on newly trained models). 2022-05-30 11:37:05 +02:00
robcaulk
2f1a2c1cd7 allow users to store data in custom formats, update spot config to reflect better target horizon to training period ratio 2022-05-30 02:12:31 +02:00
robcaulk
d59eac3321 revert a79032b 2022-05-29 21:33:38 +02:00
robcaulk
a79032bf75 fixing bug in training queue 2022-05-29 20:19:32 +02:00
robcaulk
3f72263278 allow pairs deeper in the queue to get trained if the higher priority pairs dont need training 2022-05-29 20:02:43 +02:00
robcaulk
cc6cae47ec allow pairs deeper in the queue to get trained if the higher priority pairs dont need training 2022-05-29 19:49:43 +02:00
robcaulk
4eb4753e20 allow subdaily retraining for backtesting 2022-05-29 17:44:35 +02:00
robcaulk
0aa7162055 ensure the prediction is reset in the pair_dict after any trade exit, not just custom_exit 2022-05-29 16:36:46 +02:00
robcaulk
fe36b08fce fix key error in example strat 2022-05-29 16:26:34 +02:00
robcaulk
ce365eb9e3 improve example strat so that it has dynamic buy and sell logic according to original prediction 2022-05-29 14:45:46 +02:00
robcaulk
4eb29c8810 Dont reset pair priority if it doesnt successfully train 2022-05-28 18:34:26 +02:00
robcaulk
83dd453723 catch errors occuring on background thread, and make sure to keep the ball rolling. Improve pair retraining queue. 2022-05-28 18:26:19 +02:00
robcaulk
e54614fa2f remove remnants of single threaded version, ensure pair queue priority is checked before retraining 2022-05-28 14:55:07 +02:00
robcaulk
2a4d1e2d64 fix bug in setting new timerange for retraining 2022-05-28 12:23:26 +02:00
robcaulk
7870a86e9a fix live retraining bug 2022-05-28 11:38:57 +02:00
robcaulk
0bf915054d handle key check correctly 2022-05-28 11:22:32 +02:00
robcaulk
c5a16e91fb throw user error if user tries to load models but feeds the wrong features (while using PCA) 2022-05-28 11:11:41 +02:00
robcaulk
b8f9c3557b dirty dirty, dont look here (hacking a flag to avoid reloading leverage_tiers in dry/live) 2022-05-27 13:56:34 +02:00
robcaulk
891fb87712 give load_cached_data_for_updating the right flags to avoid redownloading data in dry/live 2022-05-27 13:38:22 +02:00
robcaulk
65fdebab75 let load_pairs_histories load futures candles in live 2022-05-27 13:01:33 +02:00
robcaulk
c080571b7a help futures go dry/live with auto download feature 2022-05-27 12:23:32 +02:00
robcaulk
8a501831d6 fix the error logic on previous commit 2022-05-27 01:15:55 +02:00
robcaulk
23c30dbc10 add error for user trying to backtest with backtest_period<1 2022-05-27 00:43:52 +02:00
robcaulk
6193205012 fix bug for target_mean/std array merging in backtesting 2022-05-26 21:07:50 +02:00
robcaulk
ff531c416f reduce complexity inside start_download_data() in an effort to appease flake8 2022-05-25 15:31:50 +02:00
robcaulk
d79983c791 try to pass flake8 2022-05-25 14:55:19 +02:00
robcaulk
7593339c14 small cleanup 2022-05-25 14:42:46 +02:00
robcaulk
b79d4e8876 Allow user to go live and start from pretrained models (after a completed backtest) by simply reusing the identifier config parameter while dry/live. 2022-05-25 14:40:32 +02:00
robcaulk
7486d9d9e2 proper validation of freqai config parameters 2022-05-25 12:37:25 +02:00
robcaulk
7ff3258607 remove assertions, log error if user has not assigned freqai in config, fix stratify bug 2022-05-25 11:43:45 +02:00
robcaulk
35bed842cb cleanup, add clarity to comments and docstrings 2022-05-25 11:31:03 +02:00
robcaulk
58b5abbaa6 improve multithreaded training queue system 2022-05-24 15:28:38 +02:00
robcaulk
31ae2b3060 alleviate FutureWarning in sklearn about ensuring svm model features are passed with identical order 2022-05-24 14:46:16 +02:00
robcaulk
255d35976e add priority metadata to pairs to avoid a sync of train time + train period 2022-05-24 12:58:53 +02:00
robcaulk
059c285425 paying closer attention to managing live retraining on separate thread without affecting prediction of other coins on master thread 2022-05-24 12:01:01 +02:00
robcaulk
b0d2d13eb1 improve data persistence/mapping for live/dry. This accommodates quick reloads after crash and handles multi-pair cleanly 2022-05-23 21:05:05 +02:00
robcaulk
e1c068ca66 add config asserts, use .get method with default values for optional functionality, move data_cleaning_* to freqai_interface (away from user custom pred model) since it is controlled by config params. 2022-05-23 12:07:09 +02:00
robcaulk
dede128648 set process_only_new_candles to true in example strat 2022-05-23 10:15:59 +02:00
robcaulk
ee3cdd0ffe more cleanup 2022-05-23 09:55:58 +02:00
robcaulk
3587bd82e1 cleanup superceded code 2022-05-23 00:10:36 +02:00
robcaulk
af0cc21af9 Enable hourly/minute retraining in live/dry. Suppress catboost folder output. Update config + constants + docs to reflect updates. 2022-05-23 00:06:26 +02:00
robcaulk
42d95af829 Aggregated commit. Adding support vector machine for outlier detection, improve user interface to dry/live, better standardization, fix various other bugs 2022-05-22 17:51:49 +02:00
robcaulk
c5ecf94177 move live retraining to separate thread. 2022-05-19 21:15:58 +02:00
robcaulk
1fae6c9ef7 keep model accessible in memory to avoid loading objects from disk during live/dry 2022-05-19 19:27:38 +02:00
robcaulk
67eb94c69d download-data will now check if freqai is active in config, and if so will also download data for corr_pairlist 2022-05-19 17:55:00 +02:00
robcaulk
89eacf2f47 Retrain model if FreqAI found a pretrained model but user strategy is not passing the expected features (user has changed the features in the strategy but has passed a the same config[freqai][identifier]). Logger warning output to user. 2022-05-19 17:15:50 +02:00
மனோஜ்குமார் பழனிச்சாமி
2b61aa282a Removed None in dict.get()
https://stackoverflow.com/a/12631641

Extra Changes: freqtrade\freqtradebot.py:70
freqtrade\plugins\pairlistmanager.py:31
2022-05-18 03:41:10 +05:30
robcaulk
c708dd3186 doc update thanks matthias 2022-05-17 20:46:23 +02:00
Matthias
c81b960791 Fix some typos 2022-05-17 19:58:36 +02:00
robcaulk
db66b82f6f accept open-ended timeranges from user 2022-05-17 19:50:06 +02:00
robcaulk
d1d451c27e auto populate features based on a prepended % in the strategy (remove feature assignment from config). Update doc/constants/example strategy to reflect change 2022-05-17 18:15:03 +02:00
robcaulk
8664e8f9a3 create a prediction_models folder where basic prediction models can live (similar to optimize/hyperopt-loss. Update resolver/docs/and gitignore to accommodate change 2022-05-17 17:13:38 +02:00
robcaulk
80dcd88abf allow user to run config from anywhere on their system 2022-05-15 17:42:15 +02:00
robcaulk
9e94d28860 add timerange to backtest commnad 2022-05-15 17:42:15 +02:00
robcaulk
e5759d950b fix typo 2022-05-15 17:42:15 +02:00
robcaulk
f4296173e9 use bash visual in doc 2022-05-15 17:42:15 +02:00
robcaulk
717df891b1 use bash visual in doc 2022-05-15 17:42:15 +02:00
robcaulk
a8022c104a give beta testers more information in the doc 2022-05-15 17:42:15 +02:00
robcaulk
a7029e35b5 ensure informative pairs includes any combination of whitelist - corr_pairlist 2022-05-15 17:42:15 +02:00
robcaulk
9b3e5faebe create more flexible whitelist, avoid duplicating whitelist features into corr_pairlist, update docs 2022-05-15 17:42:15 +02:00
robcaulk
22bd5556ed add self-retraining functionality for live/dry 2022-05-15 17:42:15 +02:00
robcaulk
178c2014b0 appease mypy 2022-05-15 17:42:15 +02:00
robcaulk
a4f5811a5b fix flake8 issue in arguments.py 2022-05-15 17:42:15 +02:00
robcaulk
aae233bd6c try passing the check tests 2022-05-15 17:42:15 +02:00
robcaulk
f653ace24b another attempt at fixing datalength bug 2022-05-15 17:42:15 +02:00
robcaulk
b08c0888bb add USERPATH_FREQAIMODELS, remove return values from @abstract methods 2022-05-15 17:42:15 +02:00
robcaulk
b03c7b514d optional style for interfacing freqai with backtesting 2022-05-15 17:42:15 +02:00
robcaulk
e9a7b68bc1 revert constants.py and add changes 2022-05-15 17:42:15 +02:00
robcaulk
3020218096 fix bug on backtest timerange 2022-05-15 17:41:34 +02:00
robcaulk
00ff0c9b91 ensure user defined timerange truncates final backtest so that we arent mismatching data lengths upon return to strategy. Rename DataHandler class to FreqaiDataKitchen 2022-05-15 17:41:34 +02:00
robcaulk
66715c5ba4 update doc 2022-05-15 17:41:34 +02:00
robcaulk
def71a0afe auto build full_timerange and self manage training_timerange 2022-05-15 17:41:34 +02:00
robcaulk
764f9449b4 fix logger, debug some flake8 appeasements 2022-05-15 17:41:34 +02:00
robcaulk
29c2d1d189 use logger in favor of print 2022-05-15 17:38:58 +02:00
robcaulk
99f7e44c30 flake8 passing, use pathlib in lieu of os.path to accommodate windows/mac OS 2022-05-15 17:38:58 +02:00
robcaulk
2600ba4e74 remove unused remnants 2022-05-15 17:38:58 +02:00
robcaulk
630d201546 remove trained_stake 2022-05-15 17:38:58 +02:00
robcaulk
b40f8f88ac cleaning and bug fixing 2022-05-15 17:38:58 +02:00
robcaulk
fc837c4daa add freqao backend machinery, user interface, documentation 2022-05-15 17:38:58 +02:00
Sam Germain
10cbb5e67c test_exchange::test_taker_or_maker fixes 2022-05-04 00:10:09 -06:00
Sam Germain
86ad5dd02a test_exchange::test_taker_or_maker fixes 2022-05-04 00:08:41 -06:00
Sam Germain
dac9931b4a test_create_dry_run_order_fees 2022-05-03 23:56:49 -06:00
Sam Germain
5d9aee6b7e test_taker_or_maker 2022-05-03 23:56:49 -06:00
Sam Germain
e8803477df exchange/exchange add param taker_or_maker to add_dry_order_fee 2022-05-03 23:56:40 -06:00
163 changed files with 22473 additions and 13823 deletions

View File

@@ -351,7 +351,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@master
uses: pypa/gh-action-pypi-publish@v1.5.1
if: (github.event_name == 'release')
with:
user: __token__
@@ -359,7 +359,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@master
uses: pypa/gh-action-pypi-publish@v1.5.1
if: (github.event_name == 'release')
with:
user: __token__

8
.gitignore vendored
View File

@@ -7,10 +7,15 @@ logfile.txt
user_data/*
!user_data/strategy/sample_strategy.py
!user_data/notebooks
!user_data/models
!user_data/freqaimodels
user_data/freqaimodels/*
user_data/models/*
user_data/notebooks/*
freqtrade-plot.html
freqtrade-profit-plot.html
freqtrade/rpc/api_server/ui/*
build_helpers/ta-lib/*
# Macos related
.DS_Store
@@ -80,6 +85,8 @@ instance/
# Sphinx documentation
docs/_build/
# Mkdocs documentation
site/
# PyBuilder
target/
@@ -105,3 +112,4 @@ target/
!config_examples/config_ftx.example.json
!config_examples/config_full.example.json
!config_examples/config_kraken.example.json
!config_examples/config_freqai.example.json

View File

@@ -13,11 +13,11 @@ repos:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.0.2
- types-cachetools==5.2.1
- types-filelock==3.2.7
- types-requests==2.27.30
- types-tabulate==0.8.9
- types-python-dateutil==2.8.17
- types-requests==2.28.8
- types-tabulate==0.8.11
- types-python-dateutil==2.8.19
# stages: [push]
- repo: https://github.com/pycqa/isort

View File

@@ -1,4 +1,4 @@
FROM python:3.10.5-slim-bullseye as base
FROM python:3.10.6-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@@ -63,6 +63,7 @@ Please find the complete documentation on the [freqtrade website](https://www.fr
- [x] **Dry-run**: Run the bot without paying money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
- [x] **Strategy Optimization by machine learning**: Use machine learning to optimize your buy/sell strategy parameters with real exchange data.
- [X] **Adaptive prediction modeling**: Build a smart strategy with FreqAI that self-trains to the market via adaptive machine learning methods. [Learn more](https://www.freqtrade.io/en/stable/freqai/)
- [x] **Edge position sizing** Calculate your win rate, risk reward ratio, the best stoploss and adjust your position size before taking a position for each specific market. [Learn more](https://www.freqtrade.io/en/stable/edge/).
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you want to trade or use dynamic whitelists.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you want to avoid.
@@ -193,7 +194,7 @@ Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/
The clock must be accurate, synchronized to a NTP server very frequently to avoid problems with communication to the exchanges.
### Min hardware required
### Minimum hardware required
To run this bot we recommend you a cloud instance with a minimum of:

View File

@@ -4,7 +4,7 @@ else
INSTALL_LOC=${1}
fi
echo "Installing to ${INSTALL_LOC}"
if [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
if [ -n "$2" ] || [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
@@ -17,11 +17,17 @@ if [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
cd .. && rm -rf ./ta-lib/
exit 1
fi
which sudo && sudo make install || make install
if [ -x "$(command -v apt-get)" ]; then
echo "Updating library path using ldconfig"
sudo ldconfig
if [ -z "$2" ]; then
which sudo && sudo make install || make install
if [ -x "$(command -v apt-get)" ]; then
echo "Updating library path using ldconfig"
sudo ldconfig
fi
else
# Don't install with sudo
make install
fi
cd .. && rm -rf ./ta-lib/
else
echo "TA-lib already installed, skipping installation"

View File

@@ -6,10 +6,12 @@ export DOCKER_BUILDKIT=1
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@@ -38,8 +40,10 @@ fi
docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -53,6 +57,7 @@ docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_ARM
# Create multi-arch image
@@ -66,6 +71,9 @@ docker manifest push -p ${IMAGE_NAME}:${TAG}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM} ${CACHE_IMAGE}:${TAG_FREQAI}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}

View File

@@ -5,6 +5,7 @@
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
@@ -49,8 +50,10 @@ fi
docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
@@ -64,6 +67,7 @@ docker images
docker push ${CACHE_IMAGE}
docker push ${CACHE_IMAGE}:$TAG_PLOT
docker push ${CACHE_IMAGE}:$TAG_FREQAI
docker push ${CACHE_IMAGE}:$TAG

View File

@@ -0,0 +1,96 @@
{
"trading_mode": "futures",
"margin_mode": "isolated",
"max_open_trades": 5,
"stake_currency": "USDT",
"stake_amount": 200,
"tradable_balance_ratio": 1,
"fiat_display_currency": "USD",
"dry_run": true,
"timeframe": "3m",
"dry_run_wallet": 1000,
"cancel_open_orders_on_exit": true,
"unfilledtimeout": {
"entry": 10,
"exit": 30
},
"exchange": {
"name": "binance",
"key": "",
"secret": "",
"ccxt_config": {
"enableRateLimit": true
},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"pair_whitelist": [
"1INCH/USDT",
"ALGO/USDT"
],
"pair_blacklist": []
},
"entry_pricing": {
"price_side": "same",
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"exit_pricing": {
"price_side": "other",
"use_order_book": true,
"order_book_top": 1
},
"pairlists": [
{
"method": "StaticPairList"
}
],
"freqai": {
"enabled": true,
"startup_candles": 10000,
"purge_old_models": true,
"train_period_days": 15,
"backtest_period_days": 7,
"live_retrain_hours": 0,
"identifier": "uniqe-id",
"feature_parameters": {
"include_timeframes": [
"3m",
"15m",
"1h"
],
"include_corr_pairlist": [
"BTC/USDT",
"ETH/USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": false,
"use_SVM_to_remove_outliers": true,
"stratify_training_data": 0,
"indicator_max_period_candles": 20,
"indicator_periods_candles": [10, 20]
},
"data_split_parameters": {
"test_size": 0.33,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 1000
}
},
"bot_name": "",
"force_entry_enable": true,
"initial_state": "running",
"internals": {
"process_throttle_secs": 5
}
}

View File

@@ -5,6 +5,7 @@
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"amount_reserve_percent": 0.05,
"available_capital": 1000,
"amend_last_stake_amount": false,
"last_stake_amount_min_ratio": 0.5,
"dry_run": true,
@@ -92,6 +93,7 @@
"secret": "your_exchange_secret",
"password": "",
"log_responses": false,
// "unknown_fee_rate": 1,
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
@@ -155,7 +157,8 @@
"entry_cancel": "on",
"exit_cancel": "on",
"protection_trigger": "off",
"protection_trigger_global": "on"
"protection_trigger_global": "on",
"show_candle": "off"
},
"reload": true,
"balance_dust_level": 0.01

9
docker/Dockerfile.freqai Normal file
View File

@@ -0,0 +1,9 @@
ARG sourceimage=freqtradeorg/freqtrade
ARG sourcetag=develop
FROM ${sourceimage}:${sourcetag}
# Install dependencies
COPY requirements-freqai.txt /freqtrade/
RUN pip install -r requirements-freqai.txt --user --no-cache-dir

BIN
docs/assets/freqai_algo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 995 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

View File

@@ -514,6 +514,7 @@ You can then load the trades to perform further analysis as shown in the [data a
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:
- Exchange [trading limits](#trading-limits-in-backtesting) are respected
- Buys happen at open-price
- All orders are filled at the requested price (no slippage, no unfilled orders)
- Exit-signal exits happen at open-price of the consecutive candle
@@ -543,7 +544,24 @@ Also, keep in mind that past results don't guarantee future success.
In addition to the above assumptions, strategy authors should carefully read the [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies) section, to avoid using data in backtesting which is not available in real market conditions.
### Improved backtest accuracy
### Trading limits in backtesting
Exchanges have certain trading limits, like minimum base currency, or minimum stake (quote) currency.
These limits are usually listed in the exchange documentation as "trading rules" or similar.
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
Freqtrade has however no information about historic limits.
This can lead to situations where trading-limits are inflated by using a historic price, resulting in minimum amounts > 50$.
For example:
BTC minimum tradable amount is 0.001.
BTC trades at 22.000\$ today (0.001 BTC is related to this) - but the backtesting period includes prices as high as 50.000\$.
Today's minimum would be `0.001 * 22_000` - or 22\$.
However the limit could also be 50$ - based on `0.001 * 50_000` in some historic setting.
## Improved backtest accuracy
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or viceversa?).
So assuming you run backtesting with a 1h timeframe, there will be 4 prices for that candle (Open, High, Low, Close).

View File

@@ -20,7 +20,9 @@ All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt /
## Bot execution logic
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
By default, loop runs every few seconds (`internals.process_throttle_secs`) and does roughly the following in the following sequence:
This will also run the `bot_start()` callback.
By default, the bot loop runs every few seconds (`internals.process_throttle_secs`) and performs the following actions:
* Fetch open trades from persistence.
* Calculate current list of tradable pairs.
@@ -54,6 +56,7 @@ This loop will be repeated again and again until the bot is stopped.
[backtesting](backtesting.md) or [hyperopt](hyperopt.md) do only part of the above logic, since most of the trading operations are fully simulated.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).

View File

@@ -105,7 +105,7 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
``` json title="Result"
{
"max_open_trades": 10,
"max_open_trades": 3,
"stake_currency": "USDT",
"stake_amount": "unlimited"
}
@@ -116,6 +116,9 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
The table below will list all configuration parameters available.
Freqtrade can also load many options via command line (CLI) arguments (check out the commands `--help` output for details).
### Configuration option prevalence
The prevalence for all Options is as follows:
- CLI arguments override any other option
@@ -123,6 +126,8 @@ The prevalence for all Options is as follows:
- Configuration files are used in sequence (the last file wins) and override Strategy configurations.
- Strategy configurations are only used if they are not set via configuration or command-line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
### Parameters table
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Parameter | Description |
@@ -135,7 +140,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `timeframe` | The timeframe to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `timeframe` | The timeframe to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). Usually missing in configuration, and specified in the strategy. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
@@ -148,13 +153,16 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to None.*<br> **Datatype:** Float
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
| | **Unfilled timeout**
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| | **Pricing**
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#buy-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
@@ -165,6 +173,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| | **TODO**
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
@@ -172,8 +182,9 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used. <br> **Datatype:** Integer
| `order_types` | Configure order-types depending on the action (`"entry"`, `"exit"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for entry and exit orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
| `position_adjustment_enable` | Enables the strategy to use position adjustments (additional buys or sells). [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.*<br> **Datatype:** Boolean
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| | **Exchange**
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -190,14 +201,19 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| | **Plugins**
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
| `pairlists` | Define one or more pairlists to be used. [More information](plugins.md#pairlists-and-pairlist-handlers). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `protections` | Define one or more protections to be used. [More information](plugins.md#protections). <br> **Datatype:** List of Dicts
| | **Telegram**
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| | **Webhook**
| `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
@@ -207,6 +223,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| | **Rest API / FreqUI**
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>**Datatype:** Integer between 1024 and 65535
@@ -214,23 +231,22 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `bot_name` | Name of the bot. Passed via API to a client - can be shown to distinguish / name bots.<br> *Defaults to `freqtrade`*<br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| | **Other**
| `initial_state` | Defines the initial application state. If set to stopped, then the bot has to be explicitly started via `/start` RPC command. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
| `force_entry_enable` | Enables the RPC Commands to force a Trade entry. More information below. <br> **Datatype:** Boolean
| `disable_dataframe_checks` | Disable checking the OHLCV dataframe returned from the strategy methods for correctness. Only use when intentionally changing the dataframe and understand what you are doing. [Strategy Override](#parameters-in-the-strategy).<br> *Defaults to `False`*. <br> **Datatype:** Boolean
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `internals.process_throttle_secs` | Set the process throttle, or minimum loop duration for one bot iteration loop. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Integer
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `position_adjustment_enable` | Enables the strategy to use position adjustments (additional buys or sells). [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.*<br> **Datatype:** Boolean
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to None.*<br> **Datatype:** Float
### Parameters in the strategy

View File

@@ -68,6 +68,36 @@ def test_method_to_test(caplog):
```
### Debug configuration
To debug freqtrade, we recommend VSCode with the following launch configuration (located in `.vscode/launch.json`).
Details will obviously vary between setups - but this should work to get you started.
``` json
{
"name": "freqtrade trade",
"type": "python",
"request": "launch",
"module": "freqtrade",
"console": "integratedTerminal",
"args": [
"trade",
// Optional:
// "--userdir", "user_data",
"--strategy",
"MyAwesomeStrategy",
]
},
```
Command line arguments can be added in the `"args"` array.
This method can also be used to debug a strategy, by setting the breakpoints within the strategy.
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
!!! Note "Startup directory"
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
## ErrorHandling
Freqtrade Exceptions all inherit from `FreqtradeException`.
@@ -334,7 +364,7 @@ lev_tiers = exchange.fetch_leverage_tiers()
# Assumes this is running in the root of the repository.
file = Path('freqtrade/exchange/binance_leverage_tiers.json')
json.dump(lev_tiers, file.open('w'), indent=2)
json.dump(dict(sorted(lev_tiers.items())), file.open('w'), indent=2)
```

769
docs/freqai.md Normal file
View File

@@ -0,0 +1,769 @@
![freqai-logo](assets/freqai_doc_logo.svg)
# FreqAI
FreqAI is a module designed to automate a variety of tasks associated with training a predictive model to generate market forecasts given a set of input features.
Among the the features included:
* **Self-adaptive retraining**: retrain models during live deployments to self-adapt to the market in an unsupervised manner.
* **Rapid feature engineering**: create large rich feature sets (10k+ features) based on simple user created strategies.
* **High performance**: adaptive retraining occurs on separate thread (or on GPU if available) from inferencing and bot trade operations. Keep newest models and data in memory for rapid inferencing.
* **Realistic backtesting**: emulate self-adaptive retraining with backtesting module that automates past retraining.
* **Modifiable**: use the generalized and robust architecture for incorporating any machine learning library/method available in Python. Seven examples available.
* **Smart outlier removal**: remove outliers from training and prediction sets using a variety of outlier detection techniques.
* **Crash resilience**: model storage to disk to make reloading from a crash fast and easy (and purge obsolete files for sustained dry/live runs).
* **Automated data normalization**: normalize the data in a smart and statistically safe way.
* **Automatic data download**: compute the data download timerange and update historic data (in live deployments).
* **Clean incoming data** safe NaN handling before training and prediction.
* **Dimensionality reduction**: reduce the size of the training data via Principal Component Analysis.
* **Deploy bot fleets**: set one bot to train models while a fleet of other bots inference into the models and handle trades.
## Quick start
The easiest way to quickly test FreqAI is to run it in dry run with the following command
```bash
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMRegressor --strategy-path freqtrade/templates
```
where the user will see the boot-up process of auto-data downloading, followed by simultaneous training and trading.
The example strategy, example prediction model, and example config can all be found in
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`,
`config_examples/config_freqai.example.json`, respectively.
## General approach
The user provides FreqAI with a set of custom *base* indicators (created inside the strategy the same way
a typical Freqtrade strategy is created) as well as target values which look into the future.
FreqAI trains a model to predict the target value based on the input of custom indicators for each pair in the whitelist. These models are consistently retrained to adapt to market conditions. FreqAI offers the ability to both backtest strategies (emulating reality with periodic retraining) and deploy dry/live. In dry/live conditions, FreqAI can be set to constant retraining in a background thread in an effort to keep models as young as possible.
An overview of the algorithm is shown here to help users understand the data processing pipeline and the model usage.
![freqai-algo](assets/freqai_algo.png)
## Background and vocabulary
**Features** are the quantities with which a model is trained. $X_i$ represents the
vector of all features for a single candle. In FreqAI, the user
builds the features from anything they can construct in the strategy.
**Labels** are the target values with which the weights inside a model are trained
toward. Each set of features is associated with a single label, which is also
defined within the strategy by the user. These labels intentionally look into the
future, and are not available to the model during dryrun/live/backtesting.
**Training** refers to the process of feeding individual feature sets into the
model with associated labels with the goal of matching input feature sets to associated labels.
**Train data** is a subset of the historic data which is fed to the model during
training to adjust weights. This data directly influences weight connections in the model.
**Test data** is a subset of the historic data which is used to evaluate the
intermediate performance of the model during training. This data does not
directly influence nodal weights within the model.
## Install prerequisites
The normal Freqtrade install process will ask the user if they wish to install FreqAI dependencies. The user should reply "yes" to this question if they wish to use FreqAI. If the user did not reply yes, they can manually install these dependencies after the install with:
``` bash
pip install -r requirements-freqai.txt
```
!!! Note
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since Catboost does not provide wheels for this platform.
### Usage with docker
For docker users, a dedicated tag with freqAI dependencies is available as `:freqai`.
As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`.
This image contains the regular freqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
## Configuring FreqAI
### Parameter table
The table below will list all configuration parameters available for FreqAI.
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Parameter | Description |
|------------|-------------|
| `freqai` | **Required.** The parent dictionary containing all the parameters below for controlling FreqAI. <br> **Datatype:** dictionary.
| `identifier` | **Required.** A unique name for the current model. This can be reused to reload pre-trained models/data. <br> **Datatype:** string.
| `train_period_days` | **Required.** Number of days to use for the training data (width of the sliding window). <br> **Datatype:** positive integer.
| `backtest_period_days` | **Required.** Number of days to inference into the trained model before sliding the window and retraining. This can be fractional days, but beware that the user provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br> **Datatype:** Float.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. Default set to 0, which means it will retrain as often as possible. <br> **Datatype:** Float > 0.
| `follow_mode` | If true, this instance of FreqAI will look for models associated with `identifier` and load those for inferencing. A `follower` will **not** train new models. `False` by default. <br> **Datatype:** boolean.
| `startup_candles` | Number of candles needed for *backtesting only* to ensure all indicators are non NaNs at the start of the first train period. <br> **Datatype:** positive integer.
| `fit_live_predictions_candles` | Computes target (label) statistics from prediction data, instead of from the training data set. Number of candles is the number of historical candles it uses to generate the statistics. <br> **Datatype:** positive integer.
| `purge_old_models` | Tell FreqAI to delete obsolete models. Otherwise, all historic models will remain on disk. Defaults to `False`. <br> **Datatype:** boolean.
| `expiration_hours` | Ask FreqAI to avoid making predictions if a model is more than `expiration_hours` old. Defaults to 0 which means models never expire. <br> **Datatype:** positive integer.
| | **Feature Parameters**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples shown [here](#feature-engineering) <br> **Datatype:** dictionary.
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` will be created for each coin in this list, and that set of features is added to the base asset feature set. <br> **Datatype:** list of assets (strings).
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for and added as features to the base asset feature set. <br> **Datatype:** list of timeframes (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators`, refer to `templates/FreqaiExampleStrategy.py` for detailed usage. The user can create custom labels, making use of this parameter not. <br> **Datatype:** positive integer.
| `include_shifted_candles` | Parameter used to add a sense of temporal recency to flattened regression type input data. `include_shifted_candles` takes all features, duplicates and shifts them by the number indicated by user. <br> **Datatype:** positive integer.
| `DI_threshold` | Activates the Dissimilarity Index for outlier detection when above 0, explained in detail [here](#removing-outliers-with-the-dissimilarity-index). <br> **Datatype:** positive float (typically below 1).
| `weight_factor` | Used to set weights for training data points according to their recency, see details and a figure of how it works [here](#controlling-the-model-learning-process). <br> **Datatype:** positive float (typically below 1).
| `principal_component_analysis` | Ask FreqAI to automatically reduce the dimensionality of the data set using PCA. <br> **Datatype:** boolean.
| `use_SVM_to_remove_outliers` | Ask FreqAI to train a support vector machine to detect and remove outliers from the training data set as well as from incoming data points. <br> **Datatype:** boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. E.g. `nu` *Very* broadly, is the percentage of data points that should be considered outliers. `shuffle` is by default false to maintain reproducibility. But these and all others can be added/changed in this dictionary. <br> **Datatype:** dictionary.
| `stratify_training_data` | This value is used to indicate the stratification of the data. e.g. 2 would set every 2nd data point into a separate dataset to be pulled from during training/testing. <br> **Datatype:** positive integer.
| `indicator_max_period_candles` | The maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this information in combination with the maximum timeframe to calculate how many data points it should download so that the first data point does not have a NaN <br> **Datatype:** positive integer.
| `indicator_periods_candles` | A list of integers used to duplicate all indicators according to a set of periods and add them to the feature set. <br> **Datatype:** list of positive integers.
| `use_DBSCAN_to_remove_outliers` | Inactive by default. If true, FreqAI clusters data using DBSCAN to identify and remove outliers from training and prediction data. <br> **Datatype:** float (fraction of 1).
| | **Data split parameters**
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) <br> **Datatype:** dictionary.
| `test_size` | Fraction of data that should be used for testing instead of training. <br> **Datatype:** positive float below 1.
| `shuffle` | Shuffle the training data points during training. Typically for time-series forecasting, this is set to False. <br> **Datatype:** boolean.
| | **Model training parameters**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the user selected library. For example, if the user uses `LightGBMRegressor`, then this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html). If the user selects a different model, then this dictionary can contain any parameter from that different model. <br> **Datatype:** dictionary.
| `n_estimators` | A common parameter among regressors which sets the number of boosted trees to fit <br> **Datatype:** integer.
| `learning_rate` | A common parameter among regressors which sets the boosting learning rate. <br> **Datatype:** float.
| `n_jobs`, `thread_count`, `task_type` | Different libraries use different parameter names to control the number of threads used for parallel processing or whether or not it is a `task_type` of `gpu` or `cpu`. <br> **Datatype:** float.
| | **Extraneous parameters**
| `keras` | If your model makes use of keras (typical of Tensorflow based prediction models), activate this flag so that the model save/loading follows keras standards. Default value `false` <br> **Datatype:** boolean.
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for `shift` by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. Default value, 2 <br> **Datatype:** integer.
### Important FreqAI dataframe key patterns
Here are the values the user can expect to include/use inside the typical strategy dataframe (`df[]`):
| DataFrame Key | Description |
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target inside FreqAI (typically following the naming convention `&-s*`). These same dataframe columns names are fed back to the user as the predictions. For example, the user wishes to predict the price change in the next 40 candles (similar to `templates/FreqaiExampleStrategy.py`) by setting `df['&-s_close']`. FreqAI makes the predictions and gives them back to the user under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** depends on the output of the model.
| `df['&*_std/mean']` | The standard deviation and mean values of the user defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand rarity of prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` to evaluate how often a particular prediction was observed during training (or historically with `fit_live_predictions_candles`)<br> **Datatype:** float.
| `df['do_predict']` | An indication of an outlier, this return value is integer between -1 and 2 which lets the user understand if the prediction is trustworthy or not. `do_predict==1` means the prediction is trustworthy. If the [Dissimilarity Index](#removing-outliers-with-the-dissimilarity-index) is above the user defined threshold, it will subtract 1 from `do_predict`. If `use_SVM_to_remove_outliers()` is active, then the Support Vector Machine (SVM) may also detect outliers in training and prediction data. In this case, the SVM will also subtract one from `do_predict`. A particular case is when `do_predict == 2`, it means that the model has expired due to `expired_hours`. <br> **Datatype:** integer between -1 and 2.
| `df['DI_values']` | The raw Dissimilarity Index values to give the user a sense of confidence in the prediction. Lower DI means the data point is closer to the trained parameter space. <br> **Datatype:** float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature inside FreqAI. For example, the user can include the rsi in the training feature set (similar to `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](#building-the-feature-set). <br>**Note**: since the number of features prepended with `%` can multiply very quickly (10s of thousands of features is easily engineered using the multiplictative functionality described in the `feature_parameters` table.) these features are removed from the dataframe upon return from FreqAI. If the user wishes to keep a particular type of feature for plotting purposes, you can prepend it with `%%`. <br> **Datatype:** depends on the output of the model.
### Example config file
The user interface is isolated to the typical config file. A typical FreqAI config setup could include:
```json
"freqai": {
"startup_candles": 10000,
"purge_old_models": true,
"train_period_days": 30,
"backtest_period_days": 7,
"identifier" : "unique-id",
"feature_parameters" : {
"include_timeframes": ["5m","15m","4h"],
"include_corr_pairlist": [
"ETH/USD",
"LINK/USD",
"BNB/USD"
],
"label_period_candles": 24,
"include_shifted_candles": 2,
"weight_factor": 0,
"indicator_max_period_candles": 20,
"indicator_periods_candles": [10, 20]
},
"data_split_parameters" : {
"test_size": 0.25,
"random_state": 42
},
"model_training_parameters" : {
"n_estimators": 100,
"random_state": 42,
"learning_rate": 0.02,
"task_type": "CPU",
},
}
```
### Feature engineering
Features are added by the user inside the `populate_any_indicators()` method of the strategy
by prepending indicators with `%` and labels are added by prepending `&`.
There are some important components/structures that the user *must* include when building their feature set.
Another structure to consider is the location of the labels at the bottom of the example function (below `if set_generalized_indicators:`).
This is where the user will add single features and labels to their feature set to avoid duplication from
various configuration parameters which multiply the feature set such as `include_timeframes`.
```python
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + coin `
(see convention below). I.e. user should not prepend any supporting metrics
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
:param coin: the name of the coin which will modify the feature names.
"""
coint = pair.split('/')[0]
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
)
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{coin}bb_width-period_{t}"] = (
informative[f"{coin}bb_upperband-period_{t}"]
- informative[f"{coin}bb_lowerband-period_{t}"]
) / informative[f"{coin}bb_middleband-period_{t}"]
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
)
informative[f"%-{coin}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
return df
```
The user of the present example does not wish to pass the `bb_lowerband` as a feature to the model,
and has therefore not prepended it with `%`. The user does, however, wish to pass `bb_width` to the
model for training/prediction and has therefore prepended it with `%`.
The `include_timeframes` from the example config above are the timeframes (`tf`) of each call to `populate_any_indicators()`
included metric for inclusion in the feature set. In the present case, the user is asking for the
`5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
In addition, the user can ask for each of these features to be included from
informative pairs using the `include_corr_pairlist`. This means that the present feature
set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of
`ETH/USD`, `LINK/USD`, and `BNB/USD`.
`include_shifted_candles` is another user controlled parameter which indicates the number of previous
candles to include in the present feature set. In other words, `include_shifted_candles: 2`, tells
FreqAI to include the the past 2 candles for each of the features included in the dataset.
In total, the number of features the present user has created is:
length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$3 * 3 * 3 * 2 * 2 = 108$.
!!! Note
Features **must** be defined in `populate_any_indicators()`. Making features in `populate_indicators()`
will fail in live/dry mode. If the user wishes to add generalized features that are not associated with
a specific pair or timeframe, they should use the following structure inside `populate_any_indicators()`
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`:
```python
def populate_any_indicators(self, metadata, pair, df, tf, informative=None, coin="", set_generalized_indicators=False):
...
# Add generalized indicators here (because in live, it will call only this function to populate
# indicators for retraining). Notice how we ensure not to add them multiple times by associating
# these generalized indicators to the basepair/timeframe
if set_generalized_indicators:
df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7
df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
```
(Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`)
### Deciding the sliding training window and backtesting duration
Users define the backtesting timerange with the typical `--timerange` parameter in the user
configuration file. `train_period_days` is the duration of the sliding training window, while
`backtest_period_days` is the sliding backtesting window, both in number of days (`backtest_period_days` can be
a float to indicate sub daily retraining in live/dry mode). In the present example,
the user is asking FreqAI to use a training period of 30 days and backtest the subsequent 7 days.
This means that if the user sets `--timerange 20210501-20210701`,
FreqAI will train 8 separate models (because the full range comprises 8 weeks),
and then backtest the subsequent week associated with each of the 8 training
data set timerange months. Users can think of this as a "sliding window" which
emulates FreqAI retraining itself once per week in live using the previous
month of data.
In live, the required training data is automatically computed and downloaded. However, in backtesting
the user must manually enter the required number of `startup_candles` in the config. This value
is used to increase the available data to FreqAI and should be sufficient to enable all indicators
to be NaN free at the beginning of the first training timerange. This boils down to identifying the
highest timeframe (`4h` in present example) and the longest indicator period (25 in present example)
and adding this to the `train_period_days`. The units need to be in the base candle time frame:
`startup_candles` = ( 4 hours * 25 max period * 60 minutes/hour + 30 day train_period_days * 1440 minutes per day ) / 5 min (base time frame) = 1488.
!!! Note
In dry/live, this is all precomputed and handled automatically. Thus, `startup_candle` has no influence on dry/live.
!!! Note
Although fractional `backtest_period_days` is allowed, the user should be ware that the `--timerange` is divided by this value to determine the number of models that FreqAI will need to train in order to backtest the full range. For example, if the user wants to set a `--timerange` of 10 days, and asks for a `backtest_period_days` of 0.1, FreqAI will need to train 100 models per pair to complete the full backtest. This is why it is physically impossible to truly backtest FreqAI adaptive training. The best way to fully test a model is to run it dry and let it constantly train. In this case, backtesting would take the exact same amount of time as a dry run.
## Running FreqAI
### Backtesting
The FreqAI backtesting module can be executed with the following command:
```bash
freqtrade backtesting --strategy FreqaiExampleStrategy --config config_freqai.example.json --freqaimodel LightGBMRegressor --timerange 20210501-20210701
```
Backtesting mode requires the user to have the data pre-downloaded (unlike dry/live, where FreqAI automatically downloads the necessary data). The user should be careful to consider that the range of the downloaded data is more than the backtesting range. This is because FreqAI needs data prior to the desired backtesting range in order to train a model to be ready to make predictions on the first candle of the user set backtesting range. More details on how to calculate the data download timerange can be found [here](#deciding-the-sliding-training-window-and-backtesting-duration).
If this command has never been executed with the existing config file, then it will train a new model
for each pair, for each backtesting window within the bigger `--timerange`.
!!! Note "Model reuse"
Once the training is completed, the user can execute this again with the same config file and
FreqAI will find the trained models and load them instead of spending time training. This is useful
if the user wants to tweak (or even hyperopt) buy and sell criteria inside the strategy. IF the user
*wants* to retrain a new model with the same config file, then he/she should simply change the `identifier`.
This way, the user can return to using any model they wish by simply changing the `identifier`.
---
### Building a freqai strategy
The FreqAI strategy requires the user to include the following lines of code in the strategy:
```python
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# All indicators must be populated by populate_any_indicators() for live functionality
# to work correctly.
# the model will return all labels created by user in `populate_any_indicators`
# (& appended targets), an indication of whether or not the prediction should be accepted,
# the target mean/std values for each of the labels created by user in
# `populate_any_indicators()` for each training period.
dataframe = self.freqai.start(dataframe, metadata, self)
return dataframe
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + coin `
(see convention below). I.e. user should not prepend any supporting metrics
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
:param coin: the name of the coin which will modify the feature names.
"""
coin = pair.split('/')[0]
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
return df
```
Notice how the `populate_any_indicators()` is where the user adds their own features and labels ([more information](#feature-engineering)). See a full example at `templates/FreqaiExampleStrategy.py`.
### Setting classifier targets
FreqAI includes a the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. Typically, the user would set the targets using strings:
```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
```
### Running the model live
FreqAI can be run dry/live using the following command
```bash
freqtrade trade --strategy FreqaiExampleStrategy --config config_freqai.example.json --freqaimodel LightGBMRegressor
```
By default, FreqAI will not find any existing models and will start by training a new one
given the user configuration settings. Following training, it will use that model to make predictions on incoming candles until a new model is available. New models are typically generated as often as possible, with FreqAI managing an internal queue of the pairs to try and keep all models equally "young." FreqAI will always use the newest trained model to make predictions on incoming live data. If users do not want FreqAI to retrain new models as often as possible, they can set `live_retrain_hours` to tell FreqAI to wait at least that number of hours before retraining a new model. Additionally, users can set `expired_hours` to tell FreqAI to avoid making predictions on models aged over this number of hours.
If the user wishes to start dry/live from a backtested saved model, the user only needs to reuse
the same `identifier` parameter
```json
"freqai": {
"identifier": "example",
"live_retrain_hours": 1
}
```
In this case, although FreqAI will initiate with a
pre-trained model, it will still check to see how much time has elapsed since the model was trained,
and if a full `live_retrain_hours` has elapsed since the end of the loaded model, FreqAI will self retrain.
## Data analysis techniques
### Controlling the model learning process
Model training parameters are unique to the ML library used by the user. FreqAI allows users to set any parameter for any library using the `model_training_parameters` dictionary in the user configuration file. The example configuration files show some of the example parameters associated with `Catboost` and `LightGBM`, but users can add any parameters available in those libraries.
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with `Sklearn`'s `train_test_split()` function. FreqAI includes some additional parameters such `weight_factor` which allows the user to weight more recent data more strongly
than past data via an exponential function:
$$ W_i = \exp(\frac{-i}{\alpha*n}) $$
where $W_i$ is the weight of data point $i$ in a total set of $n$ data points.
![weight-factor](assets/weights_factor.png)
`train_test_split()` has a parameters called `shuffle`, which users also have access to in FreqAI, that allows them to keep the data unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data.
Finally, `label_period_candles` defines the offset used for the `labels`. In the present example,
the user is asking for `labels` that are 24 candles in the future.
### Removing outliers with the Dissimilarity Index
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each
prediction by the model. To do so, FreqAI measures the distance between each training
data point and all other training data points:
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
where $d_{ab}$ is the distance between the normalized points $a$ and $b$. $p$
is the number of features i.e. the length of the vector $X$.
The characteristic distance, $\overline{d}$ for a set of training data points is simply the mean
of the average distances:
$$ \overline{d} = \sum_{a=1}^n(\sum_{b=1}^n(d_{ab}/n)/n) $$
$\overline{d}$ quantifies the spread of the training data, which is compared to
the distance between the new prediction feature vectors, $X_k$ and all the training
data:
$$ d_k = \arg \min d_{k,i} $$
which enables the estimation of a Dissimilarity Index:
$$ DI_k = d_k/\overline{d} $$
Equity and crypto markets suffer from a high level of non-patterned noise in the
form of outlier data points. The dissimilarity index allows predictions which
are outliers and not existent in the model feature space, to be thrown out due
to low levels of certainty. Activating the Dissimilarity Index can be achieved with:
```json
"freqai": {
"feature_parameters" : {
"DI_threshold": 1
}
}
```
The user can tweak the DI with `DI_threshold` to increase or decrease the extrapolation of the trained model.
### Reducing data dimensionality with Principal Component Analysis
Users can reduce the dimensionality of their features by activating the `principal_component_analysis`:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
Which will perform PCA on the features and reduce the dimensionality of the data so that the explained
variance of the data set is >= 0.999.
### Removing outliers using a Support Vector Machine (SVM)
The user can tell FreqAI to remove outlier data points from the training/test data sets by setting:
```json
"freqai": {
"feature_parameters" : {
"use_SVM_to_remove_outliers": true
}
}
```
FreqAI will train an SVM on the training data (or components if the user activated
`principal_component_analysis`) and remove any data point that it deems to be sitting beyond the feature space.
### Clustering the training data and removing outliers with DBSCAN
The user can configure FreqAI to use DBSCAN to cluster training data and remove outliers from the training data set. The user activates `use_DBSCAN_to_remove_outliers` to cluster training data for identification of outliers. Also used to detect incoming outliers for prediction data points.
```json
"freqai": {
"feature_parameters" : {
"use_DBSCAN_to_remove_outliers": true
}
}
```
### Stratifying the data
The user can stratify the training/testing data using:
```json
"freqai": {
"feature_parameters" : {
"stratify_training_data": 3
}
}
```
which will split the data chronologically so that every Xth data points is a testing data point. In the
present example, the user is asking for every third data point in the dataframe to be used for
testing, the other points are used for training.
## Setting up a follower
The user can define:
```json
"freqai": {
"follow_mode": true,
"identifier": "example"
}
```
to indicate to the bot that it should not train models, but instead should look for models trained
by a leader with the same `identifier`. In this example, the user has a leader bot with the
`identifier: "example"` already running or launching simultaneously as the present follower.
The follower will load models created by the leader and inference them to obtain predictions.
## Purging old model data
FreqAI stores new model files each time it retrains. These files become obsolete as new models
are trained and FreqAI adapts to the new market conditions. Users planning to leave FreqAI running
for extended periods of time with high frequency retraining should set `purge_old_models` in their
config:
```json
"freqai": {
"purge_old_models": true,
}
```
which will automatically purge all models older than the two most recently trained ones.
## Defining model expirations
During dry/live, FreqAI trains each pair sequentially (on separate threads/GPU from the main
Freqtrade bot). This means there is always an age discrepancy between models. If a user is training
on 50 pairs, and each pair requires 5 minutes to train, the oldest model will be over 4 hours old.
This may be undesirable if the characteristic time scale (read trade duration target) for a strategy
is much less than 4 hours. The user can decide to only make trade entries if the model is less than
a certain number of hours in age by setting the `expiration_hours` in the config file:
```json
"freqai": {
"expiration_hours": 0.5,
}
```
In the present example, the user will only allow predictions on models that are less than 1/2 hours
old.
## Choosing the calculation of the `target_roi`
As shown in `templates/FreqaiExampleStrategy.py`, the `target_roi` is based on two metrics computed
by FreqAI: `label_mean` and `label_std`. These are the statistics associated with the labels used
*during the most recent training*.
This allows the model to know what magnitude of a target to be expecting since it is directly stemming from the training data.
By default, FreqAI computes this based on training data and it assumes the labels are Gaussian distributed.
These are big assumptions that the user should consider when creating their labels. If the user wants to consider the population
of *historical predictions* for creating the dynamic target instead of the trained labels, the user
can do so by setting `fit_live_prediction_candles` to the number of historical prediction candles
the user wishes to use to generate target statistics.
```json
"freqai": {
"fit_live_prediction_candles": 300,
}
```
If the user sets this value, FreqAI will initially use the predictions from the training data set
and then subsequently begin introducing real prediction data as it is generated. FreqAI will save
this historical data to be reloaded if the user stops and restarts with the same `identifier`.
## Extra returns per train
Users may find that there are some important metrics that they'd like to return to the strategy at the end of each retrain.
Users can include these metrics by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside their custom prediction
model class. FreqAI takes the `my_new_value` assigned in this dictionary and expands it to fit the return dataframe to the strategy.
The user can then use the value in the strategy with `dataframe['my_new_value']`. An example of how this is already used in FreqAI is
the `&*_mean` and `&*_std` values, which indicate the mean and standard deviation of that particular label during the most recent training.
Another example is shown below if the user wants to use live metrics from the trade database.
The user needs to set the standard dictionary in the config so FreqAI can return proper dataframe shapes:
```json
"freqai": {
"extra_returns_per_train": {"total_profit": 4}
}
```
These values will likely be overridden by the user prediction model, but in the case where the user model has yet to set them, or needs
a default initial value - this is the value that will be returned.
## Building an IFreqaiModel
FreqAI has multiple example prediction model based libraries such as `Catboost` regression (`freqai/prediction_models/CatboostRegressor.py`) and `LightGBM` regression.
However, users can customize and create their own prediction models using the `IFreqaiModel` class.
Users are encouraged to inherit `train()` and `predict()` to let them customize various aspects of their training procedures.
## Additional information
### Common pitfalls
FreqAI cannot be combined with `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
This is for performance reasons - FreqAI relies on making quick predictions/retrains. To do this effectively,
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. But this means that if new pairs arrive later in the dry run due
to a volume pairlist, it will not have the data ready. FreqAI does work, however, with the `ShufflePairlist`.
### Feature normalization
The feature set created by the user is automatically normalized to the training data only.
This includes all test data and unseen prediction data (dry/live/backtest).
### File structure
`user_data_dir/models/` contains all the data associated with the trainings and backtests.
This file structure is heavily controlled and read by the `FreqaiDataKitchen()`
and should therefore not be modified.
## Credits
FreqAI was developed by a group of individuals who all contributed specific skillsets to the project.
Conception and software development:
Robert Caulk @robcaulk
Theoretical brainstorming:
Elin Törnquist @thorntwig
Code review, software architecture brainstorming:
@xmatthias
Beta testing and bug reporting:
@bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm
Juha Nykänen @suikula, Wagner Costa @wagnercosta

View File

@@ -40,13 +40,15 @@ pip install -r requirements-hyperopt.txt
```
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[-i TIMEFRAME] [--timerange TIMERANGE]
[--recursive-strategy-search] [-i TIMEFRAME]
[--timerange TIMERANGE]
[--data-format-ohlcv {json,jsongz,hdf5}]
[--max-open-trades INT]
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[-p PAIRS [PAIRS ...]] [--hyperopt-path PATH]
[--eps] [--dmmp] [--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET] [-e INT]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]]
[--print-all] [--no-color] [--print-json] [-j JOBS]
[--random-state INT] [--min-trades INT]
@@ -89,6 +91,9 @@ optional arguments:
--dry-run-wallet DRY_RUN_WALLET, --starting-balance DRY_RUN_WALLET
Starting balance, used for backtesting / hyperopt and
dry-runs.
--timeframe-detail TIMEFRAME_DETAIL
Specify detail timeframe for backtesting (`1m`, `5m`,
`30m`, `1h`, `1d`).
-e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]
Specify which parameters to hyperopt. Space-separated
@@ -146,7 +151,9 @@ Strategy arguments:
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
--recursive-strategy-search
Recursively search for a strategy in the strategies
folder.
```
### Hyperopt checklist
@@ -272,6 +279,7 @@ The last one we call `trigger` and use it to decide which buy trigger we want to
!!! Note "Parameter space assignment"
Parameters must either be assigned to a variable named `buy_*` or `sell_*` - or contain `space='buy'` | `space='sell'` to be assigned to a space correctly.
If no parameter is available for a space, you'll receive the error that no space was found when running hyperopt.
Parameters with unclear space (e.g. `adx_period = IntParameter(4, 24, default=14)` - no explicit nor implicit space) will not be detected and will therefore be ignored.
So let's write the buy strategy using these values:
@@ -334,6 +342,7 @@ There are four parameter types each suited for different purposes.
## Optimizing an indicator parameter
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
By default, we assume a stoploss of 5% - and a take-profit (`minimal_roi`) of 10% - which means freqtrade will sell the trade once 10% profit has been reached.
``` python
from pandas import DataFrame
@@ -348,6 +357,9 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyAwesomeStrategy(IStrategy):
stoploss = -0.05
timeframe = '15m'
minimal_roi = {
"0": 0.10
},
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
@@ -382,7 +394,7 @@ class MyAwesomeStrategy(IStrategy):
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions = []
conditions.append(qtpylib.crossed_above(
dataframe[f'ema_long_{self.buy_ema_long.value}'], dataframe[f'ema_short_{self.buy_ema_short.value}']
))
@@ -403,7 +415,7 @@ Using `self.buy_ema_short.range` will return a range object containing all entri
In this case (`IntParameter(3, 50, default=5)`), the loop would run for all numbers between 3 and 50 (`[3, 4, 5, ... 49, 50]`).
By using this in a loop, hyperopt will generate 48 new columns (`['buy_ema_3', 'buy_ema_4', ... , 'buy_ema_50']`).
Hyperopt itself will then use the selected value to create the buy and sell signals
Hyperopt itself will then use the selected value to create the buy and sell signals.
While this strategy is most likely too simple to provide consistent profit, it should serve as an example how optimize indicator parameters.
@@ -862,10 +874,28 @@ You can also enable position stacking in the configuration file by explicitly se
As hyperopt consumes a lot of memory (the complete data needs to be in memory once per parallel backtesting process), it's likely that you run into "out of memory" errors.
To combat these, you have multiple options:
* reduce the amount of pairs
* reduce the timerange used (`--timerange <timerange>`)
* reduce the number of parallel processes (`-j <n>`)
* Increase the memory of your machine
* Reduce the amount of pairs.
* Reduce the timerange used (`--timerange <timerange>`).
* Avoid using `--timeframe-detail` (this loads a lot of additional data into memory).
* Reduce the number of parallel processes (`-j <n>`).
* Increase the memory of your machine.
## The objective has been evaluated at this point before.
If you see `The objective has been evaluated at this point before.` - then this is a sign that your space has been exhausted, or is close to that.
Basically all points in your space have been hit (or a local minima has been hit) - and hyperopt does no longer find points in the multi-dimensional space it did not try yet.
Freqtrade tries to counter the "local minima" problem by using new, randomized points in this case.
Example:
``` python
buy_ema_short = IntParameter(5, 20, default=10, space="buy", optimize=True)
# This is the only parameter in the buy space
```
The `buy_ema_short` space has 15 possible values (`5, 6, ... 19, 20`). If you now run hyperopt for the buy space, hyperopt will only have 15 values to try before running out of options.
Your epochs should therefore be aligned to the possible values - or you should be ready to interrupt a run if you norice a lot of `The objective has been evaluated at this point before.` warnings.
## Show details of Hyperopt results

View File

@@ -50,6 +50,8 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will
Similarly, this protection will by default look at all trades (long and short). For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long stoplosses.
`required_profit` will determine the required relative profit (or loss) for stoplosses to consider. This should normally not be set and defaults to 0.0 - which means all losing stoplosses will be triggering a block.
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
``` python
@@ -61,6 +63,7 @@ def protections(self):
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 4,
"required_profit": 0.0,
"only_per_pair": False,
"only_per_side": False
}

View File

@@ -326,6 +326,16 @@ python3 -m pip install --upgrade pip
python3 -m pip install -e .
```
Patch conda libta-lib (Linux only)
```bash
# Ensure that the environment is active!
conda activate freqtrade-conda
cd build_helpers
bash install_ta-lib.sh ${CONDA_PREFIX} nosudo
```
### Congratulations
[You are ready](#you-are-ready), and run the bot

View File

@@ -1,5 +1,6 @@
mkdocs==1.3.0
mkdocs-material==8.3.6
mdx_truly_sane_lists==1.2
markdown==3.3.7
mkdocs==1.3.1
mkdocs-material==8.4.0
mdx_truly_sane_lists==1.3
pymdown-extensions==9.5
jinja2==3.1.2

View File

@@ -130,7 +130,7 @@ In summary: The stoploss will be adjusted to be always be -10% of the highest ob
### Trailing stop loss, custom positive loss
It is also possible to have a default stop loss, when you are in the red with your buy (buy - fee), but once you hit positive result the system will utilize a new stop loss, which can have a different value.
You could also have a default stop loss when you are in the red with your buy (buy - fee), but once you hit a positive result (or an offset you define) the system will utilize a new stop loss, which can have a different value.
For example, your default stop loss is -10%, but once you have more than 0% profit (example 0.1%) a different trailing stoploss will be used.
!!! Note
@@ -142,6 +142,8 @@ Both values require `trailing_stop` to be set to true and `trailing_stop_positiv
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
trailing_stop_positive_offset = 0.0
trailing_only_offset_is_reached = False # Default - not necessary for this example
```
For example, simplified math:
@@ -156,11 +158,31 @@ For example, simplified math:
The 0.02 would translate to a -2% stop loss.
Before this, `stoploss` is used for the trailing stoploss.
!!! Tip "Use an offset to change your stoploss"
Use `trailing_stop_positive_offset` to ensure that your new trailing stoploss will be in profit by setting `trailing_stop_positive_offset` higher than `trailing_stop_positive`. Your first new stoploss value will then already have locked in profits.
Example with simplified math:
``` python
stoploss = -0.10
trailing_stop = True
trailing_stop_positive = 0.02
trailing_stop_positive_offset = 0.03
```
* the bot buys an asset at a price of 100$
* the stop loss is defined at -10%, so the stop loss would get triggered once the asset drops below 90$
* assuming the asset now increases to 102$
* the stoploss will now be at 91.8$ - 10% below the highest observed rate
* assuming the asset now increases to 103.5$ (above the offset configured)
* the stop loss will now be -2% of 103.5$ = 101.43$
* now the asset drops in value to 102\$, the stop loss will still be 101.43$ and would trigger once price breaks below 101.43$
### Trailing stop loss only once the trade has reached a certain offset
It is also possible to use a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
You can also keep a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
If `trailing_only_offset_is_reached = True` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
``` python
@@ -203,7 +225,6 @@ If price moves 1% - you've lost 10$ of your own capital - therfore stoploss will
Make sure to be aware of this, and avoid using too tight stoploss (at 10x leverage, 10% risk may be too little to allow the trade to "breath" a little).
## Changing stoploss on open trades
A stoploss on an open trade can be changed by changing the value in the configuration or strategy and use the `/reload_config` command (alternatively, completely stopping and restarting the bot also works).

View File

@@ -224,3 +224,5 @@ for val in self.buy_ema_short.range:
# Append columns to existing dataframe
merged_frame = pd.concat(frames, axis=1)
```
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.

View File

@@ -82,8 +82,9 @@ Called before entering a trade, makes it possible to manage your position size w
```python
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
proposed_stake: float, min_stake: Optional[float], max_stake: float,
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
current_candle = dataframe.iloc[-1].squeeze()
@@ -622,12 +623,13 @@ class AwesomeStrategy(IStrategy):
!!! Warning
`confirm_trade_exit()` can prevent stoploss exits, causing significant losses as this would ignore stoploss exits.
`confirm_trade_exit()` will not be called for Liquidations - as liquidations are forced by the exchange, and therefore cannot be rejected.
## Adjust trade position
The `position_adjustment_enable` strategy property enables the usage of `adjust_trade_position()` callback in the strategy.
For performance reasons, it's disabled by default and freqtrade will show a warning message on startup if enabled.
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging).
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging) or to increase or decrease positions.
`max_entry_position_adjustment` property is used to limit the number of additional buys per trade (on top of the first buy) that the bot can execute. By default, the value is -1 which means the bot have no limit on number of adjustment buys.
@@ -635,10 +637,13 @@ The strategy is expected to return a stake_amount (in stake currency) between `m
If there are not enough funds in the wallet (the return value is above `max_stake`) then the signal will be ignored.
Additional orders also result in additional fees and those orders don't count towards `max_open_trades`.
This callback is **not** called when there is an open order (either buy or sell) waiting for execution, or when you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`.
This callback is **not** called when there is an open order (either buy or sell) waiting for execution.
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position, no matter if it's a long or short trade. Modifications to leverage are not possible.
Additional Buys are ignored once you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible.
!!! Note "About stake size"
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
@@ -647,12 +652,12 @@ Position adjustments will always be applied in the direction of the trade, so a
!!! Warning
Stoploss is still calculated from the initial opening price, not averaged price.
Regular stoploss rules still apply (cannot move down).
!!! Warning "/stopbuy"
While `/stopbuy` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
!!! Warning "Backtesting"
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so performance will be affected.
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
``` python
from freqtrade.persistence import Trade
@@ -675,29 +680,49 @@ class DigDeeperStrategy(IStrategy):
# This is called when placing the initial order (opening trade)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
leverage: float, entry_tag: Optional[str], side: str,
**kwargs) -> float:
# We need to leave most of the funds for possible further DCA orders
# This also applies to fixed stakes
return proposed_stake / self.max_dca_multiplier
def adjust_trade_position(self, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float, min_stake: Optional[float],
max_stake: float, **kwargs):
current_rate: float, current_profit: float,
min_stake: Optional[float], max_stake: float,
current_entry_rate: float, current_exit_rate: float,
current_entry_profit: float, current_exit_profit: float,
**kwargs) -> Optional[float]:
"""
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
This means extra buy orders with additional fees.
Custom trade adjustment logic, returning the stake amount that a trade should be
increased or decreased.
This means extra buy or sell orders with additional fees.
Only called when `position_adjustment_enable` is set to True.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns None
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Current buy rate.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
:param current_entry_rate: Current rate using entry pricing.
:param current_exit_rate: Current rate using exit pricing.
:param current_entry_profit: Current profit using entry pricing.
:param current_exit_profit: Current profit using exit pricing.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: Stake amount to adjust your trade
:return float: Stake amount to adjust your trade,
Positive values to increase position, Negative values to decrease position.
Return None for no action.
"""
if current_profit > 0.05 and trade.nr_of_successful_exits == 0:
# Take half of the profit at +5%
return -(trade.stake_amount / 2)
if current_profit > -0.05:
return None
@@ -732,6 +757,25 @@ class DigDeeperStrategy(IStrategy):
```
### Position adjust calculations
* Entry rates are calculated using weighted averages.
* Exits will not influence the average entry rate.
* Partial exit relative profit is relative to the average entry price at this point.
* Final exit relative profit is calculated based on the total invested capital. (See example below)
??? example "Calculation example"
*This example assumes 0 fees for simplicity, and a long position on an imaginary coin.*
* Buy 100@8\$
* Buy 100@9\$ -> Avg price: 8.5\$
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40%
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).
## Adjust Entry Price
The `adjust_entry_price()` callback may be used by strategy developer to refresh/replace limit orders upon arrival of new candles.

View File

@@ -617,9 +617,8 @@ Please always check the mode of operation to select the correct method to get da
### *available_pairs*
``` python
if self.dp:
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
```
### *current_whitelist()*
@@ -630,7 +629,7 @@ The strategy might look something like this:
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Since we can't resample the data we will have to use an informative pair; and since the whitelist will be dynamic we don't know which pair(s) to use.
@@ -646,14 +645,16 @@ This is where calling `self.dp.current_whitelist()` comes in handy.
return informative_pairs
```
??? Note "Plotting with current_whitelist"
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist - and would therefore make the return values of this method misleading.
### *get_pair_dataframe(pair, timeframe)*
``` python
# fetch live / historical candle (OHLCV) data for the first informative pair
if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
@@ -668,10 +669,9 @@ It can also be used in specific callbacks to get the signal that caused the acti
``` python
# fetch current dataframe
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.timeframe)
if self.dp.runmode.value in ('live', 'dry_run'):
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
timeframe=self.timeframe)
```
!!! Note "No data available"
@@ -681,11 +681,10 @@ if self.dp:
### *orderbook(pair, maximum)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will look as follows:
@@ -714,12 +713,11 @@ Therefore, using `ob['bids'][0][0]` as demonstrated above will result in using t
### *ticker(pair)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
if self.dp.runmode.value in ('live', 'dry_run'):
ticker = self.dp.ticker(metadata['pair'])
dataframe['last_price'] = ticker['last']
dataframe['volume24h'] = ticker['quoteVolume']
dataframe['vwap'] = ticker['vwap']
```
!!! Warning
@@ -729,7 +727,24 @@ if self.dp:
data returned from the exchange and add appropriate error handling / defaults.
!!! Warning "Warning about backtesting"
This method will always return up-to-date values - so usage during backtesting / hyperopt will lead to wrong results.
This method will always return up-to-date values - so usage during backtesting / hyperopt without runmode checks will lead to wrong results.
### Send Notification
The dataprovider `.send_msg()` function allows you to send custom notifications from your strategy.
Identical notifications will only be sent once per candle, unless the 2nd argument (`always_send`) is set to True.
``` python
self.dp.send_msg(f"{metadata['pair']} just got hot!")
# Force send this notification, avoid caching (Please read warning below!)
self.dp.send_msg(f"{metadata['pair']} just got hot!", always_send=True)
```
Notifications will only be sent in trading modes (Live/Dry-run) - so this method can be called without conditions for backtesting.
!!! Warning "Spamming"
You can spam yourself pretty good by setting `always_send=True` in this method. Use this with great care and only in conditions you know will not happen throughout a candle to avoid a message every 5 seconds.
### Complete Data-provider sample

View File

@@ -14,7 +14,7 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally, use existing configuration file
# Optionally (recommended), use existing configuration file
# config = Configuration.from_files(["config.json"])
# Define some constants
@@ -22,7 +22,7 @@ config["timeframe"] = "5m"
# Name of the strategy class
config["strategy"] = "SampleStrategy"
# Location of the data
data_location = Path(config['user_data_dir'], 'data', 'binance')
data_location = config['datadir']
# Pair to analyze - Only use one pair here
pair = "BTC/USDT"
```
@@ -31,11 +31,13 @@ pair = "BTC/USDT"
```python
# Load data using values set above
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "hdf5",
candle_type=CandleType.SPOT,
)
# Confirm success

View File

@@ -18,7 +18,7 @@ Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `fo
* [`check_buy_timeout()` -> `check_entry_timeout()`](#custom_entry_timeout)
* [`check_sell_timeout()` -> `check_exit_timeout()`](#custom_entry_timeout)
* New `side` argument to callbacks without trade object
* [`custom_stake_amount`](#custom-stake-amount)
* [`custom_stake_amount`](#custom_stake_amount)
* [`confirm_trade_entry`](#confirm_trade_entry)
* [`custom_entry_price`](#custom_entry_price)
* [Changed argument name in `confirm_trade_exit`](#confirm_trade_exit)
@@ -192,7 +192,7 @@ class AwesomeStrategy(IStrategy):
return False
```
### Custom-stake-amount
### `custom_stake_amount`
New string argument `side` - which can be either `"long"` or `"short"`.

View File

@@ -97,7 +97,9 @@ Example configuration showing the different settings:
"entry_fill": "off",
"exit_fill": "off",
"protection_trigger": "off",
"protection_trigger_global": "on"
"protection_trigger_global": "on",
"strategy_msg": "off",
"show_candle": "off"
},
"reload": true,
"balance_dust_level": 0.01
@@ -108,7 +110,8 @@ Example configuration showing the different settings:
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
`*_fill` notifications are off by default and must be explicitly enabled.
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
`strategy_msg` - Receive notifications from the strategy, sent via `self.dp.send_msg()` from the strategy [more details](strategy-customization.md#send-notification).
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`reload` allows you to disable reload-buttons on selected messages.
@@ -184,7 +187,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/stats` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/exits` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/entries` | Shows Wins / losses by Exit reason as well as Avg. holding durations for buys and sells
| `/whitelist` | Show the current whitelist
| `/whitelist [sorted] [baseonly]` | Show the current whitelist. Optionally display in alphabetical order and/or with just the base currency of each pairing.
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
| `/help` | Show help message

View File

@@ -611,6 +611,26 @@ Common arguments:
```
### Webserver mode - docker
You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated:
``` yml
command: >
webserver
--config /freqtrade/user_data/config.json
```
You can now use `docker-compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip
Don't forget to reset the command back to the trade command if you want to start a live or dry-run bot.
## Show previous Backtest results
Allows you to show previous backtest results.

View File

@@ -9,6 +9,7 @@ dependencies:
- pandas
- pip
- py-find-1st
- aiohttp
- SQLAlchemy
- python-telegram-bot
@@ -64,7 +65,7 @@ dependencies:
- pip:
- pycoingecko
- py_find_1st
# - py_find_1st
- tables
- pytest-random-order
- ccxt

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = 'develop'
__version__ = '2022.8.dev'
if 'dev' in __version__:
try:

View File

@@ -12,7 +12,8 @@ from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path", "recursive_strategy_search"]
ARGS_STRATEGY = ["strategy", "strategy_path", "recursive_strategy_search", "freqaimodel",
"freqaimodel_path"]
ARGS_TRADE = ["db_url", "sd_notify", "dry_run", "dry_run_wallet", "fee"]
@@ -28,7 +29,7 @@ ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_pos
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "use_max_market_positions",
"enable_protections", "dry_run_wallet",
"enable_protections", "dry_run_wallet", "timeframe_detail",
"epochs", "spaces", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",

View File

@@ -67,7 +67,7 @@ def ask_user_config() -> Dict[str, Any]:
"type": "text",
"name": "stake_amount",
"message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "100",
"default": "unlimited",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
if val == UNLIMITED_STAKE_AMOUNT
@@ -164,7 +164,7 @@ def ask_user_config() -> Dict[str, Any]:
"when": lambda x: x['telegram']
},
{
"type": "text",
"type": "password",
"name": "telegram_chat_id",
"message": "Insert Telegram chat id",
"when": lambda x: x['telegram']
@@ -191,7 +191,7 @@ def ask_user_config() -> Dict[str, Any]:
"when": lambda x: x['api_server']
},
{
"type": "text",
"type": "password",
"name": "api_server_password",
"message": "Insert api-server password",
"when": lambda x: x['api_server']

View File

@@ -647,4 +647,14 @@ AVAILABLE_CLI_OPTIONS = {
nargs='+',
default=[],
),
"freqaimodel": Arg(
'--freqaimodel',
help='Specify a custom freqaimodels.',
metavar='NAME',
),
"freqaimodel_path": Arg(
'--freqaimodel-path',
help='Specify additional lookup path for freqaimodels.',
metavar='PATH',
),
}

View File

@@ -12,7 +12,7 @@ from freqtrade.enums import CandleType, RunMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.exchange.exchange import market_is_active
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
from freqtrade.resolvers import ExchangeResolver
@@ -50,7 +50,8 @@ def start_download_data(args: Dict[str, Any]) -> None:
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
markets = [p for p, m in exchange.markets.items() if market_is_active(m)
or config.get('include_inactive')]
expanded_pairs = expand_pairlist(config['pairs'], markets)
expanded_pairs = dynamic_expand_pairlist(config, markets)
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):

View File

@@ -24,7 +24,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
export_csv = config.get('export_csv', None)
export_csv = config.get('export_csv')
no_details = config.get('hyperopt_list_no_details', False)
no_header = False

View File

@@ -4,5 +4,4 @@ from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.configuration.configuration import Configuration
from freqtrade.configuration.PeriodicCache import PeriodicCache
from freqtrade.configuration.timerange import TimeRange

View File

@@ -97,6 +97,8 @@ class Configuration:
self._process_analyze_options(config)
self._process_freqai_options(config)
# Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
@@ -129,7 +131,7 @@ class Configuration:
# Default to in-memory db for dry_run if not specified
config['db_url'] = constants.DEFAULT_DB_DRYRUN_URL
else:
if not config.get('db_url', None):
if not config.get('db_url'):
config['db_url'] = constants.DEFAULT_DB_PROD_URL
logger.info('Dry run is disabled')
@@ -182,7 +184,7 @@ class Configuration:
config['user_data_dir'] = create_userdata_dir(config['user_data_dir'], create_dir=False)
logger.info('Using user-data directory: %s ...', config['user_data_dir'])
config.update({'datadir': create_datadir(config, self.args.get('datadir', None))})
config.update({'datadir': create_datadir(config, self.args.get('datadir'))})
logger.info('Using data directory: %s ...', config.get('datadir'))
if self.args.get('exportfilename'):
@@ -221,7 +223,7 @@ class Configuration:
if config.get('max_open_trades') == -1:
config['max_open_trades'] = float('inf')
if self.args.get('stake_amount', None):
if self.args.get('stake_amount'):
# Convert explicitly to float to support CLI argument for both unlimited and value
try:
self.args['stake_amount'] = float(self.args['stake_amount'])
@@ -461,6 +463,16 @@ class Configuration:
config.update({'runmode': self.runmode})
def _process_freqai_options(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='freqaimodel',
logstring='Using freqaimodel class name: {}')
self._args_to_config(config, argname='freqaimodel_path',
logstring='Using freqaimodel path: {}')
return
def _args_to_config(self, config: Dict[str, Any], argname: str,
logstring: str, logfun: Optional[Callable] = None,
deprecated_msg: Optional[str] = None) -> None:
@@ -474,7 +486,7 @@ class Configuration:
configuration instead of the content)
"""
if (argname in self.args and self.args[argname] is not None
and self.args[argname] is not False):
and self.args[argname] is not False):
config.update({argname: self.args[argname]})
if logfun:

View File

@@ -55,6 +55,7 @@ FTHYPT_FILEVERSION = 'fthypt_fileversion'
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'
USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
@@ -240,6 +241,7 @@ CONF_SCHEMA = {
},
'exchange': {'$ref': '#/definitions/exchange'},
'edge': {'$ref': '#/definitions/edge'},
'freqai': {'$ref': '#/definitions/freqai'},
'experimental': {
'type': 'object',
'properties': {
@@ -313,6 +315,14 @@ CONF_SCHEMA = {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
},
'show_candle': {
'type': 'string',
'enum': ['off', 'ohlc'],
},
'strategy_msg': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
},
}
},
'reload': {'type': 'boolean'},
@@ -472,7 +482,60 @@ CONF_SCHEMA = {
'remove_pumps': {'type': 'boolean'}
},
'required': ['process_throttle_secs', 'allowed_risk']
}
},
"freqai": {
"type": "object",
"properties": {
"enabled": {"type": "boolean", "default": False},
"keras": {"type": "boolean", "default": False},
"conv_width": {"type": "integer", "default": 2},
"train_period_days": {"type": "integer", "default": 0},
"backtest_period_days": {"type": "number", "default": 7},
"identifier": {"type": "string", "default": "example"},
"feature_parameters": {
"type": "object",
"properties": {
"include_corr_pairlist": {"type": "array"},
"include_timeframes": {"type": "array"},
"label_period_candles": {"type": "integer"},
"include_shifted_candles": {"type": "integer", "default": 0},
"DI_threshold": {"type": "number", "default": 0},
"weight_factor": {"type": "number", "default": 0},
"principal_component_analysis": {"type": "boolean", "default": False},
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
"svm_params": {"type": "object",
"properties": {
"shuffle": {"type": "boolean", "default": False},
"nu": {"type": "number", "default": 0.1}
},
}
},
"required": ["include_timeframes", "include_corr_pairlist", ]
},
"data_split_parameters": {
"type": "object",
"properties": {
"test_size": {"type": "number"},
"random_state": {"type": "integer"},
},
},
"model_training_parameters": {
"type": "object",
"properties": {
"n_estimators": {"type": "integer", "default": 1000}
},
},
},
"required": [
"enabled",
"train_period_days",
"backtest_period_days",
"identifier",
"feature_parameters",
"data_split_parameters",
"model_training_parameters"
]
},
},
}
@@ -538,3 +601,4 @@ TradeList = List[List]
LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell']
MakerTaker = Literal['maker', 'taker']

View File

@@ -5,6 +5,7 @@ including ticker and orderbook data, live and historical candle (OHLCV) data
Common Interface for bot and strategy to access data.
"""
import logging
from collections import deque
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple
@@ -16,6 +17,7 @@ from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.util import PeriodicCache
logger = logging.getLogger(__name__)
@@ -33,6 +35,10 @@ class DataProvider:
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
self.__slice_index: Optional[int] = None
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
self._msg_queue: deque = deque()
self.__msg_cache = PeriodicCache(
maxsize=1000, ttl=timeframe_to_seconds(self._config.get('timeframe', '1h')))
def _set_dataframe_max_index(self, limit_index: int):
"""
@@ -265,3 +271,20 @@ class DataProvider:
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
return self._exchange.fetch_l2_order_book(pair, maximum)
def send_msg(self, message: str, *, always_send: bool = False) -> None:
"""
Send custom RPC Notifications from your bot.
Will not send any bot in modes other than Dry-run or Live.
:param message: Message to be sent. Must be below 4096.
:param always_send: If False, will send the message only once per candle, and surpress
identical messages.
Careful as this can end up spaming your chat.
Defaults to False
"""
if self.runmode not in (RunMode.DRY_RUN, RunMode.LIVE):
return
if always_send or message not in self.__msg_cache:
self._msg_queue.append(message)
self.__msg_cache[message] = True

View File

@@ -7,9 +7,8 @@ import numpy as np
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS,
ListPairsWithTimeframes, TradeList)
from freqtrade.enums import CandleType, TradingMode
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
from freqtrade.enums import CandleType
from .idatahandler import IDataHandler
@@ -21,29 +20,6 @@ class HDF5DataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
"""
if trading_mode == TradingMode.FUTURES:
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob("*.h5")
]
return [
(
cls.rebuild_pair_from_filename(match[1]),
cls.rebuild_timeframe_from_filename(match[2]),
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""

View File

@@ -56,7 +56,7 @@ def load_pair_history(pair: str,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
candle_type=candle_type
candle_type=candle_type,
)
@@ -97,14 +97,15 @@ def load_data(datadir: Path,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler,
candle_type=candle_type
candle_type=candle_type,
)
if not hist.empty:
result[pair] = hist
else:
if candle_type is CandleType.FUNDING_RATE and user_futures_funding_rate is not None:
logger.warn(f"{pair} using user specified [{user_futures_funding_rate}]")
result[pair] = DataFrame(columns=["open", "close", "high", "low", "volume"])
elif candle_type not in (CandleType.SPOT, CandleType.FUTURES):
result[pair] = DataFrame(columns=["date", "open", "close", "high", "low", "volume"])
if fail_without_data and not result:
raise OperationalException("No data found. Terminating.")

View File

@@ -39,15 +39,26 @@ class IDataHandler(ABC):
raise NotImplementedError()
@classmethod
@abstractmethod
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
:return: List of Tuples of (pair, timeframe, CandleType)
"""
if trading_mode == TradingMode.FUTURES:
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob(f"*.{cls._get_file_extension()}")]
return [
(
cls.rebuild_pair_from_filename(match[1]),
cls.rebuild_timeframe_from_filename(match[2]),
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
@abstractmethod

View File

@@ -8,9 +8,9 @@ from pandas import DataFrame, read_json, to_datetime
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, ListPairsWithTimeframes, TradeList
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
from freqtrade.data.converter import trades_dict_to_list
from freqtrade.enums import CandleType, TradingMode
from freqtrade.enums import CandleType
from .idatahandler import IDataHandler
@@ -23,28 +23,6 @@ class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
"""
if trading_mode == 'futures':
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob(f"*.{cls._get_file_extension()}")]
return [
(
cls.rebuild_pair_from_filename(match[1]),
cls.rebuild_timeframe_from_filename(match[2]),
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""

View File

@@ -9,10 +9,12 @@ class ExitType(Enum):
STOP_LOSS = "stop_loss"
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"
TRAILING_STOP_LOSS = "trailing_stop_loss"
LIQUIDATION = "liquidation"
EXIT_SIGNAL = "exit_signal"
FORCE_EXIT = "force_exit"
EMERGENCY_EXIT = "emergency_exit"
CUSTOM_EXIT = "custom_exit"
PARTIAL_EXIT = "partial_exit"
NONE = ""
def __str__(self):

View File

@@ -17,6 +17,8 @@ class RPCMessageType(Enum):
PROTECTION_TRIGGER = 'protection_trigger'
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'
STRATEGY_MSG = 'strategy_msg'
def __repr__(self):
return self.value

View File

@@ -9,12 +9,13 @@ from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges,
is_exchange_known_ccxt, is_exchange_officially_supported,
market_is_active, timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.exchange import (amount_to_precision, available_exchanges, ccxt_exchanges,
date_minus_candles, is_exchange_known_ccxt,
is_exchange_officially_supported, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds,
validate_exchange, validate_exchanges)
from freqtrade.exchange.ftx import Ftx
from freqtrade.exchange.gateio import Gateio
from freqtrade.exchange.hitbtc import Hitbtc

File diff suppressed because it is too large Load Diff

View File

@@ -46,6 +46,7 @@ MAP_EXCHANGE_CHILDCLASS = {
'binanceje': 'binance',
'binanceusdm': 'binance',
'okex': 'okx',
'gate': 'gateio',
}
SUPPORTED_EXCHANGES = [
@@ -63,17 +64,16 @@ EXCHANGE_HAS_REQUIRED = [
'fetchOrder',
'cancelOrder',
'createOrder',
# 'createLimitOrder', 'createMarketOrder',
'fetchBalance',
# Public endpoints
'loadMarkets',
'fetchOHLCV',
]
EXCHANGE_HAS_OPTIONAL = [
# Private
'fetchMyTrades', # Trades for order - fee detection
'createLimitOrder', 'createMarketOrder', # Either OR for orders
# 'setLeverage', # Margin/Futures trading
# 'setMarginMode', # Margin/Futures trading
# 'fetchFundingHistory', # Futures trading

View File

@@ -16,11 +16,11 @@ import arrow
import ccxt
import ccxt.async_support as ccxt_async
from cachetools import TTLCache
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, Precise, decimal_to_precision
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from pandas import DataFrame
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
EntryExit, ListPairsWithTimeframes, PairWithTimeframe)
EntryExit, ListPairsWithTimeframes, MakerTaker, PairWithTimeframe)
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
@@ -32,6 +32,7 @@ from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGE
retrier_async)
from freqtrade.misc import chunks, deep_merge_dicts, safe_value_fallback2
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.util import FtPrecise
CcxtModuleType = Any
@@ -77,7 +78,9 @@ class Exchange:
"mark_ohlcv_price": "mark",
"mark_ohlcv_timeframe": "8h",
"ccxt_futures_name": "swap",
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
}
_ft_has: Dict = {}
_ft_has_futures: Dict = {}
@@ -86,7 +89,8 @@ class Exchange:
# TradingMode.SPOT always supported and not required in this list
]
def __init__(self, config: Dict[str, Any], validate: bool = True) -> None:
def __init__(self, config: Dict[str, Any], validate: bool = True,
load_leverage_tiers: bool = False) -> None:
"""
Initializes this module with the given config,
it does basic validation whether the specified exchange and pairs are valid.
@@ -112,6 +116,7 @@ class Exchange:
self._last_markets_refresh: int = 0
# Cache for 10 minutes ...
self._cache_lock = Lock()
self._fetch_tickers_cache: TTLCache = TTLCache(maxsize=2, ttl=60 * 10)
# Cache values for 1800 to avoid frequent polling of the exchange for prices
# Caching only applies to RPC methods, so prices for open trades are still
@@ -174,29 +179,17 @@ class Exchange:
logger.info(f'Using Exchange "{self.name}"')
if validate:
# Check if timeframe is available
self.validate_timeframes(config.get('timeframe'))
# Initial markets load
self._load_markets()
# Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
if not exchange_config.get('skip_pair_validation'):
self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {}))
self.validate_config(config)
self.required_candle_call_count = self.validate_required_startup_candles(
config.get('startup_candle_count', 0), config.get('timeframe', ''))
self.validate_trading_mode_and_margin_mode(self.trading_mode, self.margin_mode)
self.validate_pricing(config['exit_pricing'])
self.validate_pricing(config['entry_pricing'])
# Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_config.get(
"markets_refresh_interval", 60) * 60
if self.trading_mode != TradingMode.SPOT:
if self.trading_mode != TradingMode.SPOT and load_leverage_tiers:
self.fill_leverage_tiers()
self.additional_exchange_init()
@@ -213,6 +206,20 @@ class Exchange:
logger.info("Closing async ccxt session.")
self.loop.run_until_complete(self._api_async.close())
def validate_config(self, config):
# Check if timeframe is available
self.validate_timeframes(config.get('timeframe'))
# Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
if not config['exchange'].get('skip_pair_validation'):
self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {}))
self.validate_trading_mode_and_margin_mode(self.trading_mode, self.margin_mode)
self.validate_pricing(config['exit_pricing'])
self.validate_pricing(config['entry_pricing'])
def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: Dict = {}) -> ccxt.Exchange:
"""
@@ -387,7 +394,7 @@ class Exchange:
and market.get('base', None) is not None
and (self.precisionMode != TICK_SIZE
# Too low precision will falsify calculations
or market.get('precision', {}).get('price', None) > 1e-11)
or market.get('precision', {}).get('price') > 1e-11)
and ((self.trading_mode == TradingMode.SPOT and self.market_is_spot(market))
or (self.trading_mode == TradingMode.MARGIN and self.market_is_margin(market))
or (self.trading_mode == TradingMode.FUTURES and self.market_is_future(market)))
@@ -422,7 +429,7 @@ class Exchange:
if 'symbol' in order and order['symbol'] is not None:
contract_size = self._get_contract_size(order['symbol'])
if contract_size != 1:
for prop in ['amount', 'cost', 'filled', 'remaining']:
for prop in self._ft_has.get('order_props_in_contracts', []):
if prop in order and order[prop] is not None:
order[prop] = order[prop] * contract_size
return order
@@ -537,7 +544,7 @@ class Exchange:
# The internal info array is different for each particular market,
# its contents depend on the exchange.
# It can also be a string or similar ... so we need to verify that first.
elif (isinstance(self.markets[pair].get('info', None), dict)
elif (isinstance(self.markets[pair].get('info'), dict)
and self.markets[pair].get('info', {}).get('prohibitedIn', False)):
# Warn users about restricted pairs in whitelist.
# We cannot determine reliably if Users are affected.
@@ -674,45 +681,35 @@ class Exchange:
"""
return endpoint in self._api.has and self._api.has[endpoint]
def get_precision_amount(self, pair: str) -> Optional[float]:
"""
Returns the amount precision of the exchange.
:param pair: Pair to get precision for
:return: precision for amount or None. Must be used in combination with precisionMode
"""
return self.markets.get(pair, {}).get('precision', {}).get('amount', None)
def get_precision_price(self, pair: str) -> Optional[float]:
"""
Returns the price precision of the exchange.
:param pair: Pair to get precision for
:return: precision for price or None. Must be used in combination with precisionMode
"""
return self.markets.get(pair, {}).get('precision', {}).get('price', None)
def amount_to_precision(self, pair: str, amount: float) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
"""
if self.markets[pair]['precision']['amount'] is not None:
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=self.markets[pair]['precision']['amount'],
counting_mode=self.precisionMode,
))
return amount
"""
return amount_to_precision(amount, self.get_precision_amount(pair), self.precisionMode)
def price_to_precision(self, pair: str, price: float) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
Rounds up
"""
if self.markets[pair]['precision']['price']:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=self.markets[pair]['precision']['price'],
# counting_mode=self.precisionMode,
# ))
if self.precisionMode == TICK_SIZE:
precision = Precise(str(self.markets[pair]['precision']['price']))
price_str = Precise(str(price))
missing = price_str % precision
if not missing == Precise("0"):
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = self.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price
return price_to_precision(price, self.get_precision_price(pair), self.precisionMode)
def price_get_one_pip(self, pair: str, price: float) -> float:
"""
@@ -820,7 +817,7 @@ class Exchange:
'price': rate,
'average': rate,
'amount': _amount,
'cost': _amount * rate / leverage,
'cost': _amount * rate,
'type': ordertype,
'side': side,
'filled': 0,
@@ -844,22 +841,30 @@ class Exchange:
dry_order.update({
'average': average,
'filled': _amount,
'remaining': 0.0,
'cost': (dry_order['amount'] * average) / leverage
})
dry_order = self.add_dry_order_fee(pair, dry_order)
# market orders will always incurr taker fees
dry_order = self.add_dry_order_fee(pair, dry_order, 'taker')
dry_order = self.check_dry_limit_order_filled(dry_order)
dry_order = self.check_dry_limit_order_filled(dry_order, immediate=True)
self._dry_run_open_orders[dry_order["id"]] = dry_order
# Copy order and close it - so the returned order is open unless it's a market order
return dry_order
def add_dry_order_fee(self, pair: str, dry_order: Dict[str, Any]) -> Dict[str, Any]:
def add_dry_order_fee(
self,
pair: str,
dry_order: Dict[str, Any],
taker_or_maker: MakerTaker,
) -> Dict[str, Any]:
fee = self.get_fee(pair, taker_or_maker=taker_or_maker)
dry_order.update({
'fee': {
'currency': self.get_pair_quote_currency(pair),
'cost': dry_order['cost'] * self.get_fee(pair),
'rate': self.get_fee(pair)
'cost': dry_order['cost'] * fee,
'rate': fee
}
})
return dry_order
@@ -925,7 +930,8 @@ class Exchange:
pass
return False
def check_dry_limit_order_filled(self, order: Dict[str, Any]) -> Dict[str, Any]:
def check_dry_limit_order_filled(
self, order: Dict[str, Any], immediate: bool = False) -> Dict[str, Any]:
"""
Check dry-run limit order fill and update fee (if it filled).
"""
@@ -939,7 +945,12 @@ class Exchange:
'filled': order['amount'],
'remaining': 0,
})
self.add_dry_order_fee(pair, order)
self.add_dry_order_fee(
pair,
order,
'taker' if immediate else 'maker',
)
return order
@@ -999,7 +1010,8 @@ class Exchange:
time_in_force: str = 'gtc',
) -> Dict:
if self._config['dry_run']:
dry_order = self.create_dry_run_order(pair, ordertype, side, amount, rate, leverage)
dry_order = self.create_dry_run_order(
pair, ordertype, side, amount, self.price_to_precision(pair, rate), leverage)
return dry_order
params = self._get_params(side, ordertype, leverage, reduceOnly, time_in_force)
@@ -1246,7 +1258,7 @@ class Exchange:
return False
required = ('fee', 'status', 'amount')
return all(k in corder for k in required)
return all(corder.get(k, None) is not None for k in required)
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
@@ -1314,11 +1326,19 @@ class Exchange:
raise OperationalException(e) from e
@retrier
def fetch_positions(self) -> List[Dict]:
def fetch_positions(self, pair: str = None) -> List[Dict]:
"""
Fetch positions from the exchange.
If no pair is given, all positions are returned.
:param pair: Pair for the query
"""
if self._config['dry_run'] or self.trading_mode != TradingMode.FUTURES:
return []
try:
positions: List[Dict] = self._api.fetch_positions()
symbols = []
if pair:
symbols.append(pair)
positions: List[Dict] = self._api.fetch_positions(symbols)
self._log_exchange_response('fetch_positions', positions)
return positions
except ccxt.DDoSProtection as e:
@@ -1359,12 +1379,14 @@ class Exchange:
if not self.exchange_has('fetchBidsAsks'):
return {}
if cached:
tickers = self._fetch_tickers_cache.get('fetch_bids_asks')
with self._cache_lock:
tickers = self._fetch_tickers_cache.get('fetch_bids_asks')
if tickers:
return tickers
try:
tickers = self._api.fetch_bids_asks(symbols)
self._fetch_tickers_cache['fetch_bids_asks'] = tickers
with self._cache_lock:
self._fetch_tickers_cache['fetch_bids_asks'] = tickers
return tickers
except ccxt.NotSupported as e:
raise OperationalException(
@@ -1385,12 +1407,14 @@ class Exchange:
:return: fetch_tickers result
"""
if cached:
tickers = self._fetch_tickers_cache.get('fetch_tickers')
with self._cache_lock:
tickers = self._fetch_tickers_cache.get('fetch_tickers')
if tickers:
return tickers
try:
tickers = self._api.fetch_tickers(symbols)
self._fetch_tickers_cache['fetch_tickers'] = tickers
with self._cache_lock:
self._fetch_tickers_cache['fetch_tickers'] = tickers
return tickers
except ccxt.NotSupported as e:
raise OperationalException(
@@ -1481,7 +1505,8 @@ class Exchange:
return price_side
def get_rate(self, pair: str, refresh: bool,
side: EntryExit, is_short: bool) -> float:
side: EntryExit, is_short: bool,
order_book: Optional[dict] = None, ticker: Optional[dict] = None) -> float:
"""
Calculates bid/ask target
bid rate - between current ask price and last price
@@ -1498,7 +1523,8 @@ class Exchange:
cache_rate: TTLCache = self._entry_rate_cache if side == "entry" else self._exit_rate_cache
if not refresh:
rate = cache_rate.get(pair)
with self._cache_lock:
rate = cache_rate.get(pair)
# Check if cache has been invalidated
if rate:
logger.debug(f"Using cached {side} rate for {pair}.")
@@ -1513,22 +1539,24 @@ class Exchange:
if conf_strategy.get('use_order_book', False):
order_book_top = conf_strategy.get('order_book_top', 1)
order_book = self.fetch_l2_order_book(pair, order_book_top)
if order_book is None:
order_book = self.fetch_l2_order_book(pair, order_book_top)
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
rate = order_book[f"{price_side}s"][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
f"{name} Price at location {order_book_top} from orderbook could not be "
f"determined. Orderbook: {order_book}"
f"{pair} - {name} Price at location {order_book_top} from orderbook "
f"could not be determined. Orderbook: {order_book}"
)
raise PricingError from e
logger.debug(f"{name} price from orderbook {price_side_word}"
logger.debug(f"{pair} - {name} price from orderbook {price_side_word}"
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
else:
logger.debug(f"Using Last {price_side_word} / Last Price")
ticker = self.fetch_ticker(pair)
if ticker is None:
ticker = self.fetch_ticker(pair)
ticker_rate = ticker[price_side]
if ticker['last'] and ticker_rate:
if side == 'entry' and ticker_rate > ticker['last']:
@@ -1541,10 +1569,39 @@ class Exchange:
if rate is None:
raise PricingError(f"{name}-Rate for {pair} was empty.")
cache_rate[pair] = rate
with self._cache_lock:
cache_rate[pair] = rate
return rate
def get_rates(self, pair: str, refresh: bool, is_short: bool) -> Tuple[float, float]:
entry_rate = None
exit_rate = None
if not refresh:
with self._cache_lock:
entry_rate = self._entry_rate_cache.get(pair)
exit_rate = self._exit_rate_cache.get(pair)
if entry_rate:
logger.debug(f"Using cached buy rate for {pair}.")
if exit_rate:
logger.debug(f"Using cached sell rate for {pair}.")
entry_pricing = self._config.get('entry_pricing', {})
exit_pricing = self._config.get('exit_pricing', {})
order_book = ticker = None
if not entry_rate and entry_pricing.get('use_order_book', False):
order_book_top = max(entry_pricing.get('order_book_top', 1),
exit_pricing.get('order_book_top', 1))
order_book = self.fetch_l2_order_book(pair, order_book_top)
entry_rate = self.get_rate(pair, refresh, 'entry', is_short, order_book=order_book)
elif not entry_rate:
ticker = self.fetch_ticker(pair)
entry_rate = self.get_rate(pair, refresh, 'entry', is_short, ticker=ticker)
if not exit_rate:
exit_rate = self.get_rate(pair, refresh, 'exit',
is_short, order_book=order_book, ticker=ticker)
return entry_rate, exit_rate
# Fee handling
@retrier
@@ -1597,7 +1654,7 @@ class Exchange:
@retrier
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: str = 'maker') -> float:
price: float = 1, taker_or_maker: MakerTaker = 'maker') -> float:
try:
if self._config['dry_run'] and self._config.get('fee', None) is not None:
return self._config['fee']
@@ -1631,27 +1688,35 @@ class Exchange:
and order['fee']['cost'] is not None
)
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
def calculate_fee_rate(
self, fee: Dict, symbol: str, cost: float, amount: float) -> Optional[float]:
"""
Calculate fee rate if it's not given by the exchange.
:param order: Order or trade (one trade) dict
:param fee: ccxt Fee dict - must contain cost / currency / rate
:param symbol: Symbol of the order
:param cost: Total cost of the order
:param amount: Amount of the order
"""
if order['fee'].get('rate') is not None:
return order['fee'].get('rate')
fee_curr = order['fee']['currency']
if fee.get('rate') is not None:
return fee.get('rate')
fee_curr = fee.get('currency')
if fee_curr is None:
return None
fee_cost = float(fee['cost'])
if self._ft_has['fee_cost_in_contracts']:
# Convert cost via "contracts" conversion
fee_cost = self._contracts_to_amount(symbol, fee['cost'])
# Calculate fee based on order details
if fee_curr in self.get_pair_base_currency(order['symbol']):
if fee_curr == self.get_pair_base_currency(symbol):
# Base currency - divide by amount
return round(
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
return round(fee_cost / amount, 8)
elif fee_curr == self.get_pair_quote_currency(symbol):
# Quote currency - divide by cost
return round(self._contracts_to_amount(
order['symbol'], order['fee']['cost']) / order['cost'],
8) if order['cost'] else None
return round(fee_cost / cost, 8) if cost else None
else:
# If Fee currency is a different currency
if not order['cost']:
if not cost:
# If cost is None or 0.0 -> falsy, return None
return None
try:
@@ -1663,19 +1728,28 @@ class Exchange:
fee_to_quote_rate = self._config['exchange'].get('unknown_fee_rate', None)
if not fee_to_quote_rate:
return None
return round((self._contracts_to_amount(
order['symbol'], order['fee']['cost']) * fee_to_quote_rate) / order['cost'], 8)
return round((fee_cost * fee_to_quote_rate) / cost, 8)
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
def extract_cost_curr_rate(self, fee: Dict, symbol: str, cost: float,
amount: float) -> Tuple[float, str, Optional[float]]:
"""
Extract tuple of cost, currency, rate.
Requires order_has_fee to run first!
:param order: Order or trade (one trade) dict
:param fee: ccxt Fee dict - must contain cost / currency / rate
:param symbol: Symbol of the order
:param cost: Total cost of the order
:param amount: Amount of the order
:return: Tuple with cost, currency, rate of the given fee dict
"""
return (order['fee']['cost'],
order['fee']['currency'],
self.calculate_fee_rate(order))
return (float(fee['cost']),
fee['currency'],
self.calculate_fee_rate(
fee,
symbol,
cost,
amount
)
)
# Historic data
@@ -1946,7 +2020,7 @@ class Exchange:
else:
logger.debug(
"Fetching trades for pair %s, since %s %s...",
pair, since,
pair, since,
'(' + arrow.get(since // 1000).isoformat() + ') ' if since is not None else ''
)
trades = await self._api_async.fetch_trades(pair, since=since, limit=1000)
@@ -2171,10 +2245,14 @@ class Exchange:
coros = [self.get_market_leverage_tiers(symbol) for symbol in sorted(symbols)]
async def gather_results():
return await asyncio.gather(*input_coro, return_exceptions=True)
for input_coro in chunks(coros, 100):
results = self.loop.run_until_complete(
asyncio.gather(*input_coro, return_exceptions=True))
with self._loop_lock:
results = self.loop.run_until_complete(gather_results())
for symbol, res in results:
tiers[symbol] = res
@@ -2299,7 +2377,8 @@ class Exchange:
return
try:
self._api.set_leverage(symbol=pair, leverage=leverage)
res = self._api.set_leverage(symbol=pair, leverage=leverage)
self._log_exchange_response('set_leverage', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
@@ -2327,7 +2406,6 @@ class Exchange:
if self.trading_mode in TradingMode.SPOT:
return None
elif (
self.margin_mode == MarginMode.ISOLATED and
self.trading_mode == TradingMode.FUTURES
):
wallet_balance = (amount * open_rate) / leverage
@@ -2343,7 +2421,7 @@ class Exchange:
return isolated_liq
else:
raise OperationalException(
"Freqtrade only supports isolated futures for leverage trading")
"Freqtrade currently only supports futures for leverage trading.")
def funding_fee_cutoff(self, open_date: datetime):
"""
@@ -2363,7 +2441,8 @@ class Exchange:
return
try:
self._api.set_margin_mode(margin_mode.value, pair, params)
res = self._api.set_margin_mode(margin_mode.value, pair, params)
self._log_exchange_response('set_margin_mode', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
@@ -2504,7 +2583,6 @@ class Exchange:
else:
return 0.0
@retrier
def get_or_calculate_liquidation_price(
self,
pair: str,
@@ -2522,7 +2600,7 @@ class Exchange:
"""
if self.trading_mode == TradingMode.SPOT:
return None
elif (self.trading_mode != TradingMode.FUTURES and self.margin_mode != MarginMode.ISOLATED):
elif (self.trading_mode != TradingMode.FUTURES):
raise OperationalException(
f"{self.name} does not support {self.margin_mode.value} {self.trading_mode.value}")
@@ -2538,20 +2616,12 @@ class Exchange:
upnl_ex_1=upnl_ex_1
)
else:
try:
positions = self._api.fetch_positions([pair])
if len(positions) > 0:
pos = positions[0]
isolated_liq = pos['liquidationPrice']
else:
return None
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
positions = self.fetch_positions(pair)
if len(positions) > 0:
pos = positions[0]
isolated_liq = pos['liquidationPrice']
else:
return None
if isolated_liq:
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
@@ -2783,3 +2853,61 @@ def market_is_active(market: Dict) -> bool:
# See https://github.com/ccxt/ccxt/issues/4874,
# https://github.com/ccxt/ccxt/issues/4075#issuecomment-434760520
return market.get('active', True) is not False
def amount_to_precision(amount: float, amount_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
:param amount: amount to truncate
:param amount_precision: amount precision to use.
should be retrieved from markets[pair]['precision']['amount']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: truncated amount
"""
if amount_precision is not None and precisionMode is not None:
precision = int(amount_precision) if precisionMode != TICK_SIZE else amount_precision
# precision must be an int for non-ticksize inputs.
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=precision,
counting_mode=precisionMode,
))
return amount
def price_to_precision(price: float, price_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the price rounded up to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
!!! Rounds up
:param price: price to convert
:param price_precision: price precision to use. Used from markets[pair]['precision']['price']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:return: price rounded up to the precision the Exchange accepts
"""
if price_precision is not None and precisionMode is not None:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=price_precision,
# counting_mode=self.precisionMode,
# ))
if precisionMode == TICK_SIZE:
precision = FtPrecise(price_precision)
price_str = FtPrecise(price)
missing = price_str % precision
if not missing == FtPrecise("0"):
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = price_precision
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price

View File

@@ -1,6 +1,6 @@
""" FTX exchange subclass """
import logging
from typing import Any, Dict, List, Tuple
from typing import Any, Dict, List, Optional, Tuple
import ccxt
@@ -116,9 +116,17 @@ class Ftx(Exchange):
if len(order) == 1:
if order[0].get('status') == 'closed':
# Trigger order was triggered ...
real_order_id = order[0].get('info', {}).get('orderId')
real_order_id: Optional[str] = order[0].get('info', {}).get('orderId')
# OrderId may be None for stoploss-market orders
# But contains "average" in these cases.
# So we need to get it through the endpoint
# /conditional_orders/{conditional_order_id}/triggers
if not real_order_id:
res = self._api.privateGetConditionalOrdersConditionalOrderIdTriggers(
params={'conditional_order_id': order_id})
self._log_exchange_response('fetch_stoploss_order2', res)
real_order_id = res['result'][0]['orderId'] if res.get(
'result', []) else None
if real_order_id:
order1 = self._api.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order1)

View File

@@ -1,12 +1,13 @@
""" Gate.io exchange subclass """
import logging
from datetime import datetime
from typing import Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
@@ -32,7 +33,10 @@ class Gateio(Exchange):
}
_ft_has_futures: Dict = {
"needs_trading_fees": True
"needs_trading_fees": True,
"ohlcv_volume_currency": "base",
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@@ -95,12 +99,29 @@ class Gateio(Exchange):
}
return trades
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if self.trading_mode == TradingMode.FUTURES:
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
return self.fetch_order(
order = self.fetch_order(
order_id=order_id,
pair=pair,
params={'stop': True}
)
if self.trading_mode == TradingMode.FUTURES:
if order['status'] == 'closed':
# Places a real order - which we need to fetch explicitly.
new_orderid = order.get('info', {}).get('trade_id')
if new_orderid:
order1 = self.fetch_order(order_id=new_orderid, pair=pair, params=params)
order1['id_stop'] = order1['id']
order1['id'] = order_id
order1['stopPrice'] = order.get('stopPrice')
return order1
return order
def cancel_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
return self.cancel_order(

View File

@@ -7,9 +7,8 @@ from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.enums.candletype import CandleType
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier
from freqtrade.exchange.exchange import date_minus_candles
logger = logging.getLogger(__name__)
@@ -28,6 +27,7 @@ class Okx(Exchange):
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [

View File

View File

@@ -0,0 +1,609 @@
import collections
import json
import logging
import re
import shutil
import threading
from pathlib import Path
from typing import Any, Dict, Tuple, TypedDict
import numpy as np
import pandas as pd
import rapidjson
from joblib import dump, load
from joblib.externals import cloudpickle
from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.history import load_pair_history
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
class pair_info(TypedDict):
model_filename: str
first: bool
trained_timestamp: int
priority: int
data_path: str
extras: dict
class FreqaiDataDrawer:
"""
Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving
/loading to/from disk.
This object remains persistent throughout live/dry.
Record of contribution:
FreqAI was developed by a group of individuals who all contributed specific skillsets to the
project.
Conception and software development:
Robert Caulk @robcaulk
Theoretical brainstorming:
Elin Törnquist @th0rntwig
Code review, software architecture brainstorming:
@xmatthias
Beta testing and bug reporting:
@bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
"""
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
self.config = config
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, pair_info] = {}
# dictionary holding all actively inferenced models in memory given a model filename
self.model_dictionary: Dict[str, Any] = {}
self.model_return_values: Dict[str, DataFrame] = {}
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
self.historic_predictions: Dict[str, DataFrame] = {}
self.follower_dict: Dict[str, pair_info] = {}
self.full_path = full_path
self.follower_name: str = self.config.get("bot_name", "follower1")
self.follower_dict_path = Path(
self.full_path / f"follower_dictionary-{self.follower_name}.json"
)
self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl")
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.follow_mode = follow_mode
if follow_mode:
self.create_follower_dict()
self.load_drawer_from_disk()
self.load_historic_predictions_from_disk()
self.training_queue: Dict[str, int] = {}
self.history_lock = threading.Lock()
self.save_lock = threading.Lock()
self.pair_dict_lock = threading.Lock()
self.old_DBSCAN_eps: Dict[str, float] = {}
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"priority": 1, "first": True, "data_path": "", "extras": {}}
def load_drawer_from_disk(self):
"""
Locate and load a previously saved data drawer full of all pair model metadata in
present model folder.
:return: bool - whether or not the drawer was located
"""
exists = self.pair_dictionary_path.is_file()
if exists:
with open(self.pair_dictionary_path, "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(
f"Follower could not find pair_dictionary at {self.full_path} "
"sending null values back to strategy"
)
return exists
def load_historic_predictions_from_disk(self):
"""
Locate and load a previously saved historic predictions.
:return: bool - whether or not the drawer was located
"""
exists = self.historic_predictions_path.is_file()
if exists:
with open(self.historic_predictions_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
"that statistics may be inaccurate if the bot has been offline for "
"an extended period of time."
)
elif not self.follow_mode:
logger.info("Could not find existing historic_predictions, starting from scratch")
else:
logger.warning(
f"Follower could not find historic predictions at {self.full_path} "
"sending null values back to strategy"
)
return exists
def save_historic_predictions_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.historic_predictions_path, "wb") as fp:
cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL)
def save_drawer_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with self.save_lock:
with open(self.pair_dictionary_path, 'w') as fp:
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
with open(self.follower_dict_path, "w") as fp:
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
exists = self.follower_dict_path.is_file()
if exists:
logger.info("Found an existing follower dictionary")
for pair in whitelist_pairs:
self.follower_dict[pair] = {}
self.save_follower_dict_to_disk()
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]:
"""
Locate and load existing model metadata from persistent storage. If not located,
create a new one and append the current pair to it and prepare it for its first
training
:param pair: str: pair to lookup
:return:
model_filename: str = unique filename used for loading persistent objects from disk
trained_timestamp: int = the last time the coin was trained
return_null_array: bool = Follower could not find pair metadata
"""
pair_dict = self.pair_dict.get(pair)
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
return_null_array = False
if pair_dict:
model_filename = pair_dict["model_filename"]
trained_timestamp = pair_dict["trained_timestamp"]
elif not self.follow_mode:
self.pair_dict[pair] = self.empty_pair_dict.copy()
model_filename = ""
trained_timestamp = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
logger.warning(
f"Follower could not find current pair {pair} in "
f"pair_dictionary at path {self.full_path}, sending null values "
"back to strategy."
)
trained_timestamp = 0
model_filename = ''
return_null_array = True
return model_filename, trained_timestamp, return_null_array
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata["pair"])
if pair_in_dict:
return
else:
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
with self.pair_dict_lock:
for p in self.pair_dict:
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
self.pair_dict[pair]["priority"] = len(self.pair_dict)
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
"""
Set the initial return values to the historical predictions dataframe. This avoids needing
to repredict on historical candles, and also stores historical predictions despite
retrainings (so stored predictions are true predictions, not just inferencing on trained
data)
"""
hist_df = self.historic_predictions
len_diff = len(hist_df[pair].index) - len(pred_df.index)
if len_diff < 0:
df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]],
ignore_index=True, keys=hist_df[pair].keys())
else:
df_concat = hist_df[pair].tail(len(pred_df.index)).reset_index(drop=True)
df_concat = df_concat.fillna(0)
self.model_return_values[pair] = df_concat
def append_model_predictions(self, pair: str, predictions: DataFrame,
do_preds: NDArray[np.int_],
dk: FreqaiDataKitchen, len_df: int) -> None:
"""
Append model predictions to historic predictions dataframe, then set the
strategy return dataframe to the tail of the historic predictions. The length of
the tail is equivalent to the length of the dataframe that entered FreqAI from
the strategy originally. Doing this allows FreqUI to always display the correct
historic predictions.
"""
index = self.historic_predictions[pair].index[-1:]
columns = self.historic_predictions[pair].columns
nan_df = pd.DataFrame(np.nan, index=index, columns=columns)
self.historic_predictions[pair] = pd.concat(
[self.historic_predictions[pair], nan_df], ignore_index=True, axis=0)
df = self.historic_predictions[pair]
# model outputs and associated statistics
for label in predictions.columns:
df[label].iloc[-1] = predictions[label].iloc[-1]
if df[label].dtype == object:
continue
df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label]
df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label]
# outlier indicators
df["do_predict"].iloc[-1] = do_preds[-1]
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
df["DI_values"].iloc[-1] = dk.DI_values[-1]
# extra values the user added within custom prediction model
if dk.data['extra_returns_per_train']:
rets = dk.data['extra_returns_per_train']
for return_str in rets:
df[return_str].iloc[-1] = rets[return_str]
self.model_return_values[pair] = df.tail(len_df).reset_index(drop=True)
def attach_return_values_to_return_dataframe(
self, pair: str, dataframe: DataFrame) -> DataFrame:
"""
Attach the return values to the strat dataframe
:param dataframe: DataFrame = strategy dataframe
:return: DataFrame = strat dataframe with return values attached
"""
df = self.model_return_values[pair]
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
return dataframe
def return_null_values_to_strategy(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> None:
"""
Build 0 filled dataframe to return to strategy
"""
dk.find_features(dataframe)
full_labels = dk.label_list + dk.unique_class_list
for label in full_labels:
dataframe[label] = 0
dataframe[f"{label}_mean"] = 0
dataframe[f"{label}_std"] = 0
dataframe["do_predict"] = 0
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
dataframe["DI_values"] = 0
if dk.data['extra_returns_per_train']:
rets = dk.data['extra_returns_per_train']
for return_str in rets:
dataframe[return_str] = 0
dk.return_dataframe = dataframe
def purge_old_models(self) -> None:
model_folders = [x for x in self.full_path.iterdir() if x.is_dir()]
pattern = re.compile(r"sub-train-(\w+)_(\d{10})")
delete_dict: Dict[str, Any] = {}
for dir in model_folders:
result = pattern.match(str(dir.name))
if result is None:
break
coin = result.group(1)
timestamp = result.group(2)
if coin not in delete_dict:
delete_dict[coin] = {}
delete_dict[coin]["num_folders"] = 1
delete_dict[coin]["timestamps"] = {int(timestamp): dir}
else:
delete_dict[coin]["num_folders"] += 1
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
if delete_dict[coin]["num_folders"] > 2:
sorted_dict = collections.OrderedDict(
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - 2
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
break
logger.info(f"Freqai purging old model file {v}")
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
# Functions pulled back from FreqaiDataKitchen because they relied on DataDrawer
def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None:
"""
Saves all data associated with a model for a single sub-train time range
:params:
:model: User trained model which can be reused for inferencing to generate
predictions
"""
if not dk.data_path.is_dir():
dk.data_path.mkdir(parents=True, exist_ok=True)
save_path = Path(dk.data_path)
# Save the trained model
if not dk.keras:
dump(model, save_path / f"{dk.model_filename}_model.joblib")
else:
model.save(save_path / f"{dk.model_filename}_model.h5")
if dk.svm_model is not None:
dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib")
dk.data["data_path"] = str(dk.data_path)
dk.data["model_filename"] = str(dk.model_filename)
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
# store the metadata
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
# save the train data to file so we can check preds for area of applicability later
dk.data_dictionary["train_features"].to_pickle(
save_path / f"{dk.model_filename}_trained_df.pkl"
)
dk.data_dictionary["train_dates"].to_pickle(
save_path / f"{dk.model_filename}_trained_dates_df.pkl"
)
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
cloudpickle.dump(
dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb")
)
# if self.live:
self.model_dictionary[dk.model_filename] = model
self.pair_dict[coin]["model_filename"] = dk.model_filename
self.pair_dict[coin]["data_path"] = str(dk.data_path)
self.save_drawer_to_disk()
return
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any:
"""
loads all data required to make a prediction on a sub-train time range
:returns:
:model: User trained model which can be inferenced for new predictions
"""
if not self.pair_dict[coin]["model_filename"]:
return None
if dk.live:
dk.model_filename = self.pair_dict[coin]["model_filename"]
dk.data_path = Path(self.pair_dict[coin]["data_path"])
if self.freqai_info.get("follow_mode", False):
# follower can be on a different system which is rsynced from the leader:
dk.data_path = Path(
self.config["user_data_dir"]
/ "models"
/ dk.data_path.parts[-2]
/ dk.data_path.parts[-1]
)
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
dk.data = json.load(fp)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
dk.data_dictionary["train_features"] = pd.read_pickle(
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
)
# try to access model in memory instead of loading object from disk to save time
if dk.live and dk.model_filename in self.model_dictionary:
model = self.model_dictionary[dk.model_filename]
elif not dk.keras:
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
else:
from tensorflow import keras
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
if not model:
raise OperationalException(
f"Unable to load model, ensure model exists at " f"{dk.data_path} "
)
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
dk.pca = cloudpickle.load(
open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb")
)
return model
def update_historic_data(self, strategy: IStrategy, dk: FreqaiDataKitchen) -> None:
"""
Append new candles to our stores historic data (in memory) so that
we do not need to load candle history from disk and we dont need to
pinging exchange multiple times for the same candle.
:params:
dataframe: DataFrame = strategy provided dataframe
"""
feat_params = self.freqai_info["feature_parameters"]
with self.history_lock:
history_data = self.historic_data
for pair in dk.all_pairs:
for tf in feat_params.get("include_timeframes"):
# check if newest candle is already appended
df_dp = strategy.dp.get_pair_dataframe(pair, tf)
if len(df_dp.index) == 0:
continue
if str(history_data[pair][tf].iloc[-1]["date"]) == str(
df_dp.iloc[-1:]["date"].iloc[-1]
):
continue
try:
index = (
df_dp.loc[
df_dp["date"] == history_data[pair][tf].iloc[-1]["date"]
].index[0]
+ 1
)
except IndexError:
logger.warning(
f"Unable to update pair history for {pair}. "
"If this does not resolve itself after 1 additional candle, "
"please report the error to #freqai discord channel"
)
return
history_data[pair][tf] = pd.concat(
[
history_data[pair][tf],
df_dp.iloc[index:],
],
ignore_index=True,
axis=0,
)
def load_all_pair_histories(self, timerange: TimeRange, dk: FreqaiDataKitchen) -> None:
"""
Load pair histories for all whitelist and corr_pairlist pairs.
Only called once upon startup of bot.
:params:
timerange: TimeRange = full timerange required to populate all indicators
for training according to user defined train_period_days
"""
history_data = self.historic_data
for pair in dk.all_pairs:
if pair not in history_data:
history_data[pair] = {}
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
history_data[pair][tf] = load_pair_history(
datadir=self.config["datadir"],
timeframe=tf,
pair=pair,
timerange=timerange,
data_format=self.config.get("dataformat_ohlcv", "json"),
candle_type=self.config.get("trading_mode", "spot"),
)
def get_base_and_corr_dataframes(
self, timerange: TimeRange, pair: str, dk: FreqaiDataKitchen
) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
"""
Searches through our historic_data in memory and returns the dataframes relevant
to the present pair.
:params:
timerange: TimeRange = full timerange required to populate all indicators
for training according to user defined train_period_days
metadata: dict = strategy furnished pair metadata
"""
with self.history_lock:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}
historic_data = self.historic_data
pairs = self.freqai_info["feature_parameters"].get(
"include_corr_pairlist", []
)
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
base_dataframes[tf] = dk.slice_dataframe(timerange, historic_data[pair][tf])
if pairs:
for p in pairs:
if pair in p:
continue # dont repeat anything from whitelist
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = dk.slice_dataframe(
timerange, historic_data[p][tf]
)
return corr_dataframes, base_dataframes
# to be used if we want to send predictions directly to the follower instead of forcing
# follower to load models and inference
# def save_model_return_values_to_disk(self) -> None:
# with open(self.full_path / str('model_return_values.json'), "w") as fp:
# json.dump(self.model_return_values, fp, default=self.np_encoder)
# def load_model_return_values_from_disk(self, dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
# exists = Path(self.full_path / str('model_return_values.json')).resolve().exists()
# if exists:
# with open(self.full_path / str('model_return_values.json'), "r") as fp:
# self.model_return_values = json.load(fp)
# elif not self.follow_mode:
# logger.info("Could not find existing datadrawer, starting from scratch")
# else:
# logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
# 'sending null values back to strategy')
# return exists, dk

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,663 @@
# import contextlib
import datetime
import logging
import shutil
import threading
import time
from abc import ABC, abstractmethod
from pathlib import Path
from threading import Lock
from typing import Any, Dict, Tuple
import numpy as np
import pandas as pd
from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
pd.options.mode.chained_assignment = None
logger = logging.getLogger(__name__)
def threaded(fn):
def wrapper(*args, **kwargs):
threading.Thread(target=fn, args=args, kwargs=kwargs).start()
return wrapper
class IFreqaiModel(ABC):
"""
Class containing all tools for training and prediction in the strategy.
Base*PredictionModels inherit from this class.
Record of contribution:
FreqAI was developed by a group of individuals who all contributed specific skillsets to the
project.
Conception and software development:
Robert Caulk @robcaulk
Theoretical brainstorming:
Elin Törnquist @th0rntwig
Code review, software architecture brainstorming:
@xmatthias
Beta testing and bug reporting:
@bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.assert_config(self.config)
self.freqai_info: Dict[str, Any] = config["freqai"]
self.data_split_parameters: Dict[str, Any] = config.get("freqai", {}).get(
"data_split_parameters", {})
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
"model_training_parameters", {})
self.retrain = False
self.first = True
self.set_full_path()
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
self.scanning = False
self.ft_params = self.freqai_info["feature_parameters"]
self.keras: bool = self.freqai_info.get("keras", False)
if self.keras and self.ft_params.get("DI_threshold", 0):
self.ft_params["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
self.pair_it = 0
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
self.last_trade_database_summary: DataFrame = {}
self.current_trade_database_summary: DataFrame = {}
self.analysis_lock = Lock()
self.inference_time: float = 0
self.begin_time: float = 0
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
def assert_config(self, config: Dict[str, Any]) -> None:
if not config.get("freqai", {}):
raise OperationalException("No freqai parameters found in configuration file.")
def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> DataFrame:
"""
Entry point to the FreqaiModel from a specific pair, it will train a new model if
necessary before making the prediction.
:param dataframe: Full dataframe coming from strategy - it contains entire
backtesting timerange + additional historical data necessary to train
the model.
:param metadata: pair metadata coming from strategy.
:param strategy: Strategy to train on
"""
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.dd.set_pair_dict_info(metadata)
if self.live:
self.inference_timer('start')
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk)
# For backtesting, each pair enters and then gets trained for each window along the
# sliding window defined by "train_period_days" (training window) and "live_retrain_hours"
# (backtest window, i.e. window immediately following the training window).
# FreqAI slides the window and sequentially builds the backtesting results before returning
# the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
with self.analysis_lock:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
dk = self.start_backtesting(dataframe, metadata, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
del dk
if self.live:
self.inference_timer('stop')
return dataframe
@threaded
def start_scanning(self, strategy: IStrategy) -> None:
"""
Function designed to constantly scan pairs for retraining on a separate thread (intracandle)
to improve model youth. This function is agnostic to data preparation/collection/storage,
it simply trains on what ever data is available in the self.dd.
:param strategy: IStrategy = The user defined strategy class
"""
while 1:
time.sleep(1)
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
if self.dd.pair_dict[pair]["priority"] != 1:
continue
dk = FreqaiDataKitchen(self.config, self.live, pair)
dk.set_paths(pair, trained_timestamp)
(
retrain,
new_trained_timerange,
data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
if retrain:
self.train_model_in_series(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
self.dd.save_historic_predictions_to_disk()
def start_backtesting(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for backtesting. For backtesting, each pair enters and then gets
trained for each window along the sliding window defined by "train_period_days"
(training window) and "backtest_period_days" (backtest window, i.e. window immediately
following the training window). FreqAI slides the window and sequentially builds
the backtesting results before returning the concatenated results for the full
backtesting period back to the strategy.
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
self.pair_it += 1
train_it = 0
# Loop enforcing the sliding window training/backtesting paradigm
# tr_train is the training time range e.g. 1 historical month
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
(_, _, _) = self.dd.get_pair_dict_info(metadata["pair"])
train_it += 1
total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
trained_timestamp = tr_train
tr_train_startts_str = datetime.datetime.utcfromtimestamp(tr_train.startts).strftime(
"%Y-%m-%d %H:%M:%S"
)
tr_train_stopts_str = datetime.datetime.utcfromtimestamp(tr_train.stopts).strftime(
"%Y-%m-%d %H:%M:%S"
)
logger.info(
f"Training {metadata['pair']}, {self.pair_it}/{self.total_pairs} pairs"
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
"trains"
)
dk.data_path = Path(
dk.full_path
/
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
)
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
):
dk.find_features(dataframe_train)
self.model = self.train(dataframe_train, metadata["pair"], dk)
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
trained_timestamp.stopts)
dk.set_new_model_names(metadata["pair"], trained_timestamp)
self.dd.save_data(self.model, metadata["pair"], dk)
else:
self.model = self.dd.load_data(metadata["pair"], dk)
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
dk.append_predictions(pred_df, do_preds)
dk.fill_predictions(dataframe)
return dk
def start_live(
self, dataframe: DataFrame, metadata: dict, strategy: IStrategy, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for dry/live. This function will check if a retraining should be
performed, and if so, retrain and reset the model.
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param strategy: IStrategy = currently employed strategy
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:returns:
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
# update follower
if self.follow_mode:
self.dd.update_follower_metadata()
# get the model metadata associated with the current pair
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
# if the metadata doesn't exist, the follower returns null arrays to strategy
if self.follow_mode and return_null_array:
logger.info("Returning null array from follower to strategy")
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
# append the historic data once per round
if self.dd.historic_data:
self.dd.update_historic_data(strategy, dk)
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
if not self.follow_mode:
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
trained_timestamp
)
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
# download candle history if it is not already in memory
if not self.dd.historic_data:
logger.info(
"Downloading all training data for all pairs in whitelist and "
"corr_pairlist, this may take a while if you do not have the "
"data saved"
)
dk.download_all_data_for_training(data_load_timerange, strategy.dp)
self.dd.load_all_pair_histories(data_load_timerange, dk)
if not self.scanning:
self.scanning = True
self.start_scanning(strategy)
elif self.follow_mode:
dk.set_paths(metadata["pair"], trained_timestamp)
logger.info(
"FreqAI instance set to follow_mode, finding existing pair "
f"using { self.identifier }"
)
# load the model and associated data into the data kitchen
self.model = self.dd.load_data(metadata["pair"], dk)
with self.analysis_lock:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
if not self.model:
logger.warning(
f"No model ready for {metadata['pair']}, returning null values to strategy."
)
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
# ensure user is feeding the correct indicators to the model
self.check_if_feature_list_matches_strategy(dataframe, dk)
self.build_strategy_return_arrays(dataframe, dk, metadata["pair"], trained_timestamp)
return dk
def build_strategy_return_arrays(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, pair: str, trained_timestamp: int
) -> None:
# hold the historical predictions in memory so we are sending back
# correct array to strategy
if pair not in self.dd.model_return_values:
# first predictions are made on entire historical candle set coming from strategy. This
# allows FreqUI to show full return values.
pred_df, do_preds = self.predict(dataframe, dk)
if pair not in self.dd.historic_predictions:
self.set_initial_historic_predictions(pred_df, dk, pair)
self.dd.set_initial_return_values(pair, pred_df)
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
elif self.dk.check_if_model_expired(trained_timestamp):
pred_df = DataFrame(np.zeros((2, len(dk.label_list))), columns=dk.label_list)
do_preds = np.ones(2, dtype=np.int_) * 2
dk.DI_values = np.zeros(2)
logger.warning(
f"Model expired for {pair}, returning null values to strategy. Strategy "
"construction should take care to consider this event with "
"prediction == 0 and do_predict == 2"
)
else:
# remaining predictions are made only on the most recent candles for performance and
# historical accuracy reasons.
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH:], dk, first=False)
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
self.fit_live_predictions(dk, pair)
self.dd.append_model_predictions(pair, pred_df, do_preds, dk, len(dataframe))
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
def check_if_feature_list_matches_strategy(
self, dataframe: DataFrame, dk: FreqaiDataKitchen
) -> None:
"""
Ensure user is passing the proper feature set if they are reusing an `identifier` pointing
to a folder holding existing models.
:param dataframe: DataFrame = strategy provided dataframe
:param dk: FreqaiDataKitchen = non-persistent data container/analyzer for
current coin/bot loop
"""
dk.find_features(dataframe)
if "training_features_list_raw" in dk.data:
feature_list = dk.data["training_features_list_raw"]
else:
feature_list = dk.training_features_list
if dk.training_features_list != feature_list:
raise OperationalException(
"Trying to access pretrained model with `identifier` "
"but found different features furnished by current strategy."
"Change `identifier` to train from scratch, or ensure the"
"strategy is furnishing the same features as the pretrained"
"model"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
"""
Base data cleaning method for train.
Functions here improve/modify the input data by identifying outliers,
computing additional metrics, adding noise, reducing dimensionality etc.
"""
ft_params = self.freqai_info["feature_parameters"]
if ft_params.get(
"principal_component_analysis", False
):
dk.principal_component_analysis()
if ft_params.get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=False)
if ft_params.get("DI_threshold", 0):
dk.data["avg_mean_dist"] = dk.compute_distances()
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
if dk.pair in self.dd.old_DBSCAN_eps:
eps = self.dd.old_DBSCAN_eps[dk.pair]
else:
eps = None
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
if ft_params.get('inlier_metric_window', 0):
dk.compute_inlier_metric(set_='train')
if self.freqai_info["data_split_parameters"]["test_size"] > 0:
dk.compute_inlier_metric(set_='test')
if self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0):
dk.add_noise_to_training_features()
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
"""
Base data cleaning method for predict.
Functions here are complementary to the functions of data_cleaning_train.
"""
ft_params = self.freqai_info["feature_parameters"]
if ft_params.get('inlier_metric_window', 0):
dk.compute_inlier_metric(set_='predict')
if ft_params.get(
"principal_component_analysis", False
):
dk.pca_transform(dataframe)
if ft_params.get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=True)
if ft_params.get("DI_threshold", 0):
dk.check_if_pred_in_training_spaces()
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
dk.use_DBSCAN_to_remove_outliers(predict=True)
def model_exists(
self,
pair: str,
dk: FreqaiDataKitchen,
trained_timestamp: int = None,
model_filename: str = "",
scanning: bool = False,
) -> bool:
"""
Given a pair and path, check if a model already exists
:param pair: pair e.g. BTC/USD
:param path: path to model
:return:
:boolean: whether the model file exists or not.
"""
coin, _ = pair.split("/")
if not self.live:
dk.model_filename = model_filename = f"cb_{coin.lower()}_{trained_timestamp}"
path_to_modelfile = Path(dk.data_path / f"{model_filename}_model.joblib")
file_exists = path_to_modelfile.is_file()
if file_exists and not scanning:
logger.info("Found model at %s", dk.data_path / dk.model_filename)
elif not scanning:
logger.info("Could not find model at %s", dk.data_path / dk.model_filename)
return file_exists
def set_full_path(self) -> None:
self.full_path = Path(
self.config["user_data_dir"] / "models" / f"{self.freqai_info['identifier']}"
)
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(
self.config["config_files"][0],
Path(self.full_path, Path(self.config["config_files"][0]).name),
)
def train_model_in_series(
self,
new_trained_timerange: TimeRange,
pair: str,
strategy: IStrategy,
dk: FreqaiDataKitchen,
data_load_timerange: TimeRange,
):
"""
Retrieve data and train model in single threaded mode (only used if model directory is empty
upon startup for dry/live )
:param new_trained_timerange: TimeRange = the timerange to train the model on
:param metadata: dict = strategy provided metadata
:param strategy: IStrategy = user defined strategy object
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
:param data_load_timerange: TimeRange = the amount of data to be loaded
for populate_any_indicators
(larger than new_trained_timerange so that
new_trained_timerange does not contain any NaNs)
"""
corr_dataframes, base_dataframes = self.dd.get_base_and_corr_dataframes(
data_load_timerange, pair, dk
)
with self.analysis_lock:
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, pair
)
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
# find the features indicated by strategy and store in datakitchen
dk.find_features(unfiltered_dataframe)
model = self.train(unfiltered_dataframe, pair, dk)
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]["first"] = False
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
self.dd.pair_to_end_of_training_queue(pair)
self.dd.save_data(model, pair, dk)
if self.freqai_info.get("purge_old_models", False):
self.dd.purge_old_models()
def set_initial_historic_predictions(
self, pred_df: DataFrame, dk: FreqaiDataKitchen, pair: str
) -> None:
"""
This function is called only if the datadrawer failed to load an
existing set of historic predictions. In this case, it builds
the structure and sets fake predictions off the first training
data. After that, FreqAI will append new real predictions to the
set of historic predictions.
These values are used to generate live statistics which can be used
in the strategy for adaptive values. E.g. &*_mean/std are quantities
that can computed based on live predictions from the set of historical
predictions. Those values can be used in the user strategy to better
assess prediction rarity, and thus wait for probabilistically favorable
entries relative to the live historical predictions.
If the user reuses an identifier on a subsequent instance,
this function will not be called. In that case, "real" predictions
will be appended to the loaded set of historic predictions.
:param: df: DataFrame = the dataframe containing the training feature data
:param: model: Any = A model which was `fit` using a common library such as
catboost or lightgbm
:param: dk: FreqaiDataKitchen = object containing methods for data analysis
:param: pair: str = current pair
"""
self.dd.historic_predictions[pair] = pred_df
hist_preds_df = self.dd.historic_predictions[pair]
for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object:
continue
hist_preds_df[f'{label}_mean'] = 0
hist_preds_df[f'{label}_std'] = 0
hist_preds_df['do_predict'] = 0
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
hist_preds_df['DI_values'] = 0
for return_str in dk.data['extra_returns_per_train']:
hist_preds_df[return_str] = 0
# # for keras type models, the conv_window needs to be prepended so
# # viewing is correct in frequi
if self.freqai_info.get('keras', False):
n_lost_points = self.freqai_info.get('conv_width', 2)
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
columns=hist_preds_df.columns)
self.dd.historic_predictions[pair] = pd.concat(
[zeros_df, hist_preds_df], axis=0, ignore_index=True)
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
"""
Fit the labels with a gaussian distribution
"""
import scipy as spy
# add classes from classifier label types if used
full_labels = dk.label_list + dk.unique_class_list
num_candles = self.freqai_info.get("fit_live_predictions_candles", 100)
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
for label in full_labels:
if self.dd.historic_predictions[dk.pair][label].dtype == object:
continue
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
return
def inference_timer(self, do='start'):
"""
Timer designed to track the cumulative time spent in FreqAI for one pass through
the whitelist. This will check if the time spent is more than 1/4 the time
of a single candle, and if so, it will warn the user of degraded performance
"""
if do == 'start':
self.pair_it += 1
self.begin_time = time.time()
elif do == 'stop':
end = time.time()
self.inference_time += (end - self.begin_time)
if self.pair_it == self.total_pairs:
logger.info(
f'Total time spent inferencing pairlist {self.inference_time:.2f} seconds')
if self.inference_time > 0.25 * self.base_tf_seconds:
logger.warning('Inference took over 25/% of the candle time. Reduce pairlist to'
' avoid blinding open trades and degrading performance.')
self.pair_it = 0
self.inference_time = 0
return
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
@abstractmethod
def train(self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahandler
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return: Trained model which can be used to inference (self.predict)
"""
@abstractmethod
def fit(self, data_dictionary: Dict[str, Any]) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:param data_dictionary: Dict = the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
return
@abstractmethod
def predict(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
) -> Tuple[DataFrame, NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_dataframe: Full dataframe for the current backtest period.
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:param first: boolean = whether this is the first prediction or not.
:return:
:predictions: np.array of predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (i.e. SVM and/or DI index)
"""

View File

@@ -0,0 +1,99 @@
import logging
from typing import Any, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseClassifierModel(IFreqaiModel):
"""
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
User *must* inherit from this class and set fit() and predict(). See example scripts
such as prediction_models/CatboostPredictionModel.py for guidance.
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("-------------------- Starting training " f"{pair} --------------------")
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
return (pred_df, dk.do_predict)

View File

@@ -0,0 +1,96 @@
import logging
from typing import Any, Tuple
import numpy as np
import numpy.typing as npt
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseRegressionModel(IFreqaiModel):
"""
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
User *must* inherit from this class and set fit() and predict(). See example scripts
such as prediction_models/CatboostPredictionModel.py for guidance.
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("-------------------- Starting training " f"{pair} --------------------")
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)
return (pred_df, dk.do_predict)

View File

@@ -0,0 +1,64 @@
import logging
from typing import Any
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseTensorFlowModel(IFreqaiModel):
"""
Base class for TensorFlow type models.
User *must* inherit from this class and set fit() and predict().
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("-------------------- Starting training " f"{pair} --------------------")
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model

View File

@@ -0,0 +1,41 @@
import logging
from typing import Any, Dict
from catboost import CatBoostClassifier, Pool
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
logger = logging.getLogger(__name__)
class CatboostClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
train_data = Pool(
data=data_dictionary["train_features"],
label=data_dictionary["train_labels"],
weight=data_dictionary["train_weights"],
)
cbr = CatBoostClassifier(
allow_writing_files=False,
loss_function='MultiClass',
**self.model_training_parameters,
)
cbr.fit(train_data)
return cbr

View File

@@ -0,0 +1,53 @@
import gc
import logging
from typing import Any, Dict
from catboost import CatBoostRegressor, Pool
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class CatboostRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
train_data = Pool(
data=data_dictionary["train_features"],
label=data_dictionary["train_labels"],
weight=data_dictionary["train_weights"],
)
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
test_data = None
else:
test_data = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"],
weight=data_dictionary["test_weights"],
)
model = CatBoostRegressor(
allow_writing_files=False,
**self.model_training_parameters,
)
model.fit(X=train_data, eval_set=test_data)
# some evidence that catboost pools have memory leaks:
# https://github.com/catboost/catboost/issues/1835
del train_data, test_data
gc.collect()
return model

View File

@@ -0,0 +1,44 @@
import logging
from typing import Any, Dict
from catboost import CatBoostRegressor # , Pool
from sklearn.multioutput import MultiOutputRegressor
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class CatboostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
cbr = CatBoostRegressor(
allow_writing_files=False,
**self.model_training_parameters,
)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
model = MultiOutputRegressor(estimator=cbr)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
return model

View File

@@ -0,0 +1,43 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
logger = logging.getLogger(__name__)
class LightGBMClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
eval_set = None
test_weights = None
else:
eval_set = (data_dictionary["test_features"].to_numpy(),
data_dictionary["test_labels"].to_numpy()[:, 0])
test_weights = data_dictionary["test_weights"]
X = data_dictionary["train_features"].to_numpy()
y = data_dictionary["train_labels"].to_numpy()[:, 0]
train_weights = data_dictionary["train_weights"]
model = LGBMClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
eval_sample_weight=[test_weights])
return model

View File

@@ -0,0 +1,43 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMRegressor
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class LightGBMRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
eval_set = None
eval_weights = None
else:
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
eval_weights = data_dictionary["test_weights"]
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
train_weights = data_dictionary["train_weights"]
model = LGBMRegressor(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
eval_sample_weight=[eval_weights])
return model

View File

@@ -0,0 +1,39 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMRegressor
from sklearn.multioutput import MultiOutputRegressor
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class LightGBMRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
lgb = LGBMRegressor(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
model = MultiOutputRegressor(estimator=lgb)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
return model

View File

@@ -17,22 +17,22 @@ from freqtrade.constants import BuySell, LongShort
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.enums import (ExitCheckTuple, ExitType, MarginMode, RPCMessageType, RunMode,
SignalDirection, State, TradingMode)
from freqtrade.enums import (ExitCheckTuple, ExitType, RPCMessageType, RunMode, SignalDirection,
State, TradingMode)
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
InvalidOrderException, PricingError)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.maintenance_margin import MaintenanceMargin
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.mixins import LoggingMixin
from freqtrade.persistence import Order, PairLocks, Trade, cleanup_db, init_db
from freqtrade.persistence import Order, PairLocks, Trade, init_db
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import FtPrecise
from freqtrade.wallets import Wallets
@@ -66,9 +66,10 @@ class FreqtradeBot(LoggingMixin):
# Check config consistency here since strategies can set certain options
validate_config_consistency(config)
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.exchange = ExchangeResolver.load_exchange(
self.config['exchange']['name'], self.config, load_leverage_tiers=True)
init_db(self.config.get('db_url', None))
init_db(self.config['db_url'])
self.wallets = Wallets(self.config, self.exchange)
@@ -105,11 +106,7 @@ class FreqtradeBot(LoggingMixin):
LoggingMixin.__init__(self, logger, timeframe_to_seconds(self.strategy.timeframe))
self.trading_mode: TradingMode = self.config.get('trading_mode', TradingMode.SPOT)
self.margin_mode: MarginMode = (
MarginMode(config.get('margin_mode'))
if config.get('margin_mode')
else MarginMode.NONE
)
self._schedule = Scheduler()
if self.trading_mode == TradingMode.FUTURES:
@@ -130,16 +127,6 @@ class FreqtradeBot(LoggingMixin):
# Initialize protections AFTER bot start - otherwise parameters are not loaded.
self.protections = ProtectionManager(self.config, self.strategy.protections)
# Start calculating maintenance margin if on cross margin
# TODO-lev: finish the below...
if self.margin_mode == MarginMode.CROSS:
self.maintenance_margin = MaintenanceMargin(
exchange_name=self.exchange.name,
trading_mode=self.trading_mode)
self.maintenance_margin.run()
def notify_status(self, msg: str) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
@@ -163,7 +150,7 @@ class FreqtradeBot(LoggingMixin):
self.check_for_open_trades()
self.rpc.cleanup()
cleanup_db()
Trade.commit()
self.exchange.close()
def startup(self) -> None:
@@ -172,6 +159,8 @@ class FreqtradeBot(LoggingMixin):
performs startup tasks
"""
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
# Update older trades with precision and precision mode
self.startup_backpopulate_precision()
if not self.edge:
# Adjust stoploss if it was changed
Trade.stoploss_reinitialization(self.strategy.stoploss)
@@ -228,6 +217,7 @@ class FreqtradeBot(LoggingMixin):
if self.trading_mode == TradingMode.FUTURES:
self._schedule.run_pending()
Trade.commit()
self.rpc.process_msg_queue(self.dataprovider._msg_queue)
self.last_process = datetime.now(timezone.utc)
def process_stopped(self) -> None:
@@ -298,6 +288,17 @@ class FreqtradeBot(LoggingMixin):
else:
return 0.0
def startup_backpopulate_precision(self):
trades = Trade.get_trades([Trade.precision_mode.is_(None)])
for trade in trades:
if trade.exchange != self.exchange.id:
continue
trade.precision_mode = self.exchange.precisionMode
trade.amount_precision = self.exchange.get_precision_amount(trade.pair)
trade.price_precision = self.exchange.get_precision_price(trade.pair)
Trade.commit()
def startup_update_open_orders(self):
"""
Updates open orders based on order list kept in the database.
@@ -347,6 +348,8 @@ class FreqtradeBot(LoggingMixin):
if not trade.is_open and not trade.fee_updated(trade.exit_side):
# Get sell fee
order = trade.select_order(trade.exit_side, False)
if not order:
order = trade.select_order('stoploss', False)
if order:
logger.info(
f"Updating {trade.exit_side}-fee on trade {trade}"
@@ -415,7 +418,7 @@ class FreqtradeBot(LoggingMixin):
whitelist = copy.deepcopy(self.active_pair_whitelist)
if not whitelist:
logger.info("Active pair whitelist is empty.")
self.log_once("Active pair whitelist is empty.", logger.info)
return trades_created
# Remove pairs for currently opened trades from the whitelist
for trade in Trade.get_open_trades():
@@ -424,8 +427,8 @@ class FreqtradeBot(LoggingMixin):
logger.debug('Ignoring %s in pair whitelist', trade.pair)
if not whitelist:
logger.info("No currency pair in active pair whitelist, "
"but checking to exit open trades.")
self.log_once("No currency pair in active pair whitelist, "
"but checking to exit open trades.", logger.info)
return trades_created
if PairLocks.is_global_lock(side='*'):
# This only checks for total locks (both sides).
@@ -536,39 +539,61 @@ class FreqtradeBot(LoggingMixin):
If the strategy triggers the adjustment, a new order gets issued.
Once that completes, the existing trade is modified to match new data.
"""
if self.strategy.max_entry_position_adjustment > -1:
count_of_buys = trade.nr_of_successful_entries
if count_of_buys > self.strategy.max_entry_position_adjustment:
logger.debug(f"Max adjustment entries for {trade.pair} has been reached.")
return
else:
logger.debug("Max adjustment entries is set to unlimited.")
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=True)
current_profit = trade.calc_profit_ratio(current_rate)
current_entry_rate, current_exit_rate = self.exchange.get_rates(
trade.pair, True, trade.is_short)
min_stake_amount = self.exchange.get_min_pair_stake_amount(trade.pair,
current_rate,
self.strategy.stoploss)
max_stake_amount = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
current_entry_profit = trade.calc_profit_ratio(current_entry_rate)
current_exit_profit = trade.calc_profit_ratio(current_exit_rate)
min_entry_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_entry_rate,
self.strategy.stoploss)
min_exit_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_exit_rate,
self.strategy.stoploss)
max_entry_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_entry_rate)
stake_available = self.wallets.get_available_stake_amount()
logger.debug(f"Calling adjust_trade_position for pair {trade.pair}")
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None)(
trade=trade, current_time=datetime.now(timezone.utc), current_rate=current_rate,
current_profit=current_profit, min_stake=min_stake_amount,
max_stake=min(max_stake_amount, stake_available))
trade=trade,
current_time=datetime.now(timezone.utc), current_rate=current_entry_rate,
current_profit=current_entry_profit, min_stake=min_entry_stake,
max_stake=min(max_entry_stake, stake_available),
current_entry_rate=current_entry_rate, current_exit_rate=current_exit_rate,
current_entry_profit=current_entry_profit, current_exit_profit=current_exit_profit
)
if stake_amount is not None and stake_amount > 0.0:
# We should increase our position
self.execute_entry(trade.pair, stake_amount, price=current_rate,
if self.strategy.max_entry_position_adjustment > -1:
count_of_entries = trade.nr_of_successful_entries
if count_of_entries > self.strategy.max_entry_position_adjustment:
logger.debug(f"Max adjustment entries for {trade.pair} has been reached.")
return
else:
logger.debug("Max adjustment entries is set to unlimited.")
self.execute_entry(trade.pair, stake_amount, price=current_entry_rate,
trade=trade, is_short=trade.is_short)
if stake_amount is not None and stake_amount < 0.0:
# We should decrease our position
# TODO: Selling part of the trade not implemented yet.
logger.error(f"Unable to decrease trade position / sell partially"
f" for pair {trade.pair}, feature not implemented.")
amount = abs(float(FtPrecise(stake_amount) / FtPrecise(current_exit_rate)))
if amount > trade.amount:
# This is currently ineffective as remaining would become < min tradable
# Fixing this would require checking for 0.0 there -
# if we decide that this callback is allowed to "fully exit"
logger.info(
f"Adjusting amount to trade.amount as it is higher. {amount} > {trade.amount}")
amount = trade.amount
remaining = (trade.amount - amount) * current_exit_rate
if remaining < min_exit_stake:
logger.info(f'Remaining amount of {remaining} would be too small.')
return
self.execute_trade_exit(trade, current_exit_rate, exit_check=ExitCheckTuple(
exit_type=ExitType.PARTIAL_EXIT), sub_trade_amt=amount)
def _check_depth_of_market(self, pair: str, conf: Dict, side: SignalDirection) -> bool:
"""
@@ -612,7 +637,8 @@ class FreqtradeBot(LoggingMixin):
ordertype: Optional[str] = None,
enter_tag: Optional[str] = None,
trade: Optional[Trade] = None,
order_adjust: bool = False
order_adjust: bool = False,
leverage_: Optional[float] = None,
) -> bool:
"""
Executes a limit buy for the given pair
@@ -628,7 +654,7 @@ class FreqtradeBot(LoggingMixin):
pos_adjust = trade is not None
enter_limit_requested, stake_amount, leverage = self.get_valid_enter_price_and_stake(
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust)
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_)
if not stake_amount:
return False
@@ -649,7 +675,7 @@ class FreqtradeBot(LoggingMixin):
pair=pair, order_type=order_type, amount=amount, rate=enter_limit_requested,
time_in_force=time_in_force, current_time=datetime.now(timezone.utc),
entry_tag=enter_tag, side=trade_side):
logger.info(f"User requested abortion of buying {pair}")
logger.info(f"User denied entry for {pair}.")
return False
order = self.exchange.create_order(
pair=pair,
@@ -663,7 +689,7 @@ class FreqtradeBot(LoggingMixin):
)
order_obj = Order.parse_from_ccxt_object(order, pair, side)
order_id = order['id']
order_status = order.get('status', None)
order_status = order.get('status')
logger.info(f"Order #{order_id} was created for {pair} and status is {order_status}.")
# we assume the order is executed at the price requested
@@ -725,7 +751,10 @@ class FreqtradeBot(LoggingMixin):
leverage=leverage,
is_short=is_short,
trading_mode=self.trading_mode,
funding_fees=funding_fees
funding_fees=funding_fees,
amount_precision=self.exchange.get_precision_amount(pair),
price_precision=self.exchange.get_precision_price(pair),
precision_mode=self.exchange.precisionMode,
)
else:
# This is additional buy, we reset fee_open_currency so timeout checking can work
@@ -736,17 +765,13 @@ class FreqtradeBot(LoggingMixin):
trade.orders.append(order_obj)
trade.recalc_trade_from_orders()
if self.margin_mode == MarginMode.CROSS:
self.maintenance_margin.add_new_trade(trade)
Trade.query.session.add(trade)
Trade.commit()
# Updating wallets
self.wallets.update()
self._notify_enter(trade, order, order_type)
self._notify_enter(trade, order_obj, order_type, sub_trade=pos_adjust)
if pos_adjust:
if order_status == 'closed':
@@ -755,8 +780,8 @@ class FreqtradeBot(LoggingMixin):
else:
logger.info(f"DCA order {order_status}, will wait for resolution: {trade}")
# Update fees if order is closed
if order_status == 'closed':
# Update fees if order is non-opened
if order_status in constants.NON_OPEN_EXCHANGE_STATES:
self.update_trade_state(trade, order_id, order)
return True
@@ -779,6 +804,7 @@ class FreqtradeBot(LoggingMixin):
entry_tag: Optional[str],
trade: Optional[Trade],
order_adjust: bool,
leverage_: Optional[float],
) -> Tuple[float, float, float]:
if price:
@@ -801,16 +827,19 @@ class FreqtradeBot(LoggingMixin):
if not enter_limit_requested:
raise PricingError('Could not determine entry price.')
if trade is None:
if self.trading_mode != TradingMode.SPOT and trade is None:
max_leverage = self.exchange.get_max_leverage(pair, stake_amount)
leverage = strategy_safe_wrapper(self.strategy.leverage, default_retval=1.0)(
pair=pair,
current_time=datetime.now(timezone.utc),
current_rate=enter_limit_requested,
proposed_leverage=1.0,
max_leverage=max_leverage,
side=trade_side, entry_tag=entry_tag,
) if self.trading_mode != TradingMode.SPOT else 1.0
if leverage_:
leverage = leverage_
else:
leverage = strategy_safe_wrapper(self.strategy.leverage, default_retval=1.0)(
pair=pair,
current_time=datetime.now(timezone.utc),
current_rate=enter_limit_requested,
proposed_leverage=1.0,
max_leverage=max_leverage,
side=trade_side, entry_tag=entry_tag,
)
# Cap leverage between 1.0 and max_leverage.
leverage = min(max(leverage, 1.0), max_leverage)
else:
@@ -833,7 +862,7 @@ class FreqtradeBot(LoggingMixin):
pair=pair, current_time=datetime.now(timezone.utc),
current_rate=enter_limit_requested, proposed_stake=stake_amount,
min_stake=min_stake_amount, max_stake=min(max_stake_amount, stake_available),
entry_tag=entry_tag, side=trade_side
leverage=leverage, entry_tag=entry_tag, side=trade_side
)
stake_amount = self.wallets.validate_stake_amount(
@@ -845,13 +874,14 @@ class FreqtradeBot(LoggingMixin):
return enter_limit_requested, stake_amount, leverage
def _notify_enter(self, trade: Trade, order: Dict, order_type: Optional[str] = None,
fill: bool = False) -> None:
def _notify_enter(self, trade: Trade, order: Order, order_type: Optional[str] = None,
fill: bool = False, sub_trade: bool = False) -> None:
"""
Sends rpc notification when a entry order occurred.
"""
msg_type = RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY
open_rate = safe_value_fallback(order, 'average', 'price')
open_rate = order.safe_price
if open_rate is None:
open_rate = trade.open_rate
@@ -875,15 +905,17 @@ class FreqtradeBot(LoggingMixin):
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': safe_value_fallback(order, 'filled', 'amount') or trade.amount,
'amount': order.safe_amount_after_fee,
'open_date': trade.open_date or datetime.utcnow(),
'current_rate': current_rate,
'sub_trade': sub_trade,
}
# Send the message
self.rpc.send_msg(msg)
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str,
sub_trade: bool = False) -> None:
"""
Sends rpc notification when a entry order cancel occurred.
"""
@@ -908,6 +940,7 @@ class FreqtradeBot(LoggingMixin):
'open_date': trade.open_date,
'current_rate': current_rate,
'reason': reason,
'sub_trade': sub_trade,
}
# Send the message
@@ -978,6 +1011,29 @@ class FreqtradeBot(LoggingMixin):
logger.debug(f'Found no {exit_signal_type} signal for %s.', trade)
return False
def _check_and_execute_exit(self, trade: Trade, exit_rate: float,
enter: bool, exit_: bool, exit_tag: Optional[str]) -> bool:
"""
Check and execute trade exit
"""
exits: List[ExitCheckTuple] = self.strategy.should_exit(
trade,
exit_rate,
datetime.now(timezone.utc),
enter=enter,
exit_=exit_,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
)
for should_exit in exits:
if should_exit.exit_flag:
exit_tag1 = exit_tag if should_exit.exit_type == ExitType.EXIT_SIGNAL else None
logger.info(f'Exit for {trade.pair} detected. Reason: {should_exit.exit_type}'
f'{f" Tag: {exit_tag1}" if exit_tag1 is not None else ""}')
exited = self.execute_trade_exit(trade, exit_rate, should_exit, exit_tag=exit_tag1)
if exited:
return True
return False
def create_stoploss_order(self, trade: Trade, stop_price: float) -> bool:
"""
Abstracts creating stoploss orders from the logic.
@@ -1008,7 +1064,7 @@ class FreqtradeBot(LoggingMixin):
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Exiting the trade forcefully')
self.execute_trade_exit(trade, trade.stop_loss, exit_check=ExitCheckTuple(
self.execute_trade_exit(trade, stop_price, exit_check=ExitCheckTuple(
exit_type=ExitType.EMERGENCY_EXIT))
except ExchangeError:
@@ -1078,7 +1134,7 @@ class FreqtradeBot(LoggingMixin):
if (trade.is_open
and stoploss_order
and stoploss_order['status'] in ('canceled', 'cancelled')):
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
if self.create_stoploss_order(trade=trade, stop_price=trade.stoploss_or_liquidation):
return False
else:
trade.stoploss_order_id = None
@@ -1107,7 +1163,7 @@ class FreqtradeBot(LoggingMixin):
:param order: Current on exchange stoploss order
:return: None
"""
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stop_loss)
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stoploss_or_liquidation)
if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side):
# we check if the update is necessary
@@ -1125,32 +1181,10 @@ class FreqtradeBot(LoggingMixin):
f"for pair {trade.pair}")
# Create new stoploss order
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
logger.warning(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.")
def _check_and_execute_exit(self, trade: Trade, exit_rate: float,
enter: bool, exit_: bool, exit_tag: Optional[str]) -> bool:
"""
Check and execute trade exit
"""
exits: List[ExitCheckTuple] = self.strategy.should_exit(
trade,
exit_rate,
datetime.now(timezone.utc),
enter=enter,
exit_=exit_,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
)
for should_exit in exits:
if should_exit.exit_flag:
logger.info(f'Exit for {trade.pair} detected. Reason: {should_exit.exit_type}'
f'{f" Tag: {exit_tag}" if exit_tag is not None else ""}')
exited = self.execute_trade_exit(trade, exit_rate, should_exit, exit_tag=exit_tag)
if exited:
return True
return False
def manage_open_orders(self) -> None:
"""
Management of open orders on exchange. Unfilled orders might be cancelled if timeout
@@ -1380,16 +1414,22 @@ class FreqtradeBot(LoggingMixin):
trade.open_order_id = None
trade.exit_reason = None
cancelled = True
self.wallets.update()
else:
# TODO: figure out how to handle partially complete sell orders
reason = constants.CANCEL_REASON['PARTIALLY_FILLED_KEEP_OPEN']
cancelled = False
self.wallets.update()
order_obj = trade.select_order_by_order_id(order['id'])
if not order_obj:
raise DependencyException(
f"Order_obj not found for {order['id']}. This should not have happened.")
sub_trade = order_obj.amount != trade.amount
self._notify_exit_cancel(
trade,
order_type=self.strategy.order_types['exit'],
reason=reason
reason=reason, order=order_obj, sub_trade=sub_trade
)
return cancelled
@@ -1430,6 +1470,7 @@ class FreqtradeBot(LoggingMixin):
*,
exit_tag: Optional[str] = None,
ordertype: Optional[str] = None,
sub_trade_amt: float = None,
) -> bool:
"""
Executes a trade exit for the given trade and limit
@@ -1446,15 +1487,10 @@ class FreqtradeBot(LoggingMixin):
)
exit_type = 'exit'
exit_reason = exit_tag or exit_check.exit_reason
if exit_check.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
if exit_check.exit_type in (
ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS, ExitType.LIQUIDATION):
exit_type = 'stoploss'
# if stoploss is on exchange and we are on dry_run mode,
# we consider the sell price stop price
if (self.config['dry_run'] and exit_type == 'stoploss'
and self.strategy.order_types['stoploss_on_exchange']):
limit = trade.stop_loss
# set custom_exit_price if available
proposed_limit_rate = limit
current_profit = trade.calc_profit_ratio(limit)
@@ -1475,15 +1511,18 @@ class FreqtradeBot(LoggingMixin):
# Emergency sells (default to market!)
order_type = self.strategy.order_types.get("emergency_exit", "market")
amount = self._safe_exit_amount(trade.pair, trade.amount)
amount = self._safe_exit_amount(trade.pair, sub_trade_amt or trade.amount)
time_in_force = self.strategy.order_time_in_force['exit']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
time_in_force=time_in_force, exit_reason=exit_reason,
sell_reason=exit_reason, # sellreason -> compatibility
current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of {trade.pair} exit.")
if (exit_check.exit_type != ExitType.LIQUIDATION
and not sub_trade_amt
and not strategy_safe_wrapper(
self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
time_in_force=time_in_force, exit_reason=exit_reason,
sell_reason=exit_reason, # sellreason -> compatibility
current_time=datetime.now(timezone.utc))):
logger.info(f"User denied exit for {trade.pair}.")
return False
try:
@@ -1516,35 +1555,35 @@ class FreqtradeBot(LoggingMixin):
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
self._notify_exit(trade, order_type)
self._notify_exit(trade, order_type, sub_trade=bool(sub_trade_amt), order=order_obj)
# In case of market sell orders the order can be closed immediately
if order.get('status', 'unknown') in ('closed', 'expired'):
self.update_trade_state(trade, trade.open_order_id, order)
Trade.commit()
self._remove_maintenance_trade(trade)
return True
def _remove_maintenance_trade(self, trade: Trade):
"""
Removes a trade from the maintenance margin object
:param trade: The trade to remove from the maintenance margin
"""
if self.margin_mode == MarginMode.CROSS:
self.maintenance_margin.remove_trade(trade)
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False) -> None:
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False,
sub_trade: bool = False, order: Order = None) -> None:
"""
Sends rpc notification when a sell occurred.
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
# Use cached rates here - it was updated seconds ago.
current_rate = self.exchange.get_rate(
trade.pair, side='exit', is_short=trade.is_short, refresh=False) if not fill else None
profit_ratio = trade.calc_profit_ratio(profit_rate)
# second condition is for mypy only; order will always be passed during sub trade
if sub_trade and order is not None:
amount = order.safe_filled if fill else order.amount
profit_rate = order.safe_price
profit = trade.calc_profit(rate=profit_rate, amount=amount, open_rate=trade.open_rate)
profit_ratio = trade.calc_profit_ratio(profit_rate, amount, trade.open_rate)
else:
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit = trade.calc_profit(rate=profit_rate) + (0.0 if fill else trade.realized_profit)
profit_ratio = trade.calc_profit_ratio(profit_rate)
amount = trade.amount
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
@@ -1558,11 +1597,11 @@ class FreqtradeBot(LoggingMixin):
'gain': gain,
'limit': profit_rate,
'order_type': order_type,
'amount': trade.amount,
'amount': amount,
'open_rate': trade.open_rate,
'close_rate': trade.close_rate,
'close_rate': profit_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_amount': profit,
'profit_ratio': profit_ratio,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
@@ -1570,19 +1609,18 @@ class FreqtradeBot(LoggingMixin):
'exit_reason': trade.exit_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'fiat_currency': self.config.get('fiat_display_currency'),
'sub_trade': sub_trade,
'cumulative_profit': trade.realized_profit,
}
if 'fiat_display_currency' in self.config:
msg.update({
'fiat_currency': self.config['fiat_display_currency'],
})
# Send the message
self.rpc.send_msg(msg)
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str,
order: Order, sub_trade: bool = False) -> None:
"""
Sends rpc notification when a sell cancel occurred.
"""
@@ -1608,7 +1646,7 @@ class FreqtradeBot(LoggingMixin):
'gain': gain,
'limit': profit_rate or 0,
'order_type': order_type,
'amount': trade.amount,
'amount': order.safe_amount_after_fee,
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
@@ -1622,6 +1660,8 @@ class FreqtradeBot(LoggingMixin):
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
'sub_trade': sub_trade,
'stake_amount': trade.stake_amount,
}
if 'fiat_display_currency' in self.config:
@@ -1676,41 +1716,51 @@ class FreqtradeBot(LoggingMixin):
self.handle_order_fee(trade, order_obj, order)
trade.update_trade(order_obj)
# TODO: is the below necessary? it's already done in update_trade for filled buys
trade.recalc_trade_from_orders()
Trade.commit()
if order['status'] in constants.NON_OPEN_EXCHANGE_STATES:
if order.get('status') in constants.NON_OPEN_EXCHANGE_STATES:
# If a entry order was closed, force update on stoploss on exchange
if order.get('side', None) == trade.entry_side:
if order.get('side') == trade.entry_side:
trade = self.cancel_stoploss_on_exchange(trade)
if not self.edge:
# TODO: should shorting/leverage be supported by Edge,
# then this will need to be fixed.
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
if order.get('side') == trade.entry_side or trade.amount > 0:
# Must also run for partial exits
# TODO: Margin will need to use interest_rate as well.
# interest_rate = self.exchange.get_interest_rate()
trade.set_isolated_liq(self.exchange.get_liquidation_price(
trade.set_liquidation_price(self.exchange.get_liquidation_price(
leverage=trade.leverage,
pair=trade.pair,
amount=trade.amount,
open_rate=trade.open_rate,
is_short=trade.is_short
))
if not self.edge:
# TODO: should shorting/leverage be supported by Edge,
# then this will need to be fixed.
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
# Updating wallets when order is closed
self.wallets.update()
Trade.commit()
if not trade.is_open:
if send_msg and not stoploss_order and not trade.open_order_id:
self._notify_exit(trade, '', True)
self.handle_protections(trade.pair, trade.trade_direction)
elif send_msg and not trade.open_order_id and not stoploss_order:
# Enter fill
self._notify_enter(trade, order, fill=True)
self.order_close_notify(trade, order_obj, stoploss_order, send_msg)
return False
def order_close_notify(
self, trade: Trade, order: Order, stoploss_order: bool, send_msg: bool):
"""send "fill" notifications"""
sub_trade = not isclose(order.safe_amount_after_fee,
trade.amount, abs_tol=constants.MATH_CLOSE_PREC)
if order.ft_order_side == trade.exit_side:
# Exit notification
if send_msg and not stoploss_order and not trade.open_order_id:
self._notify_exit(trade, '', fill=True, sub_trade=sub_trade, order=order)
if not trade.is_open:
self.handle_protections(trade.pair, trade.trade_direction)
elif send_msg and not trade.open_order_id and not stoploss_order:
# Enter fill
self._notify_enter(trade, order, fill=True, sub_trade=sub_trade)
def handle_protections(self, pair: str, side: LongShort) -> None:
prot_trig = self.protections.stop_per_pair(pair, side=side)
if prot_trig:
@@ -1771,7 +1821,8 @@ class FreqtradeBot(LoggingMixin):
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
# use fee from order-dict if possible
if self.exchange.order_has_fee(order):
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(order)
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(
order['fee'], order['symbol'], order['cost'], order_obj.safe_filled)
logger.info(f"Fee for Trade {trade} [{order_obj.ft_order_side}]: "
f"{fee_cost:.8g} {fee_currency} - rate: {fee_rate}")
if fee_rate is None or fee_rate < 0.02:
@@ -1809,7 +1860,15 @@ class FreqtradeBot(LoggingMixin):
for exectrade in trades:
amount += exectrade['amount']
if self.exchange.order_has_fee(exectrade):
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(exectrade)
# Prefer singular fee
fees = [exectrade['fee']]
else:
fees = exectrade.get('fees', [])
for fee in fees:
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(
fee, exectrade['symbol'], exectrade['cost'], exectrade['amount']
)
fee_cost += fee_cost_
if fee_rate_ is not None:
fee_rate_array.append(fee_rate_)
@@ -1823,6 +1882,9 @@ class FreqtradeBot(LoggingMixin):
if fee_rate is not None and fee_rate < 0.02:
# Only update if fee-rate is < 2%
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
else:
logger.warning(
f"Not updating {order.get('side', '')}-fee - rate: {fee_rate}, {fee_currency}.")
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
# * Leverage could be a cause for this warning

View File

@@ -1,20 +1,20 @@
from decimal import Decimal
from math import ceil
from freqtrade.exceptions import OperationalException
from freqtrade.util import FtPrecise
one = Decimal(1.0)
four = Decimal(4.0)
twenty_four = Decimal(24.0)
one = FtPrecise(1.0)
four = FtPrecise(4.0)
twenty_four = FtPrecise(24.0)
def interest(
exchange_name: str,
borrowed: Decimal,
rate: Decimal,
hours: Decimal
) -> Decimal:
borrowed: FtPrecise,
rate: FtPrecise,
hours: FtPrecise
) -> FtPrecise:
"""
Equation to calculate interest on margin trades
@@ -31,13 +31,13 @@ def interest(
"""
exchange_name = exchange_name.lower()
if exchange_name == "binance":
return borrowed * rate * ceil(hours) / twenty_four
return borrowed * rate * FtPrecise(ceil(hours)) / twenty_four
elif exchange_name == "kraken":
# Rounded based on https://kraken-fees-calculator.github.io/
return borrowed * rate * (one + ceil(hours / four))
return borrowed * rate * (one + FtPrecise(ceil(hours / four)))
elif exchange_name == "ftx":
# As Explained under #Interest rates section in
# https://help.ftx.com/hc/en-us/articles/360053007671-Spot-Margin-Trading-Explainer
return borrowed * rate * ceil(hours) / twenty_four
return borrowed * rate * FtPrecise(ceil(hours)) / twenty_four
else:
raise OperationalException(f"Leverage not available on {exchange_name} with freqtrade")

View File

@@ -1,52 +0,0 @@
from typing import List
from freqtrade.enums import TradingMode
from freqtrade.leverage import liquidation_price
from freqtrade.persistence import Trade
class MaintenanceMargin:
trades: List[Trade]
exchange_name: str
trading_mode: TradingMode
@property
def margin_level(self):
# This is the current value of all assets,
# and if you pass below liq_level, you are liquidated
# TODO-lev: Add args to formula
return liquidation_price(
trading_mode=self.trading_mode,
exchange_name=self.exchange_name
)
@property
def liq_level(self): # This may be a constant value and may not need a function
# TODO-lev: The is the value that you are liquidated at
return # If constant, would need to be recalculated after each new trade
def __init__(self, exchange_name: str, trading_mode: TradingMode):
self.exchange_name = exchange_name
self.trading_mode = trading_mode
return
def add_new_trade(self, trade):
self.trades.append(trade)
def remove_trade(self, trade):
self.trades.remove(trade)
# ? def update_trade_pric(self):
def sell_all(self):
# TODO-lev
return
def run(self):
# TODO-lev: implement a thread that constantly updates with every price change,
# TODO-lev: must update at least every few seconds or so
# while true:
# if self.margin_level <= self.liq_level:
# self.sell_all()
return

164
freqtrade/optimize/backtesting.py Executable file → Normal file
View File

@@ -84,10 +84,14 @@ class Backtesting:
self.processed_dfs: Dict[str, Dict] = {}
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(self._exchange_name, self.config)
self.exchange = ExchangeResolver.load_exchange(
self._exchange_name, self.config, load_leverage_tiers=True)
self.dataprovider = DataProvider(self.config, self.exchange)
if self.config.get('strategy_list', None):
if self.config.get('strategy_list'):
if self.config.get('freqai', {}).get('enabled', False):
raise OperationalException(
"You can't use strategy_list and freqai at the same time.")
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
@@ -127,6 +131,7 @@ class Backtesting:
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
self.precision_mode = self.exchange.precisionMode
self.timerange = TimeRange.parse_timerange(
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
@@ -189,6 +194,7 @@ class Backtesting:
self.strategy.order_types['stoploss_on_exchange'] = False
self.strategy.ft_bot_start()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
@@ -205,6 +211,15 @@ class Backtesting:
"""
self.progress.init_step(BacktestState.DATALOAD, 1)
if self.config.get('freqai', {}).get('enabled', False):
startup_candles = int(self.config.get('freqai', {}).get('startup_candles', 0))
if not startup_candles:
raise OperationalException('FreqAI backtesting module requires user set '
'startup_candles in config.')
self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 0))
logger.info(f'Increasing startup_candle_count for freqai to {self.required_startup}')
self.config['startup_candle_count'] = self.required_startup
data = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
@@ -285,8 +300,8 @@ class Backtesting:
if unavailable_pairs:
raise OperationalException(
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
"It is therefore impossible to backtest with this pair at the moment.")
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
"It is therefore impossible to backtest with this pair at the moment.")
else:
self.futures_data = {}
@@ -379,7 +394,8 @@ class Backtesting:
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if exit.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
if exit.exit_type in (
ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS, ExitType.LIQUIDATION):
return self._get_close_rate_for_stoploss(row, trade, exit, trade_dur)
elif exit.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(row, trade, exit, trade_dur)
@@ -394,11 +410,16 @@ class Backtesting:
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
side_1 = -1 if is_short else 1
if exit.exit_type == ExitType.LIQUIDATION and trade.liquidation_price:
stoploss_value = trade.liquidation_price
else:
stoploss_value = trade.stop_loss
if is_short:
if trade.stop_loss < row[LOW_IDX]:
if stoploss_value < row[LOW_IDX]:
return row[OPEN_IDX]
else:
if trade.stop_loss > row[HIGH_IDX]:
if stoploss_value > row[HIGH_IDX]:
return row[OPEN_IDX]
# Special case: trailing triggers within same candle as trade opened. Assume most
@@ -431,7 +452,7 @@ class Backtesting:
return max(row[LOW_IDX], stop_rate)
# Set close_rate to stoploss
return trade.stop_loss
return stoploss_value
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
@@ -495,16 +516,20 @@ class Backtesting:
def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade, row: Tuple
) -> LocalTrade:
current_profit = trade.calc_profit_ratio(row[OPEN_IDX])
min_stake = self.exchange.get_min_pair_stake_amount(trade.pair, row[OPEN_IDX], -0.1)
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, row[OPEN_IDX])
current_rate = row[OPEN_IDX]
current_date = row[DATE_IDX].to_pydatetime()
current_profit = trade.calc_profit_ratio(current_rate)
min_stake = self.exchange.get_min_pair_stake_amount(trade.pair, current_rate, -0.1)
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
stake_available = self.wallets.get_available_stake_amount()
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None)(
trade=trade, # type: ignore[arg-type]
current_time=row[DATE_IDX].to_pydatetime(), current_rate=row[OPEN_IDX],
current_time=current_date, current_rate=current_rate,
current_profit=current_profit, min_stake=min_stake,
max_stake=min(max_stake, stake_available))
max_stake=min(max_stake, stake_available),
current_entry_rate=current_rate, current_exit_rate=current_rate,
current_entry_profit=current_profit, current_exit_profit=current_profit)
# Check if we should increase our position
if stake_amount is not None and stake_amount > 0.0:
@@ -515,6 +540,24 @@ class Backtesting:
self.wallets.update()
return pos_trade
if stake_amount is not None and stake_amount < 0.0:
amount = abs(stake_amount) / current_rate
if amount > trade.amount:
# This is currently ineffective as remaining would become < min tradable
amount = trade.amount
remaining = (trade.amount - amount) * current_rate
if remaining < min_stake:
# Remaining stake is too low to be sold.
return trade
pos_trade = self._exit_trade(trade, row, current_rate, amount)
if pos_trade is not None:
order = pos_trade.orders[-1]
if self._get_order_filled(order.price, row):
order.close_bt_order(current_date, trade)
trade.recalc_trade_from_orders()
self.wallets.update()
return pos_trade
return trade
def _get_order_filled(self, rate: float, row: Tuple) -> bool:
@@ -565,7 +608,7 @@ class Backtesting:
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
# Checks and adds an exit tag, after checking that the length of the
# row has the length for an exit tag column
if(
if (
len(row) > EXIT_TAG_IDX
and row[EXIT_TAG_IDX] is not None
and len(row[EXIT_TAG_IDX]) > 0
@@ -590,46 +633,53 @@ class Backtesting:
# Confirm trade exit:
time_in_force = self.strategy.order_time_in_force['exit']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
if (exit_.exit_type != ExitType.LIQUIDATION and not strategy_safe_wrapper(
self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair,
trade=trade, # type: ignore[arg-type]
order_type='limit',
order_type=order_type,
amount=trade.amount,
rate=close_rate,
time_in_force=time_in_force,
sell_reason=exit_reason, # deprecated
exit_reason=exit_reason,
current_time=exit_candle_time):
current_time=exit_candle_time)):
return None
trade.exit_reason = exit_reason
self.order_id_counter += 1
order = Order(
id=self.order_id_counter,
ft_trade_id=trade.id,
order_date=exit_candle_time,
order_update_date=exit_candle_time,
ft_is_open=True,
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
symbol=trade.pair,
ft_order_side=trade.exit_side,
side=trade.exit_side,
order_type=order_type,
status="open",
price=close_rate,
average=close_rate,
amount=trade.amount,
filled=0,
remaining=trade.amount,
cost=trade.amount * close_rate,
)
trade.orders.append(order)
return trade
return self._exit_trade(trade, row, close_rate, trade.amount)
return None
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
close_rate: float, amount: float = None) -> Optional[LocalTrade]:
self.order_id_counter += 1
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
order_type = self.strategy.order_types['exit']
amount = amount or trade.amount
order = Order(
id=self.order_id_counter,
ft_trade_id=trade.id,
order_date=exit_candle_time,
order_update_date=exit_candle_time,
ft_is_open=True,
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
symbol=trade.pair,
ft_order_side=trade.exit_side,
side=trade.exit_side,
order_type=order_type,
status="open",
price=close_rate,
average=close_rate,
amount=amount,
filled=0,
remaining=amount,
cost=amount * close_rate,
)
trade.orders.append(order)
return trade
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
@@ -721,7 +771,7 @@ class Backtesting:
pair=pair, current_time=current_time, current_rate=propose_rate,
proposed_stake=stake_amount, min_stake=min_stake_amount,
max_stake=min(stake_available, max_stake_amount),
entry_tag=entry_tag, side=direction)
leverage=leverage, entry_tag=entry_tag, side=direction)
stake_amount_val = self.wallets.validate_stake_amount(
pair=pair,
@@ -800,12 +850,15 @@ class Backtesting:
trading_mode=self.trading_mode,
leverage=leverage,
# interest_rate=interest_rate,
amount_precision=self.exchange.get_precision_amount(pair),
price_precision=self.exchange.get_precision_price(pair),
precision_mode=self.precision_mode,
orders=[],
)
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
trade.set_isolated_liq(self.exchange.get_liquidation_price(
trade.set_liquidation_price(self.exchange.get_liquidation_price(
pair=pair,
open_rate=propose_rate,
amount=amount,
@@ -856,6 +909,8 @@ class Backtesting:
# Ignore trade if entry-order did not fill yet
continue
exit_row = data[pair][-1]
self._exit_trade(trade, exit_row, exit_row[OPEN_IDX], trade.amount)
trade.orders[-1].close_bt_order(exit_row[DATE_IDX].to_pydatetime(), trade)
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
trade.exit_reason = ExitType.FORCE_EXIT.value
@@ -997,7 +1052,7 @@ class Backtesting:
return None
return row
def backtest(self, processed: Dict,
def backtest(self, processed: Dict, # noqa: max-complexity: 13
start_date: datetime, end_date: datetime,
max_open_trades: int = 0, position_stacking: bool = False,
enable_protections: bool = False) -> Dict[str, Any]:
@@ -1099,14 +1154,19 @@ class Backtesting:
if order and self._get_order_filled(order.price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
trade.close_date = current_time
trade.close(order.price, show_msg=False)
sub_trade = order.safe_amount_after_fee != trade.amount
if sub_trade:
order.close_bt_order(current_time, trade)
trade.recalc_trade_from_orders()
else:
trade.close_date = current_time
trade.close(order.price, show_msg=False)
# logger.debug(f"{pair} - Backtesting exit {trade}")
open_trade_count -= 1
open_trades[pair].remove(trade)
LocalTrade.close_bt_trade(trade)
trades.append(trade)
# logger.debug(f"{pair} - Backtesting exit {trade}")
open_trade_count -= 1
open_trades[pair].remove(trade)
LocalTrade.close_bt_trade(trade)
trades.append(trade)
self.wallets.update()
self.run_protections(
enable_protections, pair, current_time, trade.trade_direction)
@@ -1140,8 +1200,6 @@ class Backtesting:
backtest_start_time = datetime.now(timezone.utc)
self._set_strategy(strat)
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
# Must come from strategy config, as the strategy may modify this setting.

View File

@@ -6,6 +6,7 @@ This module contains the hyperopt logic
import logging
import random
import sys
import warnings
from datetime import datetime, timezone
from math import ceil
@@ -17,6 +18,7 @@ import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
from joblib.externals import cloudpickle
from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
@@ -87,6 +89,7 @@ class Hyperopt:
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
self.hyperopt_pickle_magic(self.backtesting.strategy.__class__.__bases__)
self.custom_hyperoptloss: IHyperOptLoss = HyperOptLossResolver.load_hyperoptloss(
self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
@@ -137,6 +140,17 @@ class Hyperopt:
logger.info(f"Removing `{p}`.")
p.unlink()
def hyperopt_pickle_magic(self, bases) -> None:
"""
Hyperopt magic to allow strategy inheritance across files.
For this to properly work, we need to register the module of the imported class
to pickle as value.
"""
for modules in bases:
if modules.__name__ != 'IStrategy':
cloudpickle.register_pickle_by_value(sys.modules[modules.__module__])
self.hyperopt_pickle_magic(modules.__bases__)
def _get_params_dict(self, dimensions: List[Dimension], raw_params: List[Any]) -> Dict:
# Ensure the number of dimensions match
@@ -455,7 +469,7 @@ class Hyperopt:
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state'))
logger.info(f"Using optimizer random state: {self.random_state}")
self.hyperopt_table_header = -1
# Initialize spaces ...
@@ -469,6 +483,7 @@ class Hyperopt:
self.backtesting.exchange._api_async = None
self.backtesting.exchange.loop = None # type: ignore
self.backtesting.exchange._loop_lock = None # type: ignore
self.backtesting.exchange._cache_lock = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore

View File

@@ -127,14 +127,14 @@ class HyperoptTools():
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time'),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time'),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit'),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit'),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit'),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit'),
'filter_min_objective': config.get('hyperopt_list_min_objective'),
'filter_max_objective': config.get('hyperopt_list_max_objective'),
}
if not HyperoptTools._test_hyperopt_results_exist(results_file):
# No file found.

View File

@@ -639,7 +639,7 @@ def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_curr
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
if(tag_type == "enter_tag"):
if (tag_type == "enter_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header("TAG", stake_currency, 'Sells')

View File

@@ -1,5 +1,5 @@
# flake8: noqa: F401
from freqtrade.persistence.models import cleanup_db, init_db
from freqtrade.persistence.models import init_db
from freqtrade.persistence.pairlock_middleware import PairLocks
from freqtrade.persistence.trade_model import LocalTrade, Order, Trade

View File

@@ -1,9 +1,10 @@
import logging
from typing import List
from sqlalchemy import inspect, text
from sqlalchemy import inspect, select, text, tuple_, update
from freqtrade.exceptions import OperationalException
from freqtrade.persistence.trade_model import Order, Trade
logger = logging.getLogger(__name__)
@@ -94,6 +95,7 @@ def migrate_trades_and_orders_table(
exit_reason = get_column_def(cols, 'sell_reason', get_column_def(cols, 'exit_reason', 'null'))
strategy = get_column_def(cols, 'strategy', 'null')
enter_tag = get_column_def(cols, 'buy_tag', get_column_def(cols, 'enter_tag', 'null'))
realized_profit = get_column_def(cols, 'realized_profit', '0.0')
trading_mode = get_column_def(cols, 'trading_mode', 'null')
@@ -128,6 +130,10 @@ def migrate_trades_and_orders_table(
get_column_def(cols, 'sell_order_status', 'null'))
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
amount_precision = get_column_def(cols, 'amount_precision', 'null')
price_precision = get_column_def(cols, 'price_precision', 'null')
precision_mode = get_column_def(cols, 'precision_mode', 'null')
# Schema migration necessary
with engine.begin() as connection:
connection.execute(text(f"alter table trades rename to {trade_back_name}"))
@@ -154,7 +160,8 @@ def migrate_trades_and_orders_table(
max_rate, min_rate, exit_reason, exit_order_status, strategy, enter_tag,
timeframe, open_trade_value, close_profit_abs,
trading_mode, leverage, liquidation_price, is_short,
interest_rate, funding_fees
interest_rate, funding_fees, realized_profit,
amount_precision, price_precision, precision_mode
)
select id, lower(exchange), pair, {base_currency} base_currency,
{stake_currency} stake_currency,
@@ -180,7 +187,9 @@ def migrate_trades_and_orders_table(
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs,
{trading_mode} trading_mode, {leverage} leverage, {liquidation_price} liquidation_price,
{is_short} is_short, {interest_rate} interest_rate,
{funding_fees} funding_fees
{funding_fees} funding_fees, {realized_profit} realized_profit,
{amount_precision} amount_precision, {price_precision} price_precision,
{precision_mode} precision_mode
from {trade_back_name}
"""))
@@ -251,31 +260,31 @@ def set_sqlite_to_wal(engine):
def fix_old_dry_orders(engine):
with engine.begin() as connection:
connection.execute(
text(
"""
update orders
set ft_is_open = 0
where ft_is_open = 1 and (ft_trade_id, order_id) not in (
select id, stoploss_order_id from trades where stoploss_order_id is not null
) and ft_order_side = 'stoploss'
and order_id like 'dry_%'
"""
)
)
connection.execute(
text(
"""
update orders
set ft_is_open = 0
where ft_is_open = 1
and (ft_trade_id, order_id) not in (
select id, open_order_id from trades where open_order_id is not null
) and ft_order_side != 'stoploss'
and order_id like 'dry_%'
"""
)
)
stmt = update(Order).where(
Order.ft_is_open.is_(True),
tuple_(Order.ft_trade_id, Order.order_id).not_in(
select(
Trade.id, Trade.stoploss_order_id
).where(Trade.stoploss_order_id.is_not(None))
),
Order.ft_order_side == 'stoploss',
Order.order_id.like('dry%'),
).values(ft_is_open=False)
connection.execute(stmt)
stmt = update(Order).where(
Order.ft_is_open.is_(True),
tuple_(Order.ft_trade_id, Order.order_id).not_in(
select(
Trade.id, Trade.open_order_id
).where(Trade.open_order_id.is_not(None))
),
Order.ft_order_side != 'stoploss',
Order.order_id.like('dry%')
).values(ft_is_open=False)
connection.execute(stmt)
def check_migrate(engine, decl_base, previous_tables) -> None:
@@ -296,8 +305,11 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
# Check if migration necessary
# Migrates both trades and orders table!
if not has_column(cols_orders, 'stop_price'):
# if not has_column(cols_trades, 'base_currency'):
# if ('orders' not in previous_tables
# or not has_column(cols_orders, 'stop_price')):
migrating = False
if not has_column(cols_trades, 'precision_mode'):
migrating = True
logger.info(f"Running database migration for trades - "
f"backup: {table_back_name}, {order_table_bak_name}")
migrate_trades_and_orders_table(
@@ -305,6 +317,7 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
order_table_bak_name, cols_orders)
if not has_column(cols_pairlocks, 'side'):
migrating = True
logger.info(f"Running database migration for pairlocks - "
f"backup: {pairlock_table_bak_name}")
@@ -319,3 +332,6 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
set_sqlite_to_wal(engine)
fix_old_dry_orders(engine)
if migrating:
logger.info("Database migration finished.")

View File

@@ -53,7 +53,7 @@ def init_db(db_url: str) -> None:
# https://docs.sqlalchemy.org/en/13/orm/contextual.html#thread-local-scope
# Scoped sessions proxy requests to the appropriate thread-local session.
# We should use the scoped_session object - not a seperately initialized version
Trade._session = scoped_session(sessionmaker(bind=engine, autoflush=True))
Trade._session = scoped_session(sessionmaker(bind=engine, autoflush=False))
Trade.query = Trade._session.query_property()
Order.query = Trade._session.query_property()
PairLock.query = Trade._session.query_property()
@@ -61,11 +61,3 @@ def init_db(db_url: str) -> None:
previous_tables = inspect(engine).get_table_names()
_DECL_BASE.metadata.create_all(engine)
check_migrate(engine, decl_base=_DECL_BASE, previous_tables=previous_tables)
def cleanup_db() -> None:
"""
Flushes all pending operations to disk.
:return: None
"""
Trade.commit()

View File

@@ -3,18 +3,21 @@ This module contains the class to persist trades into SQLite
"""
import logging
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from math import isclose
from typing import Any, Dict, List, Optional
from sqlalchemy import (Boolean, Column, DateTime, Enum, Float, ForeignKey, Integer, String,
UniqueConstraint, desc, func)
from sqlalchemy.orm import Query, lazyload, relationship
from freqtrade.constants import DATETIME_PRINT_FORMAT, NON_OPEN_EXCHANGE_STATES, BuySell, LongShort
from freqtrade.constants import (DATETIME_PRINT_FORMAT, MATH_CLOSE_PREC, NON_OPEN_EXCHANGE_STATES,
BuySell, LongShort)
from freqtrade.enums import ExitType, TradingMode
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import amount_to_precision, price_to_precision
from freqtrade.leverage import interest
from freqtrade.persistence.base import _DECL_BASE
from freqtrade.util import FtPrecise
logger = logging.getLogger(__name__)
@@ -176,10 +179,9 @@ class Order(_DECL_BASE):
self.remaining = 0
self.status = 'closed'
self.ft_is_open = False
if (self.ft_order_side == trade.entry_side
and len(trade.select_filled_orders(trade.entry_side)) == 1):
if (self.ft_order_side == trade.entry_side):
trade.open_rate = self.price
trade.recalc_open_trade_value()
trade.recalc_trade_from_orders()
trade.adjust_stop_loss(trade.open_rate, trade.stop_loss_pct, refresh=True)
@staticmethod
@@ -195,7 +197,7 @@ class Order(_DECL_BASE):
if filtered_orders:
oobj = filtered_orders[0]
oobj.update_from_ccxt_object(order)
Order.query.session.commit()
Trade.commit()
else:
logger.warning(f"Did not find order for {order}.")
@@ -237,6 +239,7 @@ class LocalTrade():
trades: List['LocalTrade'] = []
trades_open: List['LocalTrade'] = []
total_profit: float = 0
realized_profit: float = 0
id: int = 0
@@ -290,6 +293,9 @@ class LocalTrade():
timeframe: Optional[int] = None
trading_mode: TradingMode = TradingMode.SPOT
amount_precision: Optional[float] = None
price_precision: Optional[float] = None
precision_mode: Optional[int] = None
# Leverage trading properties
liquidation_price: Optional[float] = None
@@ -302,6 +308,16 @@ class LocalTrade():
# Futures properties
funding_fees: Optional[float] = None
@property
def stoploss_or_liquidation(self) -> float:
if self.liquidation_price:
if self.is_short:
return min(self.stop_loss, self.liquidation_price)
else:
return max(self.stop_loss, self.liquidation_price)
return self.stop_loss
@property
def buy_tag(self) -> Optional[str]:
"""
@@ -437,6 +453,7 @@ class LocalTrade():
if self.close_date else None),
'close_timestamp': int(self.close_date.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.close_date else None,
'realized_profit': self.realized_profit or 0.0,
'close_rate': self.close_rate,
'close_rate_requested': self.close_rate_requested,
'close_profit': self.close_profit, # Deprecated
@@ -497,7 +514,7 @@ class LocalTrade():
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
def set_isolated_liq(self, liquidation_price: Optional[float]):
def set_liquidation_price(self, liquidation_price: Optional[float]):
"""
Method you should use to set self.liquidation price.
Assures stop_loss is not passed the liquidation price
@@ -506,22 +523,14 @@ class LocalTrade():
return
self.liquidation_price = liquidation_price
def _set_stop_loss(self, stop_loss: float, percent: float):
def __set_stop_loss(self, stop_loss: float, percent: float):
"""
Method you should use to set self.stop_loss.
Assures stop_loss is not passed the liquidation price
Method used internally to set self.stop_loss.
"""
if self.liquidation_price is not None:
if self.is_short:
sl = min(stop_loss, self.liquidation_price)
else:
sl = max(stop_loss, self.liquidation_price)
else:
sl = stop_loss
stop_loss_norm = price_to_precision(stop_loss, self.price_precision, self.precision_mode)
if not self.stop_loss:
self.initial_stop_loss = sl
self.stop_loss = sl
self.initial_stop_loss = stop_loss_norm
self.stop_loss = stop_loss_norm
self.stop_loss_pct = -1 * abs(percent)
self.stoploss_last_update = datetime.utcnow()
@@ -543,19 +552,14 @@ class LocalTrade():
leverage = self.leverage or 1.0
if self.is_short:
new_loss = float(current_price * (1 + abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
if self.liquidation_price:
new_loss = min(self.liquidation_price, new_loss)
else:
new_loss = float(current_price * (1 - abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
if self.liquidation_price:
new_loss = max(self.liquidation_price, new_loss)
# no stop loss assigned yet
if self.initial_stop_loss_pct is None or refresh:
self._set_stop_loss(new_loss, stoploss)
self.initial_stop_loss = new_loss
self.__set_stop_loss(new_loss, stoploss)
self.initial_stop_loss = price_to_precision(
new_loss, self.price_precision, self.precision_mode)
self.initial_stop_loss_pct = -1 * abs(stoploss)
# evaluate if the stop loss needs to be updated
@@ -569,7 +573,7 @@ class LocalTrade():
# ? decreasing the minimum stoploss
if (higher_stop and not self.is_short) or (lower_stop and self.is_short):
logger.debug(f"{self.pair} - Adjusting stoploss...")
self._set_stop_loss(new_loss, stoploss)
self.__set_stop_loss(new_loss, stoploss)
else:
logger.debug(f"{self.pair} - Keeping current stoploss...")
@@ -601,14 +605,29 @@ class LocalTrade():
if self.is_open:
payment = "SELL" if self.is_short else "BUY"
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
self.open_order_id = None
# condition to avoid reset value when updating fees
if self.open_order_id == order.order_id:
self.open_order_id = None
else:
logger.warning(
f'Got different open_order_id {self.open_order_id} != {order.order_id}')
self.recalc_trade_from_orders()
elif order.ft_order_side == self.exit_side:
if self.is_open:
payment = "BUY" if self.is_short else "SELL"
# * On margin shorts, you buy a little bit more than the amount (amount + interest)
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
self.close(order.safe_price)
# condition to avoid reset value when updating fees
if self.open_order_id == order.order_id:
self.open_order_id = None
else:
logger.warning(
f'Got different open_order_id {self.open_order_id} != {order.order_id}')
amount_tr = amount_to_precision(self.amount, self.amount_precision, self.precision_mode)
if isclose(order.safe_amount_after_fee, amount_tr, abs_tol=MATH_CLOSE_PREC):
self.close(order.safe_price)
else:
self.recalc_trade_from_orders()
elif order.ft_order_side == 'stoploss':
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
@@ -627,11 +646,11 @@ class LocalTrade():
"""
self.close_rate = rate
self.close_date = self.close_date or datetime.utcnow()
self.close_profit = self.calc_profit_ratio(rate)
self.close_profit_abs = self.calc_profit(rate)
self.close_profit_abs = self.calc_profit(rate) + self.realized_profit
self.is_open = False
self.exit_order_status = 'closed'
self.open_order_id = None
self.recalc_trade_from_orders(is_closing=True)
if show_msg:
logger.info(
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
@@ -677,13 +696,13 @@ class LocalTrade():
"""
return len([o for o in self.orders if o.ft_order_side == self.exit_side])
def _calc_open_trade_value(self) -> float:
def _calc_open_trade_value(self, amount: float, open_rate: float) -> float:
"""
Calculate the open_rate including open_fee.
:return: Price in of the open trade incl. Fees
"""
open_trade = Decimal(self.amount) * Decimal(self.open_rate)
fees = open_trade * Decimal(self.fee_open)
open_trade = FtPrecise(amount) * FtPrecise(open_rate)
fees = open_trade * FtPrecise(self.fee_open)
if self.is_short:
return float(open_trade - fees)
else:
@@ -694,39 +713,39 @@ class LocalTrade():
Recalculate open_trade_value.
Must be called whenever open_rate, fee_open is changed.
"""
self.open_trade_value = self._calc_open_trade_value()
self.open_trade_value = self._calc_open_trade_value(self.amount, self.open_rate)
def calculate_interest(self) -> Decimal:
def calculate_interest(self) -> FtPrecise:
"""
Calculate interest for this trade. Only applicable for Margin trading.
"""
zero = Decimal(0.0)
zero = FtPrecise(0.0)
# If nothing was borrowed
if self.trading_mode != TradingMode.MARGIN or self.has_no_leverage:
return zero
open_date = self.open_date.replace(tzinfo=None)
now = (self.close_date or datetime.now(timezone.utc)).replace(tzinfo=None)
sec_per_hour = Decimal(3600)
total_seconds = Decimal((now - open_date).total_seconds())
sec_per_hour = FtPrecise(3600)
total_seconds = FtPrecise((now - open_date).total_seconds())
hours = total_seconds / sec_per_hour or zero
rate = Decimal(self.interest_rate)
borrowed = Decimal(self.borrowed)
rate = FtPrecise(self.interest_rate)
borrowed = FtPrecise(self.borrowed)
return interest(exchange_name=self.exchange, borrowed=borrowed, rate=rate, hours=hours)
def _calc_base_close(self, amount: Decimal, rate: float, fee: float) -> Decimal:
def _calc_base_close(self, amount: FtPrecise, rate: float, fee: float) -> FtPrecise:
close_trade = amount * Decimal(rate)
fees = close_trade * Decimal(fee)
close_trade = amount * FtPrecise(rate)
fees = close_trade * FtPrecise(fee)
if self.is_short:
return close_trade + fees
else:
return close_trade - fees
def calc_close_trade_value(self, rate: float) -> float:
def calc_close_trade_value(self, rate: float, amount: float = None) -> float:
"""
Calculate the Trade's close value including fees
:param rate: rate to compare with.
@@ -735,96 +754,146 @@ class LocalTrade():
if rate is None and not self.close_rate:
return 0.0
amount = Decimal(self.amount)
amount1 = FtPrecise(amount or self.amount)
trading_mode = self.trading_mode or TradingMode.SPOT
if trading_mode == TradingMode.SPOT:
return float(self._calc_base_close(amount, rate, self.fee_close))
return float(self._calc_base_close(amount1, rate, self.fee_close))
elif (trading_mode == TradingMode.MARGIN):
total_interest = self.calculate_interest()
if self.is_short:
amount = amount + total_interest
return float(self._calc_base_close(amount, rate, self.fee_close))
amount1 = amount1 + total_interest
return float(self._calc_base_close(amount1, rate, self.fee_close))
else:
# Currency already owned for longs, no need to purchase
return float(self._calc_base_close(amount, rate, self.fee_close) - total_interest)
return float(self._calc_base_close(amount1, rate, self.fee_close) - total_interest)
elif (trading_mode == TradingMode.FUTURES):
funding_fees = self.funding_fees or 0.0
# Positive funding_fees -> Trade has gained from fees.
# Negative funding_fees -> Trade had to pay the fees.
if self.is_short:
return float(self._calc_base_close(amount, rate, self.fee_close)) - funding_fees
return float(self._calc_base_close(amount1, rate, self.fee_close)) - funding_fees
else:
return float(self._calc_base_close(amount, rate, self.fee_close)) + funding_fees
return float(self._calc_base_close(amount1, rate, self.fee_close)) + funding_fees
else:
raise OperationalException(
f"{self.trading_mode.value} trading is not yet available using freqtrade")
def calc_profit(self, rate: float) -> float:
def calc_profit(self, rate: float, amount: float = None, open_rate: float = None) -> float:
"""
Calculate the absolute profit in stake currency between Close and Open trade
:param rate: close rate to compare with.
:param amount: Amount to use for the calculation. Falls back to trade.amount if not set.
:param open_rate: open_rate to use. Defaults to self.open_rate if not provided.
:return: profit in stake currency as float
"""
close_trade_value = self.calc_close_trade_value(rate)
close_trade_value = self.calc_close_trade_value(rate, amount)
if amount is None or open_rate is None:
open_trade_value = self.open_trade_value
else:
open_trade_value = self._calc_open_trade_value(amount, open_rate)
if self.is_short:
profit = self.open_trade_value - close_trade_value
profit = open_trade_value - close_trade_value
else:
profit = close_trade_value - self.open_trade_value
profit = close_trade_value - open_trade_value
return float(f"{profit:.8f}")
def calc_profit_ratio(self, rate: float) -> float:
def calc_profit_ratio(
self, rate: float, amount: float = None, open_rate: float = None) -> float:
"""
Calculates the profit as ratio (including fee).
:param rate: rate to compare with.
:param amount: Amount to use for the calculation. Falls back to trade.amount if not set.
:param open_rate: open_rate to use. Defaults to self.open_rate if not provided.
:return: profit ratio as float
"""
close_trade_value = self.calc_close_trade_value(rate)
close_trade_value = self.calc_close_trade_value(rate, amount)
if amount is None or open_rate is None:
open_trade_value = self.open_trade_value
else:
open_trade_value = self._calc_open_trade_value(amount, open_rate)
short_close_zero = (self.is_short and close_trade_value == 0.0)
long_close_zero = (not self.is_short and self.open_trade_value == 0.0)
long_close_zero = (not self.is_short and open_trade_value == 0.0)
leverage = self.leverage or 1.0
if (short_close_zero or long_close_zero):
return 0.0
else:
if self.is_short:
profit_ratio = (1 - (close_trade_value / self.open_trade_value)) * leverage
profit_ratio = (1 - (close_trade_value / open_trade_value)) * leverage
else:
profit_ratio = ((close_trade_value / self.open_trade_value) - 1) * leverage
profit_ratio = ((close_trade_value / open_trade_value) - 1) * leverage
return float(f"{profit_ratio:.8f}")
def recalc_trade_from_orders(self):
def recalc_trade_from_orders(self, *, is_closing: bool = False):
ZERO = FtPrecise(0.0)
current_amount = FtPrecise(0.0)
current_stake = FtPrecise(0.0)
total_stake = 0.0 # Total stake after all buy orders (does not subtract!)
avg_price = FtPrecise(0.0)
close_profit = 0.0
close_profit_abs = 0.0
total_amount = 0.0
total_stake = 0.0
for o in self.orders:
if (o.ft_is_open or
(o.ft_order_side != self.entry_side) or
(o.status not in NON_OPEN_EXCHANGE_STATES)):
if o.ft_is_open or not o.filled:
continue
tmp_amount = o.safe_amount_after_fee
tmp_price = o.average or o.price
if tmp_amount > 0.0 and tmp_price is not None:
total_amount += tmp_amount
total_stake += tmp_price * tmp_amount
tmp_amount = FtPrecise(o.safe_amount_after_fee)
tmp_price = FtPrecise(o.safe_price)
if total_amount > 0:
is_exit = o.ft_order_side != self.entry_side
side = FtPrecise(-1 if is_exit else 1)
if tmp_amount > ZERO and tmp_price is not None:
current_amount += tmp_amount * side
price = avg_price if is_exit else tmp_price
current_stake += price * tmp_amount * side
if current_amount > ZERO:
avg_price = current_stake / current_amount
if is_exit:
# Process partial exits
exit_rate = o.safe_price
exit_amount = o.safe_amount_after_fee
profit = self.calc_profit(rate=exit_rate, amount=exit_amount,
open_rate=float(avg_price))
close_profit_abs += profit
close_profit = self.calc_profit_ratio(
exit_rate, amount=exit_amount, open_rate=avg_price)
if current_amount <= ZERO:
profit = close_profit_abs
else:
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
if close_profit:
self.close_profit = close_profit
self.realized_profit = close_profit_abs
self.close_profit_abs = profit
current_amount_tr = amount_to_precision(float(current_amount),
self.amount_precision, self.precision_mode)
if current_amount_tr > 0.0:
# Trade is still open
# Leverage not updated, as we don't allow changing leverage through DCA at the moment.
self.open_rate = total_stake / total_amount
self.stake_amount = total_stake / (self.leverage or 1.0)
self.amount = total_amount
self.fee_open_cost = self.fee_open * self.stake_amount
self.open_rate = float(current_stake / current_amount)
self.amount = current_amount_tr
self.stake_amount = float(current_stake) / (self.leverage or 1.0)
self.fee_open_cost = self.fee_open * float(current_stake)
self.recalc_open_trade_value()
if self.stop_loss_pct is not None and self.open_rate is not None:
self.adjust_stop_loss(self.open_rate, self.stop_loss_pct)
elif is_closing and total_stake > 0:
# Close profit abs / maximum owned
# Fees are considered as they are part of close_profit_abs
self.close_profit = (close_profit_abs / total_stake) * self.leverage
def select_order_by_order_id(self, order_id: str) -> Optional[Order]:
"""
@@ -846,7 +915,7 @@ class LocalTrade():
"""
orders = self.orders
if order_side:
orders = [o for o in self.orders if o.ft_order_side == order_side]
orders = [o for o in orders if o.ft_order_side == order_side]
if is_open is not None:
orders = [o for o in orders if o.ft_is_open == is_open]
if len(orders) > 0:
@@ -861,9 +930,9 @@ class LocalTrade():
:return: array of Order objects
"""
return [o for o in self.orders if ((o.ft_order_side == order_side) or (order_side is None))
and o.ft_is_open is False and
(o.filled or 0) > 0 and
o.status in NON_OPEN_EXCHANGE_STATES]
and o.ft_is_open is False
and o.filled
and o.status in NON_OPEN_EXCHANGE_STATES]
def select_filled_or_open_orders(self) -> List['Order']:
"""
@@ -1028,6 +1097,7 @@ class Trade(_DECL_BASE, LocalTrade):
open_trade_value = Column(Float)
close_rate: Optional[float] = Column(Float)
close_rate_requested = Column(Float)
realized_profit = Column(Float, default=0.0)
close_profit = Column(Float)
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
@@ -1059,6 +1129,9 @@ class Trade(_DECL_BASE, LocalTrade):
timeframe = Column(Integer, nullable=True)
trading_mode = Column(Enum(TradingMode), nullable=True)
amount_precision = Column(Float, nullable=True)
price_precision = Column(Float, nullable=True)
precision_mode = Column(Integer, nullable=True)
# Leverage trading properties
leverage = Column(Float, nullable=True, default=1.0)
@@ -1073,6 +1146,7 @@ class Trade(_DECL_BASE, LocalTrade):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.realized_profit = 0
self.recalc_open_trade_value()
def delete(self) -> None:
@@ -1087,6 +1161,10 @@ class Trade(_DECL_BASE, LocalTrade):
def commit():
Trade.query.session.commit()
@staticmethod
def rollback():
Trade.query.session.rollback()
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
@@ -1239,7 +1317,7 @@ class Trade(_DECL_BASE, LocalTrade):
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
if (pair is not None):
filters.append(Trade.pair == pair)
enter_tag_perf = Trade.query.with_entities(
@@ -1272,7 +1350,7 @@ class Trade(_DECL_BASE, LocalTrade):
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
if (pair is not None):
filters.append(Trade.pair == pair)
sell_tag_perf = Trade.query.with_entities(
@@ -1305,7 +1383,7 @@ class Trade(_DECL_BASE, LocalTrade):
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
if (pair is not None):
filters.append(Trade.pair == pair)
mix_tag_perf = Trade.query.with_entities(
@@ -1325,7 +1403,7 @@ class Trade(_DECL_BASE, LocalTrade):
enter_tag = enter_tag if enter_tag is not None else "Other"
exit_reason = exit_reason if exit_reason is not None else "Other"
if(exit_reason is not None and enter_tag is not None):
if (exit_reason is not None and enter_tag is not None):
mix_tag = enter_tag + " " + exit_reason
i = 0
if not any(item["mix_tag"] == mix_tag for item in return_list):

View File

@@ -255,18 +255,18 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
# Create description for exit summarizing the trade
trades['desc'] = trades.apply(
lambda row: f"{row['profit_ratio']:.2%}, " +
(f"{row['enter_tag']}, " if row['enter_tag'] is not None else "") +
f"{row['exit_reason']}, " +
f"{row['trade_duration']} min",
axis=1)
trade_buys = go.Scatter(
trade_entries = go.Scatter(
x=trades["open_date"],
y=trades["open_rate"],
mode='markers',
name='Trade buy',
name='Trade entry',
text=trades["desc"],
marker=dict(
symbol='circle-open',
@@ -277,12 +277,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
)
)
trade_sells = go.Scatter(
trade_exits = go.Scatter(
x=trades.loc[trades['profit_ratio'] > 0, "close_date"],
y=trades.loc[trades['profit_ratio'] > 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] > 0, "desc"],
mode='markers',
name='Sell - Profit',
name='Exit - Profit',
marker=dict(
symbol='square-open',
size=11,
@@ -290,12 +290,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='green'
)
)
trade_sells_loss = go.Scatter(
trade_exits_loss = go.Scatter(
x=trades.loc[trades['profit_ratio'] <= 0, "close_date"],
y=trades.loc[trades['profit_ratio'] <= 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] <= 0, "desc"],
mode='markers',
name='Sell - Loss',
name='Exit - Loss',
marker=dict(
symbol='square-open',
size=11,
@@ -303,9 +303,9 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='red'
)
)
fig.add_trace(trade_buys, 1, 1)
fig.add_trace(trade_sells, 1, 1)
fig.add_trace(trade_sells_loss, 1, 1)
fig.add_trace(trade_entries, 1, 1)
fig.add_trace(trade_exits, 1, 1)
fig.add_trace(trade_exits_loss, 1, 1)
else:
logger.warning("No trades found.")
return fig
@@ -444,7 +444,7 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
:param pair: Pair to Display on the graph
:param data: OHLCV DataFrame containing indicators and buy/sell signals
:param data: OHLCV DataFrame containing indicators and entry/exit signals
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators

View File

@@ -8,11 +8,11 @@ from typing import Any, Dict, List, Optional
import arrow
from pandas import DataFrame
from freqtrade.configuration import PeriodicCache
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import PeriodicCache
logger = logging.getLogger(__name__)
@@ -30,7 +30,7 @@ class AgeFilter(IPairList):
self._symbolsCheckFailed = PeriodicCache(maxsize=1000, ttl=86_400)
self._min_days_listed = pairlistconfig.get('min_days_listed', 10)
self._max_days_listed = pairlistconfig.get('max_days_listed', None)
self._max_days_listed = pairlistconfig.get('max_days_listed')
candle_limit = exchange.ohlcv_candle_limit('1d', self._config['candle_type_def'])
if self._min_days_listed < 1:

View File

@@ -21,7 +21,7 @@ class PerformanceFilter(IPairList):
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._minutes = pairlistconfig.get('minutes', 0)
self._min_profit = pairlistconfig.get('min_profit', None)
self._min_profit = pairlistconfig.get('min_profit')
@property
def needstickers(self) -> bool:

View File

@@ -51,6 +51,11 @@ class PrecisionFilter(IPairList):
:param ticker: ticker dict as returned from ccxt.fetch_tickers()
:return: True if the pair can stay, false if it should be removed
"""
if ticker.get('last', None) is None:
self.log_once(f"Removed {ticker['symbol']} from whitelist, because "
"ticker['last'] is empty (Usually no trade in the last 24h).",
logger.info)
return False
stop_price = ticker['last'] * self._stoploss
# Adjust stop-prices to precision

View File

@@ -4,14 +4,14 @@ Volume PairList provider
Provides dynamic pair list based on trade volumes
"""
import logging
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List
import arrow
from cachetools import TTLCache
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
from freqtrade.misc import format_ms_time
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -158,16 +158,16 @@ class VolumePairList(IPairList):
filtered_tickers: List[Dict[str, Any]] = [{'symbol': k} for k in pairlist]
# get lookback period in ms, for exchange ohlcv fetch
since_ms = int(arrow.utcnow()
.floor('minute')
.shift(minutes=-(self._lookback_period * self._tf_in_min)
- self._tf_in_min)
.int_timestamp) * 1000
since_ms = int(timeframe_to_prev_date(
self._lookback_timeframe,
datetime.now(timezone.utc) + timedelta(
minutes=-(self._lookback_period * self._tf_in_min) - self._tf_in_min)
).timestamp()) * 1000
to_ms = int(arrow.utcnow()
.floor('minute')
.shift(minutes=-self._tf_in_min)
.int_timestamp) * 1000
to_ms = int(timeframe_to_prev_date(
self._lookback_timeframe,
datetime.now(timezone.utc) - timedelta(minutes=self._tf_in_min)
).timestamp()) * 1000
# todo: utc date output for starting date
self.log_once(f"Using volume range of {self._lookback_period} candles, timeframe: "

View File

@@ -1,5 +1,5 @@
import re
from typing import List
from typing import Any, Dict, List
def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
@@ -40,3 +40,13 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
except re.error as err:
raise ValueError(f"Wildcard error in {pair_wc}, {err}")
return result
def dynamic_expand_pairlist(config: Dict[str, Any], markets: List[str]) -> List[str]:
expanded_pairs = expand_pairlist(config['pairs'], markets)
if config.get('freqai', {}).get('enabled', False):
corr_pairlist = config['freqai']['feature_parameters']['include_corr_pairlist']
expanded_pairs += [pair for pair in corr_pairlist
if pair not in config['pairs']]
return expanded_pairs

View File

@@ -27,7 +27,7 @@ class RangeStabilityFilter(IPairList):
self._days = pairlistconfig.get('lookback_days', 10)
self._min_rate_of_change = pairlistconfig.get('min_rate_of_change', 0.01)
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change', None)
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change')
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
self._def_candletype = self._config['candle_type_def']

View File

@@ -28,7 +28,7 @@ class PairListManager(LoggingMixin):
self._blacklist = self._config['exchange'].get('pair_blacklist', [])
self._pairlist_handlers: List[IPairList] = []
self._tickers_needed = False
for pairlist_handler_config in self._config.get('pairlists', None):
for pairlist_handler_config in self._config.get('pairlists', []):
pairlist_handler = PairListResolver.load_pairlist(
pairlist_handler_config['method'],
exchange=exchange,

View File

@@ -23,13 +23,14 @@ class StoplossGuard(IProtection):
self._trade_limit = protection_config.get('trade_limit', 10)
self._disable_global_stop = protection_config.get('only_per_pair', False)
self._only_per_side = protection_config.get('only_per_side', False)
self._profit_limit = protection_config.get('required_profit', 0.0)
def short_desc(self) -> str:
"""
Short method description - used for startup-messages
"""
return (f"{self.name} - Frequent Stoploss Guard, {self._trade_limit} stoplosses "
f"within {self.lookback_period_str}.")
f"with profit < {self._profit_limit:.2%} within {self.lookback_period_str}.")
def _reason(self) -> str:
"""
@@ -48,8 +49,8 @@ class StoplossGuard(IProtection):
trades1 = Trade.get_trades_proxy(pair=pair, is_open=False, close_date=look_back_until)
trades = [trade for trade in trades1 if (str(trade.exit_reason) in (
ExitType.TRAILING_STOP_LOSS.value, ExitType.STOP_LOSS.value,
ExitType.STOPLOSS_ON_EXCHANGE.value)
and trade.close_profit and trade.close_profit < 0)]
ExitType.STOPLOSS_ON_EXCHANGE.value, ExitType.LIQUIDATION.value)
and trade.close_profit and trade.close_profit < self._profit_limit)]
if self._only_per_side:
# Long or short trades only

View File

@@ -18,7 +18,8 @@ class ExchangeResolver(IResolver):
object_type = Exchange
@staticmethod
def load_exchange(exchange_name: str, config: dict, validate: bool = True) -> Exchange:
def load_exchange(exchange_name: str, config: dict, validate: bool = True,
load_leverage_tiers: bool = False) -> Exchange:
"""
Load the custom class from config parameter
:param exchange_name: name of the Exchange to load
@@ -29,9 +30,13 @@ class ExchangeResolver(IResolver):
exchange_name = exchange_name.title()
exchange = None
try:
exchange = ExchangeResolver._load_exchange(exchange_name,
kwargs={'config': config,
'validate': validate})
exchange = ExchangeResolver._load_exchange(
exchange_name,
kwargs={
'config': config,
'validate': validate,
'load_leverage_tiers': load_leverage_tiers}
)
except ImportError:
logger.info(
f"No {exchange_name} specific subclass found. Using the generic class instead.")

View File

@@ -0,0 +1,57 @@
# pragma pylint: disable=attribute-defined-outside-init
"""
This module load a custom model for freqai
"""
import logging
from pathlib import Path
from typing import Dict
from freqtrade.constants import USERPATH_FREQAIMODELS
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.resolvers import IResolver
logger = logging.getLogger(__name__)
class FreqaiModelResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt loss class
"""
object_type = IFreqaiModel
object_type_str = "FreqaiModel"
user_subdir = USERPATH_FREQAIMODELS
initial_search_path = (
Path(__file__).parent.parent.joinpath("freqai/prediction_models").resolve()
)
@staticmethod
def load_freqaimodel(config: Dict) -> IFreqaiModel:
"""
Load the custom class from config parameter
:param config: configuration dictionary
"""
disallowed_models = ["BaseRegressionModel", "BaseTensorFlowModel"]
freqaimodel_name = config.get("freqaimodel")
if not freqaimodel_name:
raise OperationalException(
"No freqaimodel set. Please use `--freqaimodel` to "
"specify the FreqaiModel class to use.\n"
)
if freqaimodel_name in disallowed_models:
raise OperationalException(
f"{freqaimodel_name} is a baseclass and cannot be used directly. Please choose "
"an existing child class or inherit from this baseclass.\n"
)
freqaimodel = FreqaiModelResolver.load_object(
freqaimodel_name,
config,
kwargs={"config": config},
extra_dir=config.get("freqaimodel_path"),
)
return freqaimodel

View File

@@ -194,11 +194,11 @@ class OrderSchema(BaseModel):
pair: str
order_id: str
status: str
remaining: float
remaining: Optional[float]
amount: float
safe_price: float
cost: float
filled: float
filled: Optional[float]
ft_order_side: str
order_type: str
is_open: bool
@@ -325,11 +325,13 @@ class ForceEnterPayload(BaseModel):
ordertype: Optional[OrderTypeValues]
stakeamount: Optional[float]
entry_tag: Optional[str]
leverage: Optional[float]
class ForceExitPayload(BaseModel):
tradeid: str
ordertype: Optional[OrderTypeValues]
amount: Optional[float]
class BlacklistPayload(BaseModel):

View File

@@ -37,7 +37,8 @@ logger = logging.getLogger(__name__)
# 2.14: Add entry/exit orders to trade response
# 2.15: Add backtest history endpoints
# 2.16: Additional daily metrics
API_VERSION = 2.16
# 2.17: Forceentry - leverage, partial force_exit
API_VERSION = 2.17
# Public API, requires no auth.
router_public = APIRouter()
@@ -142,12 +143,11 @@ def show_config(rpc: Optional[RPC] = Depends(get_rpc_optional), config=Depends(g
@router.post('/forcebuy', response_model=ForceEnterResponse, tags=['trading'])
def force_entry(payload: ForceEnterPayload, rpc: RPC = Depends(get_rpc)):
ordertype = payload.ordertype.value if payload.ordertype else None
stake_amount = payload.stakeamount if payload.stakeamount else None
entry_tag = payload.entry_tag if payload.entry_tag else 'force_entry'
trade = rpc._rpc_force_entry(payload.pair, payload.price, order_side=payload.side,
order_type=ordertype, stake_amount=stake_amount,
enter_tag=entry_tag)
order_type=ordertype, stake_amount=payload.stakeamount,
enter_tag=payload.entry_tag or 'force_entry',
leverage=payload.leverage)
if trade:
return ForceEnterResponse.parse_obj(trade.to_json())
@@ -161,7 +161,7 @@ def force_entry(payload: ForceEnterPayload, rpc: RPC = Depends(get_rpc)):
@router.post('/forcesell', response_model=ResultMsg, tags=['trading'])
def forceexit(payload: ForceExitPayload, rpc: RPC = Depends(get_rpc)):
ordertype = payload.ordertype.value if payload.ordertype else None
return rpc._rpc_force_exit(payload.tradeid, ordertype)
return rpc._rpc_force_exit(payload.tradeid, ordertype, amount=payload.amount)
@router.get('/blacklist', response_model=BlacklistResponse, tags=['info', 'pairlist'])
@@ -282,7 +282,7 @@ def get_strategy(strategy: str, config=Depends(get_config)):
def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Optional[str] = None,
candletype: Optional[CandleType] = None, config=Depends(get_config)):
dh = get_datahandler(config['datadir'], config.get('dataformat_ohlcv', None))
dh = get_datahandler(config['datadir'], config.get('dataformat_ohlcv'))
trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
pair_interval = dh.ohlcv_get_available_data(config['datadir'], trading_mode)

View File

@@ -18,9 +18,9 @@ def get_rpc_optional() -> Optional[RPC]:
def get_rpc() -> Optional[Iterator[RPC]]:
_rpc = get_rpc_optional()
if _rpc:
Trade.query.session.rollback()
Trade.rollback()
yield _rpc
Trade.query.session.rollback()
Trade.rollback()
else:
raise RPCException('Bot is not in the correct state')
@@ -37,7 +37,7 @@ def get_exchange(config=Depends(get_config)):
if not ApiServer._exchange:
from freqtrade.resolvers import ExchangeResolver
ApiServer._exchange = ExchangeResolver.load_exchange(
config['exchange']['name'], config)
config['exchange']['name'], config, load_leverage_tiers=False)
return ApiServer._exchange

View File

@@ -1,4 +1,5 @@
from pathlib import Path
from typing import Optional
from fastapi import APIRouter
from fastapi.exceptions import HTTPException
@@ -50,8 +51,12 @@ async def index_html(rest_of_path: str):
filename = uibase / rest_of_path
# It's security relevant to check "relative_to".
# Without this, Directory-traversal is possible.
media_type: Optional[str] = None
if filename.suffix == '.js':
# Force text/javascript for .js files - Circumvent faulty system configuration
media_type = 'application/javascript'
if filename.is_file() and is_relative_to(filename, uibase):
return FileResponse(str(filename))
return FileResponse(str(filename), media_type=media_type)
index_file = uibase / 'index.html'
if not index_file.is_file():

View File

@@ -12,6 +12,7 @@ from pycoingecko import CoinGeckoAPI
from requests.exceptions import RequestException
from freqtrade.constants import SUPPORTED_FIAT
from freqtrade.mixins.logging_mixin import LoggingMixin
logger = logging.getLogger(__name__)
@@ -27,7 +28,7 @@ coingecko_mapping = {
}
class CryptoToFiatConverter:
class CryptoToFiatConverter(LoggingMixin):
"""
Main class to initiate Crypto to FIAT.
This object contains a list of pair Crypto, FIAT
@@ -54,6 +55,7 @@ class CryptoToFiatConverter:
# Timeout: 6h
self._pair_price: TTLCache = TTLCache(maxsize=500, ttl=6 * 60 * 60)
LoggingMixin.__init__(self, logger, 3600)
self._load_cryptomap()
def _load_cryptomap(self) -> None:
@@ -177,7 +179,9 @@ class CryptoToFiatConverter:
if not _gekko_id:
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
self.log_once(
f"unsupported crypto-symbol {crypto_symbol.upper()} - returning 0.0",
logger.warning)
return 0.0
try:

View File

@@ -97,7 +97,7 @@ class RPC:
"""
self._freqtrade = freqtrade
self._config: Dict[str, Any] = freqtrade.config
if self._config.get('fiat_display_currency', None):
if self._config.get('fiat_display_currency'):
self._fiat_converter = CryptoToFiatConverter()
@staticmethod
@@ -179,8 +179,10 @@ class RPC:
else:
current_rate = trade.close_rate
if len(trade.select_filled_orders(trade.entry_side)) > 0:
current_profit = trade.calc_profit_ratio(current_rate)
current_profit_abs = trade.calc_profit(current_rate)
current_profit = trade.calc_profit_ratio(
current_rate) if not isnan(current_rate) else NAN
current_profit_abs = trade.calc_profit(
current_rate) if not isnan(current_rate) else NAN
current_profit_fiat: Optional[float] = None
# Calculate fiat profit
if self._fiat_converter:
@@ -201,7 +203,7 @@ class RPC:
trade_dict = trade.to_json()
trade_dict.update(dict(
close_profit=trade.close_profit if trade.close_profit is not None else None,
close_profit=trade.close_profit if not trade.is_open else None,
current_rate=current_rate,
current_profit=current_profit, # Deprecated
current_profit_pct=round(current_profit * 100, 2), # Deprecated
@@ -239,12 +241,15 @@ class RPC:
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (PricingError, ExchangeError):
current_rate = NAN
if len(trade.select_filled_orders(trade.entry_side)) > 0:
trade_profit = trade.calc_profit(current_rate)
profit_str = f'{trade.calc_profit_ratio(current_rate):.2%}'
trade_profit = NAN
profit_str = f'{NAN:.2%}'
else:
trade_profit = 0.0
profit_str = f'{0.0:.2f}'
if trade.nr_of_successful_entries > 0:
trade_profit = trade.calc_profit(current_rate)
profit_str = f'{trade.calc_profit_ratio(current_rate):.2%}'
else:
trade_profit = 0.0
profit_str = f'{0.0:.2f}'
direction_str = ('S' if trade.is_short else 'L') if nonspot else ''
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
@@ -424,21 +429,20 @@ class RPC:
for trade in trades:
current_rate: float = 0.0
if not trade.open_rate:
continue
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
if not trade.is_open:
profit_ratio = trade.close_profit
profit_closed_coin.append(trade.close_profit_abs)
profit_abs = trade.close_profit_abs
profit_closed_coin.append(profit_abs)
profit_closed_ratio.append(profit_ratio)
if trade.close_profit >= 0:
winning_trades += 1
winning_profit += trade.close_profit_abs
winning_profit += profit_abs
else:
losing_trades += 1
losing_profit += trade.close_profit_abs
losing_profit += profit_abs
else:
# Get current rate
try:
@@ -446,11 +450,15 @@ class RPC:
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (PricingError, ExchangeError):
current_rate = NAN
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
if isnan(current_rate):
profit_ratio = NAN
profit_abs = NAN
else:
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
profit_abs = trade.calc_profit(
rate=trade.close_rate or current_rate) + trade.realized_profit
profit_all_coin.append(
trade.calc_profit(rate=trade.close_rate or current_rate)
)
profit_all_coin.append(profit_abs)
profit_all_ratio.append(profit_ratio)
best_pair = Trade.get_best_pair(start_date)
@@ -566,7 +574,7 @@ class RPC:
else:
try:
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
rate = tickers.get(pair, {}).get('last', None)
rate = tickers.get(pair, {}).get('last')
if rate:
if pair.startswith(stake_currency) and not pair.endswith(stake_currency):
rate = 1.0 / rate
@@ -659,36 +667,48 @@ class RPC:
return {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
def _rpc_force_exit(self, trade_id: str, ordertype: Optional[str] = None) -> Dict[str, str]:
def __exec_force_exit(self, trade: Trade, ordertype: Optional[str],
amount: Optional[float] = None) -> None:
# Check if there is there is an open order
fully_canceled = False
if trade.open_order_id:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
if order['side'] == trade.entry_side:
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, CANCEL_REASON['FORCE_EXIT'])
if order['side'] == trade.exit_side:
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_EXIT'])
if not fully_canceled:
# Get current rate and execute sell
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side='exit', is_short=trade.is_short, refresh=True)
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
order_type = ordertype or self._freqtrade.strategy.order_types.get(
"force_exit", self._freqtrade.strategy.order_types["exit"])
sub_amount: Optional[float] = None
if amount and amount < trade.amount:
# Partial exit ...
min_exit_stake = self._freqtrade.exchange.get_min_pair_stake_amount(
trade.pair, current_rate, trade.stop_loss_pct)
remaining = (trade.amount - amount) * current_rate
if remaining < min_exit_stake:
raise RPCException(f'Remaining amount of {remaining} would be too small.')
sub_amount = amount
self._freqtrade.execute_trade_exit(
trade, current_rate, exit_check, ordertype=order_type,
sub_trade_amt=sub_amount)
def _rpc_force_exit(self, trade_id: str, ordertype: Optional[str] = None, *,
amount: Optional[float] = None) -> Dict[str, str]:
"""
Handler for forceexit <id>.
Sells the given trade at current price
"""
def _exec_force_exit(trade: Trade) -> None:
# Check if there is there is an open order
fully_canceled = False
if trade.open_order_id:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
if order['side'] == trade.entry_side:
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, CANCEL_REASON['FORCE_EXIT'])
if order['side'] == trade.exit_side:
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_EXIT'])
if not fully_canceled:
# Get current rate and execute sell
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side='exit', is_short=trade.is_short, refresh=True)
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
order_type = ordertype or self._freqtrade.strategy.order_types.get(
"force_exit", self._freqtrade.strategy.order_types["exit"])
self._freqtrade.execute_trade_exit(
trade, current_rate, exit_check, ordertype=order_type)
# ---- EOF def _exec_forcesell ----
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
@@ -697,7 +717,7 @@ class RPC:
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.get_open_trades():
_exec_force_exit(trade)
self.__exec_force_exit(trade, ordertype)
Trade.commit()
self._freqtrade.wallets.update()
return {'result': 'Created sell orders for all open trades.'}
@@ -710,7 +730,7 @@ class RPC:
logger.warning('force_exit: Invalid argument received')
raise RPCException('invalid argument')
_exec_force_exit(trade)
self.__exec_force_exit(trade, ordertype, amount)
Trade.commit()
self._freqtrade.wallets.update()
return {'result': f'Created sell order for trade {trade_id}.'}
@@ -719,7 +739,8 @@ class RPC:
order_type: Optional[str] = None,
order_side: SignalDirection = SignalDirection.LONG,
stake_amount: Optional[float] = None,
enter_tag: Optional[str] = 'force_entry') -> Optional[Trade]:
enter_tag: Optional[str] = 'force_entry',
leverage: Optional[float] = None) -> Optional[Trade]:
"""
Handler for forcebuy <asset> <price>
Buys a pair trade at the given or current price
@@ -761,6 +782,7 @@ class RPC:
ordertype=order_type, trade=trade,
is_short=is_short,
enter_tag=enter_tag,
leverage_=leverage,
):
Trade.commit()
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
@@ -875,7 +897,7 @@ class RPC:
lock.active = False
lock.lock_end_time = datetime.now(timezone.utc)
PairLock.query.session.commit()
Trade.commit()
return self._rpc_locks()

View File

@@ -2,6 +2,7 @@
This module contains class to manage RPC communications (Telegram, API, ...)
"""
import logging
from collections import deque
from typing import Any, Dict, List
from freqtrade.enums import RPCMessageType
@@ -77,6 +78,17 @@ class RPCManager:
except NotImplementedError:
logger.error(f"Message type '{msg['type']}' not implemented by handler {mod.name}.")
def process_msg_queue(self, queue: deque) -> None:
"""
Process all messages in the queue.
"""
while queue:
msg = queue.popleft()
self.send_msg({
'type': RPCMessageType.STRATEGY_MSG,
'msg': msg,
})
def startup_messages(self, config: Dict[str, Any], pairlist, protections) -> None:
if config['dry_run']:
self.send_msg({

View File

@@ -16,8 +16,8 @@ from typing import Any, Callable, Dict, List, Optional, Union
import arrow
from tabulate import tabulate
from telegram import (CallbackQuery, InlineKeyboardButton, InlineKeyboardMarkup, KeyboardButton,
ParseMode, ReplyKeyboardMarkup, Update)
from telegram import (MAX_MESSAGE_LENGTH, CallbackQuery, InlineKeyboardButton, InlineKeyboardMarkup,
KeyboardButton, ParseMode, ReplyKeyboardMarkup, Update)
from telegram.error import BadRequest, NetworkError, TelegramError
from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Updater
from telegram.utils.helpers import escape_markdown
@@ -35,8 +35,6 @@ logger = logging.getLogger(__name__)
logger.debug('Included module rpc.telegram ...')
MAX_TELEGRAM_MESSAGE_LENGTH = 4096
@dataclass
class TimeunitMappings:
@@ -72,7 +70,7 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
)
return wrapper
# Rollback session to avoid getting data stored in a transaction.
Trade.query.session.rollback()
Trade.rollback()
logger.debug(
'Executing handler: %s for chat_id: %s',
command_handler.__name__,
@@ -122,7 +120,8 @@ class Telegram(RPCHandler):
r'/daily$', r'/daily \d+$', r'/profit$', r'/profit \d+',
r'/stats$', r'/count$', r'/locks$', r'/balance$',
r'/stopbuy$', r'/reload_config$', r'/show_config$',
r'/logs$', r'/whitelist$', r'/blacklist$', r'/bl_delete$',
r'/logs$', r'/whitelist$', r'/whitelist(\ssorted|\sbaseonly)+$',
r'/blacklist$', r'/bl_delete$',
r'/weekly$', r'/weekly \d+$', r'/monthly$', r'/monthly \d+$',
r'/forcebuy$', r'/forcelong$', r'/forceshort$',
r'/forcesell$', r'/forceexit$',
@@ -243,6 +242,22 @@ class Telegram(RPCHandler):
"""
return f"{msg['exchange']}{' (dry)' if self._config['dry_run'] else ''}"
def _add_analyzed_candle(self, pair: str) -> str:
candle_val = self._config['telegram'].get(
'notification_settings', {}).get('show_candle', 'off')
if candle_val != 'off':
if candle_val == 'ohlc':
analyzed_df, _ = self._rpc._freqtrade.dataprovider.get_analyzed_dataframe(
pair, self._config['timeframe'])
candle = analyzed_df.iloc[-1].squeeze() if len(analyzed_df) > 0 else None
if candle is not None:
return (
f"*Candle OHLC*: `{candle['open']}, {candle['high']}, "
f"{candle['low']}, {candle['close']}`\n"
)
return ''
def _format_entry_msg(self, msg: Dict[str, Any]) -> str:
if self._rpc._fiat_converter:
msg['stake_amount_fiat'] = self._rpc._fiat_converter.convert_amount(
@@ -258,8 +273,9 @@ class Telegram(RPCHandler):
f"{emoji} *{self._exchange_from_msg(msg)}:*"
f" {entry_side['entered'] if is_fill else entry_side['enter']} {msg['pair']}"
f" (#{msg['trade_id']})\n"
)
message += f"*Enter Tag:* `{msg['enter_tag']}`\n" if msg.get('enter_tag', None) else ""
)
message += self._add_analyzed_candle(msg['pair'])
message += f"*Enter Tag:* `{msg['enter_tag']}`\n" if msg.get('enter_tag') else ""
message += f"*Amount:* `{msg['amount']:.8f}`\n"
if msg.get('leverage') and msg.get('leverage', 1.0) != 1.0:
message += f"*Leverage:* `{msg['leverage']}`\n"
@@ -272,7 +288,7 @@ class Telegram(RPCHandler):
message += f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}"
if msg.get('fiat_currency', None):
if msg.get('fiat_currency'):
message += f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
message += ")`"
@@ -288,7 +304,7 @@ class Telegram(RPCHandler):
msg['enter_tag'] = msg['enter_tag'] if "enter_tag" in msg.keys() else None
msg['emoji'] = self._get_sell_emoji(msg)
msg['leverage_text'] = (f"*Leverage:* `{msg['leverage']:.1f}`\n"
if msg.get('leverage', None) and msg.get('leverage', 1.0) != 1.0
if msg.get('leverage') and msg.get('leverage', 1.0) != 1.0
else "")
# Check if all sell properties are available.
@@ -298,19 +314,36 @@ class Telegram(RPCHandler):
msg['profit_fiat'] = self._rpc._fiat_converter.convert_amount(
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
msg['profit_extra'] = (
f" ({msg['gain']}: {msg['profit_amount']:.8f} {msg['stake_currency']}"
f" / {msg['profit_fiat']:.3f} {msg['fiat_currency']})")
f" / {msg['profit_fiat']:.3f} {msg['fiat_currency']}")
else:
msg['profit_extra'] = ''
msg['profit_extra'] = (
f" ({msg['gain']}: {msg['profit_amount']:.8f} {msg['stake_currency']}"
f"{msg['profit_extra']})")
is_fill = msg['type'] == RPCMessageType.EXIT_FILL
is_sub_trade = msg.get('sub_trade')
is_sub_profit = msg['profit_amount'] != msg.get('cumulative_profit')
profit_prefix = ('Sub ' if is_sub_profit
else 'Cumulative ') if is_sub_trade else ''
cp_extra = ''
if is_sub_profit and is_sub_trade:
if self._rpc._fiat_converter:
cp_fiat = self._rpc._fiat_converter.convert_amount(
msg['cumulative_profit'], msg['stake_currency'], msg['fiat_currency'])
cp_extra = f" / {cp_fiat:.3f} {msg['fiat_currency']}"
else:
cp_extra = ''
cp_extra = f"*Cumulative Profit:* (`{msg['cumulative_profit']:.8f} " \
f"{msg['stake_currency']}{cp_extra}`)\n"
message = (
f"{msg['emoji']} *{self._exchange_from_msg(msg)}:* "
f"{'Exited' if is_fill else 'Exiting'} {msg['pair']} (#{msg['trade_id']})\n"
f"*{'Profit' if is_fill else 'Unrealized Profit'}:* "
f"{self._add_analyzed_candle(msg['pair'])}"
f"*{f'{profit_prefix}Profit' if is_fill else f'Unrealized {profit_prefix}Profit'}:* "
f"`{msg['profit_ratio']:.2%}{msg['profit_extra']}`\n"
f"{cp_extra}"
f"*Enter Tag:* `{msg['enter_tag']}`\n"
f"*Exit Reason:* `{msg['exit_reason']}`\n"
f"*Duration:* `{msg['duration']} ({msg['duration_min']:.1f} min)`\n"
f"*Direction:* `{msg['direction']}`\n"
f"{msg['leverage_text']}"
f"*Amount:* `{msg['amount']:.8f}`\n"
@@ -318,11 +351,25 @@ class Telegram(RPCHandler):
)
if msg['type'] == RPCMessageType.EXIT:
message += (f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
f"*Close Rate:* `{msg['limit']:.8f}`")
f"*Exit Rate:* `{msg['limit']:.8f}`")
elif msg['type'] == RPCMessageType.EXIT_FILL:
message += f"*Close Rate:* `{msg['close_rate']:.8f}`"
message += f"*Exit Rate:* `{msg['close_rate']:.8f}`"
if msg.get('sub_trade'):
if self._rpc._fiat_converter:
msg['stake_amount_fiat'] = self._rpc._fiat_converter.convert_amount(
msg['stake_amount'], msg['stake_currency'], msg['fiat_currency'])
else:
msg['stake_amount_fiat'] = 0
rem = round_coin_value(msg['stake_amount'], msg['stake_currency'])
message += f"\n*Remaining:* `({rem}"
if msg.get('fiat_currency', None):
message += f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
message += ")`"
else:
message += f"\n*Duration:* `{msg['duration']} ({msg['duration_min']:.1f} min)`"
return message
def compose_message(self, msg: Dict[str, Any], msg_type: RPCMessageType) -> str:
@@ -335,7 +382,8 @@ class Telegram(RPCHandler):
elif msg_type in (RPCMessageType.ENTRY_CANCEL, RPCMessageType.EXIT_CANCEL):
msg['message_side'] = 'enter' if msg_type in [RPCMessageType.ENTRY_CANCEL] else 'exit'
message = (f"\N{WARNING SIGN} *{self._exchange_from_msg(msg)}:* "
f"Cancelling {msg['message_side']} Order for {msg['pair']} "
f"Cancelling {'partial ' if msg.get('sub_trade') else ''}"
f"{msg['message_side']} Order for {msg['pair']} "
f"(#{msg['trade_id']}). Reason: {msg['reason']}.")
elif msg_type == RPCMessageType.PROTECTION_TRIGGER:
@@ -358,7 +406,8 @@ class Telegram(RPCHandler):
elif msg_type == RPCMessageType.STARTUP:
message = f"{msg['status']}"
elif msg_type == RPCMessageType.STRATEGY_MSG:
message = f"{msg['msg']}"
else:
raise NotImplementedError(f"Unknown message type: {msg_type}")
return message
@@ -405,54 +454,63 @@ class Telegram(RPCHandler):
else:
return "\N{CROSS MARK}"
def _prepare_entry_details(self, filled_orders: List, quote_currency: str, is_open: bool):
def _prepare_order_details(self, filled_orders: List, quote_currency: str, is_open: bool):
"""
Prepare details of trade with entry adjustment enabled
"""
lines: List[str] = []
lines_detail: List[str] = []
if len(filled_orders) > 0:
first_avg = filled_orders[0]["safe_price"]
for x, order in enumerate(filled_orders):
if not order['ft_is_entry'] or order['is_open'] is True:
lines: List[str] = []
if order['is_open'] is True:
continue
wording = 'Entry' if order['ft_is_entry'] else 'Exit'
cur_entry_datetime = arrow.get(order["order_filled_date"])
cur_entry_amount = order["amount"]
cur_entry_amount = order["filled"] or order["amount"]
cur_entry_average = order["safe_price"]
lines.append(" ")
if x == 0:
lines.append(f"*Entry #{x+1}:*")
lines.append(f"*{wording} #{x+1}:*")
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average}")
f"*Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Price:* {cur_entry_average}")
else:
sumA = 0
sumB = 0
for y in range(x):
sumA += (filled_orders[y]["amount"] * filled_orders[y]["safe_price"])
sumB += filled_orders[y]["amount"]
amount = filled_orders[y]["filled"] or filled_orders[y]["amount"]
sumA += amount * filled_orders[y]["safe_price"]
sumB += amount
prev_avg_price = sumA / sumB
# TODO: This calculation ignores fees.
price_to_1st_entry = ((cur_entry_average - first_avg) / first_avg)
minus_on_entry = 0
if prev_avg_price:
minus_on_entry = (cur_entry_average - prev_avg_price) / prev_avg_price
dur_entry = cur_entry_datetime - arrow.get(
filled_orders[x - 1]["order_filled_date"])
days = dur_entry.days
hours, remainder = divmod(dur_entry.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
lines.append(f"*Entry #{x+1}:* at {minus_on_entry:.2%} avg profit")
lines.append(f"*{wording} #{x+1}:* at {minus_on_entry:.2%} avg profit")
if is_open:
lines.append("({})".format(cur_entry_datetime
.humanize(granularity=["day", "hour", "minute"])))
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average} "
f"*Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average {wording} Price:* {cur_entry_average} "
f"({price_to_1st_entry:.2%} from 1st entry rate)")
lines.append(f"*Order filled at:* {order['order_filled_date']}")
lines.append(f"({days}d {hours}h {minutes}m {seconds}s from previous entry)")
return lines
lines.append(f"*Order filled:* {order['order_filled_date']}")
# TODO: is this really useful?
# dur_entry = cur_entry_datetime - arrow.get(
# filled_orders[x - 1]["order_filled_date"])
# days = dur_entry.days
# hours, remainder = divmod(dur_entry.seconds, 3600)
# minutes, seconds = divmod(remainder, 60)
# lines.append(
# f"({days}d {hours}h {minutes}m {seconds}s from previous {wording.lower()})")
lines_detail.append("\n".join(lines))
return lines_detail
@authorized_only
def _status(self, update: Update, context: CallbackContext) -> None:
@@ -467,7 +525,14 @@ class Telegram(RPCHandler):
if context.args and 'table' in context.args:
self._status_table(update, context)
return
else:
self._status_msg(update, context)
def _status_msg(self, update: Update, context: CallbackContext) -> None:
"""
handler for `/status` and `/status <id>`.
"""
try:
# Check if there's at least one numerical ID provided.
@@ -479,14 +544,13 @@ class Telegram(RPCHandler):
results = self._rpc._rpc_trade_status(trade_ids=trade_ids)
position_adjust = self._config.get('position_adjustment_enable', False)
max_entries = self._config.get('max_entry_position_adjustment', -1)
messages = []
for r in results:
r['open_date_hum'] = arrow.get(r['open_date']).humanize()
r['num_entries'] = len([o for o in r['orders'] if o['ft_is_entry']])
r['exit_reason'] = r.get('exit_reason', "")
lines = [
"*Trade ID:* `{trade_id}`" +
("` (since {open_date_hum})`" if r['is_open'] else ""),
(" `(since {open_date_hum})`" if r['is_open'] else ""),
"*Current Pair:* {pair}",
"*Direction:* " + ("`Short`" if r.get('is_short') else "`Long`"),
"*Leverage:* `{leverage}`" if r.get('leverage') else "",
@@ -510,6 +574,8 @@ class Telegram(RPCHandler):
])
if r['is_open']:
if r.get('realized_profit'):
lines.append("*Realized Profit:* `{realized_profit:.8f}`")
if (r['stop_loss_abs'] != r['initial_stop_loss_abs']
and r['initial_stop_loss_ratio'] is not None):
# Adding initial stoploss only if it is different from stoploss
@@ -522,24 +588,34 @@ class Telegram(RPCHandler):
lines.append("*Stoploss distance:* `{stoploss_current_dist:.8f}` "
"`({stoploss_current_dist_ratio:.2%})`")
if r['open_order']:
if r['exit_order_status']:
lines.append("*Open Order:* `{open_order}` - `{exit_order_status}`")
else:
lines.append("*Open Order:* `{open_order}`")
lines.append(
"*Open Order:* `{open_order}`"
+ "- `{exit_order_status}`" if r['exit_order_status'] else "")
lines_detail = self._prepare_entry_details(
lines_detail = self._prepare_order_details(
r['orders'], r['quote_currency'], r['is_open'])
lines.extend(lines_detail if lines_detail else "")
# Filter empty lines using list-comprehension
messages.append("\n".join([line for line in lines if line]).format(**r))
for msg in messages:
self._send_msg(msg)
self.__send_status_msg(lines, r)
except RPCException as e:
self._send_msg(str(e))
def __send_status_msg(self, lines: List[str], r: Dict[str, Any]) -> None:
"""
Send status message.
"""
msg = ''
for line in lines:
if line:
if (len(msg) + len(line) + 1) < MAX_MESSAGE_LENGTH:
msg += line + '\n'
else:
self._send_msg(msg.format(**r))
msg = "*Trade ID:* `{trade_id}` - continued\n" + line + '\n'
self._send_msg(msg.format(**r))
@authorized_only
def _status_table(self, update: Update, context: CallbackContext) -> None:
"""
@@ -842,7 +918,7 @@ class Telegram(RPCHandler):
total_dust_currencies += 1
# Handle overflowing message length
if len(output + curr_output) >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(output + curr_output) >= MAX_MESSAGE_LENGTH:
self._send_msg(output)
output = curr_output
else:
@@ -1105,7 +1181,7 @@ class Telegram(RPCHandler):
f"({trade['profit_ratio']:.2%}) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
@@ -1140,7 +1216,7 @@ class Telegram(RPCHandler):
f"({trade['profit_ratio']:.2%}) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
@@ -1175,7 +1251,7 @@ class Telegram(RPCHandler):
f"({trade['profit_ratio']:.2%}) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
@@ -1210,7 +1286,7 @@ class Telegram(RPCHandler):
f"({trade['profit']:.2%}) "
f"({trade['count']})</code>\n")
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
self._send_msg(output, parse_mode=ParseMode.HTML)
output = stat_line
else:
@@ -1293,6 +1369,12 @@ class Telegram(RPCHandler):
try:
whitelist = self._rpc._rpc_whitelist()
if context.args:
if "sorted" in context.args:
whitelist['whitelist'] = sorted(whitelist['whitelist'])
if "baseonly" in context.args:
whitelist['whitelist'] = [pair.split("/")[0] for pair in whitelist['whitelist']]
message = f"Using whitelist `{whitelist['method']}` with {whitelist['length']} pairs\n"
message += f"`{', '.join(whitelist['whitelist'])}`"
@@ -1349,7 +1431,7 @@ class Telegram(RPCHandler):
escape_markdown(logrec[2], version=2),
escape_markdown(logrec[3], version=2),
escape_markdown(logrec[4], version=2))
if len(msgs + msg) + 10 >= MAX_TELEGRAM_MESSAGE_LENGTH:
if len(msgs + msg) + 10 >= MAX_MESSAGE_LENGTH:
# Send message immediately if it would become too long
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
msgs = msg + '\n'
@@ -1412,7 +1494,8 @@ class Telegram(RPCHandler):
"*/fx <trade_id>|all:* `Alias to /forceexit`\n"
f"{force_enter_text if self._config.get('force_entry_enable', False) else ''}"
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
"*/whitelist:* `Show current whitelist` \n"
"*/whitelist [sorted] [baseonly]:* `Show current whitelist. Optionally in "
"order and/or only displaying the base currency of each pairing.`\n"
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
"to the blacklist.` \n"
"*/blacklist_delete [pairs]| /bl_delete [pairs]:* "
@@ -1449,7 +1532,7 @@ class Telegram(RPCHandler):
"*/weekly <n>:* `Shows statistics per week, over the last n weeks`\n"
"*/monthly <n>:* `Shows statistics per month, over the last n months`\n"
"*/stats:* `Shows Wins / losses by Sell reason as well as "
"Avg. holding durationsfor buys and sells.`\n"
"Avg. holding durations for buys and sells.`\n"
"*/help:* `This help message`\n"
"*/version:* `Show version`"
)

View File

@@ -45,21 +45,21 @@ class Webhook(RPCHandler):
try:
whconfig = self._config['webhook']
if msg['type'] in [RPCMessageType.ENTRY]:
valuedict = whconfig.get('webhookentry', None)
valuedict = whconfig.get('webhookentry')
elif msg['type'] in [RPCMessageType.ENTRY_CANCEL]:
valuedict = whconfig.get('webhookentrycancel', None)
valuedict = whconfig.get('webhookentrycancel')
elif msg['type'] in [RPCMessageType.ENTRY_FILL]:
valuedict = whconfig.get('webhookentryfill', None)
valuedict = whconfig.get('webhookentryfill')
elif msg['type'] == RPCMessageType.EXIT:
valuedict = whconfig.get('webhookexit', None)
valuedict = whconfig.get('webhookexit')
elif msg['type'] == RPCMessageType.EXIT_FILL:
valuedict = whconfig.get('webhookexitfill', None)
valuedict = whconfig.get('webhookexitfill')
elif msg['type'] == RPCMessageType.EXIT_CANCEL:
valuedict = whconfig.get('webhookexitcancel', None)
valuedict = whconfig.get('webhookexitcancel')
elif msg['type'] in (RPCMessageType.STATUS,
RPCMessageType.STARTUP,
RPCMessageType.WARNING):
valuedict = whconfig.get('webhookstatus', None)
valuedict = whconfig.get('webhookstatus')
else:
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
if not valuedict:

Some files were not shown because too many files have changed in this diff Show More