Compare commits

..

559 Commits

Author SHA1 Message Date
Matthias
f9ef30bc02 Merge pull request #5185 from freqtrade/new_release
New release 2021.6
2021-06-26 14:41:13 +02:00
Matthias
1cb057bda7 Version bump 2021.6 2021-06-26 14:01:23 +02:00
Matthias
7fe42852a8 Merge branch 'stable' into new_release 2021-06-26 14:00:55 +02:00
Matthias
ea89af30c7 Merge pull request #5182 from aayush-jain18/docstring-cleanup
Docstring cleanup
2021-06-25 20:53:54 +02:00
aayush-jain18
d294ef10d7 unexpected docstring params 2021-06-25 23:56:16 +05:30
Matthias
1440b2f7fe Merge pull request #5178 from aayush-jain18/spell-correction
spell corrections
2021-06-25 19:10:39 +02:00
aayush-jain18
a46f60bd94 spell corrections 2021-06-25 22:10:04 +05:30
Matthias
3d9336459f Merge pull request #5180 from mohammad-hekmat/patch-2
Update configuration.md
2021-06-25 18:27:40 +02:00
Matthias
40545e62af Merge pull request #5082 from freqtrade/dry_run_order
Dry run order filling
2021-06-25 18:26:01 +02:00
Matthias
1a82685dd8 Don't reset log caching
uvicorn will "load from dict" the config - which flushes the logs
and therefore cleans log-buffering
2021-06-25 18:24:10 +02:00
mohammad sadegh hekmat
fef73b1b6a Update configuration.md 2021-06-25 20:42:44 +04:30
Matthias
ec2c4dd883 Merge pull request #5179 from mohammad-hekmat/patch-1
Update configuration.md
2021-06-25 18:04:36 +02:00
Matthias
91231a6073 Merge pull request #5177 from frosty00/binance-portal
Minor Binance Portal Edits
2021-06-25 17:49:35 +02:00
mohammad sadegh hekmat
ea236abf18 Update configuration.md 2021-06-25 19:19:51 +04:30
Carlo Revelli
69a3aee01e minor edits 2021-06-25 10:53:52 +01:00
Carlo Revelli
9e91240283 binance-portal 2021-06-25 10:43:40 +01:00
Matthias
2ade3ec7b9 Add max-width query to hide on small screens 2021-06-24 23:09:06 +02:00
Matthias
f585ffa264 Add Dark theme to Documentation 2021-06-24 22:53:46 +02:00
Matthias
538a1acdb5 Add Binance Broker ad to documentation page 2021-06-24 22:53:27 +02:00
Matthias
e0d3ca6c6d Fix import sorting 2021-06-24 18:44:59 +02:00
Matthias
c938edc01b Apply dataprovider to /pair_history endpoint 2021-06-24 18:18:01 +02:00
Matthias
f7c09ba63a Log endpoint should use static rpc class 2021-06-24 18:17:40 +02:00
Matthias
18c00a4222 Merge pull request #5170 from eschava/profit_N_consistent
make "/profit N" command output be consistent with "/daily" command
2021-06-23 18:27:49 +02:00
Eugene Schava
3c70768e18 make "/profit N" command output be consistent with "/daily" and "/status table" commands 2021-06-23 07:30:08 +03:00
Matthias
dce01b0542 Merge pull request #5159 from freqtrade/dependabot/pip/develop/scipy-1.7.0
Bump scipy from 1.6.3 to 1.7.0
2021-06-22 19:46:48 +02:00
Matthias
74b9be82a2 Merge pull request #5152 from robcaulk/patch-2
Fix errors during ubuntu install
2021-06-22 15:56:02 +02:00
Robert Caulk
10e94350e9 Update installation.md 2021-06-22 14:59:43 +02:00
Eugene Schava
e97c82c514 make "/profit N" command output be consistent with "/daily" and "/status table" commands 2021-06-22 12:22:19 +03:00
Eugene Schava
0605cbb06e make "/profit N" command output be consistent with "/daily" and "/status table" commands 2021-06-22 12:20:12 +03:00
Matthias
b8d6e68916 Merge pull request #5163 from freqtrade/dependabot/pip/develop/types-filelock-0.1.4
Bump types-filelock from 0.1.3 to 0.1.4
2021-06-21 15:08:24 +02:00
dependabot[bot]
8c1484ed5e Bump types-filelock from 0.1.3 to 0.1.4
Bumps [types-filelock](https://github.com/python/typeshed) from 0.1.3 to 0.1.4.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-filelock
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 06:06:08 +00:00
Matthias
dda0a48dfa Merge pull request #5162 from freqtrade/dependabot/pip/develop/types-tabulate-0.1.1
Bump types-tabulate from 0.1.0 to 0.1.1
2021-06-21 08:05:19 +02:00
Matthias
b7a5f9d138 Merge pull request #5161 from freqtrade/dependabot/pip/develop/types-cachetools-0.1.8
Bump types-cachetools from 0.1.7 to 0.1.8
2021-06-21 08:04:49 +02:00
dependabot[bot]
2d05a8bea1 Bump types-cachetools from 0.1.7 to 0.1.8
Bumps [types-cachetools](https://github.com/python/typeshed) from 0.1.7 to 0.1.8.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 04:35:56 +00:00
Matthias
147ecb2063 Merge pull request #5164 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.19
Bump prompt-toolkit from 3.0.18 to 3.0.19
2021-06-21 05:28:36 +01:00
dependabot[bot]
fdc04e27a4 Bump types-tabulate from 0.1.0 to 0.1.1
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.1.0 to 0.1.1.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 04:25:59 +00:00
Matthias
9f18decd92 Merge pull request #5166 from freqtrade/dependabot/pip/develop/pycoingecko-2.2.0
Bump pycoingecko from 2.1.0 to 2.2.0
2021-06-21 05:20:46 +01:00
Matthias
b4bb88cad3 Merge pull request #5160 from freqtrade/dependabot/pip/develop/ccxt-1.51.77
Bump ccxt from 1.51.40 to 1.51.77
2021-06-21 05:20:07 +01:00
Matthias
b85fdf11b4 Merge pull request #5165 from freqtrade/dependabot/pip/develop/types-requests-0.1.13
Bump types-requests from 0.1.11 to 0.1.13
2021-06-21 05:19:32 +01:00
dependabot[bot]
bb0ee837bc Bump pycoingecko from 2.1.0 to 2.2.0
Bumps [pycoingecko](https://github.com/man-c/pycoingecko) from 2.1.0 to 2.2.0.
- [Release notes](https://github.com/man-c/pycoingecko/releases)
- [Changelog](https://github.com/man-c/pycoingecko/blob/master/CHANGELOG.md)
- [Commits](https://github.com/man-c/pycoingecko/commits)

---
updated-dependencies:
- dependency-name: pycoingecko
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 03:01:22 +00:00
dependabot[bot]
a6628fc65f Bump types-requests from 0.1.11 to 0.1.13
Bumps [types-requests](https://github.com/python/typeshed) from 0.1.11 to 0.1.13.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 03:01:21 +00:00
dependabot[bot]
eab6399490 Bump prompt-toolkit from 3.0.18 to 3.0.19
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.18 to 3.0.19.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.18...3.0.19)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 03:01:17 +00:00
dependabot[bot]
fc7b372ce4 Bump ccxt from 1.51.40 to 1.51.77
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.51.40 to 1.51.77.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/1.51.40...1.51.77)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 03:01:06 +00:00
dependabot[bot]
17f8936f42 Bump scipy from 1.6.3 to 1.7.0
Bumps [scipy](https://github.com/scipy/scipy) from 1.6.3 to 1.7.0.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.6.3...v1.7.0)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-21 03:00:59 +00:00
Matthias
97351c95c0 Add section about GPU support
#5158 #5085 #3704 #2754
2021-06-20 10:36:18 +02:00
Matthias
7f434c0413 Simplify mkdocs jquery inclusion by using overrides
instead of partials
2021-06-20 09:37:32 +02:00
Matthias
347eceeda5 Try fix fluky test 2021-06-19 20:30:51 +02:00
Matthias
204758834d Merge pull request #4308 from eatrisno/patch-1
Add Refresh / Reload Button on rpc/Telegram
2021-06-19 18:50:59 +01:00
Matthias
122943d835 Don't run filter again for pairlist generator
The generator implicitly runs filter - so it should not be ran again
as that would void generator caching.

closes #5103
2021-06-19 19:37:27 +02:00
Matthias
96fbb226c5 Implement better strategy checks
part of #2696
2021-06-19 19:32:29 +02:00
Matthias
a7f8342171 Add small documentation about reload disabling 2021-06-19 16:49:54 +02:00
Matthias
6e99e3fbbb Implement tests for message updating 2021-06-19 09:31:34 +02:00
Matthias
39b876e37a Log exchange responses if configured 2021-06-19 09:07:42 +02:00
Matthias
e40d481d09 Merge pull request #5014 from Rikj000/hyperopt-show-include-non-optimized-in-json
BugFix - `hyperopt-show --print-json` include non-optimized params
2021-06-19 07:42:15 +01:00
Rik Helsen
656bebd4da 🪲 Included completely non_optimized spaces in json + swapped merge dictionary order 2021-06-18 22:03:04 +02:00
Matthias
6e89fbd146 Remove Dockerfile.aarch64
it's identical to the real image except for the "--platform" tag,
which is unnecessary if building from a arm64 architecture
2021-06-18 21:06:58 +02:00
Matthias
e1010ff592 Don't load protections from config if strategy defines a property 2021-06-18 19:55:53 +02:00
Robert Caulk
0a1e15988f Fix errors during ubuntu install
Encountering the python header error on a fresh ubuntu install:

```  utils_find_1st/find_1st.cpp:3:10: fatal error: Python.h: No such file or directory
   #include "Python.h"
            ^~~~~~~~~~
  compilation terminated.
```

solved by installing python3.7-dev. Also need to ensure python3.7-venv for fresh install.
2021-06-18 09:48:59 +02:00
Rik Helsen
1567804509 kwargs merge dictionaries instead of using loops 2021-06-17 22:41:49 +02:00
Rik Helsen
546ca01071 ♻️ Fixed flake8 warning 2021-06-17 20:33:21 +02:00
Rik Helsen
96cd76998b Merge branch 'freqtrade-develop' into hyperopt-show-include-non-optimized-in-json
🔀 Merged upstream branches and fixed merge conflicts
2021-06-17 20:24:36 +02:00
Rik Helsen
90d37f5ec6 🔀 Merged upstream branches and fixed merge conflicts 2021-06-17 20:24:20 +02:00
Matthias
8562e19776 Document protections to come from the strategy 2021-06-17 20:15:53 +02:00
Matthias
a9f111dca0 Fix some types 2021-06-17 19:50:49 +02:00
Matthias
7ff794cb87 Merge branch 'develop' into pr/eatrisno/4308 2021-06-17 19:46:15 +02:00
Matthias
8bb464bd64 Merge pull request #5108 from rokups/rk/pessimistic-trailing-stoploss
Implement most pessimistic handling of trailing stoploss.
2021-06-17 18:41:00 +01:00
Matthias
c4bc47e6e7 Merge pull request #5140 from barisengez/develop
Moved daily avg trade row next to total trades on backtest results
2021-06-17 08:54:48 +01:00
Matthias
a49ca9cbf7 Change log-level "Executing handler" msg to debug
closes #5143
2021-06-17 06:57:35 +02:00
Matthias
b38ab84a13 Add documentation mention about new behaviour 2021-06-17 06:48:41 +02:00
Matthias
1c9def2fdb Update freqtrade/optimize/optimize_reports.py 2021-06-16 20:17:44 +01:00
barbarius
1bb04bb0c2 Moved daily avg trade row next to total trades on backtest results 2021-06-16 11:40:55 +02:00
Matthias
38ed49cef5 move low to stoploss_reached
to clarify where which rate is used
2021-06-15 09:05:36 +03:00
Rokas Kupstys
6d5fc96714 Implement most pessimistic handling of trailing stoploss. 2021-06-15 09:05:36 +03:00
Matthias
0af9bcef60 Merge pull request #5131 from freqtrade/dependabot/pip/develop/mypy-0.902
Bump mypy from 0.812 to 0.902
2021-06-14 19:03:46 +01:00
Matthias
cf7394d01c Export backtesting results by default
closes #4977
2021-06-14 19:57:24 +02:00
Matthias
4ba7a2bbd2 Fix mypy update problems 2021-06-14 19:18:42 +02:00
Matthias
9c789856bd Merge pull request #5129 from freqtrade/dependabot/pip/develop/mkdocs-1.2.1
Bump mkdocs from 1.2 to 1.2.1
2021-06-14 11:39:11 +01:00
dependabot[bot]
63802aa7f6 Bump mkdocs from 1.2 to 1.2.1
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.2 to 1.2.1.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.2...1.2.1)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-14 08:52:42 +00:00
Matthias
61845f9706 Merge pull request #5132 from freqtrade/dependabot/pip/develop/ccxt-1.51.40
Bump ccxt from 1.51.3 to 1.51.40
2021-06-14 09:51:17 +01:00
Matthias
cb10f8cd4f Merge pull request #5130 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.18
Bump sqlalchemy from 1.4.17 to 1.4.18
2021-06-14 09:50:40 +01:00
Matthias
9c64fe466d Merge pull request #5128 from freqtrade/dependabot/pip/develop/mkdocs-material-7.1.8
Bump mkdocs-material from 7.1.7 to 7.1.8
2021-06-14 09:16:39 +01:00
dependabot[bot]
fe933e78bd Bump ccxt from 1.51.3 to 1.51.40
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.51.3 to 1.51.40.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.51.3...1.51.40)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-14 05:19:33 +00:00
dependabot[bot]
3f1d6d453c Bump mypy from 0.812 to 0.902
Bumps [mypy](https://github.com/python/mypy) from 0.812 to 0.902.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.812...v0.902)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-14 05:19:23 +00:00
dependabot[bot]
4530ae28cd Bump sqlalchemy from 1.4.17 to 1.4.18
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.17 to 1.4.18.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-14 05:19:16 +00:00
dependabot[bot]
6dc4259c6e Bump mkdocs-material from 7.1.7 to 7.1.8
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 7.1.7 to 7.1.8.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/docs/changelog.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/7.1.7...7.1.8)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-14 05:18:54 +00:00
Matthias
1d0a178eb5 Merge pull request #5122 from bzed/broken_symlink_fix
Ignore broken symlinks while resolving strategies.
2021-06-14 05:10:56 +01:00
Bernd Zeimetz
cd6620a044 Ignore broken symlinks while resolving strategies.
Without this fix the resolver tries to read from the broken symlink,
resulting in an exception that leads to the the rather confusing
error message

freqtrade.resolvers.iresolver - WARNING - Path "...../user_data/strategies" does not exist.

as a result of a symlink matching .py not being readable.
2021-06-13 21:42:09 +02:00
Matthias
e226252921 Always use the same parameter sequence 2021-06-13 20:39:25 +02:00
Matthias
a95f760ff7 Simplify update logic by moving it to send_msg 2021-06-13 20:34:08 +02:00
Matthias
03eff69829 Simplify update message sending 2021-06-13 20:23:32 +02:00
Matthias
d32508aa75 Merge branch 'develop' into pr/eatrisno/4308 2021-06-13 20:04:24 +02:00
Matthias
7b372fbcaa Merge pull request #5126 from freqtrade/remove_ordereddict
Remove ordereddict
2021-06-13 14:44:32 +01:00
Matthias
eaf0aac77e Remove OrderedDict
as we're no longer supporting python 3.6
2021-06-13 11:47:18 +02:00
Matthias
fb4dd6c2ac Update test to cover this scenario 2021-06-13 11:34:44 +02:00
Matthias
d54ee0eb04 Refactor hyperopt_tools naming 2021-06-13 11:24:24 +02:00
Matthias
c65b4e5d3b Small fix to models 2021-06-13 11:20:22 +02:00
Matthias
d35b2e3b8f Update ftx stoploss logic to properly detect correct trades
closes #5045
2021-06-13 11:06:34 +02:00
Matthias
a05e38dbd3 Require timeframe for plot-profit
must be set in config or via --timeframe
2021-06-12 09:03:55 +02:00
Matthias
e2bbc0aa04 Merge pull request #5117 from freqtrade/dependabot/pip/fastapi-0.65.2
Bump fastapi from 0.65.1 to 0.65.2
2021-06-10 17:58:53 +01:00
dependabot[bot]
c215b24a19 Bump fastapi from 0.65.1 to 0.65.2
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.65.1 to 0.65.2.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.65.1...0.65.2)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-10 15:54:32 +00:00
Matthias
ef208012c4 Merge pull request #5104 from freqtrade/enums_own_module
Enums own package
2021-06-10 05:31:14 +01:00
Matthias
c292926086 Small style improvements (no empty line at start) 2021-06-10 06:21:10 +02:00
Matthias
d4dfdf04fc Move RPCMessageType to enums 2021-06-09 20:23:17 +02:00
Matthias
f484ec216e Merge pull request #5099 from bgouvea/develop
Addition of the maximum drawdown to the hyperoptimization
2021-06-09 19:10:25 +01:00
Bruno Gouvea
40f1ede775 Simplifying HO's result function 2021-06-09 12:03:24 -03:00
Matthias
756904f985 Set sell_reason to stoploss when closing the trade as stoploss
closes #5101
2021-06-08 21:21:29 +02:00
Matthias
9c34304cb9 Move state enums to enums package 2021-06-08 21:20:35 +02:00
Matthias
3c149b9b59 Move signalType to enums 2021-06-08 21:09:39 +02:00
Matthias
89b9915c12 Update imports for SellType in tests 2021-06-08 21:07:16 +02:00
Matthias
d16a619489 Move SellType Enum to it's own module 2021-06-08 21:04:34 +02:00
Matthias
b9cf950bbf Add test for bad argument on /profit 2021-06-08 20:35:25 +02:00
Matthias
e71d965e32 Merge pull request #4982 from eschava/profit_day_week
day/week options for Telegram '/profit' command
2021-06-08 19:26:57 +01:00
Matthias
3310a45029 Change wording if limited lookback is used 2021-06-08 20:10:43 +02:00
Bruno Gouvea
3cce668353 Creating a control variable to determine the existence of max drawdown in the final result. 2021-06-08 02:57:44 -03:00
Bruno Gouvea
816bb531b3 Creating fake column for legacy mode on max drawdown 2021-06-08 02:42:55 -03:00
Bruno Gouvea
4595db39aa Displaying max. drawdown only when it is not legacy mode. 2021-06-08 02:18:00 -03:00
Bruno Gouvea
c513c9685d Remove blank line (PEP8) 2021-06-07 18:20:04 -03:00
Bruno Gouvea
5c3a418e65 Adjusting drawdown column position. 2021-06-07 18:15:26 -03:00
Bruno Gouvea
35d6140068 Displays the max drawdown in the hyper optimization results table. 2021-06-07 17:53:19 -03:00
Matthias
4512ece17d Update Discord link 2021-06-07 21:05:25 +02:00
Matthias
97a12ddab7 Version pin mkdocs to avoid nasty surprises
fix use_directory_urls defaulting to false
2021-06-07 20:19:48 +02:00
Matthias
dff8490daa Fix docs rendering for pricefilter 2021-06-07 20:00:30 +02:00
Matthias
ad16dbc50a Merge pull request #5092 from freqtrade/dependabot/pip/develop/blosc-1.10.4
Bump blosc from 1.10.2 to 1.10.4
2021-06-07 18:57:53 +01:00
dependabot[bot]
57cd8888e2 Bump blosc from 1.10.2 to 1.10.4
Bumps [blosc](https://github.com/blosc/python-blosc) from 1.10.2 to 1.10.4.
- [Release notes](https://github.com/blosc/python-blosc/releases)
- [Changelog](https://github.com/Blosc/python-blosc/blob/master/RELEASE_NOTES.rst)
- [Commits](https://github.com/blosc/python-blosc/compare/v1.10.2...v1.10.4)

---
updated-dependencies:
- dependency-name: blosc
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 17:34:25 +00:00
Matthias
38e28dbf4e Merge pull request #5093 from freqtrade/dependabot/pip/develop/pycoingecko-2.1.0
Bump pycoingecko from 2.0.0 to 2.1.0
2021-06-07 18:33:35 +01:00
Matthias
9a87765e61 Merge pull request #5090 from freqtrade/dependabot/pip/develop/python-telegram-bot-13.6
Bump python-telegram-bot from 13.5 to 13.6
2021-06-07 18:05:36 +01:00
Matthias
b5bd695f2b Merge pull request #5091 from freqtrade/dependabot/pip/develop/ccxt-1.51.3
Bump ccxt from 1.50.70 to 1.51.3
2021-06-07 18:05:02 +01:00
Matthias
2878cca52c Merge pull request #5088 from freqtrade/dependabot/pip/develop/uvicorn-0.14.0
Bump uvicorn from 0.13.4 to 0.14.0
2021-06-07 11:53:55 +01:00
Matthias
bda7af08fa Merge pull request #5089 from freqtrade/dependabot/pip/develop/pytest-cov-2.12.1
Bump pytest-cov from 2.12.0 to 2.12.1
2021-06-07 11:50:08 +01:00
Matthias
bf5796744b Merge pull request #5094 from freqtrade/dependabot/pip/develop/mkdocs-material-7.1.7
Bump mkdocs-material from 7.1.6 to 7.1.7
2021-06-07 11:25:14 +01:00
dependabot[bot]
14119d7366 Bump mkdocs-material from 7.1.6 to 7.1.7
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 7.1.6 to 7.1.7.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/docs/changelog.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/7.1.6...7.1.7)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:22:30 +00:00
dependabot[bot]
77a2feeb9f Bump pycoingecko from 2.0.0 to 2.1.0
Bumps [pycoingecko](https://github.com/man-c/pycoingecko) from 2.0.0 to 2.1.0.
- [Release notes](https://github.com/man-c/pycoingecko/releases)
- [Changelog](https://github.com/man-c/pycoingecko/blob/master/CHANGELOG.md)
- [Commits](https://github.com/man-c/pycoingecko/compare/2.0.0...2.1.0)

---
updated-dependencies:
- dependency-name: pycoingecko
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:22:24 +00:00
dependabot[bot]
2468ae35cd Bump ccxt from 1.50.70 to 1.51.3
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.50.70 to 1.51.3.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.50.70...1.51.3)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:22:09 +00:00
dependabot[bot]
69d74544aa Bump python-telegram-bot from 13.5 to 13.6
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.5 to 13.6.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.5...v13.6)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:22:00 +00:00
dependabot[bot]
9073a05328 Bump pytest-cov from 2.12.0 to 2.12.1
Bumps [pytest-cov](https://github.com/pytest-dev/pytest-cov) from 2.12.0 to 2.12.1.
- [Release notes](https://github.com/pytest-dev/pytest-cov/releases)
- [Changelog](https://github.com/pytest-dev/pytest-cov/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-cov/compare/v2.12.0...v2.12.1)

---
updated-dependencies:
- dependency-name: pytest-cov
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:21:53 +00:00
dependabot[bot]
c8accd314a Bump uvicorn from 0.13.4 to 0.14.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.13.4 to 0.14.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.13.4...0.14.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2021-06-07 05:21:47 +00:00
Matthias
be6d6b7d74 Merge pull request #5083 from freqtrade/test_multiarch
Combine docker build scripts
2021-06-06 18:19:58 +01:00
Matthias
6479217cb4 Don't build for test_multiarch 2021-06-06 14:16:32 +02:00
Matthias
c76848e089 Update dry-run description with new filling logic 2021-06-06 13:51:42 +02:00
Matthias
c389d44e9a Improve filling logic 2021-06-05 15:22:52 +02:00
Matthias
db03a24109 Add tests for fill methods 2021-06-05 09:09:39 +02:00
Matthias
1e988c97ad Update dry-run order handling to use realistic fill prices
closes #3389
2021-06-05 09:09:39 +02:00
Matthias
a0893b291a Fix strategy samples to use runmode.value
closes #5073
2021-06-05 09:03:03 +02:00
Matthias
42b6d28b3c Update warning about order_time_in_force
as pointed out in #3009
2021-06-03 19:20:04 +02:00
Matthias
8e44de7f83 Merge pull request #5071 from janoskut/plot-profit-make-open-html-optional
plot-profit: Make "auto-open" HTML result optional
2021-06-03 05:40:38 +01:00
Matthias
8f4700e690 Merge pull request #5070 from janoskut/test-pairlist-remove-non-json-headline
test-pairlist: remove non-JSON headline from JSON output
2021-06-03 05:39:50 +01:00
Janos
812eb229df plot-profit: Make "auto-open" HTML result optional
Adding an "--auto-open" argument.
This improves tool processing of the results, while still allowing to open the HTML file for easy use.
2021-06-02 21:33:26 +02:00
Janos
80af6e43e4 test-pairlist: remove non-JSON headline from JSON output 2021-06-02 21:02:21 +02:00
Matthias
3dab58e6db Merge pull request #5069 from freqtrade/dry_run_orders
Pricing refactor
2021-06-02 18:05:51 +01:00
Matthias
cabab44b75 Combine docker build scripts 2021-06-02 16:13:51 +02:00
Matthias
387f3bbc5d Adjust missed tests 2021-06-02 11:43:47 +02:00
Matthias
bd1984386e Move get_sell_rate to exchange class 2021-06-02 11:41:13 +02:00
Matthias
12916243ec Move get_buy_rate to exchange class 2021-06-02 11:30:19 +02:00
Matthias
4e1425023e Further reorder exchange methods 2021-06-02 11:20:26 +02:00
Matthias
4c277b3039 Reorder exchange methods 2021-06-02 11:18:13 +02:00
Matthias
67beda6c92 Add fetch_dry_run_order method 2021-06-02 11:06:32 +02:00
Matthias
10cd89a99d Allow the API to respond faster in case of long pairlists 2021-06-02 10:39:49 +02:00
Matthias
a257137993 Merge pull request #5066 from eschava/telegram_sell_message
telegram: move the most important information to the top of the sell message
2021-06-02 06:40:29 +01:00
Eugene Schava
9edcb393b6 telegram: move the most important information to the top of sell message
fixed flake error
2021-06-01 22:24:21 +03:00
Matthias
1594402312 Add note about signal expiry 2021-06-01 19:39:41 +02:00
Eugene Schava
79552a93fe telegram: move the most important information to the top of sell message
fixed tests
2021-06-01 20:17:11 +03:00
Eugene Schava
53b1f38952 telegram: move the most important information to the top of sell message 2021-06-01 20:08:22 +03:00
Matthias
f920c26802 fix Hyperopt-list avg-time filters
These should use a numeric field (which currently isn't available).

closes #5061
2021-05-31 20:01:40 +02:00
Matthias
2f816dff9b Merge pull request #5057 from freqtrade/dependabot/pip/develop/ccxt-1.50.70
Bump ccxt from 1.50.48 to 1.50.70
2021-05-31 16:40:19 +01:00
Matthias
b5e3fe3b8e Document bittrex volumepairlist incompatibility
closes #5051
2021-05-31 17:38:41 +02:00
dependabot[bot]
f9541d301f Bump ccxt from 1.50.48 to 1.50.70
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.50.48 to 1.50.70.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.50.48...1.50.70)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-31 08:19:14 +00:00
Matthias
1829da669c Merge pull request #5053 from freqtrade/dependabot/pip/develop/urllib3-1.26.5
Bump urllib3 from 1.26.4 to 1.26.5
2021-05-31 07:40:28 +01:00
Matthias
1dc2af78ce Merge pull request #5055 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.17
Bump sqlalchemy from 1.4.15 to 1.4.17
2021-05-31 07:38:40 +01:00
Matthias
3d54ab78b2 Merge pull request #5054 from freqtrade/dependabot/pip/develop/mkdocs-material-7.1.6
Bump mkdocs-material from 7.1.5 to 7.1.6
2021-05-31 07:37:56 +01:00
Matthias
a92865ce8a Merge pull request #5056 from freqtrade/dependabot/pip/develop/coveralls-3.1.0
Bump coveralls from 3.0.1 to 3.1.0
2021-05-31 07:37:17 +01:00
dependabot[bot]
5d4e182336 Bump coveralls from 3.0.1 to 3.1.0
Bumps [coveralls](https://github.com/TheKevJames/coveralls-python) from 3.0.1 to 3.1.0.
- [Release notes](https://github.com/TheKevJames/coveralls-python/releases)
- [Changelog](https://github.com/TheKevJames/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/TheKevJames/coveralls-python/compare/3.0.1...3.1.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-31 05:18:54 +00:00
dependabot[bot]
b4319b5ad8 Bump sqlalchemy from 1.4.15 to 1.4.17
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.15 to 1.4.17.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-31 05:18:49 +00:00
dependabot[bot]
eb166147c3 Bump mkdocs-material from 7.1.5 to 7.1.6
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 7.1.5 to 7.1.6.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/docs/changelog.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/7.1.5...7.1.6)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-31 05:18:39 +00:00
dependabot[bot]
cd300c52ee Bump urllib3 from 1.26.4 to 1.26.5
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.4 to 1.26.5.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.4...1.26.5)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-31 05:18:19 +00:00
Matthias
2d7ccaeb3d Add test for load_config 2021-05-30 20:14:54 +02:00
Matthias
06b59551b0 Improve test coverage 2021-05-30 20:14:54 +02:00
Matthias
f9bcf19f9a Merge pull request #5003 from rokups/rk/plotting
Indicator plotting improvement
2021-05-30 18:44:54 +01:00
Matthias
e3d5c9cb10 Fix typo in exception message 2021-05-30 16:39:33 +01:00
Matthias
e17e35f0ef Merge pull request #5046 from freqtrade/list_strategy_hyperopt
allow list-strategies to show if params are hyperoptable
2021-05-30 16:36:31 +01:00
Matthias
d3e255935a Merge pull request #5050 from freqtrade/test_nowrite
Test nowrite
2021-05-30 15:46:57 +01:00
Matthias
901d984ee3 Tests should write to tmpdir, not testdir 2021-05-30 16:26:24 +02:00
Matthias
4ac3e2978b Merge pull request #5049 from kamontat/patch-1
Fix we use check sell_noti not noti
2021-05-30 15:19:27 +01:00
Kamontat Chantrachirathumrong
806838c3af Fix we use check sell_noti not noti 2021-05-30 21:07:44 +07:00
Rokas Kupstys
b54da430b9 Add ability to plot bars on indicator chart and pass custom arguments to plotly. 2021-05-30 11:11:19 +03:00
Matthias
08f96df3ac Don't write to testdir, but to tempdir 2021-05-30 08:43:14 +02:00
Matthias
d7fdc2114a allow list-strategies to show if params are hyperoptable 2021-05-29 13:27:08 +02:00
Matthias
a81a672ffe Merge pull request #5043 from freqtrade/test_multiarch
Test multiarch
2021-05-29 09:44:02 +01:00
Matthias
f6b1abe23f Remove ci from test_multiarch again 2021-05-29 08:30:55 +02:00
Matthias
9cf2c2201b Align dockerfiles 2021-05-29 08:30:55 +02:00
Matthias
1e052bde90 Move Dockerfile.armhf to docker directory 2021-05-29 08:30:55 +02:00
Matthias
8658be004e Use docker-manifest to build multiarch images 2021-05-29 08:30:45 +02:00
Matthias
313567d07d Support having numbers in custom keyboard 2021-05-29 08:12:25 +02:00
Matthias
9d5ffce732 Merge pull request #5042 from blacklightpy/develop
Removed binance.je from exchange specific notes
2021-05-29 07:11:01 +01:00
Jyothish Kumar M S
6418f2eedb Removed binance.je from exchange specific notes
Binance Jersey is deprecated, so I think it should be removed from freqtrade
2021-05-29 01:28:20 +05:30
Matthias
4617967e14 Try building for multiarch 2021-05-28 19:15:03 +02:00
Eugene Schava
14df243661 day/week options for Telegram '/profit' command
mypy fix
2021-05-28 17:18:23 +03:00
Eugene Schava
012309a06a day/week options for Telegram '/profit' command
fixed line lenght
2021-05-28 17:03:31 +03:00
Eugene Schava
36b68d3702 day/week options for Telegram '/profit' command
format changed to "/profit n"
2021-05-28 14:46:22 +03:00
Eugene Schava
4b5a9d8c49 day/week options for Telegram '/profit' command
revert accidental changes
2021-05-28 14:43:57 +03:00
Matthias
59366208b0 Add no_build-isolation to arm images too 2021-05-28 13:01:09 +02:00
Matthias
27bd3cea4f Fix failing docker build 2021-05-28 12:40:30 +02:00
Eugene Schava
a965436cd6 day/week options for Telegram '/profit' command
format changed to "/profit n"
2021-05-28 10:17:26 +03:00
Matthias
6224a656c3 Merge pull request #5031 from freqtrade/pytoml
Switch to pyproject.toml for setup
2021-05-28 07:58:13 +01:00
Matthias
8a56af9192 Update onlyprofit loss should use absolute profit
closes #4934
2021-05-28 08:38:46 +02:00
Matthias
a42effd4fc Update email to freqtrade email address 2021-05-28 08:26:20 +02:00
Matthias
b740ed8064 Merge pull request #5035 from marijn111/develop
Fix NameError in hyperopt.md code example
2021-05-27 15:13:48 +01:00
Matthias
7bfe935e37 Merge pull request #4838 from Antreasgr/fix-encoding-issue
Fix bug in running hyperopt in windows 10
2021-05-27 14:57:36 +01:00
Matthias
85c2ca0d03 Merge pull request #5034 from freqtrade/new_release
New release 2021.5
2021-05-27 14:52:44 +01:00
Matthias
377352fced Merge pull request #4682 from freqtrade/sqlalchemy_14
Sqlalchemy 14 preparations
2021-05-27 14:19:25 +01:00
Marijn
6235a4d92e [changes] - Hyperopt code example 2021-05-27 15:01:58 +02:00
Matthias
a89364aa98 Merge branch 'develop' into pr/Antreasgr/4838 2021-05-27 14:59:39 +02:00
Matthias
5d96107496 Don't configure isort twice 2021-05-27 14:25:29 +02:00
Matthias
3014bc3467 Don't use Sum sign in hyperopt to avoid compatibility problems 2021-05-27 14:22:11 +02:00
Matthias
9fbc5c0537 Switch to pyproject.toml for setup 2021-05-27 14:03:39 +02:00
Matthias
639c83575b Fix csv-export error with new hyperopt format 2021-05-27 13:09:06 +02:00
Matthias
cf39dd2163 Fix csv-export error with new hyperopt format 2021-05-27 13:08:28 +02:00
Matthias
e0083bc58e Support backwards-compatible sell setting 2021-05-27 13:00:05 +02:00
Matthias
66de5df1d1 Update sqlite init method 2021-05-27 11:38:28 +02:00
Matthias
b82f7a2dfd Update orders-migrations to work with new sqlalchemy syntax 2021-05-27 11:38:28 +02:00
Matthias
17f74f7da8 Ensure commit happens on forcebuy 2021-05-27 11:38:28 +02:00
Matthias
a01d05997e Add Trade.commit method for easy use 2021-05-27 11:38:28 +02:00
Matthias
6fb32c3594 Use commit instead of .flush() 2021-05-27 11:38:28 +02:00
Matthias
eaa47ff335 Don't use autocommit 2021-05-27 11:38:28 +02:00
Matthias
c31cb67118 Further changes for sqlalchemy 1.4 2021-05-27 11:38:28 +02:00
Matthias
2f79958acb Move declarative_base import to import from .orm 2021-05-27 11:38:28 +02:00
Kamontat Chantrachirathumrong
c5c323ca88 Settings notify sell in telegram base on sell reason (#5028)
* BREAK: notification sell by sell reason

* Update constants.py

* Update telegram.py

* Update telegram-usage.md

* Update telegram.py

* Update telegram.py

* Fix test fail

* Update config_full.json.example

* Update telegram-usage.md

* Update telegram.py

* Update telegram.py

* Update telegram-usage.md

* validate value of sell object

* Fix linter

* Update constants.py

* Make telegram sample slightly more positive

Co-authored-by: Matthias <xmatthias@outlook.com>
2021-05-27 11:35:27 +02:00
Matthias
8bef7217ec Forgot to save :O 2021-05-27 11:24:01 +02:00
Matthias
a6cd353655 Address random ci failure 2021-05-27 11:22:22 +02:00
Matthias
0c9b913cad Version bump 2021.5 2021-05-27 11:10:10 +02:00
Matthias
e42e06a593 Merge branch 'stable' into new_release 2021-05-27 11:10:00 +02:00
Matthias
f3d8e5c9e4 Improve hyperopt docs
closes #4949
2021-05-27 10:44:35 +02:00
Matthias
42453333be Align coinbase download with ccxt limits
Align with https://github.com/ccxt/ccxt/issues/9268
2021-05-27 07:38:47 +02:00
Matthias
8e89d3e6e4 Fix sort error 2021-05-25 19:33:34 +02:00
Matthias
cc5769e900 Convert np.int64 to proper int
closes #5018
2021-05-25 19:24:56 +02:00
Matthias
a747312c1e Explicitly provide is_open to trade Object
closes #5015
2021-05-25 18:02:07 +02:00
Matthias
aa4653549b Merge pull request #5019 from kamontat/patch-1
Wrong filename in devcontainer
2021-05-25 05:27:44 +01:00
Kamontat Chantrachirathumrong
7dcf94f80c Update Dockerfile 2021-05-25 08:18:14 +07:00
Rikj000
bd44deea0d BugFix - hyperopt-show --print-json include non-optimized params 2021-05-24 18:51:33 +02:00
Matthias
9465fd390a Fix devcontainer 2021-05-24 17:01:53 +02:00
Matthias
c14a4eaa68 Merge pull request #5013 from nmenescardi/patch-2
Update strategy-advanced.md
2021-05-24 15:27:23 +01:00
Nicolas Menescardi
c0d3a31ddb Update strategy-advanced.md
fix some typos
2021-05-24 11:08:17 -03:00
Matthias
bb1222d9b8 Merge pull request #5009 from freqtrade/dependabot/pip/develop/ta-lib-0.4.20
Bump ta-lib from 0.4.19 to 0.4.20
2021-05-24 10:31:59 +01:00
Matthias
ba3997185b Update wheels for ta-lib 2021-05-24 10:43:48 +02:00
Matthias
84d8a4b061 Merge pull request #5010 from freqtrade/dependabot/pip/develop/ccxt-1.50.30
Bump ccxt from 1.50.6 to 1.50.30
2021-05-24 09:43:11 +01:00
Matthias
5d44ca0b82 Merge pull request #5005 from Pascal66/patch-2
Fix a rare error during hyperopt
2021-05-24 09:40:29 +01:00
Matthias
d95c526242 Merge pull request #5008 from freqtrade/dependabot/pip/develop/jinja2-3.0.1
Bump jinja2 from 3.0.0 to 3.0.1
2021-05-24 07:05:34 +01:00
Matthias
af16614bf2 Fix formatting issue 2021-05-24 07:48:36 +02:00
Matthias
929e085910 Merge pull request #5007 from freqtrade/dependabot/pip/develop/mkdocs-material-7.1.5
Bump mkdocs-material from 7.1.4 to 7.1.5
2021-05-24 06:46:11 +01:00
dependabot[bot]
20ccda1699 Bump ccxt from 1.50.6 to 1.50.30
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.50.6 to 1.50.30.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.50.6...1.50.30)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-24 05:24:17 +00:00
dependabot[bot]
7757c476fd Bump ta-lib from 0.4.19 to 0.4.20
Bumps [ta-lib](https://github.com/mrjbq7/ta-lib) from 0.4.19 to 0.4.20.
- [Release notes](https://github.com/mrjbq7/ta-lib/releases)
- [Changelog](https://github.com/mrjbq7/ta-lib/blob/master/CHANGELOG)
- [Commits](https://github.com/mrjbq7/ta-lib/compare/TA_Lib-0.4.19...TA_Lib-0.4.20)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-24 05:24:08 +00:00
dependabot[bot]
2fddb4ae43 Bump jinja2 from 3.0.0 to 3.0.1
Bumps [jinja2](https://github.com/pallets/jinja) from 3.0.0 to 3.0.1.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.0.0...3.0.1)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-24 05:24:02 +00:00
dependabot[bot]
4c02e6667f Bump mkdocs-material from 7.1.4 to 7.1.5
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 7.1.4 to 7.1.5.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/docs/changelog.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/7.1.4...7.1.5)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-24 05:23:55 +00:00
Priveyes
6f990c5976 Fix a rare error in save_result : ValueError: Out of range float values are not JSON compliant
freqtrade/freqtrade/optimize/hyperopt.py", line 166, in _save_result
    rapidjson.dump(epoch, f, default=str, number_mode=rapidjson.NM_NATIVE)
ValueError: Out of range float values are not JSON compliant
2021-05-23 18:49:07 +02:00
Matthias
ae037b0ec1 Merge pull request #4746 from gmatheu/contribution/telegram_forcebuy_inline_keyboard
Telegram: forcebuy inline keyboard
2021-05-23 15:32:47 +01:00
Matthias
f760b4a789 Merge branch 'develop' into pr/gmatheu/4746 2021-05-23 16:03:11 +02:00
Matthias
77302ea178 Update documentation for forcebuy query 2021-05-23 16:01:49 +02:00
Matthias
971d5b2ecc Merge pull request #5002 from freqtrade/track_rejected_trades
Track rejected trades
2021-05-23 14:56:50 +01:00
Matthias
3f956441fc Properly format % of zero_duration_trades 2021-05-23 15:53:54 +02:00
Matthias
a39860e0de Add tests for rejected signals 2021-05-23 14:15:02 +02:00
Matthias
7f125315b0 Track Rejected Trades
closes #3423
2021-05-23 09:42:05 +02:00
Matthias
02faeb60a3 Merge pull request #4943 from rokups/rk/statistics
Extra statistics
2021-05-23 08:38:27 +01:00
Matthias
916ece6a29 More realistic testcase for results 2021-05-23 09:15:36 +02:00
Rokas Kupstys
db985cbc2e Fix hyperopt-show failing to display old results with missing new fields. 2021-05-23 09:45:26 +03:00
Matthias
74d75599a9 Merge pull request #4964 from thraizz/develop
Add backoff timer for coingecko API
2021-05-22 16:54:29 +01:00
Matthias
765c824bfc isort 2021-05-22 17:25:23 +02:00
Matthias
a7bd8b0aa5 Fix exception in plotting when no trades where generated
as seen in #4981
2021-05-22 17:03:16 +02:00
Matthias
feb836eaf6 Merge pull request #4994 from freqtrade/support_other_dbs
Support other dbs
2021-05-22 15:54:34 +01:00
A. Schueler
0693458507 Update freqtrade/rpc/fiat_convert.py 2021-05-22 16:26:58 +02:00
Matthias
08c707e0cf Update docs with new format 2021-05-22 15:38:13 +02:00
Rokas Kupstys
25cc4eae96 Fix tests that broke after table formatting changed. 2021-05-22 15:25:37 +02:00
Matthias
5191c869c9 Merge pull request #4996 from JoeSchr/patch-5
Fix missing `not` in `empty` check
2021-05-22 13:57:17 +01:00
A. Schueler
be13856171 Fix flake8 error in test_fiat_convert 2021-05-22 13:43:48 +02:00
A. Schueler
f8cdd6475c Reduce warnings when waiting for coingecko backoff 2021-05-22 13:43:33 +02:00
JoeSchr
21d986710d Fix missing not in empty check
See discussing here: https://github.com/freqtrade/freqtrade/pull/4963#discussion_r633457596
seems that request was only partially implemented
2021-05-22 13:26:59 +02:00
A. Schueler
e4ca944597 Add tests for coingecko backoff 2021-05-22 12:04:24 +02:00
A. Schueler
6e05f856b4 Abort _find_price when cryptomap is empty after retry 2021-05-22 11:55:03 +02:00
A. Schueler
ab6bfbad12 Handle RequestExceptions that are not 429s in _load_cryptomap 2021-05-22 11:52:40 +02:00
A. Schueler
8842e0d161 Fix flake8 error in fiat_convert 2021-05-22 10:59:33 +02:00
A. Schueler
a0921ec753 Add backoff timer for coingecko API
Set a future timestamp when we should retry getting coingecko data.

This fixes conversion from stake to fiat when running multiple bots
as we don't simply accept the 429 error from Coingecko but handle it.
2021-05-22 10:59:33 +02:00
Matthias
df0928c8b5 Merge pull request #4992 from freqtrade/buy_partial_fill
Don't cancel low partial filled buy
2021-05-22 09:17:04 +01:00
Matthias
cc064f1574 String columns should have a max-length defined
otherwise MySql will not work.
2021-05-22 10:12:23 +02:00
Matthias
5285cd69b4 Add documentation for Postgres and Mysql 2021-05-22 10:12:03 +02:00
Matthias
44bbc0718e CLosing bracket 2021-05-21 20:54:18 +02:00
Matthias
a7216e6279 SQLite does not know drop column 2021-05-21 20:53:38 +02:00
Matthias
41e3233bab Fix failing test 2021-05-21 20:44:11 +02:00
Matthias
6acb2eb2b6 Add average column to orders table 2021-05-21 20:35:39 +02:00
Matthias
4e94d3d3e5 Add test for too small buy check 2021-05-21 19:49:36 +02:00
Matthias
45e2621505 Add minimum-filled protection for buy cancels 2021-05-21 19:32:16 +02:00
Matthias
4c08f0020a Merge pull request #4990 from nmenescardi/patch-1
Update strategy-customization.md
2021-05-21 16:03:53 +01:00
Nicolas Menescardi
9537d9f4e2 Update strategy-customization.md
Fix typo: 'This will method will...' -> 'This method will...'
2021-05-21 11:27:22 -03:00
Matthias
dfa412f0de Fix typo in filter 2021-05-21 13:24:13 +02:00
Rokas Kupstys
981b2df7ca Include win:loss ratio in results tables. 2021-05-21 12:18:08 +03:00
Rokas Kupstys
debd98ad9a Make results table more compact by merging win/draw/loss columns and drawdown abs/% into single columns. 2021-05-21 11:36:23 +03:00
Rokas Kupstys
e1dc1357ce Add drawdown column to strategy summary table. 2021-05-21 11:36:23 +03:00
Rokas Kupstys
edcfa94093 Include zero duration trades in backtesting report. 2021-05-21 11:36:23 +03:00
Matthias
0e6c1d28f4 Fix cleanup CI by updating action 2021-05-21 09:32:18 +02:00
Matthias
10b013dc34 Merge pull request #4963 from robcaulk/patch-1
update doc to reflect better empty dataframe check
2021-05-21 09:31:16 +02:00
Matthias
96ea10e562 Fix circular import in hyperopt 2021-05-21 08:52:56 +02:00
Matthias
f398888865 Refactor preprocessed trimming to seperate method 2021-05-21 08:26:19 +02:00
Matthias
d19b37c777 Merge pull request #4979 from kamontat/patch-1
Fix hyperopt trim to empty dataframe
2021-05-21 08:17:35 +02:00
Matthias
1a30e39222 Move squeeze into if block 2021-05-21 08:06:27 +02:00
Matthias
ccd705bfda Merge pull request #4962 from eschava/total_row
Total row for telegram "/status table" command
2021-05-21 08:02:30 +02:00
Matthias
e2edcb5457 Merge pull request #4988 from kamontat/patch-2
fix wrong json key
2021-05-21 07:19:48 +02:00
Kamontat Chantrachirathumrong
0045d3a726 fix wrong json key 2021-05-21 11:18:16 +07:00
Eugene Schava
336f4aa6a7 day/week options for Telegram '/profit' command
isort fix
2021-05-20 08:17:08 +03:00
Kamontat Chantrachirathumrong
6172e67fcd Update hyperopt.py 2021-05-20 11:56:31 +07:00
Kamontat Chantrachirathumrong
c2b9da68e1 fix indent 2021-05-20 11:56:11 +07:00
Kamontat Chantrachirathumrong
1b3bfb2e7f found root cause. 2021-05-20 11:50:15 +07:00
Kamontat Chantrachirathumrong
48210170e7 wrap with is not empty 2021-05-20 11:49:25 +07:00
Matthias
ba106e6c4a Merge pull request #4975 from Axel-CH/allow_seconds_unfilled_timeout
Add ability to choose unit in unfilled timeout
2021-05-20 06:43:15 +02:00
Matthias
586f2a699d Merge pull request #4953 from freqtrade/value_filter
max-value change filter
2021-05-20 06:35:34 +02:00
Matthias
0358b5365f Add "unfilledtimeout-unit" to full config sample 2021-05-20 06:26:07 +02:00
Eugene Schava
935ed36433 day/week options for Telegram '/profit' command
mypy fix
2021-05-20 01:10:22 +03:00
Eugene Schava
e9841910e9 day/week options for Telegram '/profit' command 2021-05-20 00:33:33 +03:00
Kamontat Chantrachirathumrong
082fb11bbe Avoid having error cannot set a frame with no defined index and a scalar 2021-05-20 01:54:48 +07:00
Matthias
ef4d1c24d7 Merge pull request #4941 from brookmiles/fix-stoploss-above-candle
prevent backtest stoploss trade price being set above candle high
2021-05-19 06:20:35 +02:00
axel
75f88b466a add ability to choose unit in unfilled timeout 2021-05-18 19:30:36 -04:00
Matthias
7a9853bfe1 Fix "Too many open Files" exception 2021-05-18 20:39:55 +02:00
Matthias
2565f91bc2 Adjust tests to reflect new stoploss behaviour 2021-05-18 19:33:17 +02:00
Matthias
16c22c7b68 Add pair name to stoploss
helps debugging #4972
2021-05-18 19:16:25 +02:00
Matthias
36eba0f110 Don't use "r+" memmap, but "r2 2021-05-17 21:05:48 +02:00
Matthias
6aa574fa2b Convert ROI result to proper json object
closes #4952
2021-05-17 20:58:50 +02:00
Matthias
6659a07079 Add tests for max-value filter 2021-05-17 19:47:57 +02:00
Matthias
369f19df6b Add valuefilter to Pricefilters 2021-05-17 19:44:36 +02:00
Matthias
3006396398 Fix docstring typo 2021-05-17 19:37:22 +02:00
Matthias
26f5bc6584 Merge pull request #4944 from brookmiles/fix-download-data-end-date
Add support for timerange end date to `download-data`
2021-05-17 19:35:32 +02:00
Eugene Schava
459fae6d80 Total row for telegram "/status table" command
fixes
2021-05-17 16:22:48 +03:00
Eugene Schava
3ad8fa2f38 Total row for telegram "/status table" command
moved sum calculation to API
2021-05-17 15:59:03 +03:00
Matthias
c2bd1bf7e6 Merge pull request #4960 from freqtrade/dependabot/pip/develop/fastapi-0.65.1
Bump fastapi from 0.64.0 to 0.65.1
2021-05-17 14:31:30 +02:00
dependabot[bot]
cb50298bfe Bump fastapi from 0.64.0 to 0.65.1
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.64.0 to 0.65.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.64.0...0.65.1)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 12:05:13 +00:00
Matthias
4436700f5a Merge pull request #4959 from freqtrade/dependabot/pip/develop/aiofiles-0.7.0
Bump aiofiles from 0.6.0 to 0.7.0
2021-05-17 14:04:40 +02:00
Eugene Schava
196fde44e0 Total row for telegram "/status table" command
work around mypy warning
2021-05-17 14:45:54 +03:00
Matthias
748f5d6490 Merge pull request #4961 from freqtrade/dependabot/pip/develop/jinja2-3.0.0
Bump jinja2 from 2.11.3 to 3.0.0
2021-05-17 13:14:13 +02:00
Eugene Schava
915ff7e1bf Total row for telegram "/status table" command
fix mypy warnings
2021-05-17 13:03:20 +03:00
Eugene Schava
d7479fda1f Total row for telegram "/status table" command
fix compiler warnings
2021-05-17 12:53:57 +03:00
Eugene Schava
0abb9cfe28 Total row for telegram "/status table" command 2021-05-17 12:41:44 +03:00
Robert Caulk
860a4d2390 update doc to reflect better empty dataframe check 2021-05-17 11:40:57 +02:00
Matthias
6542070afa Merge pull request #4954 from freqtrade/dependabot/pip/develop/numpy-1.20.3
Bump numpy from 1.20.2 to 1.20.3
2021-05-17 10:41:27 +02:00
Eugene Schava
10ef0f54ac Total row for telegram "/status table" command 2021-05-17 11:12:11 +03:00
dependabot[bot]
40ae21f3a8 Bump numpy from 1.20.2 to 1.20.3
Bumps [numpy](https://github.com/numpy/numpy) from 1.20.2 to 1.20.3.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.20.2...v1.20.3)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 07:59:36 +00:00
Matthias
c5d9c09220 Merge pull request #4958 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.15
Bump sqlalchemy from 1.4.14 to 1.4.15
2021-05-17 09:16:09 +02:00
Matthias
868706d132 Merge pull request #4956 from freqtrade/dependabot/pip/develop/pytest-cov-2.12.0
Bump pytest-cov from 2.11.1 to 2.12.0
2021-05-17 09:15:43 +02:00
Matthias
c17d93f387 Merge pull request #4957 from freqtrade/dependabot/pip/develop/flake8-tidy-imports-4.3.0
Bump flake8-tidy-imports from 4.2.1 to 4.3.0
2021-05-17 09:14:43 +02:00
Matthias
5f2fe24d7d Merge pull request #4955 from freqtrade/dependabot/pip/develop/ccxt-1.50.6
Bump ccxt from 1.49.73 to 1.50.6
2021-05-17 07:46:33 +02:00
dependabot[bot]
c0b61282fb Bump jinja2 from 2.11.3 to 3.0.0
Bumps [jinja2](https://github.com/pallets/jinja) from 2.11.3 to 3.0.0.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/2.11.3...3.0.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:52 +00:00
dependabot[bot]
8143e63853 Bump aiofiles from 0.6.0 to 0.7.0
Bumps [aiofiles](https://github.com/Tinche/aiofiles) from 0.6.0 to 0.7.0.
- [Release notes](https://github.com/Tinche/aiofiles/releases)
- [Commits](https://github.com/Tinche/aiofiles/compare/v0.6.0...v0.7.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:36 +00:00
dependabot[bot]
976a026d3b Bump sqlalchemy from 1.4.14 to 1.4.15
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.14 to 1.4.15.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:31 +00:00
dependabot[bot]
439ef197bc Bump flake8-tidy-imports from 4.2.1 to 4.3.0
Bumps [flake8-tidy-imports](https://github.com/adamchainz/flake8-tidy-imports) from 4.2.1 to 4.3.0.
- [Release notes](https://github.com/adamchainz/flake8-tidy-imports/releases)
- [Changelog](https://github.com/adamchainz/flake8-tidy-imports/blob/main/HISTORY.rst)
- [Commits](https://github.com/adamchainz/flake8-tidy-imports/compare/4.2.1...4.3.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:18 +00:00
dependabot[bot]
78c77cca73 Bump pytest-cov from 2.11.1 to 2.12.0
Bumps [pytest-cov](https://github.com/pytest-dev/pytest-cov) from 2.11.1 to 2.12.0.
- [Release notes](https://github.com/pytest-dev/pytest-cov/releases)
- [Changelog](https://github.com/pytest-dev/pytest-cov/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-cov/compare/v2.11.1...v2.12.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:11 +00:00
dependabot[bot]
b0f854af95 Bump ccxt from 1.49.73 to 1.50.6
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.49.73 to 1.50.6.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.49.73...1.50.6)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-17 05:21:02 +00:00
Matthias
37b71b8cfd Fix PerformanceFilter failing in test-pairlist mode 2021-05-16 19:55:13 +02:00
Matthias
0d50e99563 Fix Agefilter checking for > instead of >= 2021-05-16 19:35:30 +02:00
Matthias
c9ac67e985 Fix some typos 2021-05-16 14:50:25 +02:00
Matthias
8f8d5dbff5 Add tests for sl_order_with_result 2021-05-16 14:41:50 +02:00
Matthias
6f38976470 Introduce cancel_stoploss_with_result 2021-05-16 14:15:24 +02:00
Matthias
380754b8ab Fix typos in docstrings 2021-05-16 13:20:05 +02:00
Matthias
0b1dd0d203 Use correct order_id for ftx
closes #4511
2021-05-16 09:15:25 +02:00
Matthias
32bdceee12 Merge pull request #4947 from freqtrade/performance_abs
/performance - sort by absolute profit
2021-05-15 20:32:58 +02:00
Matthias
2d7735ba04 Update telegram to sort performance by absolute performance 2021-05-15 19:49:21 +02:00
Matthias
6b2a38ccfb Add absolute Profit to apiserver 2021-05-15 19:39:46 +02:00
Matthias
2ecb42a639 Improve rest-api doc config samples 2021-05-15 15:52:02 +02:00
Matthias
4a11688e33 Merge pull request #4945 from JoeSchr/patch-4
Update installation.md
2021-05-15 15:38:28 +02:00
JoeSchr
8e98778498 Update installation.md
Fix typo
2021-05-15 15:21:21 +02:00
Matthias
4f968b4a6f Merge pull request #4926 from rokups/rk/misc-fixes
Two fixes
2021-05-15 15:11:07 +02:00
Brook Miles
db17b1a851 fix indentation 2021-05-15 20:20:36 +09:00
Brook Miles
88da1f109b fix #4412 download-data does not stop downloading at the specified TIMERANGE end date 2021-05-15 20:15:19 +09:00
Rokas Kupstys
2d5f465f1b Fix protections being loaded multiple times for first strategy when backtesting. 2021-05-15 13:37:03 +03:00
Rokas Kupstys
29fed37df3 Fix exception when few pairs with no data do not result in aborting backtest.
Exception is triggered by backtesting 20210301-20210501 range with BAKE/USDT pair (binance). Pair data starts on 2021-04-30 12:00:00 and after adjusting for startup candles pair dataframe is empty.

Solution: Since there are other pairs with enough data - skip pairs with no data and issue a warning.

Exception:
```
Traceback (most recent call last):
  File "/home/rk/src/freqtrade/freqtrade/main.py", line 37, in main
    return_code = args['func'](args)
  File "/home/rk/src/freqtrade/freqtrade/commands/optimize_commands.py", line 53, in start_backtesting
    backtesting.start()
  File "/home/rk/src/freqtrade/freqtrade/optimize/backtesting.py", line 502, in start
    min_date, max_date = self.backtest_one_strategy(strat, data, timerange)
  File "/home/rk/src/freqtrade/freqtrade/optimize/backtesting.py", line 474, in backtest_one_strategy
    results = self.backtest(
  File "/home/rk/src/freqtrade/freqtrade/optimize/backtesting.py", line 365, in backtest
    data: Dict = self._get_ohlcv_as_lists(processed)
  File "/home/rk/src/freqtrade/freqtrade/optimize/backtesting.py", line 199, in _get_ohlcv_as_lists
    pair_data.loc[:, 'buy'] = 0  # cleanup from previous run
  File "/home/rk/src/freqtrade/venv/lib/python3.9/site-packages/pandas/core/indexing.py", line 692, in __setitem__
    iloc._setitem_with_indexer(indexer, value, self.name)
  File "/home/rk/src/freqtrade/venv/lib/python3.9/site-packages/pandas/core/indexing.py", line 1587, in _setitem_with_indexer
    raise ValueError(
ValueError: cannot set a frame with no defined index and a scalar
```
2021-05-15 13:37:03 +03:00
Matthias
e1447f955c /locks should always respond, even if there's no locks
closes #4942
2021-05-15 10:50:00 +02:00
Brook Miles
2eac23a15f if stoploss price is above the candle high, set it to candle open instead. this can occur if stoploss had previously been reached but the sell was prevented by confirm_trade_exit 2021-05-15 15:38:51 +09:00
Matthias
0ace35bf3d Fix unreferenced error 2021-05-15 08:14:50 +02:00
Matthias
a6c644161d Merge pull request #4930 from freqtrade/hyperopt_memory
Hyperopt memory problems
2021-05-15 07:12:57 +02:00
Matthias
5e73195b30 Use linux lineseperator at all times 2021-05-15 07:01:32 +02:00
Matthias
3aaf06a3e2 Merge pull request #4932 from freqtrade/fix/4920
Change rate back to "open" for custom_sell
2021-05-15 06:40:21 +02:00
Matthias
1f049214aa Merge pull request #4933 from rokups/patch-1
Couple tweaks for docs.
2021-05-14 20:04:16 +02:00
Rokas Kupstys
330fb538a9 Couple tweaks for docs. 2021-05-14 10:43:48 +03:00
Matthias
09b6923e50 Use "choose" link for new issues 2021-05-14 07:22:51 +02:00
Matthias
4bc018a456 Change rate back to "open" for custom_sell
closes #4920
2021-05-14 07:18:10 +02:00
Matthias
09756e3007 Subplots should always be included in responses 2021-05-14 06:36:50 +02:00
Matthias
ff7bbec1bc Merge pull request #4902 from docbobo/arm64-docs
Documentation for running arm64 builds
2021-05-14 05:48:08 +02:00
Matthias
ecee42f561 Read pickle file in mmap mode 2021-05-13 20:13:04 +02:00
Matthias
1055862bc0 Extract data-load + dump from hyperopt
(Reduces memory-usage as the dataframes go out of scope)
2021-05-12 21:15:01 +02:00
Matthias
5e66d37d57 Slightly modify docker instructions for arm64 2021-05-12 20:07:45 +02:00
Matthias
84222c89ee Merge pull request #4922 from rokups/rk/fix-docs
Docs update regarding dataframe access
2021-05-12 19:58:11 +02:00
Matthias
24a1d5a96f Change default hyperopt-name to be shorter 2021-05-12 19:06:13 +02:00
Matthias
5f5597b93f Better test hyperopt writing and reading 2021-05-12 19:06:09 +02:00
Rokas Kupstys
9bb6ba086b Update docs/strategy-advanced.md
Co-authored-by: Matthias <xmatthias@outlook.com>
2021-05-12 17:15:38 +03:00
Rokas Kupstys
ad4c51b3c5 * Added "Dataframe access" section showcasing how to obtain dataframe and use it to get last-available and trade-open candles.
* Fix custom_sell() example to use rsi from last-available instead of trade-open candle, add a pointer to "Dataframe access" section for more info.
* Simplify "Custom stoploss using an indicator from dataframe example" greatly, add a pointer to "Dataframe access" section for more info.
2021-05-12 09:30:35 +03:00
Matthias
3cbe40875d read hyperopt results from pickle or json 2021-05-12 06:06:30 +02:00
Matthias
06bf1aa274 Store epochs as json per line 2021-05-12 05:58:25 +02:00
Matthias
7398ea88e0 Change optimize_reports to convert dates to string earlier 2021-05-11 20:37:49 +02:00
Matthias
6d232db1d8 Merge pull request #4918 from kamontat/patch-1
remove duplicate python3-pip
2021-05-11 20:16:26 +02:00
Kamontat Chantrachirathumrong
e53bbec285 remove duplicate python3-pip 2021-05-12 00:13:13 +07:00
Matthias
bcab44560a Fix doc typo 2021-05-11 06:25:23 +02:00
Matthias
c4a2de0fd5 Merge pull request #4915 from froggleston/develop
Small update custom_sell() doc
2021-05-11 06:16:49 +02:00
Robert Davey
ac95d577a5 Merge pull request #1 from froggleston/frog-custom-sell-doc
Update strategy-advanced.md
2021-05-10 19:48:09 +01:00
Robert Davey
425d97719a Update strategy-advanced.md
Update custom_sell() example to comment that the current trade row is at trade open as written. Change "abstain" to something clearer for non-fluent English speakers.
2021-05-10 19:42:37 +01:00
Matthias
b81f24d9c6 Merge pull request #4851 from rokups/rk/backtest-dataprovider
Data provider support in backtesting
2021-05-10 19:11:05 +02:00
Matthias
91fd367287 Merge pull request #4906 from freqtrade/dependabot/pip/develop/ccxt-1.49.73
Bump ccxt from 1.49.30 to 1.49.73
2021-05-10 15:24:02 +02:00
Matthias
3d6b3f1d6a Add Issue config.yml 2021-05-10 15:08:28 +02:00
dependabot[bot]
8e6a95e11b Bump ccxt from 1.49.30 to 1.49.73
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.49.30 to 1.49.73.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.49.30...1.49.73)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 10:50:05 +00:00
Matthias
7e6d469511 Merge pull request #4913 from freqtrade/dependabot/pip/develop/fastapi-0.64.0
Bump fastapi from 0.63.0 to 0.64.0
2021-05-10 08:53:34 +02:00
Matthias
9cef2983e5 Merge pull request #4907 from freqtrade/dependabot/pip/develop/mkdocs-material-7.1.4
Bump mkdocs-material from 7.1.3 to 7.1.4
2021-05-10 08:52:02 +02:00
Matthias
3eb4cda975 Merge pull request #4911 from freqtrade/dependabot/pip/develop/pymdown-extensions-8.2
Bump pymdown-extensions from 8.1.1 to 8.2
2021-05-10 08:51:47 +02:00
Matthias
0fefa696cc Merge pull request #4908 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.14
Bump sqlalchemy from 1.4.12 to 1.4.14
2021-05-10 08:50:42 +02:00
Matthias
837c05aa62 Merge pull request #4910 from freqtrade/dependabot/pip/develop/flake8-3.9.2
Bump flake8 from 3.9.1 to 3.9.2
2021-05-10 08:49:53 +02:00
Matthias
699b21064b Merge pull request #4912 from freqtrade/dependabot/pip/develop/pytest-mock-3.6.1
Bump pytest-mock from 3.6.0 to 3.6.1
2021-05-10 08:49:25 +02:00
Matthias
158a4ea660 Merge pull request #4909 from freqtrade/dependabot/pip/develop/pytest-6.2.4
Bump pytest from 6.2.3 to 6.2.4
2021-05-10 08:49:13 +02:00
dependabot[bot]
43c7382d24 Bump fastapi from 0.63.0 to 0.64.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.63.0 to 0.64.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.63.0...0.64.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:27:36 +00:00
dependabot[bot]
93268ba16d Bump pytest-mock from 3.6.0 to 3.6.1
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.6.0 to 3.6.1.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.6.0...v3.6.1)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:27:22 +00:00
dependabot[bot]
5ecd86ed56 Bump pymdown-extensions from 8.1.1 to 8.2
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 8.1.1 to 8.2.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/8.1.1...8.2)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:27:11 +00:00
dependabot[bot]
6eb47b0aeb Bump flake8 from 3.9.1 to 3.9.2
Bumps [flake8](https://gitlab.com/pycqa/flake8) from 3.9.1 to 3.9.2.
- [Release notes](https://gitlab.com/pycqa/flake8/tags)
- [Commits](https://gitlab.com/pycqa/flake8/compare/3.9.1...3.9.2)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:27:03 +00:00
dependabot[bot]
0a82e2b061 Bump pytest from 6.2.3 to 6.2.4
Bumps [pytest](https://github.com/pytest-dev/pytest) from 6.2.3 to 6.2.4.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/6.2.3...6.2.4)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:26:52 +00:00
dependabot[bot]
a7cd8fc578 Bump sqlalchemy from 1.4.12 to 1.4.14
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.12 to 1.4.14.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:26:36 +00:00
dependabot[bot]
a7bd051f6b Bump mkdocs-material from 7.1.3 to 7.1.4
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 7.1.3 to 7.1.4.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/docs/changelog.md)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/7.1.3...7.1.4)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-10 05:26:26 +00:00
Matthias
d495ea3693 Update docs about availability of get_analyzed 2021-05-09 19:53:41 +02:00
Matthias
1c408c0404 Add small tests for backtest mode 2021-05-09 19:47:37 +02:00
Boris Prüßmann
f2add44253 Update docs/docker_quickstart.md
Co-authored-by: Matthias <xmatthias@outlook.com>
2021-05-09 17:27:30 +02:00
Boris Pruessmann
0a0e7ce5f5 Documentation for running arm64 builds 2021-05-09 14:37:56 +02:00
Matthias
00e93dad02 Fix mistake in the docs 2021-05-09 10:04:56 +02:00
Matthias
92186d89a2 Add some changes to strategytemplate 2021-05-09 09:56:36 +02:00
Matthias
2157923aee have edge send multiple messages if necessary
closes #4519
2021-05-08 19:45:34 +02:00
Rokas Kupstys
17b9e898d2 Update docs displaying how to get last available and trade-open candles. 2021-05-08 18:40:49 +03:00
Rokas Kupstys
8d8c782bd0 Slice dataframe in backtesting, preventing access to rows past current time. 2021-05-08 18:40:49 +03:00
Matthias
0ca0ed4117 Merge pull request #4843 from docbobo/arm64-support
Docker support for arm64
2021-05-08 17:35:19 +02:00
Matthias
70189b1992 Move dockerfile and document M1 image existance 2021-05-08 17:24:41 +02:00
Rokas Kupstys
f1eb653545 Fix strategy protections not being loaded in backtesting. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
1b01ad6f85 Make exchange parameter optional and do not use it as parameter in backtesting. 2021-05-08 10:29:47 +03:00
Matthias
4b6cd69c81 Add test for no-exchange dataprovider 2021-05-08 10:29:47 +03:00
Rokas Kupstys
d344194b36 Fix dataprovider in hyperopt. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
9b4f6b41a2 Use correct datetime. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
6fb4d83ab3 Fix dataprovider in hyperopt. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
6af4de8fe8 Remove dataframe parameter from docs. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
cdfa6adbe5 Store pair datafrmes in dataprovider for backtesting. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
dc6e702fec Pass current_time to confirm_trade_entry/confirm_trade_exit. 2021-05-08 10:29:47 +03:00
Rokas Kupstys
d34da3f981 Revert "Add dataframe parameter to custom_stoploss() and custom_sell() methods."
This reverts commit 595b8735f8.

# Conflicts:
#	freqtrade/optimize/backtesting.py
#	freqtrade/strategy/interface.py
2021-05-08 10:29:47 +03:00
Matthias
513be11fd9 Fix hyperopt output
closes #4892
2021-05-07 20:23:11 +02:00
Matthias
4a7d7a5779 Merge pull request #4887 from freqtrade/timerange_noarrow
Don't use Arrow to get min/max backtest dates
2021-05-07 06:51:16 +02:00
Matthias
554f5f14b6 Raise exception if no data is left 2021-05-07 06:41:15 +02:00
Matthias
4f529fe424 Don't use Arrow to get min/max backtest dates 2021-05-06 19:43:14 +02:00
Matthias
32577cc0cd Merge pull request #4836 from bzed/telegram-locks
Telegram rpc: split too long /locks messages
2021-05-05 20:15:13 +02:00
Matthias
d8de871934 Merge pull request #4869 from freqtrade/edge_informative
Have Edge support informative pairs
2021-05-05 20:10:40 +02:00
Matthias
a710b7dc01 Update tests to match new behaviour 2021-05-05 19:58:45 +02:00
Matthias
431cb5313f Support informative pairs in edge positioning 2021-05-05 19:58:45 +02:00
Matthias
6c50157c95 Merge pull request #4877 from freqtrade/dependabot/docker/python-3.9.5-slim-buster
Bump python from 3.9.4-slim-buster to 3.9.5-slim-buster
2021-05-05 08:31:34 +02:00
Matthias
947ad856c0 Update Dockerfile.armhf 2021-05-05 08:12:28 +02:00
dependabot[bot]
f55ce04fa6 Bump python from 3.9.4-slim-buster to 3.9.5-slim-buster
Bumps python from 3.9.4-slim-buster to 3.9.5-slim-buster.

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-05 05:14:42 +00:00
Matthias
da47f4e1a4 Fix Kraken balance update error
closes #4873
2021-05-05 06:47:26 +02:00
Matthias
4d9dc2a2ff Merge pull request #4848 from freqtrade/hyperopt_btresults
Hyperopt store backtest-outcome
2021-05-04 06:44:01 +02:00
Matthias
da5e832a5a Merge pull request #4862 from freqtrade/dependabot/pip/develop/python-telegram-bot-13.5
Bump python-telegram-bot from 13.4.1 to 13.5
2021-05-03 13:12:28 +02:00
Matthias
239583d7bc Merge pull request #4859 from freqtrade/dependabot/pip/develop/cachetools-4.2.2
Bump cachetools from 4.2.1 to 4.2.2
2021-05-03 13:12:18 +02:00
Matthias
b852a8b1c6 Merge pull request #4861 from freqtrade/dependabot/pip/develop/ccxt-1.49.30
Bump ccxt from 1.48.76 to 1.49.30
2021-05-03 13:12:04 +02:00
dependabot[bot]
860379bc58 Bump ccxt from 1.48.76 to 1.49.30
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.48.76 to 1.49.30.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.48.76...1.49.30)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 10:23:52 +00:00
dependabot[bot]
2d89824267 Bump cachetools from 4.2.1 to 4.2.2
Bumps [cachetools](https://github.com/tkem/cachetools) from 4.2.1 to 4.2.2.
- [Release notes](https://github.com/tkem/cachetools/releases)
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v4.2.1...v4.2.2)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 10:21:49 +00:00
dependabot[bot]
82a08bd7de Bump python-telegram-bot from 13.4.1 to 13.5
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.4.1 to 13.5.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.4.1...v13.5)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 10:16:58 +00:00
Matthias
42c286a2da Merge pull request #4863 from freqtrade/dependabot/pip/develop/arrow-1.1.0
Bump arrow from 1.0.3 to 1.1.0
2021-05-03 10:13:22 +02:00
Matthias
f138cca797 Be explicit with space assignment in documentation 2021-05-03 08:33:22 +02:00
Matthias
4465915a94 Merge pull request #4856 from freqtrade/dependabot/pip/develop/scikit-learn-0.24.2
Bump scikit-learn from 0.24.1 to 0.24.2
2021-05-03 08:23:06 +02:00
Matthias
f55ce8543a Merge pull request #4860 from freqtrade/dependabot/pip/develop/technical-1.3.0
Bump technical from 1.2.2 to 1.3.0
2021-05-03 08:22:13 +02:00
Matthias
d7e4d5ff3f Merge pull request #4858 from freqtrade/dependabot/pip/develop/pyjwt-2.1.0
Bump pyjwt from 2.0.1 to 2.1.0
2021-05-03 08:20:51 +02:00
Matthias
39cffeb2df Merge pull request #4857 from freqtrade/dependabot/pip/develop/sqlalchemy-1.4.12
Bump sqlalchemy from 1.4.11 to 1.4.12
2021-05-03 08:20:13 +02:00
dependabot[bot]
a63d9e9515 Bump arrow from 1.0.3 to 1.1.0
Bumps [arrow](https://github.com/arrow-py/arrow) from 1.0.3 to 1.1.0.
- [Release notes](https://github.com/arrow-py/arrow/releases)
- [Changelog](https://github.com/arrow-py/arrow/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/arrow-py/arrow/compare/1.0.3...1.1.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 05:27:17 +00:00
dependabot[bot]
cea207026a Bump technical from 1.2.2 to 1.3.0
Bumps [technical](https://github.com/freqtrade/technical) from 1.2.2 to 1.3.0.
- [Release notes](https://github.com/freqtrade/technical/releases)
- [Commits](https://github.com/freqtrade/technical/compare/1.2.2...1.3.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 05:26:39 +00:00
dependabot[bot]
37227170b3 Bump pyjwt from 2.0.1 to 2.1.0
Bumps [pyjwt](https://github.com/jpadilla/pyjwt) from 2.0.1 to 2.1.0.
- [Release notes](https://github.com/jpadilla/pyjwt/releases)
- [Changelog](https://github.com/jpadilla/pyjwt/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jpadilla/pyjwt/compare/2.0.1...2.1.0)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 05:26:30 +00:00
dependabot[bot]
8ed15fb7cc Bump sqlalchemy from 1.4.11 to 1.4.12
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.4.11 to 1.4.12.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 05:26:18 +00:00
dependabot[bot]
8364343cd6 Bump scikit-learn from 0.24.1 to 0.24.2
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.24.1 to 0.24.2.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.24.1...0.24.2)

Signed-off-by: dependabot[bot] <support@github.com>
2021-05-03 05:26:08 +00:00
Matthias
da574e4e69 Small style fixes 2021-05-03 06:30:41 +02:00
Matthias
6d7096dc66 Use both old and new fixtures for test 2021-05-02 20:42:01 +02:00
Matthias
fc110ea418 Support csv export for new and old versions 2021-05-02 20:41:45 +02:00
Matthias
303895b33e Add support for filters to new hyperopt-results 2021-05-02 20:07:22 +02:00
Matthias
ef9dd0676c Rename hyperoptresult fixture to avoid naming collision 2021-05-02 20:06:47 +02:00
Matthias
99e1ef9b4a Fix docs typo for CategoryParameter
closes #4852
2021-05-02 19:21:26 +02:00
Matthias
6f8225c49e Merge pull request #4850 from youpas/patch-2
Fixed anchor link for PriceFilter
2021-05-02 17:08:59 +02:00
Matthias
60e908eee5 Merge pull request #4849 from youpas/patch-1
Fixed syntax error in the example
2021-05-02 15:10:50 +02:00
youpas
b71d850596 Fixed anchor link for PriceFilter 2021-05-02 11:47:02 +02:00
youpas
4fc37f15d1 Fixed syntax error in the example
Removed extra comma in the "Full example of Pairlist Handlers" section.
2021-05-02 11:41:26 +02:00
Matthias
287b43e999 Output strategy results including non-optimized parameters 2021-05-02 11:30:53 +02:00
Matthias
d069ad43d8 Small reformatting in hyperopt 2021-05-02 11:01:26 +02:00
Matthias
8ee0b0d8e8 Store not optimized parameters (if applicable) 2021-05-02 10:46:04 +02:00
Matthias
9049d6b779 Reformat hyper to cache parameters 2021-05-02 10:45:21 +02:00
Matthias
6b6270db13 Add hint about "sell_profit_only" to docs 2021-05-02 10:37:54 +02:00
Matthias
46f0f66039 Keep dimensions stored in hyperopt class
There is no point in regenerating them and it will cause some
overhead as all space classes will be recreated for every epoch.
2021-05-02 09:48:37 +02:00
Matthias
ced5cc7ce2 Don't recalculate min/max date - they won't change between epochs 2021-05-02 09:46:27 +02:00
Matthias
ecdfb6e5ed Fix output of % for new format 2021-05-02 09:46:27 +02:00
Matthias
881cba336a Show backtesting result in hyperopt-show 2021-05-02 09:46:27 +02:00
Matthias
420e75af65 Extract show_backtest_result for one strategy 2021-05-02 09:46:27 +02:00
Matthias
97478abb9d Move format explanation string to HyperoptTools 2021-05-02 09:46:27 +02:00
Matthias
4c00d4496d Update tests to reflect new backtest returns 2021-05-02 09:46:27 +02:00
Matthias
f2e182002d Simplify calling backtesting by returning the proper result 2021-05-02 09:46:27 +02:00
Matthias
e2e1d34828 Extract stake_currency param from hyperopt-explanationstring 2021-05-02 09:46:27 +02:00
Matthias
852f125347 Fix tests 2021-05-02 09:46:27 +02:00
Matthias
6aaaad29d7 Use backtesting output for hyperopt results 2021-05-02 09:46:27 +02:00
Matthias
545cba7fd8 Refactor optimize_report
we should not calculate non-daily statistics in the daily stats method
2021-05-02 09:46:27 +02:00
Matthias
9994fce577 Extract generation of report for one strategy to it's own method 2021-05-02 09:46:27 +02:00
Matthias
b125c975c7 Rename strategy_comparison method 2021-05-02 09:46:27 +02:00
Matthias
c45204a2c4 Fix failing mocks 2021-05-02 08:59:21 +02:00
Matthias
ac2e1eb3d7 Don't import joblib for regular strategies 2021-05-02 08:44:16 +02:00
Matthias
0e359dcb7a Merge pull request #4788 from saeedrss/develop
fetch live data from hitbtc exchange #4778
2021-05-01 19:13:00 +02:00
Matthias
bdd0184f0b Small stylistic fixes 2021-05-01 17:44:43 +02:00
Matthias
1cb430f59b Remove encoding specifics, gitattributes to echeckout as utf8 2021-05-01 17:41:40 +02:00
Matthias
3c9042c825 Merge pull request #4844 from freqtrade/improve_hyper
IntParameter should not calculate indicators if it's not being optimized
2021-05-01 17:36:29 +02:00
Matthias
e01bc7717b Merge pull request #4832 from JoeSchr/patch-3
Add to custom_sell() documentation
2021-05-01 17:34:10 +02:00
Matthias
0b280a59bc Support per exchange params for OHLCV endpoint 2021-05-01 17:29:53 +02:00
Matthias
e0ca3c014c Don't completely remove encode/decode 2021-05-01 17:12:48 +02:00
Matthias
30da307d13 Remove encode/decode for hyperopt 2021-05-01 17:01:52 +02:00
Matthias
ca0749dfdd Update strategy-advanced.md 2021-05-01 16:58:14 +02:00
Matthias
555262b6e1 Only calculate additional indicators if the space is selected 2021-05-01 16:40:29 +02:00
Matthias
e381df9098 extract has_space to Hyperopt-Tools 2021-05-01 16:36:35 +02:00
Matthias
e050ea8dfa Don't load parameters for other space 2021-05-01 16:21:59 +02:00
Boris Pruessmann
42a52ff669 Docker support for arm64 2021-05-01 14:13:21 +02:00
Matthias
401f31e86b Merge pull request #4841 from JoeSchr/fix/istrategy-return-value
fix IStrategy: abstract methods still need to pass through return value
2021-04-30 20:13:11 +02:00
Matthias
856b65206b Reduce log-frequency of AgeFilter
closes #4840
2021-04-30 19:42:41 +02:00
Joe Schr
f3388ed9aa fix IStrategy: abstract methods still need to pass through return value
otherwise doing something like:
```py
dataframe = super().populate_indicators(dataframe, ...)
```

won't work, because `dataframe` becomes `None`.

This is needed if one of those methods uses dataframe.copy() instead of
just working on reference. e.g. using `merge_informative` in
`populate_indicator` in a nested class hierarchy
2021-04-30 14:39:01 +02:00
Matthias
6763bd447e Fix link to poweredby image 2021-04-30 07:50:33 +02:00
Antreas Gribas
cf03daa0fd Fix bug in running hyperopt in windows 10
with preferred encoding in locale differrent from
utf-8
2021-04-30 00:28:42 +03:00
Bernd Zeimetz
3be7bc509c Telegram: send locks as chunks of 25.
Producing easily readable messages, hopefully always below the message lenght limit
2021-04-29 22:21:04 +02:00
Bernd Zeimetz
4d1613a432 Add chunks function.
Implementing a generator to split Lists into chunks.
2021-04-29 22:21:04 +02:00
JoeSchr
f2bd70dfc2 Add sentence about how it differs from custom_stoploss() 2021-04-29 13:07:22 +02:00
Matthias
27a9b2cc9f Merge pull request #4831 from JoeSchr/patch-2
Update strategy-advanced.md
2021-04-29 12:51:52 +02:00
JoeSchr
cf839e36f3 Add to custom_sell() documentation
- Flesh out infos about return type 
- give quick example at beginning to get reader in right mindset what this does and why it's useful
2021-04-29 12:49:51 +02:00
Matthias
bb115154eb Merge pull request #4829 from nmcc1212/patch-1
Docker Quick start grammatical error
2021-04-29 12:30:36 +02:00
JoeSchr
83708ae045 Update strategy-advanced.md
Remove untrue comment probably left-over from more intricate example
2021-04-29 12:16:02 +02:00
Nial McCallister
7cf8c5d659 Docker Quick start grammatical error
please install docker-compose should be installed
 does not make grammatical sense
2021-04-29 10:46:00 +01:00
Matthias
5bc908870f Fix documentation comment missalignment 2021-04-29 09:07:47 +02:00
Matthias
a3d2e68312 Merge pull request #4750 from rokups/rk/custom_sell
Add IStrategy.custom_sell method which allows per-trade sell signal evaluation
2021-04-29 06:50:56 +02:00
Matthias
aab020c9a2 Merge pull request #4818 from freqtrade/cleanup_models
Move static Trade functions to right class
2021-04-28 21:18:55 +02:00
Matthias
3285f6caa3 Improve wording in Note box 2021-04-28 20:42:15 +02:00
Matthias
7c8a367442 Update docs to not promote stoploss / take-profit 2021-04-28 20:36:06 +02:00
Matthias
6eb947ae09 Move static Trade functions to right class 2021-04-28 06:37:40 +02:00
Matthias
cc916ab2e9 Add test for custom_sell 2021-04-26 20:26:14 +02:00
Matthias
55faa6a84a safe_wrapper should use kwargs to call methods 2021-04-26 20:18:03 +02:00
Matthias
2061162d79 Convert trade-opendate to python datetime 2021-04-26 20:01:13 +02:00
Matthias
dbf33271b5 Small doc changes 2021-04-26 19:52:26 +02:00
Rokas Kupstys
31a2285eac Fix mypy complaints. 2021-04-26 10:42:24 +03:00
Rokas Kupstys
9c21c75cf5 Fix inaccuracy in docs. 2021-04-25 13:18:35 +03:00
Rokas Kupstys
98f6fce2ec Use correct sell reason in case of custom sell reason. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
e58fe7a8cb Update custom_sell documentation. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
004550529e Document dataframe parameter in custom_stoploss(). 2021-04-25 09:48:40 +03:00
Rokas Kupstys
595b8735f8 Add dataframe parameter to custom_stoploss() and custom_sell() methods. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
961b38636f Remove explicit sell_flag parameter from SellCheckTuple. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
bfad4e82ad Make execute_sell() use SellCheckTuple for sell reason. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
a90e795695 Warn and trim custom sell reason if it is too long. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
1aad128d85 Support returning a string from custom_sell() and have it recorded as custom sell reason. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
a77337e424 Document IStrategy.custom_sell. 2021-04-25 09:48:40 +03:00
Rokas Kupstys
1292e08fe4 Use strategy_safe_wrapper() when calling custom_sell(). 2021-04-25 09:48:40 +03:00
Rokas Kupstys
0fd68aee51 Add IStrategy.custom_sell method which allows per-trade sell signal evaluation. 2021-04-25 09:48:40 +03:00
saeedrss
37d8e3c758 Merge branch 'develop' of https://github.com/freqtrade/freqtrade into develop 2021-04-23 22:28:33 +04:30
saeedrss
b69a9134f5 fixing support for HitBTC #4778
hitbtc by default send candle from beginning (not most recently)
this change fixed
2021-04-23 21:27:13 +04:30
Gonzalo Matheu
7a98de10ea telegram: Formatting typings 2021-04-15 21:51:16 -03:00
Gonzalo Matheu
e3c5a4b3fc telegram: Formatting imports 2021-04-15 21:51:16 -03:00
Gonzalo Matheu
5fae4ea2fd telegram: Formatting code 2021-04-15 21:51:16 -03:00
Gonzalo Matheu
50bdae8eb2 telegram: Adding forcebuy inline keyboard 2021-04-15 21:51:16 -03:00
Gonzalo Matheu
e2f28991e6 telegram: Wrapping long line 2021-04-15 21:51:16 -03:00
Gonzalo Matheu
271e4500d9 telegram: Adding dynamic keyboard to /forcebuy response 2021-04-15 21:51:16 -03:00
Eko Aprili Trisno
af98e025d1 Merge branch 'develop' into patch-1 2021-02-14 02:12:38 +07:00
Eko Aprili Trisno
ba32708ed4 Update telegram.py 2021-02-14 01:40:04 +07:00
Eko Aprili Trisno
54d0ac9d20 Update telegram.py 2021-02-04 01:19:23 +07:00
Eko Aprili Trisno
21d3635e8d Update telegram.py 2021-02-04 01:16:27 +07:00
Eko Aprili Trisno
69d62ef383 Add Refresh / Reload Button on rpc/Telegram 2021-02-04 01:06:52 +07:00
173 changed files with 5099 additions and 2951 deletions

View File

@@ -1,20 +1,21 @@
FROM freqtradeorg/freqtrade:develop
USER root
# Install dependencies
COPY requirements-dev.txt /freqtrade/
RUN apt-get update \
&& apt-get -y install git mercurial sudo vim \
&& apt-get -y install git mercurial sudo vim build-essential \
&& apt-get clean \
&& pip install autopep8 -r docs/requirements-docs.txt -r requirements-dev.txt --no-cache-dir \
&& useradd -u 1000 -U -m ftuser \
&& mkdir -p /home/ftuser/.vscode-server /home/ftuser/.vscode-server-insiders /home/ftuser/commandhistory \
&& echo "export PROMPT_COMMAND='history -a'" >> /home/ftuser/.bashrc \
&& echo "export HISTFILE=~/commandhistory/.bash_history" >> /home/ftuser/.bashrc \
&& mv /root/.local /home/ftuser/.local/ \
&& chown ftuser:ftuser -R /home/ftuser/.local/ \
&& chown ftuser: -R /home/ftuser/
USER ftuser
RUN pip install --user autopep8 -r docs/requirements-docs.txt -r requirements-dev.txt --no-cache-dir
# Empty the ENTRYPOINT to allow all commands
ENTRYPOINT []

View File

@@ -3,6 +3,7 @@
Dockerfile
Dockerfile.armhf
.dockerignore
docker/
.coveragerc
.eggs
.github

6
.gitattributes vendored
View File

@@ -1,3 +1,3 @@
*.py eol=lf
*.sh eol=lf
*.ps1 eol=crlf
*.py eol=lf
*.sh eol=lf
*.ps1 eol=crlf

6
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,6 @@
---
blank_issues_enabled: false
contact_links:
- name: Discord Server
url: https://discord.gg/p7nuUNVfP7
about: Ask a question or get community support from our Discord server

View File

@@ -75,7 +75,7 @@ jobs:
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
run: |
# Allow failure for coveralls
coveralls -v || true
coveralls || true
- name: Backtesting
run: |
@@ -301,7 +301,7 @@ jobs:
runs-on: ubuntu-20.04
steps:
- name: Cleanup previous runs on this branch
uses: rokroskar/workflow-run-cleanup-action@v0.3.2
uses: rokroskar/workflow-run-cleanup-action@v0.3.3
if: "!startsWith(github.ref, 'refs/tags/') && github.ref != 'refs/heads/stable' && github.repository == 'freqtrade/freqtrade'"
env:
GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"
@@ -374,13 +374,6 @@ jobs:
run: |
echo "${DOCKER_PASSWORD}" | docker login --username ${DOCKER_USERNAME} --password-stdin
- name: Build and test and push docker image
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker.sh
# We need docker experimental to pull the ARM image.
- name: Switch docker to experimental
run: |
@@ -399,12 +392,12 @@ jobs:
- name: Available platforms
run: echo ${{ steps.buildx.outputs.platforms }}
- name: Build Raspberry docker image
- name: Build and test and push docker images
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}_pi
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker_pi.sh
build_helpers/publish_docker_multi.sh
- name: Slack Notification

View File

@@ -46,12 +46,6 @@ jobs:
- script: mypy freqtrade scripts
name: mypy
# - stage: docker
# if: branch in (master, develop, feat/improve_travis) AND (type in (push, cron))
# script:
# - build_helpers/publish_docker.sh
# name: "Build and test and push docker image"
notifications:
slack:
secure: bKLXmOrx8e2aPZl7W8DA5BdPAXWGpI5UzST33oc1G/thegXcDVmHBTJrBs4sZak6bgAclQQrdZIsRd2eFYzHLalJEaw6pk7hoAw8SvLnZO0ZurWboz7qg2+aZZXfK4eKl/VUe4sM9M4e/qxjkK+yWG7Marg69c4v1ypF7ezUi1fPYILYw8u0paaiX0N5UX8XNlXy+PBlga2MxDjUY70MuajSZhPsY2pDUvYnMY1D/7XN3cFW0g+3O8zXjF0IF4q1Z/1ASQe+eYjKwPQacE+O8KDD+ZJYoTOFBAPllrtpO1jnOPFjNGf3JIbVMZw4bFjIL0mSQaiSUaUErbU3sFZ5Or79rF93XZ81V7uEZ55vD8KMfR2CB1cQJcZcj0v50BxLo0InkFqa0Y8Nra3sbpV4fV5Oe8pDmomPJrNFJnX6ULQhQ1gTCe0M5beKgVms5SITEpt4/Y0CmLUr6iHDT0CUiyMIRWAXdIgbGh1jfaWOMksybeRevlgDsIsNBjXmYI1Sw2ZZR2Eo2u4R6zyfyjOMLwYJ3vgq9IrACv2w5nmf0+oguMWHf6iWi2hiOqhlAN1W74+3HsYQcqnuM3LGOmuCnPprV1oGBqkPXjIFGpy21gNx4vHfO1noLUyJnMnlu2L7SSuN1CdLsnjJ1hVjpJjPfqB4nn8g12x87TqM1bOm+3Q=

View File

@@ -12,7 +12,7 @@ Few pointers for contributions:
- New features need to contain unit tests, must conform to PEP8 (max-line-length = 100) and should be documented with the introduction PR.
- PR's can be declared as `[WIP]` - which signify Work in Progress Pull Requests (which are not finished).
If you are unsure, discuss the feature on our [discord server](https://discord.gg/MA9v74M), on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
If you are unsure, discuss the feature on our [discord server](https://discord.gg/p7nuUNVfP7), on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
## Getting started

View File

@@ -1,4 +1,4 @@
FROM python:3.9.4-slim-buster as base
FROM python:3.9.5-slim-buster as base
# Setup env
ENV LANG C.UTF-8
@@ -10,8 +10,8 @@ ENV FT_APP_ENV="docker"
# Prepare environment
RUN mkdir /freqtrade \
&& apt update \
&& apt install -y sudo \
&& apt-get update \
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-serial-dev \
&& apt-get clean \
&& useradd -u 1000 -G sudo -U -m ftuser \
&& chown ftuser:ftuser /freqtrade \
@@ -22,10 +22,10 @@ WORKDIR /freqtrade
# Install dependencies
FROM base as python-deps
RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev git \
&& apt-get clean \
&& pip install --upgrade pip
RUN apt-get update \
&& apt-get -y install build-essential libssl-dev git libffi-dev libgfortran5 pkg-config cmake gcc \
&& apt-get clean \
&& pip install --upgrade pip
# Install TA-lib
COPY build_helpers/* /tmp/
@@ -49,7 +49,7 @@ USER ftuser
# Install and execute
COPY --chown=ftuser:ftuser . /freqtrade/
RUN pip install -e . --user --no-cache-dir \
RUN pip install -e . --user --no-cache-dir --no-build-isolation \
&& mkdir /freqtrade/user_data/ \
&& freqtrade install-ui

View File

@@ -1,4 +1,4 @@
# ![freqtrade](docs/assets/freqtrade_poweredby.svg)
# ![freqtrade](https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docs/assets/freqtrade_poweredby.svg)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
@@ -123,7 +123,7 @@ Telegram is not mandatory. However, this is a great way to control your bot. Mor
- `/stop`: Stops the trader.
- `/stopbuy`: Stop entering new trades.
- `/status <trade_id>|[table]`: Lists all or specific open trades.
- `/profit`: Lists cumulative profit from all finished trades
- `/profit [<n>]`: Lists cumulative profit from all finished trades, over the last n days.
- `/forcesell <trade_id>|all`: Instantly sells the given trade (Ignoring `minimum_roi`).
- `/performance`: Show performance of each finished trade grouped by pair
- `/balance`: Show account balance per currency.
@@ -145,7 +145,7 @@ The project is currently setup in two main branches:
For any questions not covered by the documentation or for further information about the bot, or to simply engage with like-minded individuals, we encourage you to join our slack channel.
Please check out our [discord server](https://discord.gg/MA9v74M).
Please check out our [discord server](https://discord.gg/p7nuUNVfP7).
You can also join our [Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw).
@@ -154,7 +154,7 @@ You can also join our [Slack channel](https://join.slack.com/t/highfrequencybot/
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/freqtrade/freqtrade/issues/new) and
[create a new issue](https://github.com/freqtrade/freqtrade/issues/new/choose) and
ensure you follow the template guide so that our team can assist you as
quickly as possible.
@@ -163,7 +163,7 @@ quickly as possible.
Have you a great idea to improve the bot you want to share? Please,
first search if this feature was not [already discussed](https://github.com/freqtrade/freqtrade/labels/enhancement).
If it hasn't been requested, please
[create a new request](https://github.com/freqtrade/freqtrade/issues/new)
[create a new request](https://github.com/freqtrade/freqtrade/issues/new/choose)
and ensure you follow the template guide so that it does not get lost
in the bug reports.
@@ -178,7 +178,7 @@ to understand the requirements before sending your pull-requests.
Coding is not a necessity to contribute - maybe start with improving our documentation?
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [discord](https://discord.gg/MA9v74M) or [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [discord](https://discord.gg/p7nuUNVfP7) or [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
**Important:** Always create your PR against the `develop` branch, not `stable`.

Binary file not shown.

Binary file not shown.

View File

@@ -8,10 +8,13 @@ if [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub \
&& ./configure --prefix=${INSTALL_LOC}/ \
&& make \
&& make -j$(nproc) \
&& which sudo && sudo make install || make install \
&& cd ..
else
echo "TA-lib already installed, skipping installation"
fi
# && sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \

View File

@@ -1,16 +1,15 @@
# Downloads don't work automatically, since the URL is regenerated via javascript.
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
# Invoke-WebRequest -Uri "https://download.lfd.uci.edu/pythonlibs/xxxxxxx/TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl" -OutFile "TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl"
python -m pip install --upgrade pip
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
if ($pyv -eq '3.7') {
pip install build_helpers\TA_Lib-0.4.19-cp37-cp37m-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.20-cp37-cp37m-win_amd64.whl
}
if ($pyv -eq '3.8') {
pip install build_helpers\TA_Lib-0.4.19-cp38-cp38-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.20-cp38-cp38-win_amd64.whl
}
pip install -r requirements-dev.txt

View File

@@ -1,21 +1,48 @@
#!/bin/sh
# The below assumes a correctly setup docker buildx environment
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
echo "Running for ${TAG}"
CACHE_TAG=freqtradeorg/freqtrade_cache:${TAG}_cache
# Add commit and commit_message to docker container
echo "${GITHUB_SHA}" > freqtrade_commit
if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
echo "event ${GITHUB_EVENT_NAME}: full rebuild - skipping cache"
# Build regular image
docker build -t freqtrade:${TAG} .
# Build PI image
docker buildx build \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} --push .
else
echo "event ${GITHUB_EVENT_NAME}: building with cache"
# Pull last build to avoid rebuilding the whole image
# Build regular image
docker pull ${IMAGE_NAME}:${TAG}
docker build --cache-from ${IMAGE_NAME}:${TAG} -t freqtrade:${TAG} .
# Pull last build to avoid rebuilding the whole image
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
docker buildx build \
--cache-from=type=registry,ref=${CACHE_TAG} \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} --push .
fi
if [ $? -ne 0 ]; then
echo "failed building multiarch images"
return 1
fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG ${IMAGE_NAME}:$TAG
@@ -24,11 +51,6 @@ docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${TAG} -t fre
docker tag freqtrade:$TAG_PLOT ${IMAGE_NAME}:$TAG_PLOT
if [ $? -ne 0 ]; then
echo "failed building image"
return 1
fi
# Run backtest
docker run --rm -v $(pwd)/config_bittrex.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy DefaultStrategy
@@ -37,23 +59,29 @@ if [ $? -ne 0 ]; then
return 1
fi
if [ $? -ne 0 ]; then
echo "failed tagging image"
return 1
fi
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
docker tag freqtrade:$TAG ${IMAGE_NAME}:latest
fi
# Show all available images
docker images
docker push ${IMAGE_NAME}
docker push ${IMAGE_NAME}:$TAG_PLOT
docker push ${IMAGE_NAME}:$TAG
# Create multiarch image
# Make sure that all images contained here are pushed to github first.
# Otherwise installation might fail.
docker manifest create freqtradeorg/freqtrade:${TAG} ${IMAGE_NAME}:${TAG} ${IMAGE_NAME}:${TAG_PI}
docker manifest push freqtradeorg/freqtrade:${TAG}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
docker manifest create freqtradeorg/freqtrade:latest ${IMAGE_NAME}:${TAG} ${IMAGE_NAME}:${TAG_PI}
docker manifest push freqtradeorg/freqtrade:latest
fi
docker images
if [ $? -ne 0 ]; then
echo "failed pushing repo"
echo "failed building image"
return 1
fi

View File

@@ -1,36 +0,0 @@
#!/bin/sh
# The below assumes a correctly setup docker buildx environment
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
PI_PLATFORM="linux/arm/v7"
echo "Running for ${TAG}"
CACHE_TAG=freqtradeorg/freqtrade_cache:${TAG}_cache
# Add commit and commit_message to docker container
echo "${GITHUB_SHA}" > freqtrade_commit
if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
echo "event ${GITHUB_EVENT_NAME}: full rebuild - skipping cache"
docker buildx build \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG} --push .
else
echo "event ${GITHUB_EVENT_NAME}: building with cache"
# Pull last build to avoid rebuilding the whole image
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
docker buildx build \
--cache-from=type=registry,ref=${CACHE_TAG} \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG} --push .
fi
if [ $? -ne 0 ]; then
echo "failed building image"
return 1
fi

View File

@@ -23,7 +23,8 @@
"stoploss": -0.10,
"unfilledtimeout": {
"buy": 10,
"sell": 30
"sell": 30,
"unit": "minutes"
},
"bid_strategy": {
"price_side": "bid",
@@ -164,11 +165,22 @@
"startup": "on",
"buy": "on",
"buy_fill": "on",
"sell": "on",
"sell": {
"roi": "off",
"emergency_sell": "off",
"force_sell": "off",
"sell_signal": "off",
"trailing_stop_loss": "off",
"stop_loss": "off",
"stoploss_on_exchange": "off",
"custom_sell": "off"
},
"sell_fill": "on",
"buy_cancel": "on",
"sell_cancel": "on"
}
},
"reload": true,
"balance_dust_level": 0.01
},
"api_server": {
"enabled": false,

View File

@@ -1,4 +1,4 @@
FROM --platform=linux/arm/v7 python:3.7.10-slim-buster as base
FROM python:3.7.10-slim-buster as base
# Setup env
ENV LANG C.UTF-8
@@ -11,7 +11,7 @@ ENV FT_APP_ENV="docker"
# Prepare environment
RUN mkdir /freqtrade \
&& apt-get update \
&& apt-get -y install libatlas3-base curl sqlite3 libhdf5-serial-dev sudo \
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-dev \
&& apt-get clean \
&& useradd -u 1000 -G sudo -U -m ftuser \
&& chown ftuser:ftuser /freqtrade \
@@ -22,7 +22,8 @@ WORKDIR /freqtrade
# Install dependencies
FROM base as python-deps
RUN apt-get -y install build-essential libssl-dev libffi-dev libgfortran5 \
RUN apt-get update \
&& apt-get -y install build-essential libssl-dev libffi-dev libgfortran5 pkg-config cmake gcc \
&& apt-get clean \
&& pip install --upgrade pip \
&& echo "[global]\nextra-index-url=https://www.piwheels.org/simple" > /etc/pip.conf
@@ -49,7 +50,7 @@ USER ftuser
# Install and execute
COPY --chown=ftuser:ftuser . /freqtrade/
RUN pip install -e . --user --no-cache-dir \
RUN pip install -e . --user --no-cache-dir --no-build-isolation\
&& mkdir /freqtrade/user_data/ \
&& freqtrade install-ui

View File

@@ -289,7 +289,7 @@ Given the following result from hyperopt:
```
Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@@ -19,7 +19,7 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH]
[--export {none,trades}] [--export-filename PATH]
optional arguments:
-h, --help show this help message and exit
@@ -63,8 +63,8 @@ optional arguments:
name is injected into the filename (so `backtest-
data.json` becomes `backtest-data-
DefaultStrategy.json`
--export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades`
--export {none,trades}
Export backtest results (default: trades).
--export-filename PATH
Save backtest results to the file with this filename.
Requires `--export` to be set as well. Example:
@@ -100,7 +100,7 @@ Strategy arguments:
Now you have good Buy and Sell strategies and some historic data, you want to test it against
real data. This is what we call [backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pairs) from your config file and load historical candle (OHCLV) data from `user_data/data/<exchange>` by default.
Backtesting will use the crypto-currencies (pairs) from your config file and load historical candle (OHLCV) data from `user_data/data/<exchange>` by default.
If no data is available for the exchange / pair / timeframe combination, backtesting will ask you to download them first using `freqtrade download-data`.
For details on downloading, please refer to the [Data Downloading](data-download.md) section in the documentation.
@@ -110,11 +110,16 @@ All profit calculations include fees, and freqtrade will use the exchange's defa
!!! Warning "Using dynamic pairlists for backtesting"
Using dynamic pairlists is possible, however it relies on the current market conditions - which will not reflect the historic status of the pairlist.
Also, when using pairlists other than StaticPairlist, reproducability of backtesting-results cannot be guaranteed.
Also, when using pairlists other than StaticPairlist, reproducibility of backtesting-results cannot be guaranteed.
Please read the [pairlists documentation](plugins.md#pairlists) for more information.
To achieve reproducible results, best generate a pairlist via the [`test-pairlist`](utils.md#test-pairlist) command and use that as static pairlist.
!!! Note
By default, Freqtrade will export backtesting results to `user_data/backtest_results`.
The exported trades can be used for [further analysis](#further-backtest-result-analysis) or can be used by the [plotting sub-command](plotting.md#plot-price-and-indicators) (`freqtrade plot-dataframe`) in the scripts directory.
### Starting balance
Backtesting will require a starting balance, which can be provided as `--dry-run-wallet <balance>` or `--starting-balance <balance>` command line argument, or via `dry_run_wallet` configuration setting.
@@ -174,13 +179,13 @@ Where `SampleStrategy1` and `AwesomeStrategy` refer to class names of strategies
---
Exporting trades to file
Prevent exporting trades to file
```bash
freqtrade backtesting --strategy backtesting --export trades --config config.json
freqtrade backtesting --strategy backtesting --export none --config config.json
```
The exported trades can be used for [further analysis](#further-backtest-result-analysis), or can be used by the plotting script `plot_dataframe.py` in the scripts directory.
Only use this if you're sure you'll not want to plot or analyze your results further.
---
@@ -237,29 +242,29 @@ The most important in the backtesting is to understand the result.
A backtesting result will look like that:
```
========================================================= BACKTESTING REPORT ========================================================
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 0 | 21 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 0 | 8 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 0 | 14 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 0 | 7 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 0 | 10 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 0 | 20 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 0 | 15 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 0 | 17 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 0 | 18 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 0 | 9 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 0 | 21 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 0 | 7 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 0 | 13 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 0 | 5 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 0 | 9 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 0 | 11 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 0 | 23 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 0 | 15 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
========================================================= SELL REASON STATS =========================================================
========================================================= BACKTESTING REPORT ==========================================================
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins Draws Loss Win% |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:-------------|-------------------------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 0 21 40.0 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 0 8 27.3 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 0 14 56.2 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 0 7 46.2 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 0 10 44.4 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 0 20 44.4 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 0 15 42.3 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 0 17 48.5 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 0 18 43.8 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 0 9 40.0 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 0 21 34.4 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 0 7 58.5 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 0 13 43.5 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 0 5 44.4 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 0 9 43.8 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 0 11 52.2 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
========================================================= SELL REASON STATS ==========================================================
| Sell Reason | Sells | Wins | Draws | Losses |
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
@@ -267,11 +272,11 @@ A backtesting result will look like that:
| sell_signal | 56 | 36 | 0 | 20 |
| force_sell | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | 0 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | 0 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | 0 |
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
=============== SUMMARY METRICS ===============
| Metric | Value |
|-----------------------+---------------------|
@@ -279,7 +284,7 @@ A backtesting result will look like that:
| Backtesting to | 2019-05-01 00:00:00 |
| Max open trades | 3 |
| | |
| Total trades | 429 |
| Total/Daily Avg Trades| 429 / 3.575 |
| Starting balance | 0.01000000 BTC |
| Final balance | 0.01762792 BTC |
| Absolute profit | 0.00762792 BTC |
@@ -297,6 +302,8 @@ A backtesting result will look like that:
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Zero Duration Trades | 4.6% (20) |
| Rejected Buy signals | 3089 |
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
@@ -318,7 +325,7 @@ The last line will give you the overall performance of your strategy,
here:
```
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
```
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
@@ -366,12 +373,11 @@ It contains some useful key metrics about performance of your strategy on backte
| Backtesting to | 2019-05-01 00:00:00 |
| Max open trades | 3 |
| | |
| Total trades | 429 |
| Total/Daily Avg Trades| 429 / 3.575 |
| Starting balance | 0.01000000 BTC |
| Final balance | 0.01762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| Trades per day | 3.575 |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -384,6 +390,8 @@ It contains some useful key metrics about performance of your strategy on backte
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Zero Duration Trades | 4.6% (20) |
| Rejected Buy signals | 3089 |
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
@@ -400,12 +408,11 @@ It contains some useful key metrics about performance of your strategy on backte
- `Backtesting from` / `Backtesting to`: Backtesting range (usually defined with the `--timerange` option).
- `Max open trades`: Setting of `max_open_trades` (or `--max-open-trades`) - or number of pairs in the pairlist (whatever is lower).
- `Total trades`: Identical to the total trades of the backtest output table.
- `Total/Daily Avg Trades`: Identical to the total trades of the backtest output table / Total trades divided by the backtesting duration in days (this will give you information about how many trades to expect from the strategy).
- `Starting balance`: Start balance - as given by dry-run-wallet (config or command line).
- `Final balance`: Final balance - starting balance + absolute profit.
- `Absolute profit`: Profit made in stake currency.
- `Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital Starting capital) / Starting capital`.
- `Trades per day`: Total trades divided by the backtesting duration in days (this will give you information about how many trades to expect from the strategy).
- `Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
- `Total trade volume`: Volume generated on the exchange to reach the above profit.
- `Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Cum Profit %`.
@@ -413,6 +420,8 @@ It contains some useful key metrics about performance of your strategy on backte
- `Best day` / `Worst day`: Best and worst day based on daily profit.
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Zero Duration Trades`: A number of trades that completed within same candle as they opened and had `trailing_stop_loss` sell reason. A significant amount of such trades may indicate that strategy is exploiting trailing stoploss behavior in backtesting and produces unrealistic results.
- `Rejected Buy signals`: Buy signals that could not be acted upon due to max_open_trades being reached.
- `Min balance` / `Max balance`: Lowest and Highest Wallet balance during the backtest period.
- `Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced).
- `Drawdown high` / `Drawdown low`: Profit at the beginning and end of the largest drawdown period. A negative low value means initial capital lost.
@@ -435,6 +444,7 @@ Since backtesting lacks some detailed information about what happens within a ca
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` sell reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so sells with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
@@ -472,11 +482,11 @@ There will be an additional table comparing win/losses of the different strategi
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
```
=========================================================== STRATEGY SUMMARY ===========================================================
| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 |
=========================================================== STRATEGY SUMMARY =========================================================================
| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses | Drawdown % |
|:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|-----------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 | 45.2 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 | 241.68 |
```
## Next step

View File

@@ -68,8 +68,9 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.buy` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `bid_strategy.price_side` | Select the side of the spread the bot should look at to get the buy rate. [More information below](#buy-price-side).<br> *Defaults to `bid`.* <br> **Datatype:** String (either `ask` or `bid`).
| `bid_strategy.ask_last_balance` | **Required.** Interpolate the bidding price. More information [below](#buy-price-without-orderbook-enabled).
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
@@ -101,10 +102,11 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `pairlists` | Define one or more pairlists to be used. [More information](plugins.md#pairlists-and-pairlist-handlers). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `protections` | Define one or more protections to be used. [More information](plugins.md#protections). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** List of Dicts
| `protections` | Define one or more protections to be used. [More information](plugins.md#protections). <br> **Datatype:** List of Dicts
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -139,7 +141,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
### Parameters in the strategy
The following parameters can be set in either configuration file or strategy.
The following parameters can be set in configuration file or strategy.
Values set in the configuration file always overwrite values set in the strategy.
* `minimal_roi`
@@ -155,7 +157,6 @@ Values set in the configuration file always overwrite values set in the strategy
* `order_time_in_force`
* `unfilledtimeout`
* `disable_dataframe_checks`
* `protections`
* `use_sell_signal` (ask_strategy)
* `sell_profit_only` (ask_strategy)
* `sell_profit_offset` (ask_strategy)
@@ -169,7 +170,7 @@ There are several methods to configure how much of the stake currency the bot wi
#### Minimum trade stake
The minimum stake amount will depend by exchange and pair, and is usually listed in the exchange support pages.
Assuming the minimum tradable amount for XRP/USD is 20 XRP (given by the exchange), and the price is 0.4$.
Assuming the minimum tradable amount for XRP/USD is 20 XRP (given by the exchange), and the price is 0.6$.
The minimum stake amount to buy this pair is therefore `20 * 0.6 ~= 12`.
This exchange has also a limit on USD - where all orders must be > 10$ - which however does not apply in this case.
@@ -303,6 +304,9 @@ For example, if your strategy is using a 1h timeframe, and you only want to buy
},
```
!!! Note
This setting resets with each new candle, so it will not prevent sticking-signals from executing on the 2nd or 3rd candle they're active. Best use a "trigger" selector for buy signals, which are only active for one candle.
### Understand order_types
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`, `emergencysell`, `forcesell`, `forcebuy`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
@@ -402,8 +406,8 @@ The possible values are: `gtc` (default), `fok` or `ioc`.
```
!!! Warning
This is an ongoing work. For now it is supported only for binance and only for buy orders.
Please don't change the default value unless you know what you are doing.
This is an ongoing work. For now it is supported only for binance.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values.
### Exchange configuration
@@ -499,7 +503,8 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
* API-keys may or may not be provided. Only Read-Only operations (i.e. operations that do not alter account state) on the exchange are performed in dry-run mode.
* Wallets (`/balance`) are simulated based on `dry_run_wallet`.
* Orders are simulated, and will not be posted to the exchange.
* Orders are assumed to fill immediately, and will never time out.
* Market orders fill based on orderbook volume the moment the order is placed.
* Limit orders fill once price reaches the defined level - or time out based on `unfilledtimeout` settings.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are reset on bot restart.

View File

@@ -2,7 +2,7 @@
This page is intended for developers of Freqtrade, people who want to contribute to the Freqtrade codebase or documentation, or people who want to understand the source code of the application they're running.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel on [discord](https://discord.gg/MA9v74M) or [slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) where you can ask questions.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel on [discord](https://discord.gg/p7nuUNVfP7) or [slack](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) where you can ask questions.
## Documentation

View File

@@ -10,7 +10,7 @@ Start by downloading and installing Docker CE for your platform:
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
To simplify running freqtrade, please install [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
## Freqtrade with docker-compose
@@ -48,6 +48,8 @@ Create a new directory and place the [docker-compose file](https://raw.githubuse
# Download the docker-compose file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
# Edit the compose file to use an image named `*_pi` (stable_pi or develop_pi)
# Pull the freqtrade image
docker-compose pull
@@ -65,6 +67,40 @@ Create a new directory and place the [docker-compose file](https://raw.githubuse
# image: freqtradeorg/freqtrade:develop_pi
```
=== "ARM 64 Systenms (Mac M1, Raspberry Pi 4, Jetson Nano)"
In case of a Mac M1, make sure that your docker installation is running in native mode
Arm64 images are not yet provided via Docker Hub and need to be build locally first.
Depending on the device, this may take a few minutes (Apple M1) or multiple hours (Raspberry Pi)
``` bash
# Clone Freqtrade repository
git clone https://github.com/freqtrade/freqtrade.git
cd freqtrade
# Optionally switch to the stable version
git checkout stable
# Modify your docker-compose file to enable building and change the image name
# (see the Note Box below for necessary changes)
# Build image
docker-compose build
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
```
!!! Note "Change your docker Image"
You have to change the docker image in the docker-compose file for your arm64 build to work properly.
``` yml
image: freqtradeorg/freqtrade:custom_arm64
build:
context: .
dockerfile: "Dockerfile"
```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
The last 2 steps in the snippet create the directory with `user_data`, as well as (interactively) the default configuration based on your selections.

View File

@@ -14,11 +14,10 @@ Accounts having BNB accounts use this to pay for fees - if your first trade happ
### Binance sites
Binance has been split into 3, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
* [binance.je](https://www.binance.je/) - Binance Jersey, trading fiat currencies. Use exchange id: `binanceje`.
## Kraken
@@ -54,6 +53,9 @@ Due to the heavy rate-limiting applied by Kraken, the following configuration se
Bittrex does not support market orders. If you have a message at the bot startup about this, you should change order type values set in your configuration and/or in the strategy from `"market"` to `"limit"`. See some more details on this [here in the FAQ](faq.md#im-getting-the-exchange-bittrex-does-not-support-market-orders-message-and-cannot-run-my-strategy).
Bittrex also does not support `VolumePairlist` due to limited / split API constellation at the moment.
Please use `StaticPairlist`. Other pairlists (other than `VolumePairlist`) should not be affected.
### Restricted markets
Bittrex split its exchange into US and International versions.

View File

@@ -136,6 +136,22 @@ On Windows, the `--logfile` option is also supported by Freqtrade and you can us
> type \path\to\mylogfile.log | findstr "something"
```
### Why does freqtrade not have GPU support?
First of all, most indicator libraries don't have GPU support - as such, there would be little benefit for indicator calculations.
The GPU improvements would only apply to pandas-native calculations - or ones written by yourself.
For hyperopt, freqtrade is using scikit-optimize, which is built on top of scikit-learn.
Their statement about GPU support is [pretty clear](https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support).
GPU's also are only good at crunching numbers (floating point operations).
For hyperopt, we need both number-crunching (find next parameters) and running python code (running backtesting).
As such, GPU's are not too well suited for most parts of hyperopt.
The benefit of using GPU would therefore be pretty slim - and will not justify the complexity introduced by trying to add GPU support.
There is however nothing preventing you from using GPU-enabled indicators within your strategy if you think you must have this - you will however probably be disappointed by the slim gain that will give you (compared to the complexity).
## Hyperopt module
### How many epochs do I need to get a good Hyperopt result?
@@ -156,7 +172,7 @@ freqtrade hyperopt --hyperopt SampleHyperopt --hyperopt-loss SharpeHyperOptLossD
### Why does it take a long time to run hyperopt?
* Discovering a great strategy with Hyperopt takes time. Study www.freqtrade.io, the Freqtrade Documentation page, join the Freqtrade [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) - or the Freqtrade [discord community](https://discord.gg/MA9v74M). While you patiently wait for the most advanced, free crypto bot in the world, to hand you a possible golden strategy specially designed just for you.
* Discovering a great strategy with Hyperopt takes time. Study www.freqtrade.io, the Freqtrade Documentation page, join the Freqtrade [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) - or the Freqtrade [discord community](https://discord.gg/p7nuUNVfP7). While you patiently wait for the most advanced, free crypto bot in the world, to hand you a possible golden strategy specially designed just for you.
* If you wonder why it can take from 20 minutes to days to do 1000 epochs here are some answers:

View File

@@ -237,9 +237,9 @@ class MyAwesomeStrategy(IStrategy):
dataframe['macdhist'] = macd['macdhist']
bollinger = ta.BBANDS(dataframe, timeperiod=20, nbdevup=2.0, nbdevdn=2.0)
dataframe['bb_lowerband'] = boll['lowerband']
dataframe['bb_middleband'] = boll['middleband']
dataframe['bb_upperband'] = boll['upperband']
dataframe['bb_lowerband'] = bollinger['lowerband']
dataframe['bb_middleband'] = bollinger['middleband']
dataframe['bb_upperband'] = bollinger['upperband']
return dataframe
```
@@ -249,15 +249,16 @@ We continue to define hyperoptable parameters:
```python
class MyAwesomeStrategy(IStrategy):
buy_adx = IntParameter(20, 40, default=30, space="buy")
buy_adx = DecimalParameter(20, 40, decimals=1, default=30.1, space="buy")
buy_rsi = IntParameter(20, 40, default=30, space="buy")
buy_adx_enabled = CategoricalParameter([True, False], space="buy")
buy_rsi_enabled = CategoricalParameter([True, False], space="buy")
buy_trigger = CategoricalParameter(['bb_lower', 'macd_cross_signal'], space="buy")
buy_adx_enabled = CategoricalParameter([True, False], default=True, space="buy")
buy_rsi_enabled = CategoricalParameter([True, False], default=False, space="buy")
buy_trigger = CategoricalParameter(["bb_lower", "macd_cross_signal"], default="bb_lower", space="buy")
```
Above definition says: I have five parameters I want to randomly combine to find the best combination.
Two of them are integer values (`buy_adx` and `buy_rsi`) and I want you test in the range of values 20 to 40.
The above definition says: I have five parameters I want to randomly combine to find the best combination.
`buy_rsi` is an integer parameter, which will be tested between 20 and 40. This space has a size of 20.
`buy_adx` is a decimal parameter, which will be evaluated between 20 and 40 with 1 decimal place (so values are 20.1, 20.2, ...). This space has a size of 200.
Then we have three category variables. First two are either `True` or `False`.
We use these to either enable or disable the ADX and RSI guards.
The last one we call `trigger` and use it to decide which buy trigger we want to use.
@@ -490,7 +491,7 @@ Given the following result from hyperopt:
```
Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722%). Avg duration 180.4 mins. Objective: 1.94367
# Buy hyperspace params:
buy_params = {
@@ -531,7 +532,7 @@ If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'de
```
Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722%). Avg duration 180.4 mins. Objective: 1.94367
# ROI table:
minimal_roi = {
@@ -586,7 +587,7 @@ If you are optimizing stoploss values (i.e. if optimization search-space contain
```
Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722%). Avg duration 180.4 mins. Objective: 1.94367
# Buy hyperspace params:
buy_params = {
@@ -628,7 +629,7 @@ If you are optimizing trailing stop values (i.e. if optimization search-space co
```
Best result:
45/100: 606 trades. Avg profit 1.04%. Total profit 0.31555614 BTC ( 630.48Σ%). Avg duration 150.3 mins. Objective: -1.10161
45/100: 606 trades. Avg profit 1.04%. Total profit 0.31555614 BTC ( 630.48%). Avg duration 150.3 mins. Objective: -1.10161
# Trailing stop:
trailing_stop = True

View File

@@ -112,6 +112,7 @@ The `PriceFilter` allows filtering of pairs by price. Currently the following pr
* `min_price`
* `max_price`
* `max_value`
* `low_price_ratio`
The `min_price` setting removes pairs where the price is below the specified price. This is useful if you wish to avoid trading very low-priced pairs.
@@ -120,6 +121,11 @@ This option is disabled by default, and will only apply if set to > 0.
The `max_price` setting removes pairs where the price is above the specified price. This is useful if you wish to trade only low-priced pairs.
This option is disabled by default, and will only apply if set to > 0.
The `max_value` setting removes pairs where the minimum value change is above a specified value.
This is useful when an exchange has unbalanced limits. For example, if step-size = 1 (so you can only buy 1, or 2, or 3, but not 1.1 Coins) - and the price is pretty high (like 20\$) as the coin has risen sharply since the last limit adaption.
As a result of the above, you can only buy for 20\$, or 40\$ - but not for 25\$.
On exchanges that deduct fees from the receiving currency (e.g. FTX) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
This option is disabled by default, and will only apply if set to > 0.
@@ -193,7 +199,7 @@ If the volatility over the last 10 days is not in the range of 0.05-0.50, remove
### Full example of Pairlist Handlers
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#price-filter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
```json
"exchange": {
@@ -204,7 +210,7 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
{
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"sort_key": "quoteVolume"
},
{"method": "AgeFilter", "min_days_listed": 10},
{"method": "PrecisionFilter"},

View File

@@ -8,7 +8,6 @@ All protection end times are rounded up to the next candle to avoid sudden, unex
!!! Note
Not all Protections will work for all strategies, and parameters will need to be tuned for your strategy to improve performance.
To align your protection with your strategy, you can define protections in the strategy.
!!! Tip
Each Protection can be configured multiple times with different parameters, to allow different levels of protection (short-term / long-term).
@@ -47,16 +46,16 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
```json
"protections": [
``` python
protections = [
{
"method": "StoplossGuard",
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 4,
"only_per_pair": false
"only_per_pair": False
}
],
]
```
!!! Note
@@ -69,8 +68,8 @@ The below example stops trading for all pairs for 4 candles after the last trade
The below sample stops trading for 12 candles if max-drawdown is > 20% considering all pairs - with a minimum of `trade_limit` trades - within the last 48 candles. If desired, `lookback_period` and/or `stop_duration` can be used.
```json
"protections": [
``` python
protections = [
{
"method": "MaxDrawdown",
"lookback_period_candles": 48,
@@ -78,7 +77,7 @@ The below sample stops trading for 12 candles if max-drawdown is > 20% consideri
"stop_duration_candles": 12,
"max_allowed_drawdown": 0.2
},
],
]
```
#### Low Profit Pairs
@@ -88,8 +87,8 @@ If that ratio is below `required_profit`, that pair will be locked for `stop_dur
The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles.
```json
"protections": [
``` python
protections = [
{
"method": "LowProfitPairs",
"lookback_period_candles": 6,
@@ -97,7 +96,7 @@ The below example will stop trading a pair for 60 minutes if the pair does not h
"stop_duration": 60,
"required_profit": 0.02
}
],
]
```
#### Cooldown Period
@@ -106,13 +105,13 @@ The below example will stop trading a pair for 60 minutes if the pair does not h
The below example will stop trading a pair for 2 candles after closing a trade, allowing this pair to "cool down".
```json
"protections": [
``` python
protections = [
{
"method": "CooldownPeriod",
"stop_duration_candles": 2
}
],
]
```
!!! Note
@@ -132,46 +131,6 @@ The below example assumes a timeframe of 1 hour:
* Locks all pairs that had 4 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
```json
"timeframe": "1h",
"protections": [
{
"method": "CooldownPeriod",
"stop_duration_candles": 5
},
{
"method": "MaxDrawdown",
"lookback_period_candles": 48,
"trade_limit": 20,
"stop_duration_candles": 4,
"max_allowed_drawdown": 0.2
},
{
"method": "StoplossGuard",
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 2,
"only_per_pair": false
},
{
"method": "LowProfitPairs",
"lookback_period_candles": 6,
"trade_limit": 2,
"stop_duration_candles": 60,
"required_profit": 0.02
},
{
"method": "LowProfitPairs",
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 2,
"required_profit": 0.01
}
],
```
You can use the same in your strategy, the syntax is only slightly different:
``` python
from freqtrade.strategy import IStrategy

View File

@@ -76,7 +76,7 @@ Alternatively
For any questions not covered by the documentation or for further information about the bot, or to simply engage with like-minded individuals, we encourage you to join our slack channel.
Please check out our [discord server](https://discord.gg/MA9v74M).
Please check out our [discord server](https://discord.gg/p7nuUNVfP7).
You can also join our [Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw).

View File

@@ -60,7 +60,7 @@ OS Specific steps are listed first, the [Common](#common) section below is neces
sudo apt-get update
# install packages
sudo apt install -y python3-pip python3-venv python3-pandas python3-pip git
sudo apt install -y python3-pip python3-venv python3-dev python3-pandas git
```
=== "RaspberryPi/Raspbian"
@@ -269,7 +269,7 @@ git clone https://github.com/freqtrade/freqtrade.git
cd freqtrade
```
#### Freqtrade instal: Conda Environment
#### Freqtrade install: Conda Environment
Prepare conda-freqtrade environment, using file `environment.yml`, which exist in main freqtrade directory

68
docs/overrides/main.html Normal file
View File

@@ -0,0 +1,68 @@
{% extends "base.html" %}
<!-- Navigation -->
{% block site_nav %}
<!-- Main navigation -->
{% if nav %}
{% if page and page.meta and page.meta.hide %}
{% set hidden = "hidden" if "navigation" in page.meta.hide %}
{% endif %}
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" {{ hidden }}>
<div class="md-sidebar__scrollwrap">
<div id="widget-wrapper">
</div>
<div class="md-sidebar__inner">
{% include "partials/nav.html" %}
</div>
</div>
</div>
{% endif %}
<!-- Table of contents -->
{% if page.toc and not "toc.integrate" in features %}
{% if page and page.meta and page.meta.hide %}
{% set hidden = "hidden" if "toc" in page.meta.hide %}
{% endif %}
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" {{ hidden }}>
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
{% include "partials/toc.html" %}
</div>
</div>
</div>
{% endif %}
{% endblock %}
{% block footer %}
{{ super() }}
<!-- Place this tag in your head or just before your close body tag. -->
<script async defer src="https://buttons.github.io/buttons.js"></script>
<script src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Load binance SDK -->
<script async defer src="https://public.bnbstatic.com/static/js/broker-sdk/broker-sdk@1.0.0.min.js"></script>
<script>
window.onload = function () {
var sidebar = document.getElementById('widget-wrapper')
var newDiv = document.createElement("div");
newDiv.id = "widget";
try {
sidebar.prepend(newDiv);
window.binanceBrokerPortalSdk.initBrokerSDK('#widget', {
apiHost: 'https://www.binance.com',
brokerId: 'R4BD3S82',
slideTime: 4e4,
});
} catch(err) {
console.log(err)
}
}
</script>
{% endblock %}

View File

@@ -1,72 +0,0 @@
{#-
This file was automatically generated - do not edit
-#}
{% set site_url = config.site_url | d(nav.homepage.url, true) | url %}
{% if not config.use_directory_urls and site_url[0] == site_url[-1] == "." %}
{% set site_url = site_url ~ "/index.html" %}
{% endif %}
<header class="md-header" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="{{ lang.t('header.title') }}">
<a href="{{ site_url }}" title="{{ config.site_name | e }}" class="md-header__button md-logo"
aria-label="{{ config.site_name }}">
{% include "partials/logo.html" %}
</a>
<label class="md-header__button md-icon" for="__drawer">
{% include ".icons/material/menu" ~ ".svg" %}
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
{{ config.site_name }}
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
{% if page and page.meta and page.meta.title %}
{{ page.meta.title }}
{% else %}
{{ page.title }}
{% endif %}
</span>
</div>
</div>
</div>
<div class="md-header__options">
{% if config.extra.alternate %}
<div class="md-select">
{% set icon = config.theme.icon.alternate or "material/translate" %}
<span class="md-header__button md-icon">
{% include ".icons/" ~ icon ~ ".svg" %}
</span>
<div class="md-select__inner">
<ul class="md-select__list">
{% for alt in config.extra.alternate %}
<li class="md-select__item">
<a href="{{ alt.link | url }}" class="md-select__link">
{{ alt.name }}
</a>
</li>
{% endfor %}
</ul>
</div>
</div>
{% endif %}
</div>
{% if "search" in config["plugins"] %}
<label class="md-header__button md-icon" for="__search">
{% include ".icons/material/magnify.svg" %}
</label>
{% include "partials/search.html" %}
{% endif %}
{% if config.repo_url %}
<div class="md-header__source">
{% include "partials/source.html" %}
</div>
{% endif %}
</nav>
<!-- Place this tag in your head or just before your close body tag. -->
<script async defer src="https://buttons.github.io/buttons.js"></script>
<script src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
</header>

View File

@@ -170,9 +170,15 @@ Additional features when using plot_config include:
* Specify additional subplots
* Specify indicator pairs to fill area in between
The sample plot configuration below specifies fixed colors for the indicators. Otherwise consecutive plots may produce different colorschemes each time, making comparisons difficult.
The sample plot configuration below specifies fixed colors for the indicators. Otherwise, consecutive plots may produce different color schemes each time, making comparisons difficult.
It also allows multiple subplots to display both MACD and RSI at the same time.
Plot type can be configured using `type` key. Possible types are:
* `scatter` corresponding to `plotly.graph_objects.Scatter` class (default).
* `bar` corresponding to `plotly.graph_objects.Bar` class.
Extra parameters to `plotly.graph_objects.*` constructor can be specified in `plotly` dict.
Sample configuration with inline comments explaining the process:
``` python
@@ -198,7 +204,8 @@ Sample configuration with inline comments explaining the process:
# Create subplot MACD
"MACD": {
'macd': {'color': 'blue', 'fill_to': 'macdhist'},
'macdsignal': {'color': 'orange'}
'macdsignal': {'color': 'orange'},
'macdhist': {'type': 'bar', 'plotly': {'opacity': 0.9}}
},
# Additional subplot RSI
"RSI": {
@@ -213,6 +220,9 @@ Sample configuration with inline comments explaining the process:
The above configuration assumes that `ema10`, `ema50`, `senkou_a`, `senkou_b`,
`macd`, `macdsignal`, `macdhist` and `rsi` are columns in the DataFrame created by the strategy.
!!! Warning
`plotly` arguments are only supported with plotly library and will not work with freq-ui.
## Plot profit
![plot-profit](assets/plot-profit.png)
@@ -265,6 +275,7 @@ optional arguments:
(backtest file)) Default: file
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
--auto-open Automatically open generated plot.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@@ -1,3 +1,4 @@
mkdocs-material==7.1.3
mkdocs==1.2.1
mkdocs-material==7.1.8
mdx_truly_sane_lists==1.2
pymdown-extensions==8.1.1
pymdown-extensions==8.2

View File

@@ -71,7 +71,10 @@ If you run your bot using docker, you'll need to have the bot listen to incoming
"api_server": {
"enabled": true,
"listen_ip_address": "0.0.0.0",
"listen_port": 8080
"listen_port": 8080,
"username": "Freqtrader",
"password": "SuperSecret1!",
//...
},
```
@@ -106,7 +109,10 @@ By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be use
"api_server": {
"enabled": true,
"listen_ip_address": "0.0.0.0",
"listen_port": 8080
"listen_port": 8080,
"username": "Freqtrader",
"password": "SuperSecret1!",
//...
}
}
```

View File

@@ -19,7 +19,7 @@ The freqtrade docker image does contain sqlite3, so you can edit the database wi
``` bash
docker-compose exec freqtrade /bin/bash
sqlite3 <databasefile>.sqlite
sqlite3 <database-file>.sqlite
```
## Open the DB
@@ -99,3 +99,32 @@ DELETE FROM trades WHERE id = 31;
!!! Warning
This will remove this trade from the database. Please make sure you got the correct id and **NEVER** run this query without the `where` clause.
## Use a different database system
!!! Warning
By using one of the below database systems, you acknowledge that you know how to manage such a system. Freqtrade will not provide any support with setup or maintenance (or backups) of the below database systems.
### PostgreSQL
Freqtrade supports PostgreSQL by using SQLAlchemy, which supports multiple different database systems.
Installation:
`pip install psycopg2`
Usage:
`... --db-url postgresql+psycopg2://<username>:<password>@localhost:5432/<database>`
Freqtrade will automatically create the tables necessary upon startup.
If you're running different instances of Freqtrade, you must either setup one database per Instance or use different users / schemas for your connections.
### MariaDB / MySQL
Freqtrade supports MariaDB by using SQLAlchemy, which supports multiple different database systems.
Installation:
`pip install pymysql`
Usage:
`... --db-url mysql+pymysql://<username>:<password>@localhost:3306/<database>`

View File

@@ -40,34 +40,79 @@ class AwesomeStrategy(IStrategy):
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
***
## Dataframe access
### Storing custom information using DatetimeIndex from `dataframe`
You may access dataframe in various strategy functions by querying it from dataprovider.
Imagine you need to store an indicator like `ATR` or `RSI` into `custom_info`. To use this in a meaningful way, you will not only need the raw data of the indicator, but probably also need to keep the right timestamps.
``` python
from freqtrade.exchange import timeframe_to_prev_date
```python
import talib.abstract as ta
class AwesomeStrategy(IStrategy):
# Create custom dictionary
custom_info = {}
def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
current_time: 'datetime', **kwargs) -> bool:
# Obtain pair dataframe.
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# using "ATR" here as example
dataframe['atr'] = ta.ATR(dataframe)
if self.dp.runmode.value in ('backtest', 'hyperopt'):
# add indicator mapped to correct DatetimeIndex to custom_info
self.custom_info[metadata['pair']] = dataframe[['date', 'atr']].set_index('date')
return dataframe
# Obtain last available candle. Do not use current_time to look up latest candle, because
# current_time points to curret incomplete candle whose data is not available.
last_candle = dataframe.iloc[-1].squeeze()
# <...>
# In dry/live runs trade open date will not match candle open date therefore it must be
# rounded.
trade_date = timeframe_to_prev_date(self.timeframe, trade.open_date_utc)
# Look up trade candle.
trade_candle = dataframe.loc[dataframe['date'] == trade_date]
# trade_candle may be empty for trades that just opened as it is still incomplete.
if not trade_candle.empty:
trade_candle = trade_candle.squeeze()
# <...>
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Warning "Using .iloc[-1]"
You can use `.iloc[-1]` here because `get_analyzed_dataframe()` only returns candles that backtesting is allowed to see.
This will not work in `populate_*` methods, so make sure to not use `.iloc[]` in that area.
Also, this will only work starting with version 2021.5.
***
## Custom sell signal
It is possible to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need the trade profit to take the sell decision.
For example you could implement a 1:2 risk-reward ROI with `custom_sell()`.
Using custom_sell() signals in place of stoplosses though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
Returning a `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
See `custom_stoploss` examples below on how to access the saved dataframe columns
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
``` python
class AwesomeStrategy(IStrategy):
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
# Above 20% profit, sell when rsi < 80
if current_profit > 0.2:
if last_candle['rsi'] < 80:
return 'rsi_below_80'
# Between 2% and 10%, sell if EMA-long above EMA-short
if 0.02 < current_profit < 0.1:
if last_candle['emalong'] > last_candle['emashort']:
return 'ema_long_below_80'
# Sell any positions at a loss if they are held for more than one day.
if current_profit < 0.0 and (current_time - trade.open_date_utc).days >= 1:
return 'unclog'
```
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
## Custom stoploss
@@ -110,7 +155,7 @@ class AwesomeStrategy(IStrategy):
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the currentrate
:return float: New stoploss value, relative to the current rate
"""
return -0.04
```
@@ -222,7 +267,6 @@ Instead of continuously trailing behind the current price, this example sets fix
* Once profit is > 25% - set stoploss to 15% above open price.
* Once profit is > 40% - set stoploss to 25% above open price.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
@@ -248,63 +292,46 @@ class AwesomeStrategy(IStrategy):
# return maximum stoploss value, keeping current stoploss price unchanged
return 1
```
#### Custom stoploss using an indicator from dataframe example
Imagine you want to use `custom_stoploss()` to use a trailing indicator like e.g. "ATR"
See: "Storing custom information using DatetimeIndex from `dataframe`" example above) on how to store the indicator into `custom_info`
!!! Warning
only use .iat[-1] in live mode, not in backtesting/hyperopt
otherwise you will look into the future
see [Common mistakes when developing strategies](strategy-customization.md#common-mistakes-when-developing-strategies) for more info.
Absolute stoploss value may be derived from indicators stored in dataframe. Example uses parabolic SAR below the price as stoploss.
``` python
from freqtrade.persistence import Trade
from freqtrade.state import RunMode
class AwesomeStrategy(IStrategy):
# ... populate_* methods
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# <...>
dataframe['sar'] = ta.SAR(dataframe)
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
result = 1
if self.custom_info and pair in self.custom_info and trade:
# using current_time directly (like below) will only work in backtesting.
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
relative_sl = self.custom_info[pair].loc[current_time]['atr']
# in live / dry-run, it'll be really the current time
else:
# but we can just use the last entry from an already analyzed dataframe instead
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
# WARNING
# only use .iat[-1] in live mode, not in backtesting/hyperopt
# otherwise you will look into the future
# see: https://www.freqtrade.io/en/latest/strategy-customization/#common-mistakes-when-developing-strategies
relative_sl = dataframe['atr'].iat[-1]
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
if (relative_sl is not None):
# new stoploss relative to current_rate
new_stoploss = (current_rate-relative_sl)/current_rate
# turn into relative negative offset required by `custom_stoploss` return implementation
result = new_stoploss - 1
# Use parabolic sar as absolute stoploss price
stoploss_price = last_candle['sar']
return result
# Convert absolute price to percentage relative to current_rate
if stoploss_price < current_rate:
return (stoploss_price / current_rate) - 1
# return maximum stoploss value, keeping current stoploss price unchanged
return 1
```
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
---
## Custom order timeout rules
Simple, time-based order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
However, freqtrade also offers a custom callback for both order types, which allows you to decide based on custom criteria if a order did time out or not.
However, freqtrade also offers a custom callback for both order types, which allows you to decide based on custom criteria if an order did time out or not.
!!! Note
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
@@ -530,7 +557,7 @@ Both attributes and methods may be overridden, altering behavior of the original
## Embedding Strategies
Freqtrade provides you with with an easy way to embed the strategy into your configuration file.
Freqtrade provides you with an easy way to embed the strategy into your configuration file.
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
in your chosen config file.

View File

@@ -159,7 +159,7 @@ Edit the method `populate_buy_trend()` in your strategy file to update your buy
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This will method will also define a new column, `"buy"`, which needs to contain 1 for buys, and 0 for "no action".
This method will also define a new column, `"buy"`, which needs to contain 1 for buys, and 0 for "no action".
Sample from `user_data/strategies/sample_strategy.py`:
@@ -193,7 +193,7 @@ Please note that the sell-signal is only used if `use_sell_signal` is set to tru
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
This will method will also define a new column, `"sell"`, which needs to contain 1 for sells, and 0 for "no action".
This method will also define a new column, `"sell"`, which needs to contain 1 for sells, and 0 for "no action".
Sample from `user_data/strategies/sample_strategy.py`:
@@ -422,10 +422,6 @@ if self.dp:
Returns an empty dataframe if the requested pair was not cached.
This should not happen when using whitelisted pairs.
!!! Warning "Warning about backtesting"
This method will return an empty dataframe during backtesting.
### *orderbook(pair, maximum)*
``` python
@@ -633,7 +629,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risin above 10%, keep the stoploss at 7% above the open price
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit)

View File

@@ -11,3 +11,18 @@
.rst-versions .rst-other-versions {
color: white;
}
#widget-wrapper {
height: calc(220px * 0.5625 + 18px);
width: 220px;
margin: 0 auto 16px auto;
border-style: solid;
border-color: var(--md-code-bg-color);
border-width: 1px;
border-radius: 5px;
}
@media screen and (max-width: calc(76.25em - 1px)) {
#widget-wrapper { display: none; }
}

View File

@@ -72,22 +72,32 @@ Example configuration showing the different settings:
``` json
"telegram": {
"enabled": true,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id",
"notification_settings": {
"status": "silent",
"warning": "on",
"startup": "off",
"buy": "silent",
"sell": "on",
"buy_cancel": "silent",
"sell_cancel": "on",
"buy_fill": "off",
"sell_fill": "off"
},
"balance_dust_level": 0.01
},
"enabled": true,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id",
"notification_settings": {
"status": "silent",
"warning": "on",
"startup": "off",
"buy": "silent",
"sell": {
"roi": "silent",
"emergency_sell": "on",
"force_sell": "on",
"sell_signal": "silent",
"trailing_stop_loss": "on",
"stop_loss": "on",
"stoploss_on_exchange": "on",
"custom_sell": "silent"
},
"buy_cancel": "silent",
"sell_cancel": "on",
"buy_fill": "off",
"sell_fill": "off"
},
"reload": true,
"balance_dust_level": 0.01
},
```
`buy` notifications are sent when the order is placed, while `buy_fill` notifications are sent when the order is filled on the exchange.
@@ -96,6 +106,7 @@ Example configuration showing the different settings:
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`reload` allows you to disable reload-buttons on selected messages.
## Create a custom keyboard (command shortcut buttons)
@@ -154,7 +165,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/count` | Displays number of trades used and available
| `/locks` | Show currently locked pairs.
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
| `/profit` | Display a summary of your profit/loss from close trades and some stats about your performance
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
| `/forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
@@ -250,10 +261,14 @@ Return a summary of your profit/loss and performance.
> **BITTREX:** Selling BTC/LTC with limit `0.01650000 (profit: ~-4.07%, -0.00008168)`
### /forcebuy <pair>
### /forcebuy <pair> [rate]
> **BITTREX:** Buying ETH/BTC with limit `0.03400000` (`1.000000 ETH`, `225.290 USD`)
Omitting the pair will open a query asking for the pair to buy (based on the current whitelist).
![Telegram force-buy screenshot](assets/telegram_forcebuy.png)
Note that for this to work, `forcebuy_enable` needs to be set to true.
[More details](configuration.md#understand-forcebuy_enable)
@@ -261,12 +276,12 @@ Note that for this to work, `forcebuy_enable` needs to be set to true.
### /performance
Return the performance of each crypto-currency the bot has sold.
> Performance:
> 1. `RCN/BTC 57.77%`
> 2. `PAY/BTC 56.91%`
> 3. `VIB/BTC 47.07%`
> 4. `SALT/BTC 30.24%`
> 5. `STORJ/BTC 27.24%`
> Performance:
> 1. `RCN/BTC 0.003 BTC (57.77%) (1)`
> 2. `PAY/BTC 0.0012 BTC (56.91%) (1)`
> 3. `VIB/BTC 0.0011 BTC (47.07%) (1)`
> 4. `SALT/BTC 0.0010 BTC (30.24%) (1)`
> 5. `STORJ/BTC 0.0009 BTC (27.24%) (1)`
> ...
### /balance

View File

@@ -1,3 +1,5 @@
# Windows installation
We **strongly** recommend that Windows users use [Docker](docker_quickstart.md) as this will work much easier and smoother (also more secure).
If that is not possible, try using the Windows Linux subsystem (WSL) - for which the Ubuntu instructions should work.
@@ -21,7 +23,7 @@ git clone https://github.com/freqtrade/freqtrade.git
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial precompiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib0.4.19cp38cp38win_amd64.whl` (make sure to use the version matching your python version)
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib0.4.20cp38cp38win_amd64.whl` (make sure to use the version matching your python version).
Freqtrade provides these dependencies for the latest 2 Python versions (3.7 and 3.8) and for 64bit Windows.
Other versions must be downloaded from the above link.

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2021.4'
__version__ = '2021.6'
if __version__ == 'develop':

View File

@@ -69,7 +69,7 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"timerange", "timeframe", "no_trades"]
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "timeframe"]
"trade_source", "timeframe", "plot_auto_open"]
ARGS_INSTALL_UI = ["erase_ui_only"]

View File

@@ -183,7 +183,7 @@ def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
"""
Applies selections to the template and writes the result to config_path
:param config_path: Path object for new config file. Should not exist yet
:param selecions: Dict containing selections taken by the user.
:param selections: Dict containing selections taken by the user.
"""
from jinja2.exceptions import TemplateNotFound
try:
@@ -213,7 +213,7 @@ def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
def start_new_config(args: Dict[str, Any]) -> None:
"""
Create a new strategy from a template
Asking the user questions to fill out the templateaccordingly.
Asking the user questions to fill out the template accordingly.
"""
config_path = Path(args['config'][0])

View File

@@ -167,8 +167,9 @@ AVAILABLE_CLI_OPTIONS = {
),
"export": Arg(
'--export',
help='Export backtest results, argument are: trades. '
'Example: `--export=trades`',
help='Export backtest results (default: trades).',
choices=constants.EXPORT_OPTIONS,
),
"exportfilename": Arg(
'--export-filename',
@@ -433,6 +434,11 @@ AVAILABLE_CLI_OPTIONS = {
metavar='INT',
default=750,
),
"plot_auto_open": Arg(
'--auto-open',
help='Automatically open generated plot.',
action='store_true',
),
"no_trades": Arg(
'--no-trades',
help='Skip using trades from backtesting file and DB.',

View File

@@ -8,11 +8,11 @@ from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import convert_ohlcv_format, convert_trades_format
from freqtrade.data.history import (convert_trades_to_ohlcv, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)

View File

@@ -8,9 +8,9 @@ import requests
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import copy_sample_files, create_userdata_dir
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template, render_template_with_fallback
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)

View File

@@ -6,8 +6,9 @@ from colorama import init as colorama_init
from freqtrade.configuration import setup_utils_configuration
from freqtrade.data.btanalysis import get_latest_hyperopt_file
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
from freqtrade.optimize.optimize_reports import show_backtest_result
logger = logging.getLogger(__name__)
@@ -66,7 +67,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if epochs and not no_details:
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
results = sorted_epochs[0]
HyperoptTools.print_epoch_details(results, total_epochs, print_json, no_header)
HyperoptTools.show_epoch_details(results, total_epochs, print_json, no_header)
if epochs and export_csv:
HyperoptTools.export_csv_file(
@@ -125,18 +126,26 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
if epochs:
val = epochs[n]
HyperoptTools.print_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
metrics = val['results_metrics']
if 'strategy_name' in metrics:
show_backtest_result(metrics['strategy_name'], metrics,
metrics['stake_currency'])
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
TODO: after 2021.5 remove all "legacy" mode queries.
"""
if filteroptions['only_best']:
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
epochs = [x for x in epochs if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total', 0)) > 0]
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
@@ -153,34 +162,59 @@ def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
return epochs
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
"""
Filter epochs with trade-counts > trades
"""
return [
x for x in epochs
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades', 0)
) > trade_count
]
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_trades'] > 0:
epochs = [
x for x in epochs
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
if filteroptions['filter_max_trades'] > 0:
epochs = [
x for x in epochs
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades')
) < filteroptions['filter_max_trades']
]
return epochs
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
def get_duration_value(x):
# Duration in minutes ...
if 'duration' in x['results_metrics']:
return x['results_metrics']['duration']
else:
# New mode
if 'holding_avg_s' in x['results_metrics']:
avg = x['results_metrics']['holding_avg_s']
return avg // 60
raise OperationalException(
"Holding-average not available. Please omit the filter on average time, "
"or rerun hyperopt with this version")
if filteroptions['filter_min_avg_time'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
if get_duration_value(x) > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
if get_duration_value(x) < filteroptions['filter_max_avg_time']
]
return epochs
@@ -189,28 +223,36 @@ def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_profit'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['avg_profit'] > filteroptions['filter_min_avg_profit']
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) > filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['avg_profit'] < filteroptions['filter_max_avg_profit']
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) < filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) < filteroptions['filter_max_total_profit']
]
return epochs
@@ -218,11 +260,11 @@ def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_objective'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
if filteroptions['filter_max_objective'] is not None:
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]

View File

@@ -1,7 +1,6 @@
import csv
import logging
import sys
from collections import OrderedDict
from pathlib import Path
from typing import Any, Dict, List
@@ -12,11 +11,11 @@ from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges
from freqtrade.misc import plural
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@@ -54,15 +53,21 @@ def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
reset = ''
names = [s['name'] for s in objs]
objss_to_print = [{
objs_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
print(tabulate(objss_to_print, headers='keys', tablefmt='psql', stralign='right'))
for idx, s in enumerate(objs):
if 'hyperoptable' in s:
objs_to_print[idx].update({
'hyperoptable': "Yes" if s['hyperoptable']['count'] > 0 else "No",
'buy-Params': len(s['hyperoptable'].get('buy', [])),
'sell-Params': len(s['hyperoptable'].get('sell', [])),
})
print(tabulate(objs_to_print, headers='keys', tablefmt='psql', stralign='right'))
def start_list_strategies(args: Dict[str, Any]) -> None:
@@ -75,6 +80,11 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
for obj in strategy_objs:
if obj['class']:
obj['hyperoptable'] = obj['class'].detect_all_parameters()
else:
obj['hyperoptable'] = {'count': 0}
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
@@ -143,7 +153,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
pairs_only=pairs_only,
active_only=active_only)
# Sort the pairs/markets by symbol
pairs = OrderedDict(sorted(pairs.items()))
pairs = dict(sorted(pairs.items()))
except Exception as e:
raise OperationalException(f"Cannot get markets. Reason: {e}") from e

View File

@@ -3,9 +3,9 @@ from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.misc import round_coin_value
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@@ -15,6 +15,7 @@ def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[
"""
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:param method: Bot running mode
:return: Configuration
"""
config = setup_utils_configuration(args, method)

View File

@@ -4,8 +4,8 @@ from typing import Any, Dict
import rapidjson
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@@ -31,7 +31,7 @@ def start_test_pairlist(args: Dict[str, Any]) -> None:
results[curr] = pairlists.whitelist
for curr, pairlist in results.items():
if not args.get('print_one_column', False):
if not args.get('print_one_column', False) and not args.get('list_pairs_print_json', False):
print(f"Pairs for {curr}: ")
if args.get('print_one_column', False):

View File

@@ -1,8 +1,8 @@
from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
def validate_plot_args(args: Dict[str, Any]) -> None:

View File

@@ -1,10 +1,10 @@
import logging
from typing import Any, Dict
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
is_exchange_officially_supported, validate_exchange)
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)

View File

@@ -1,7 +1,7 @@
import logging
from typing import Any, Dict
from freqtrade.state import RunMode
from freqtrade.enums import RunMode
from .check_exchange import remove_credentials
from .config_validation import validate_config_consistency
@@ -15,6 +15,7 @@ def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
:param method: Bot running mode
:return: Configuration
"""
configuration = Configuration(args, method)

View File

@@ -6,8 +6,8 @@ from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)

View File

@@ -12,10 +12,10 @@ from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
from freqtrade.configuration.load_config import load_config_file, load_file
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import setup_logging
from freqtrade.misc import deep_merge_dicts
from freqtrade.state import NON_UTIL_MODES, TRADING_MODES, RunMode
logger = logging.getLogger(__name__)
@@ -375,6 +375,9 @@ class Configuration:
self._args_to_config(config, argname='plot_limit',
logstring='Limiting plot to: {}')
self._args_to_config(config, argname='plot_auto_open',
logstring='Parameter --auto-open detected.')
self._args_to_config(config, argname='trade_source',
logstring='Using trades from: {}')
@@ -457,7 +460,7 @@ class Configuration:
pairs_file = Path(self.args["pairs_file"])
logger.info(f'Reading pairs file "{pairs_file}".')
# Download pairs from the pairs file if no config is specified
# or if pairs file is specified explicitely
# or if pairs file is specified explicitly
if not pairs_file.exists():
raise OperationalException(f'No pairs file found with path "{pairs_file}".')
config['pairs'] = load_file(pairs_file)

View File

@@ -43,7 +43,7 @@ def load_file(path: Path) -> Dict[str, Any]:
with path.open('r') as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(f'File file "{path}" not found!')
raise OperationalException(f'File "{path}" not found!')
return config

View File

@@ -3,6 +3,7 @@ This module contains the argument manager class
"""
import logging
import re
from datetime import datetime
from typing import Optional
import arrow
@@ -43,7 +44,7 @@ class TimeRange:
self.startts = self.startts - seconds
def adjust_start_if_necessary(self, timeframe_secs: int, startup_candles: int,
min_date: arrow.Arrow) -> None:
min_date: datetime) -> None:
"""
Adjust startts by <startup_candles> candles.
Applies only if no startup-candles have been available.
@@ -54,11 +55,11 @@ class TimeRange:
:return: None (Modifies the object in place)
"""
if (not self.starttype or (startup_candles
and min_date.int_timestamp >= self.startts)):
and min_date.timestamp() >= self.startts)):
# If no startts was defined, or backtest-data starts at the defined backtest-date
logger.warning("Moving start-date by %s candles to account for startup time.",
startup_candles)
self.startts = (min_date.int_timestamp + timeframe_secs * startup_candles)
self.startts = int(min_date.timestamp() + timeframe_secs * startup_candles)
self.starttype = 'date'
@staticmethod

View File

@@ -11,6 +11,8 @@ DEFAULT_EXCHANGE = 'bittrex'
PROCESS_THROTTLE_SECS = 5 # sec
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
TIMEOUT_UNITS = ['minutes', 'seconds']
EXPORT_OPTIONS = ['none', 'trades']
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited'
@@ -60,7 +62,7 @@ DUST_PER_COIN = {
}
# Soure files with destination directories within user-directory
# Source files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
@@ -137,7 +139,8 @@ CONF_SCHEMA = {
'type': 'object',
'properties': {
'buy': {'type': 'number', 'minimum': 1},
'sell': {'type': 'number', 'minimum': 1}
'sell': {'type': 'number', 'minimum': 1},
'unit': {'type': 'string', 'enum': TIMEOUT_UNITS, 'default': 'minutes'}
}
},
'bid_strategy': {
@@ -258,7 +261,13 @@ CONF_SCHEMA = {
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'sell': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'sell': {
'type': ['string', 'object'],
'additionalProperties': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS
}
},
'sell_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'sell_fill': {
'type': 'string',
@@ -266,7 +275,8 @@ CONF_SCHEMA = {
'default': 'off'
},
}
}
},
'reload': {'type': 'boolean'},
},
'required': ['enabled', 'token', 'chat_id'],
},
@@ -300,6 +310,7 @@ CONF_SCHEMA = {
'required': ['enabled', 'listen_ip_address', 'listen_port', 'username', 'password']
},
'db_url': {'type': 'string'},
'export': {'type': 'string', 'enum': EXPORT_OPTIONS, 'default': 'trades'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'forcebuy_enable': {'type': 'boolean'},
'disable_dataframe_checks': {'type': 'boolean'},

View File

@@ -156,33 +156,35 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
data = data['strategy'][strategy]['trades']
df = pd.DataFrame(data)
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
if not df.empty:
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
else:
# old format - only with lists.
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS_OLD)
df['open_date'] = pd.to_datetime(df['open_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
# Create compatibility with new format
df['profit_abs'] = df['close_rate'] - df['open_rate']
if 'profit_ratio' not in df.columns:
df['profit_ratio'] = df['profit_percent']
df = df.sort_values("open_date").reset_index(drop=True)
if not df.empty:
df['open_date'] = pd.to_datetime(df['open_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
# Create compatibility with new format
df['profit_abs'] = df['close_rate'] - df['open_rate']
if not df.empty:
if 'profit_ratio' not in df.columns:
df['profit_ratio'] = df['profit_percent']
df = df.sort_values("open_date").reset_index(drop=True)
return df

View File

@@ -49,7 +49,7 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a OHLCV dataframe by
Cleanse a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
@@ -145,6 +145,27 @@ def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
return df
def trim_dataframes(preprocessed: Dict[str, DataFrame], timerange,
startup_candles: int) -> Dict[str, DataFrame]:
"""
Trim startup period from analyzed dataframes
:param preprocessed: Dict of pair: dataframe
:param timerange: timerange (use start and end date if available)
:param startup_candles: Startup-candles that should be removed
:return: Dict of trimmed dataframes
"""
processed: Dict[str, DataFrame] = {}
for pair, df in preprocessed.items():
trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles)
if not trimed_df.empty:
processed[pair] = trimed_df
else:
logger.warning(f'{pair} has no data left after adjusting for startup candles, '
f'skipping.')
return processed
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test

View File

@@ -12,21 +12,32 @@ from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.data.history import load_pair_history
from freqtrade.enums import RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
NO_EXCHANGE_EXCEPTION = 'Exchange is not available to DataProvider.'
MAX_DATAFRAME_CANDLES = 1000
class DataProvider:
def __init__(self, config: dict, exchange: Exchange, pairlists=None) -> None:
def __init__(self, config: dict, exchange: Optional[Exchange], pairlists=None) -> None:
self._config = config
self._exchange = exchange
self._pairlists = pairlists
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
self.__slice_index: Optional[int] = None
def _set_dataframe_max_index(self, limit_index: int):
"""
Limit analyzed dataframe to max specified index.
:param limit_index: dataframe index.
"""
self.__slice_index = limit_index
def _set_cached_df(self, pair: str, timeframe: str, dataframe: DataFrame) -> None:
"""
@@ -45,40 +56,6 @@ class DataProvider:
"""
self._pairlists = pairlists
def refresh(self,
pairlist: ListPairsWithTimeframes,
helping_pairs: ListPairsWithTimeframes = None) -> None:
"""
Refresh data, called with each cycle
"""
if helping_pairs:
self._exchange.refresh_latest_ohlcv(pairlist + helping_pairs)
else:
self._exchange.refresh_latest_ohlcv(pairlist)
@property
def available_pairs(self) -> ListPairsWithTimeframes:
"""
Return a list of tuples containing (pair, timeframe) for which data is currently cached.
Should be whitelist + open trades.
"""
return list(self._exchange._klines.keys())
def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
"""
Get candle (OHLCV) data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified)
"""
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
return self._exchange.klines((pair, timeframe or self._config['timeframe']),
copy=copy)
else:
return DataFrame()
def historic_ohlcv(self, pair: str, timeframe: str = None) -> DataFrame:
"""
Get stored historical candle (OHLCV) data
@@ -111,47 +88,27 @@ class DataProvider:
def get_analyzed_dataframe(self, pair: str, timeframe: str) -> Tuple[DataFrame, datetime]:
"""
Retrieve the analyzed dataframe. Returns the full dataframe in trade mode (live / dry),
and the last 1000 candles (up to the time evaluated at this moment) in all other modes.
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
:return: Tuple of (Analyzed Dataframe, lastrefreshed) for the requested pair / timeframe
combination.
Returns empty dataframe and Epoch 0 (1970-01-01) if no dataframe was cached.
"""
if (pair, timeframe) in self.__cached_pairs:
return self.__cached_pairs[(pair, timeframe)]
pair_key = (pair, timeframe)
if pair_key in self.__cached_pairs:
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
df, date = self.__cached_pairs[pair_key]
else:
df, date = self.__cached_pairs[pair_key]
if self.__slice_index is not None:
max_index = self.__slice_index
df = df.iloc[max(0, max_index - MAX_DATAFRAME_CANDLES):max_index]
return df, date
else:
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
def market(self, pair: str) -> Optional[Dict[str, Any]]:
"""
Return market data for the pair
:param pair: Pair to get the data for
:return: Market data dict from ccxt or None if market info is not available for the pair
"""
return self._exchange.markets.get(pair)
def ticker(self, pair: str):
"""
Return last ticker data from exchange
:param pair: Pair to get the data for
:return: Ticker dict from exchange or empty dict if ticker is not available for the pair
"""
try:
return self._exchange.fetch_ticker(pair)
except ExchangeError:
return {}
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
"""
Fetch latest l2 orderbook data
Warning: Does a network request - so use with common sense.
:param pair: pair to get the data for
:param maximum: Maximum number of orderbook entries to query
:return: dict including bids/asks with a total of `maximum` entries.
"""
return self._exchange.fetch_l2_order_book(pair, maximum)
@property
def runmode(self) -> RunMode:
"""
@@ -173,3 +130,86 @@ class DataProvider:
return self._pairlists.whitelist.copy()
else:
raise OperationalException("Dataprovider was not initialized with a pairlist provider.")
def clear_cache(self):
"""
Clear pair dataframe cache.
"""
self.__cached_pairs = {}
# Exchange functions
def refresh(self,
pairlist: ListPairsWithTimeframes,
helping_pairs: ListPairsWithTimeframes = None) -> None:
"""
Refresh data, called with each cycle
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
if helping_pairs:
self._exchange.refresh_latest_ohlcv(pairlist + helping_pairs)
else:
self._exchange.refresh_latest_ohlcv(pairlist)
@property
def available_pairs(self) -> ListPairsWithTimeframes:
"""
Return a list of tuples containing (pair, timeframe) for which data is currently cached.
Should be whitelist + open trades.
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
return list(self._exchange._klines.keys())
def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
"""
Get candle (OHLCV) data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified)
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
return self._exchange.klines((pair, timeframe or self._config['timeframe']),
copy=copy)
else:
return DataFrame()
def market(self, pair: str) -> Optional[Dict[str, Any]]:
"""
Return market data for the pair
:param pair: Pair to get the data for
:return: Market data dict from ccxt or None if market info is not available for the pair
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
return self._exchange.markets.get(pair)
def ticker(self, pair: str):
"""
Return last ticker data from exchange
:param pair: Pair to get the data for
:return: Ticker dict from exchange or empty dict if ticker is not available for the pair
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
try:
return self._exchange.fetch_ticker(pair)
except ExchangeError:
return {}
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
"""
Fetch latest l2 orderbook data
Warning: Does a network request - so use with common sense.
:param pair: pair to get the data for
:param maximum: Maximum number of orderbook entries to query
:return: dict including bids/asks with a total of `maximum` entries.
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
return self._exchange.fetch_l2_order_book(pair, maximum)

View File

@@ -52,8 +52,8 @@ class HDF5DataHandler(IDataHandler):
"""
Store data in hdf5 file.
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:return: None
"""
key = self._pair_ohlcv_key(pair, timeframe)

View File

@@ -113,6 +113,7 @@ def refresh_data(datadir: Path,
:param timeframe: Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param exchange: Exchange object
:param data_format: dataformat to use
:param timerange: Limit data to be loaded to this timerange
"""
data_handler = get_datahandler(datadir, data_format)
@@ -265,9 +266,13 @@ def _download_trades_history(exchange: Exchange,
"""
try:
since = timerange.startts * 1000 if \
(timerange and timerange.starttype == 'date') else int(arrow.utcnow().shift(
days=-new_pairs_days).float_timestamp) * 1000
until = None
if (timerange and timerange.starttype == 'date'):
since = timerange.startts * 1000
if timerange.stoptype == 'date':
until = timerange.stopts * 1000
else:
since = int(arrow.utcnow().shift(days=-new_pairs_days).float_timestamp) * 1000
trades = data_handler.trades_load(pair)
@@ -295,6 +300,7 @@ def _download_trades_history(exchange: Exchange,
# Default since_ms to 30 days if nothing is given
new_trades = exchange.get_historic_trades(pair=pair,
since=since,
until=until,
from_id=from_id,
)
trades.extend(new_trades[1])
@@ -367,7 +373,7 @@ def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
logger.exception(f'Could not convert {pair} to OHLCV.')
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[datetime, datetime]:
"""
Get the maximum common timerange for the given backtest data.
@@ -375,7 +381,7 @@ def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]
:return: tuple containing min_date, max_date
"""
timeranges = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
(frame['date'].min().to_pydatetime(), frame['date'].max().to_pydatetime())
for frame in data.values()
]
return (min(timeranges, key=operator.itemgetter(0))[0],

View File

@@ -49,8 +49,8 @@ class IDataHandler(ABC):
"""
Store ohlcv data.
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:return: None
"""
@@ -245,8 +245,8 @@ def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:data_format: dataformat to use
:data_handler: returns this datahandler if it exists or initializes a new one
:param data_format: dataformat to use
:param data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:

View File

@@ -55,8 +55,8 @@ class JsonDataHandler(IDataHandler):
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)

View File

@@ -1,6 +1,8 @@
# pragma pylint: disable=W0603
""" Edge positioning package """
import logging
from collections import defaultdict
from copy import deepcopy
from typing import Any, Dict, List, NamedTuple
import arrow
@@ -11,9 +13,11 @@ from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT
from freqtrade.data.history import get_timerange, load_data, refresh_data
from freqtrade.enums import RunMode, SellType
from freqtrade.exceptions import OperationalException
from freqtrade.exchange.exchange import timeframe_to_seconds
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.strategy.interface import SellType
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
@@ -45,7 +49,7 @@ class Edge:
self.config = config
self.exchange = exchange
self.strategy = strategy
self.strategy: IStrategy = strategy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
@@ -102,14 +106,33 @@ class Edge:
logger.info('Using local backtesting data (using whitelist in given config) ...')
if self._refresh_pairs:
timerange_startup = deepcopy(self._timerange)
timerange_startup.subtract_start(timeframe_to_seconds(
self.strategy.timeframe) * self.strategy.startup_candle_count)
refresh_data(
datadir=self.config['datadir'],
pairs=pairs,
exchange=self.exchange,
timeframe=self.strategy.timeframe,
timerange=self._timerange,
timerange=timerange_startup,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
# Download informative pairs too
res = defaultdict(list)
for p, t in self.strategy.informative_pairs():
res[t].append(p)
for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange)
timerange_startup.subtract_start(timeframe_to_seconds(
timeframe) * self.strategy.startup_candle_count)
refresh_data(
datadir=self.config['datadir'],
pairs=inf_pairs,
exchange=self.exchange,
timeframe=timeframe,
timerange=timerange_startup,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
data = load_data(
datadir=self.config['datadir'],
@@ -125,8 +148,11 @@ class Edge:
self._cached_pairs = {}
logger.critical("No data found. Edge is stopped ...")
return False
# Fake run-mode to Edge
prior_rm = self.config['runmode']
self.config['runmode'] = RunMode.EDGE
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
self.config['runmode'] = prior_rm
# Print timeframe
min_date, max_date = get_timerange(preprocessed)
@@ -183,7 +209,7 @@ class Edge:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning('tried to access stoploss of a non-existing pair, '
logger.warning(f'Tried to access stoploss of non-existing pair {pair}, '
'strategy stoploss is returned instead.')
return self.strategy.stoploss
@@ -214,7 +240,7 @@ class Edge:
return self._final_pairs
def accepted_pairs(self) -> list:
def accepted_pairs(self) -> List[Dict[str, Any]]:
"""
return a list of accepted pairs along with their winrate, expectancy and stoploss
"""
@@ -275,7 +301,7 @@ class Edge:
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
The calculation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)

View File

@@ -0,0 +1,6 @@
# flake8: noqa: F401
from freqtrade.enums.rpcmessagetype import RPCMessageType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.selltype import SellType
from freqtrade.enums.signaltype import SignalType
from freqtrade.enums.state import State

View File

@@ -0,0 +1,19 @@
from enum import Enum
class RPCMessageType(Enum):
STATUS = 'status'
WARNING = 'warning'
STARTUP = 'startup'
BUY = 'buy'
BUY_FILL = 'buy_fill'
BUY_CANCEL = 'buy_cancel'
SELL = 'sell'
SELL_FILL = 'sell_fill'
SELL_CANCEL = 'sell_cancel'
def __repr__(self):
return self.value
def __str__(self):
return self.value

View File

@@ -1,23 +1,6 @@
# pragma pylint: disable=too-few-public-methods
"""
Bot state constant
"""
from enum import Enum
class State(Enum):
"""
Bot application states
"""
RUNNING = 1
STOPPED = 2
RELOAD_CONFIG = 3
def __str__(self):
return f"{self.name.lower()}"
class RunMode(Enum):
"""
Bot running mode (backtest, hyperopt, ...)

View File

@@ -0,0 +1,20 @@
from enum import Enum
class SellType(Enum):
"""
Enum to distinguish between sell reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"
TRAILING_STOP_LOSS = "trailing_stop_loss"
SELL_SIGNAL = "sell_signal"
FORCE_SELL = "force_sell"
EMERGENCY_SELL = "emergency_sell"
CUSTOM_SELL = "custom_sell"
NONE = ""
def __str__(self):
# explicitly convert to String to help with exporting data.
return self.value

View File

@@ -0,0 +1,9 @@
from enum import Enum
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
"""
BUY = "buy"
SELL = "sell"

13
freqtrade/enums/state.py Normal file
View File

@@ -0,0 +1,13 @@
from enum import Enum
class State(Enum):
"""
Bot application states
"""
RUNNING = 1
STOPPED = 2
RELOAD_CONFIG = 3
def __str__(self):
return f"{self.name.lower()}"

View File

@@ -47,7 +47,7 @@ class InvalidOrderException(ExchangeError):
class RetryableOrderError(InvalidOrderException):
"""
This is returned when the order is not found.
This Error will be repeated with increasing backof (in line with DDosError).
This Error will be repeated with increasing backoff (in line with DDosError).
"""
@@ -75,6 +75,6 @@ class DDosProtection(TemporaryError):
class StrategyError(FreqtradeException):
"""
Errors with custom user-code deteced.
Errors with custom user-code detected.
Usually caused by errors in the strategy.
"""

View File

@@ -7,6 +7,7 @@ from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges,
is_exchange_known_ccxt, is_exchange_officially_supported,
market_is_active, timeframe_to_minutes, timeframe_to_msecs,
@@ -14,5 +15,6 @@ from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.ftx import Ftx
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.kucoin import Kucoin

View File

@@ -68,6 +68,7 @@ class Binance(Exchange):
amount=amount, price=rate, params=params)
logger.info('stoploss limit order added for %s. '
'stop price: %s. limit: %s', pair, stop_price, rate)
self._log_exchange_response('create_stoploss_order', order)
return order
except ccxt.InsufficientFunds as e:
raise InsufficientFundsError(

View File

@@ -18,7 +18,6 @@ class Bybit(Exchange):
may still not work as expected.
"""
# fetchCurrencies API point requires authentication for Bybit,
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
}

View File

@@ -0,0 +1,23 @@
""" CoinbasePro exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Coinbasepro(Exchange):
"""
CoinbasePro exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 300,
}

View File

@@ -22,8 +22,8 @@ from pandas import DataFrame
from freqtrade.constants import DEFAULT_AMOUNT_RESERVE_PERCENT, ListPairsWithTimeframes
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
InvalidOrderException, OperationalException, RetryableOrderError,
TemporaryError)
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED, retrier,
retrier_async)
@@ -59,6 +59,7 @@ class Exchange:
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"order_time_in_force": ["gtc"],
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
"trades_pagination": "time", # Possible are "time" or "id"
@@ -87,6 +88,11 @@ class Exchange:
# Cache for 10 minutes ...
self._fetch_tickers_cache: TTLCache = TTLCache(maxsize=1, ttl=60 * 10)
# Cache values for 1800 to avoid frequent polling of the exchange for prices
# Caching only applies to RPC methods, so prices for open trades are still
# refreshed once every iteration.
self._sell_rate_cache: TTLCache = TTLCache(maxsize=100, ttl=1800)
self._buy_rate_cache: TTLCache = TTLCache(maxsize=100, ttl=1800)
# Holds candles
self._klines: Dict[Tuple[str, str], DataFrame] = {}
@@ -98,6 +104,7 @@ class Exchange:
logger.info('Instance is running with dry_run enabled')
logger.info(f"Using CCXT {ccxt.__version__}")
exchange_config = config['exchange']
self.log_responses = exchange_config.get('log_responses', False)
# Deep merge ft_has with default ft_has options
self._ft_has = deep_merge_dicts(self._ft_has, deepcopy(self._ft_has_default))
@@ -220,10 +227,15 @@ class Exchange:
"""exchange ccxt precisionMode"""
return self._api.precisionMode
def _log_exchange_response(self, endpoint, response) -> None:
""" Log exchange responses """
if self.log_responses:
logger.info(f"API {endpoint}: {response}")
def ohlcv_candle_limit(self, timeframe: str) -> int:
"""
Exchange ohlcv candle limit
Uses ohlcv_candle_limit_per_timeframe if the exchange has different limts
Uses ohlcv_candle_limit_per_timeframe if the exchange has different limits
per timeframe (e.g. bittrex), otherwise falls back to ohlcv_candle_limit
:param timeframe: Timeframe to check
:return: Candle limit as integer
@@ -463,11 +475,11 @@ class Exchange:
return endpoint in self._api.has and self._api.has[endpoint]
def amount_to_precision(self, pair: str, amount: float) -> float:
'''
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Reimplementation of ccxt internal methods - ensuring we can test the result is correct
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
'''
"""
if self.markets[pair]['precision']['amount']:
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=self.markets[pair]['precision']['amount'],
@@ -477,14 +489,14 @@ class Exchange:
return amount
def price_to_precision(self, pair: str, price: float) -> float:
'''
"""
Returns the price rounded up to the precision the Exchange accepts.
Partial Reimplementation of ccxt internal method decimal_to_precision(),
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
Rounds up
'''
"""
if self.markets[pair]['precision']['price']:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=self.markets[pair]['precision']['price'],
@@ -549,11 +561,13 @@ class Exchange:
# See also #2575 at github.
return max(min_stake_amounts) * amount_reserve_percent
# Dry-run methods
def create_dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{datetime.now().timestamp()}'
_amount = self.amount_to_precision(pair, amount)
dry_order = {
dry_order: Dict[str, Any] = {
'id': order_id,
'symbol': pair,
'price': rate,
@@ -569,26 +583,110 @@ class Exchange:
'fee': None,
'info': {}
}
self._store_dry_order(dry_order, pair)
if dry_order["type"] in ["stop_loss_limit", "stop-loss-limit"]:
dry_order["info"] = {"stopPrice": dry_order["price"]}
if dry_order["type"] == "market":
# Update market order pricing
average = self.get_dry_market_fill_price(pair, side, amount, rate)
dry_order.update({
'average': average,
'cost': dry_order['amount'] * average,
})
dry_order = self.add_dry_order_fee(pair, dry_order)
dry_order = self.check_dry_limit_order_filled(dry_order)
self._dry_run_open_orders[dry_order["id"]] = dry_order
# Copy order and close it - so the returned order is open unless it's a market order
return dry_order
def _store_dry_order(self, dry_order: Dict, pair: str) -> None:
closed_order = dry_order.copy()
if closed_order['type'] in ["market", "limit"]:
closed_order.update({
'status': 'closed',
'filled': closed_order['amount'],
'remaining': 0,
'fee': {
'currency': self.get_pair_quote_currency(pair),
'cost': dry_order['cost'] * self.get_fee(pair),
'rate': self.get_fee(pair)
}
})
if closed_order["type"] in ["stop_loss_limit", "stop-loss-limit"]:
closed_order["info"].update({"stopPrice": closed_order["price"]})
self._dry_run_open_orders[closed_order["id"]] = closed_order
def add_dry_order_fee(self, pair: str, dry_order: Dict[str, Any]) -> Dict[str, Any]:
dry_order.update({
'fee': {
'currency': self.get_pair_quote_currency(pair),
'cost': dry_order['cost'] * self.get_fee(pair),
'rate': self.get_fee(pair)
}
})
return dry_order
def get_dry_market_fill_price(self, pair: str, side: str, amount: float, rate: float) -> float:
"""
Get the market order fill price based on orderbook interpolation
"""
if self.exchange_has('fetchL2OrderBook'):
ob = self.fetch_l2_order_book(pair, 20)
ob_type = 'asks' if side == 'buy' else 'bids'
remaining_amount = amount
filled_amount = 0
for book_entry in ob[ob_type]:
book_entry_price = book_entry[0]
book_entry_coin_volume = book_entry[1]
if remaining_amount > 0:
if remaining_amount < book_entry_coin_volume:
filled_amount += remaining_amount * book_entry_price
else:
filled_amount += book_entry_coin_volume * book_entry_price
remaining_amount -= book_entry_coin_volume
else:
break
else:
# If remaining_amount wasn't consumed completely (break was not called)
filled_amount += remaining_amount * book_entry_price
forecast_avg_filled_price = filled_amount / amount
return self.price_to_precision(pair, forecast_avg_filled_price)
return rate
def _is_dry_limit_order_filled(self, pair: str, side: str, limit: float) -> bool:
if not self.exchange_has('fetchL2OrderBook'):
return True
ob = self.fetch_l2_order_book(pair, 1)
if side == 'buy':
price = ob['asks'][0][0]
logger.debug(f"{pair} checking dry buy-order: price={price}, limit={limit}")
if limit >= price:
return True
else:
price = ob['bids'][0][0]
logger.debug(f"{pair} checking dry sell-order: price={price}, limit={limit}")
if limit <= price:
return True
return False
def check_dry_limit_order_filled(self, order: Dict[str, Any]) -> Dict[str, Any]:
"""
Check dry-run limit order fill and update fee (if it filled).
"""
if order['status'] != "closed" and order['type'] in ["limit"]:
pair = order['symbol']
if self._is_dry_limit_order_filled(pair, order['side'], order['price']):
order.update({
'status': 'closed',
'filled': order['amount'],
'remaining': 0,
})
self.add_dry_order_fee(pair, order)
return order
def fetch_dry_run_order(self, order_id) -> Dict[str, Any]:
"""
Return dry-run order
Only call if running in dry-run mode.
"""
try:
order = self._dry_run_open_orders[order_id]
order = self.check_dry_limit_order_filled(order)
return order
except KeyError as e:
# Gracefully handle errors with dry-run orders.
raise InvalidOrderException(
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
# Order handling
def create_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict:
@@ -599,8 +697,10 @@ class Exchange:
or self._api.options.get("createMarketBuyOrderRequiresPrice", False))
rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
return self._api.create_order(pair, ordertype, side,
amount, rate_for_order, params)
order = self._api.create_order(pair, ordertype, side,
amount, rate_for_order, params)
self._log_exchange_response('create_order', order)
return order
except ccxt.InsufficientFunds as e:
raise InsufficientFundsError(
@@ -666,6 +766,134 @@ class Exchange:
raise OperationalException(f"stoploss is not implemented for {self.name}.")
@retrier(retries=API_FETCH_ORDER_RETRY_COUNT)
def fetch_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
return self.fetch_dry_run_order(order_id)
try:
order = self._api.fetch_order(order_id, pair)
self._log_exchange_response('fetch_order', order)
return order
except ccxt.OrderNotFound as e:
raise RetryableOrderError(
f'Order not found (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Tried to get an invalid order (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
fetch_stoploss_order = fetch_order
def fetch_order_or_stoploss_order(self, order_id: str, pair: str,
stoploss_order: bool = False) -> Dict:
"""
Simple wrapper calling either fetch_order or fetch_stoploss_order depending on
the stoploss_order parameter
:param order_id: OrderId to fetch order
:param pair: Pair corresponding to order_id
:param stoploss_order: If true, uses fetch_stoploss_order, otherwise fetch_order.
"""
if stoploss_order:
return self.fetch_stoploss_order(order_id, pair)
return self.fetch_order(order_id, pair)
def check_order_canceled_empty(self, order: Dict) -> bool:
"""
Verify if an order has been cancelled without being partially filled
:param order: Order dict as returned from fetch_order()
:return: True if order has been cancelled without being filled, False otherwise.
"""
return (order.get('status') in ('closed', 'canceled', 'cancelled')
and order.get('filled') == 0.0)
@retrier
def cancel_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:
order = self.fetch_dry_run_order(order_id)
order.update({'status': 'canceled', 'filled': 0.0, 'remaining': order['amount']})
return order
except InvalidOrderException:
return {}
try:
order = self._api.cancel_order(order_id, pair)
self._log_exchange_response('cancel_order', order)
return order
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not cancel order. Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Assign method to cancel_stoploss_order to allow easy overriding in other classes
cancel_stoploss_order = cancel_order
def is_cancel_order_result_suitable(self, corder) -> bool:
if not isinstance(corder, dict):
return False
required = ('fee', 'status', 'amount')
return all(k in corder for k in required)
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
Cancel order returning a result.
Creates a fake result if cancel order returns a non-usable result
and fetch_order does not work (certain exchanges don't return cancelled orders)
:param order_id: Orderid to cancel
:param pair: Pair corresponding to order_id
:param amount: Amount to use for fake response
:return: Result from either cancel_order if usable, or fetch_order
"""
try:
corder = self.cancel_order(order_id, pair)
if self.is_cancel_order_result_suitable(corder):
return corder
except InvalidOrderException:
logger.warning(f"Could not cancel order {order_id} for {pair}.")
try:
order = self.fetch_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
return order
def cancel_stoploss_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
Cancel stoploss order returning a result.
Creates a fake result if cancel order returns a non-usable result
and fetch_order does not work (certain exchanges don't return cancelled orders)
:param order_id: stoploss-order-id to cancel
:param pair: Pair corresponding to order_id
:param amount: Amount to use for fake response
:return: Result from either cancel_order if usable, or fetch_order
"""
corder = self.cancel_stoploss_order(order_id, pair)
if self.is_cancel_order_result_suitable(corder):
return corder
try:
order = self.fetch_stoploss_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled stoploss order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
return order
@retrier
def get_balances(self) -> dict:
@@ -712,6 +940,8 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Pricing info
@retrier
def fetch_ticker(self, pair: str) -> dict:
try:
@@ -728,6 +958,265 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
@staticmethod
def get_next_limit_in_list(limit: int, limit_range: Optional[List[int]],
range_required: bool = True):
"""
Get next greater value in the list.
Used by fetch_l2_order_book if the api only supports a limited range
"""
if not limit_range:
return limit
result = min([x for x in limit_range if limit <= x] + [max(limit_range)])
if not range_required and limit > result:
# Range is not required - we can use None as parameter.
return None
return result
@retrier
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
"""
Get L2 order book from exchange.
Can be limited to a certain amount (if supported).
Returns a dict in the format
{'asks': [price, volume], 'bids': [price, volume]}
"""
limit1 = self.get_next_limit_in_list(limit, self._ft_has['l2_limit_range'],
self._ft_has['l2_limit_range_required'])
try:
return self._api.fetch_l2_order_book(pair, limit1)
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching order book.'
f'Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order book due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def _order_book_gen(self, pair: str, side: str, order_book_max: int = 1,
order_book_min: int = 1):
"""
Helper generator to query orderbook in loop (used for early sell-order placing)
"""
order_book = self.fetch_l2_order_book(pair, order_book_max)
for i in range(order_book_min, order_book_max + 1):
yield order_book[side][i - 1][0]
def get_buy_rate(self, pair: str, refresh: bool) -> float:
"""
Calculates bid target between current ask price and last price
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: float: Price
:raises PricingError if orderbook price could not be determined.
"""
if not refresh:
rate = self._buy_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.debug(f"Using cached buy rate for {pair}.")
return rate
bid_strategy = self._config.get('bid_strategy', {})
if 'use_order_book' in bid_strategy and bid_strategy.get('use_order_book', False):
order_book_top = bid_strategy.get('order_book_top', 1)
order_book = self.fetch_l2_order_book(pair, order_book_top)
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
rate_from_l2 = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
"Buy Price from orderbook could not be determined."
f"Orderbook: {order_book}"
)
raise PricingError from e
logger.info(f"Buy price from orderbook {bid_strategy['price_side'].capitalize()} side "
f"- top {order_book_top} order book buy rate {rate_from_l2:.8f}")
used_rate = rate_from_l2
else:
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
ticker = self.fetch_ticker(pair)
ticker_rate = ticker[bid_strategy['price_side']]
if ticker['last'] and ticker_rate > ticker['last']:
balance = bid_strategy['ask_last_balance']
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
used_rate = ticker_rate
self._buy_rate_cache[pair] = used_rate
return used_rate
def get_sell_rate(self, pair: str, refresh: bool) -> float:
"""
Get sell rate - either using ticker bid or first bid based on orderbook
or remain static in any other case since it's not updating.
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: Bid rate
:raises PricingError if price could not be determined.
"""
if not refresh:
rate = self._sell_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.debug(f"Using cached sell rate for {pair}.")
return rate
ask_strategy = self._config.get('ask_strategy', {})
if ask_strategy.get('use_order_book', False):
# This code is only used for notifications, selling uses the generator directly
logger.info(
f"Getting price from order book {ask_strategy['price_side'].capitalize()} side."
)
try:
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
except (IndexError, KeyError) as e:
logger.warning("Sell Price at location from orderbook could not be determined.")
raise PricingError from e
else:
ticker = self.fetch_ticker(pair)
ticker_rate = ticker[ask_strategy['price_side']]
if ticker['last'] and ticker_rate < ticker['last']:
balance = ask_strategy.get('bid_last_balance', 0.0)
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
rate = ticker_rate
if rate is None:
raise PricingError(f"Sell-Rate for {pair} was empty.")
self._sell_rate_cache[pair] = rate
return rate
# Fee handling
@retrier
def get_trades_for_order(self, order_id: str, pair: str, since: datetime) -> List:
"""
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
The "since" argument passed in is coming from the database and is in UTC,
as timezone-native datetime object.
From the python documentation:
> Naive datetime instances are assumed to represent local time
Therefore, calling "since.timestamp()" will get the UTC timestamp, after applying the
transformation from local timezone to UTC.
This works for timezones UTC+ since then the result will contain trades from a few hours
instead of from the last 5 seconds, however fails for UTC- timezones,
since we're then asking for trades with a "since" argument in the future.
:param order_id order_id: Order-id as given when creating the order
:param pair: Pair the order is for
:param since: datetime object of the order creation time. Assumes object is in UTC.
"""
if self._config['dry_run']:
return []
if not self.exchange_has('fetchMyTrades'):
return []
try:
# Allow 5s offset to catch slight time offsets (discovered in #1185)
# since needs to be int in milliseconds
my_trades = self._api.fetch_my_trades(
pair, int((since.replace(tzinfo=timezone.utc).timestamp() - 5) * 1000))
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
self._log_exchange_response('get_trades_for_order', matched_trades)
return matched_trades
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get trades due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
return order['id']
@retrier
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: str = 'maker') -> float:
try:
if self._config['dry_run'] and self._config.get('fee', None) is not None:
return self._config['fee']
# validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0:
self._api.load_markets()
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
price=price, takerOrMaker=taker_or_maker)['rate']
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@staticmethod
def order_has_fee(order: Dict) -> bool:
"""
Verifies if the passed in order dict has the needed keys to extract fees,
and that these keys (currency, cost) are not empty.
:param order: Order or trade (one trade) dict
:return: True if the fee substructure contains currency and cost, false otherwise
"""
if not isinstance(order, dict):
return False
return ('fee' in order and order['fee'] is not None
and (order['fee'].keys() >= {'currency', 'cost'})
and order['fee']['currency'] is not None
and order['fee']['cost'] is not None
)
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
"""
Calculate fee rate if it's not given by the exchange.
:param order: Order or trade (one trade) dict
"""
if order['fee'].get('rate') is not None:
return order['fee'].get('rate')
fee_curr = order['fee']['currency']
# Calculate fee based on order details
if fee_curr in self.get_pair_base_currency(order['symbol']):
# Base currency - divide by amount
return round(
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
# Quote currency - divide by cost
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
else:
# If Fee currency is a different currency
if not order['cost']:
# If cost is None or 0.0 -> falsy, return None
return None
try:
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
tick = self.fetch_ticker(comb)
fee_to_quote_rate = safe_value_fallback2(tick, tick, 'last', 'ask')
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
except ExchangeError:
return None
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
"""
Extract tuple of cost, currency, rate.
Requires order_has_fee to run first!
:param order: Order or trade (one trade) dict
:return: Tuple with cost, currency, rate of the given fee dict
"""
return (order['fee']['cost'],
order['fee']['currency'],
self.calculate_fee_rate(order))
# Historic data
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List:
"""
@@ -862,10 +1351,11 @@ class Exchange:
"Fetching pair %s, interval %s, since %s %s...",
pair, timeframe, since_ms, s
)
params = self._ft_has.get('ohlcv_params', {})
data = await self._api_async.fetch_ohlcv(pair, timeframe=timeframe,
since=since_ms,
limit=self.ohlcv_candle_limit(timeframe))
limit=self.ohlcv_candle_limit(timeframe),
params=params)
# Some exchanges sort OHLCV in ASC order and others in DESC.
# Ex: Bittrex returns the list of OHLCV in ASC order (oldest first, newest last)
@@ -894,6 +1384,8 @@ class Exchange:
raise OperationalException(f'Could not fetch historical candle (OHLCV) data '
f'for pair {pair}. Message: {e}') from e
# Fetch historic trades
@retrier_async
async def _async_fetch_trades(self, pair: str,
since: Optional[int] = None,
@@ -1052,268 +1544,6 @@ class Exchange:
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
def check_order_canceled_empty(self, order: Dict) -> bool:
"""
Verify if an order has been cancelled without being partially filled
:param order: Order dict as returned from fetch_order()
:return: True if order has been cancelled without being filled, False otherwise.
"""
return (order.get('status') in ('closed', 'canceled', 'cancelled')
and order.get('filled') == 0.0)
@retrier
def cancel_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
order = self._dry_run_open_orders.get(order_id)
if order:
order.update({'status': 'canceled', 'filled': 0.0, 'remaining': order['amount']})
return order
else:
return {}
try:
return self._api.cancel_order(order_id, pair)
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not cancel order. Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Assign method to cancel_stoploss_order to allow easy overriding in other classes
cancel_stoploss_order = cancel_order
def is_cancel_order_result_suitable(self, corder) -> bool:
if not isinstance(corder, dict):
return False
required = ('fee', 'status', 'amount')
return all(k in corder for k in required)
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
Cancel order returning a result.
Creates a fake result if cancel order returns a non-usable result
and fetch_order does not work (certain exchanges don't return cancelled orders)
:param order_id: Orderid to cancel
:param pair: Pair corresponding to order_id
:param amount: Amount to use for fake response
:return: Result from either cancel_order if usable, or fetch_order
"""
try:
corder = self.cancel_order(order_id, pair)
if self.is_cancel_order_result_suitable(corder):
return corder
except InvalidOrderException:
logger.warning(f"Could not cancel order {order_id} for {pair}.")
try:
order = self.fetch_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
return order
@retrier(retries=API_FETCH_ORDER_RETRY_COUNT)
def fetch_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:
order = self._dry_run_open_orders[order_id]
return order
except KeyError as e:
# Gracefully handle errors with dry-run orders.
raise InvalidOrderException(
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
try:
return self._api.fetch_order(order_id, pair)
except ccxt.OrderNotFound as e:
raise RetryableOrderError(
f'Order not found (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Tried to get an invalid order (pair: {pair} id: {order_id}). Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
fetch_stoploss_order = fetch_order
def fetch_order_or_stoploss_order(self, order_id: str, pair: str,
stoploss_order: bool = False) -> Dict:
"""
Simple wrapper calling either fetch_order or fetch_stoploss_order depending on
the stoploss_order parameter
:param stoploss_order: If true, uses fetch_stoploss_order, otherwise fetch_order.
"""
if stoploss_order:
return self.fetch_stoploss_order(order_id, pair)
return self.fetch_order(order_id, pair)
@staticmethod
def get_next_limit_in_list(limit: int, limit_range: Optional[List[int]],
range_required: bool = True):
"""
Get next greater value in the list.
Used by fetch_l2_order_book if the api only supports a limited range
"""
if not limit_range:
return limit
result = min([x for x in limit_range if limit <= x] + [max(limit_range)])
if not range_required and limit > result:
# Range is not required - we can use None as parameter.
return None
return result
@retrier
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
"""
Get L2 order book from exchange.
Can be limited to a certain amount (if supported).
Returns a dict in the format
{'asks': [price, volume], 'bids': [price, volume]}
"""
limit1 = self.get_next_limit_in_list(limit, self._ft_has['l2_limit_range'],
self._ft_has['l2_limit_range_required'])
try:
return self._api.fetch_l2_order_book(pair, limit1)
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching order book.'
f'Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order book due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
def get_trades_for_order(self, order_id: str, pair: str, since: datetime) -> List:
"""
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
The "since" argument passed in is coming from the database and is in UTC,
as timezone-native datetime object.
From the python documentation:
> Naive datetime instances are assumed to represent local time
Therefore, calling "since.timestamp()" will get the UTC timestamp, after applying the
transformation from local timezone to UTC.
This works for timezones UTC+ since then the result will contain trades from a few hours
instead of from the last 5 seconds, however fails for UTC- timezones,
since we're then asking for trades with a "since" argument in the future.
:param order_id order_id: Order-id as given when creating the order
:param pair: Pair the order is for
:param since: datetime object of the order creation time. Assumes object is in UTC.
"""
if self._config['dry_run']:
return []
if not self.exchange_has('fetchMyTrades'):
return []
try:
# Allow 5s offset to catch slight time offsets (discovered in #1185)
# since needs to be int in milliseconds
my_trades = self._api.fetch_my_trades(
pair, int((since.replace(tzinfo=timezone.utc).timestamp() - 5) * 1000))
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
return matched_trades
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get trades due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: str = 'maker') -> float:
try:
if self._config['dry_run'] and self._config.get('fee', None) is not None:
return self._config['fee']
# validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0:
self._api.load_markets()
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
price=price, takerOrMaker=taker_or_maker)['rate']
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@staticmethod
def order_has_fee(order: Dict) -> bool:
"""
Verifies if the passed in order dict has the needed keys to extract fees,
and that these keys (currency, cost) are not empty.
:param order: Order or trade (one trade) dict
:return: True if the fee substructure contains currency and cost, false otherwise
"""
if not isinstance(order, dict):
return False
return ('fee' in order and order['fee'] is not None
and (order['fee'].keys() >= {'currency', 'cost'})
and order['fee']['currency'] is not None
and order['fee']['cost'] is not None
)
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
"""
Calculate fee rate if it's not given by the exchange.
:param order: Order or trade (one trade) dict
"""
if order['fee'].get('rate') is not None:
return order['fee'].get('rate')
fee_curr = order['fee']['currency']
# Calculate fee based on order details
if fee_curr in self.get_pair_base_currency(order['symbol']):
# Base currency - divide by amount
return round(
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
# Quote currency - divide by cost
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
else:
# If Fee currency is a different currency
if not order['cost']:
# If cost is None or 0.0 -> falsy, return None
return None
try:
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
tick = self.fetch_ticker(comb)
fee_to_quote_rate = safe_value_fallback2(tick, tick, 'last', 'ask')
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
except ExchangeError:
return None
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
"""
Extract tuple of cost, currency, rate.
Requires order_has_fee to run first!
:param order: Order or trade (one trade) dict
:return: Tuple with cost, currency, rate of the given fee dict
"""
return (order['fee']['cost'],
order['fee']['currency'],
self.calculate_fee_rate(order))
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)

View File

@@ -8,6 +8,7 @@ from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, Invali
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import API_FETCH_ORDER_RETRY_COUNT, retrier
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
@@ -68,6 +69,7 @@ class Ftx(Exchange):
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount=amount, params=params)
self._log_exchange_response('create_stoploss_order', order)
logger.info('stoploss order added for %s. '
'stop price: %s.', pair, stop_price)
return order
@@ -92,18 +94,26 @@ class Ftx(Exchange):
@retrier(retries=API_FETCH_ORDER_RETRY_COUNT)
def fetch_stoploss_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:
order = self._dry_run_open_orders[order_id]
return order
except KeyError as e:
# Gracefully handle errors with dry-run orders.
raise InvalidOrderException(
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
return self.fetch_dry_run_order(order_id)
try:
orders = self._api.fetch_orders(pair, None, params={'type': 'stop'})
order = [order for order in orders if order['id'] == order_id]
self._log_exchange_response('fetch_stoploss_order', order)
if len(order) == 1:
if order[0].get('status') == 'closed':
# Trigger order was triggered ...
real_order_id = order[0].get('info', {}).get('orderId')
order1 = self._api.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order1)
# Fake type to stop - as this was really a stop order.
order1['id_stop'] = order1['id']
order1['id'] = order_id
order1['type'] = 'stop'
order1['status_stop'] = 'triggered'
return order1
return order[0]
else:
raise InvalidOrderException(f"Could not get stoploss order for id {order_id}")
@@ -124,7 +134,9 @@ class Ftx(Exchange):
if self._config['dry_run']:
return {}
try:
return self._api.cancel_order(order_id, pair, params={'type': 'stop'})
order = self._api.cancel_order(order_id, pair, params={'type': 'stop'})
self._log_exchange_response('cancel_stoploss_order', order)
return order
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not cancel order. Message: {e}') from e
@@ -135,3 +147,8 @@ class Ftx(Exchange):
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if order['type'] == 'stop':
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']

View File

@@ -0,0 +1,23 @@
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Hitbtc(Exchange):
"""
Hitbtc exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"ohlcv_params": {"sort": "DESC"}
}

View File

@@ -49,10 +49,12 @@ class Kraken(Exchange):
orders = self._api.fetch_open_orders()
order_list = [(x["symbol"].split("/")[0 if x["side"] == "sell" else 1],
x["remaining"] if x["side"] == "sell" else x["remaining"] * x["price"],
# Don't remove the below comment, this can be important for debuggung
# Don't remove the below comment, this can be important for debugging
# x["side"], x["amount"],
) for x in orders]
for bal in balances:
if not isinstance(balances[bal], dict):
continue
balances[bal]['used'] = sum(order[1] for order in order_list if order[0] == bal)
balances[bal]['free'] = balances[bal]['total'] - balances[bal]['used']
@@ -101,6 +103,7 @@ class Kraken(Exchange):
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount=amount, price=stop_price, params=params)
self._log_exchange_response('create_stoploss_order', order)
logger.info('stoploss order added for %s. '
'stop price: %s.', pair, stop_price)
return order

View File

@@ -10,13 +10,13 @@ from threading import Lock
from typing import Any, Dict, List, Optional
import arrow
from cachetools import TTLCache
from freqtrade import __version__, constants
from freqtrade.configuration import validate_config_consistency
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.enums import RPCMessageType, SellType, State
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
InvalidOrderException, PricingError)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
@@ -26,9 +26,8 @@ from freqtrade.persistence import Order, PairLocks, Trade, cleanup_db, init_db
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.state import State
from freqtrade.strategy.interface import IStrategy, SellType
from freqtrade.rpc import RPCManager
from freqtrade.strategy.interface import IStrategy, SellCheckTuple
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@@ -48,6 +47,7 @@ class FreqtradeBot(LoggingMixin):
:param config: configuration dict, you can use Configuration.get_config()
to get the config dict.
"""
self.active_pair_whitelist: List[str] = []
logger.info('Starting freqtrade %s', __version__)
@@ -57,12 +57,6 @@ class FreqtradeBot(LoggingMixin):
# Init objects
self.config = config
# Cache values for 1800 to avoid frequent polling of the exchange for prices
# Caching only applies to RPC methods, so prices for open trades are still
# refreshed once every iteration.
self._sell_rate_cache: TTLCache = TTLCache(maxsize=100, ttl=1800)
self._buy_rate_cache: TTLCache = TTLCache(maxsize=100, ttl=1800)
self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
# Check config consistency here since strategies can set certain options
@@ -76,12 +70,19 @@ class FreqtradeBot(LoggingMixin):
PairLocks.timeframe = self.config['timeframe']
self.protections = ProtectionManager(self.config, self.strategy.protections)
# RPC runs in separate threads, can start handling external commands just after
# initialization, even before Freqtradebot has a chance to start its throttling,
# so anything in the Freqtradebot instance should be ready (initialized), including
# the initial state of the bot.
# Keep this at the end of this initialization method.
self.rpc: RPCManager = RPCManager(self)
self.pairlists = PairListManager(self.exchange, self.config)
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
self.protections = ProtectionManager(self.config)
# Attach Dataprovider to Strategy baseclass
IStrategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
@@ -97,13 +98,7 @@ class FreqtradeBot(LoggingMixin):
initial_state = self.config.get('initial_state')
self.state = State[initial_state.upper()] if initial_state else State.STOPPED
# RPC runs in separate threads, can start handling external commands just after
# initialization, even before Freqtradebot has a chance to start its throttling,
# so anything in the Freqtradebot instance should be ready (initialized), including
# the initial state of the bot.
# Keep this at the end of this initialization method.
self.rpc: RPCManager = RPCManager(self)
# Protect sell-logic from forcesell and viceversa
# Protect sell-logic from forcesell and vice versa
self._sell_lock = Lock()
LoggingMixin.__init__(self, logger, timeframe_to_seconds(self.strategy.timeframe))
@@ -187,7 +182,7 @@ class FreqtradeBot(LoggingMixin):
if self.get_free_open_trades():
self.enter_positions()
Trade.query.session.flush()
Trade.commit()
def process_stopped(self) -> None:
"""
@@ -267,7 +262,7 @@ class FreqtradeBot(LoggingMixin):
def update_closed_trades_without_assigned_fees(self):
"""
Update closed trades without close fees assigned.
Only acts when Orders are in the database, otherwise the last orderid is unknown.
Only acts when Orders are in the database, otherwise the last order-id is unknown.
"""
if self.config['dry_run']:
# Updating open orders in dry-run does not make sense and will fail.
@@ -342,7 +337,7 @@ class FreqtradeBot(LoggingMixin):
# Assume this as the open order
trade.open_order_id = order.order_id
if fo:
logger.info(f"Found {order} for trade {trade}.jj")
logger.info(f"Found {order} for trade {trade}.")
self.update_trade_state(trade, order.order_id, fo,
stoploss_order=order.ft_order_side == 'stoploss')
@@ -394,51 +389,6 @@ class FreqtradeBot(LoggingMixin):
return trades_created
def get_buy_rate(self, pair: str, refresh: bool) -> float:
"""
Calculates bid target between current ask price and last price
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: float: Price
"""
if not refresh:
rate = self._buy_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.debug(f"Using cached buy rate for {pair}.")
return rate
bid_strategy = self.config.get('bid_strategy', {})
if 'use_order_book' in bid_strategy and bid_strategy.get('use_order_book', False):
order_book_top = bid_strategy.get('order_book_top', 1)
order_book = self.exchange.fetch_l2_order_book(pair, order_book_top)
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
rate_from_l2 = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
"Buy Price from orderbook could not be determined."
f"Orderbook: {order_book}"
)
raise PricingError from e
logger.info(f"Buy price from orderbook {bid_strategy['price_side'].capitalize()} side "
f"- top {order_book_top} order book buy rate {rate_from_l2:.8f}")
used_rate = rate_from_l2
else:
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
ticker = self.exchange.fetch_ticker(pair)
ticker_rate = ticker[bid_strategy['price_side']]
if ticker['last'] and ticker_rate > ticker['last']:
balance = bid_strategy['ask_last_balance']
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
used_rate = ticker_rate
self._buy_rate_cache[pair] = used_rate
return used_rate
def create_trade(self, pair: str) -> bool:
"""
Check the implemented trading strategy for buy signals.
@@ -522,6 +472,7 @@ class FreqtradeBot(LoggingMixin):
"""
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
:param stake_amount: amount of stake-currency for the pair
:return: True if a buy order is created, false if it fails.
"""
time_in_force = self.strategy.order_time_in_force['buy']
@@ -530,7 +481,7 @@ class FreqtradeBot(LoggingMixin):
buy_limit_requested = price
else:
# Calculate price
buy_limit_requested = self.get_buy_rate(pair, True)
buy_limit_requested = self.exchange.get_buy_rate(pair, True)
if not buy_limit_requested:
raise PricingError('Could not determine buy price.')
@@ -552,7 +503,7 @@ class FreqtradeBot(LoggingMixin):
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=amount, rate=buy_limit_requested,
time_in_force=time_in_force):
time_in_force=time_in_force, current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of buying {pair}")
return False
amount = self.exchange.amount_to_precision(pair, amount)
@@ -601,6 +552,7 @@ class FreqtradeBot(LoggingMixin):
pair=pair,
stake_amount=stake_amount,
amount=amount,
is_open=True,
amount_requested=amount_requested,
fee_open=fee,
fee_close=fee,
@@ -619,7 +571,7 @@ class FreqtradeBot(LoggingMixin):
self.update_trade_state(trade, order_id, order)
Trade.query.session.add(trade)
Trade.query.session.flush()
Trade.commit()
# Updating wallets
self.wallets.update()
@@ -630,7 +582,7 @@ class FreqtradeBot(LoggingMixin):
def _notify_buy(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a buy occured.
Sends rpc notification when a buy occurred.
"""
msg = {
'trade_id': trade.id,
@@ -652,9 +604,9 @@ class FreqtradeBot(LoggingMixin):
def _notify_buy_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a buy cancel occured.
Sends rpc notification when a buy cancel occurred.
"""
current_rate = self.get_buy_rate(trade.pair, False)
current_rate = self.exchange.get_buy_rate(trade.pair, False)
msg = {
'trade_id': trade.id,
@@ -705,6 +657,7 @@ class FreqtradeBot(LoggingMixin):
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
trades_closed += 1
Trade.commit()
continue
# Check if we can sell our current pair
if trade.open_order_id is None and trade.is_open and self.handle_trade(trade):
@@ -713,62 +666,12 @@ class FreqtradeBot(LoggingMixin):
except DependencyException as exception:
logger.warning('Unable to sell trade %s: %s', trade.pair, exception)
# Updating wallets if any trade occured
# Updating wallets if any trade occurred
if trades_closed:
self.wallets.update()
return trades_closed
def _order_book_gen(self, pair: str, side: str, order_book_max: int = 1,
order_book_min: int = 1):
"""
Helper generator to query orderbook in loop (used for early sell-order placing)
"""
order_book = self.exchange.fetch_l2_order_book(pair, order_book_max)
for i in range(order_book_min, order_book_max + 1):
yield order_book[side][i - 1][0]
def get_sell_rate(self, pair: str, refresh: bool) -> float:
"""
Get sell rate - either using ticker bid or first bid based on orderbook
The orderbook portion is only used for rpc messaging, which would otherwise fail
for BitMex (has no bid/ask in fetch_ticker)
or remain static in any other case since it's not updating.
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: Bid rate
"""
if not refresh:
rate = self._sell_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.debug(f"Using cached sell rate for {pair}.")
return rate
ask_strategy = self.config.get('ask_strategy', {})
if ask_strategy.get('use_order_book', False):
# This code is only used for notifications, selling uses the generator directly
logger.info(
f"Getting price from order book {ask_strategy['price_side'].capitalize()} side."
)
try:
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
except (IndexError, KeyError) as e:
logger.warning("Sell Price at location from orderbook could not be determined.")
raise PricingError from e
else:
ticker = self.exchange.fetch_ticker(pair)
ticker_rate = ticker[ask_strategy['price_side']]
if ticker['last'] and ticker_rate < ticker['last']:
balance = ask_strategy.get('bid_last_balance', 0.0)
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
rate = ticker_rate
if rate is None:
raise PricingError(f"Sell-Rate for {pair} was empty.")
self._sell_rate_cache[pair] = rate
return rate
def handle_trade(self, trade: Trade) -> bool:
"""
Sells the current pair if the threshold is reached and updates the trade record.
@@ -796,9 +699,9 @@ class FreqtradeBot(LoggingMixin):
logger.debug(f'Using order book between {order_book_min} and {order_book_max} '
f'for selling {trade.pair}...')
order_book = self._order_book_gen(trade.pair, f"{config_ask_strategy['price_side']}s",
order_book_min=order_book_min,
order_book_max=order_book_max)
order_book = self.exchange._order_book_gen(
trade.pair, f"{config_ask_strategy['price_side']}s",
order_book_min=order_book_min, order_book_max=order_book_max)
for i in range(order_book_min, order_book_max + 1):
try:
sell_rate = next(order_book)
@@ -811,14 +714,14 @@ class FreqtradeBot(LoggingMixin):
f"{sell_rate:0.8f}")
# Assign sell-rate to cache - otherwise sell-rate is never updated in the cache,
# resulting in outdated RPC messages
self._sell_rate_cache[trade.pair] = sell_rate
self.exchange._sell_rate_cache[trade.pair] = sell_rate
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
return True
else:
logger.debug('checking sell')
sell_rate = self.get_sell_rate(trade.pair, True)
sell_rate = self.exchange.get_sell_rate(trade.pair, True)
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
return True
@@ -850,7 +753,8 @@ class FreqtradeBot(LoggingMixin):
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Selling the trade forcefully')
self.execute_sell(trade, trade.stop_loss, sell_reason=SellType.EMERGENCY_SELL)
self.execute_sell(trade, trade.stop_loss, sell_reason=SellCheckTuple(
sell_type=SellType.EMERGENCY_SELL))
except ExchangeError:
trade.stoploss_order_id = None
@@ -913,8 +817,13 @@ class FreqtradeBot(LoggingMixin):
logger.warning('Stoploss order was cancelled, but unable to recreate one.')
# Finally we check if stoploss on exchange should be moved up because of trailing.
if stoploss_order and (self.config.get('trailing_stop', False)
or self.config.get('use_custom_stoploss', False)):
# Triggered Orders are now real orders - so don't replace stoploss anymore
if (
stoploss_order
and stoploss_order.get('status_stop') != 'triggered'
and (self.config.get('trailing_stop', False)
or self.config.get('use_custom_stoploss', False))
):
# if trailing stoploss is enabled we check if stoploss value has changed
# in which case we cancel stoploss order and put another one with new
# value immediately
@@ -926,19 +835,20 @@ class FreqtradeBot(LoggingMixin):
"""
Check to see if stoploss on exchange should be updated
in case of trailing stoploss on exchange
:param Trade: Corresponding Trade
:param trade: Corresponding Trade
:param order: Current on exchange stoploss order
:return: None
"""
if self.exchange.stoploss_adjust(trade.stop_loss, order):
# we check if the update is neccesary
# we check if the update is necessary
update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60)
if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat:
# cancelling the current stoploss on exchange first
logger.info(f"Cancelling current stoploss on exchange for pair {trade.pair} "
f"(orderid:{order['id']}) in order to add another one ...")
try:
co = self.exchange.cancel_stoploss_order(order['id'], trade.pair)
co = self.exchange.cancel_stoploss_order_with_result(order['id'], trade.pair,
trade.amount)
trade.update_order(co)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {order['id']} "
@@ -961,7 +871,7 @@ class FreqtradeBot(LoggingMixin):
if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
self.execute_sell(trade, sell_rate, should_sell.sell_type)
self.execute_sell(trade, sell_rate, should_sell)
return True
return False
@@ -972,15 +882,16 @@ class FreqtradeBot(LoggingMixin):
timeout = self.config.get('unfilledtimeout', {}).get(side)
ordertime = arrow.get(order['datetime']).datetime
if timeout is not None:
timeout_threshold = arrow.utcnow().shift(minutes=-timeout).datetime
timeout_unit = self.config.get('unfilledtimeout', {}).get('unit', 'minutes')
timeout_kwargs = {timeout_unit: -timeout}
timeout_threshold = arrow.utcnow().shift(**timeout_kwargs).datetime
return (order['status'] == 'open' and order['side'] == side
and ordertime < timeout_threshold)
return False
def check_handle_timedout(self) -> None:
"""
Check if any orders are timed out and cancel if neccessary
Check if any orders are timed out and cancel if necessary
:param timeoutvalue: Number of minutes until order is considered timed out
:return: None
"""
@@ -1032,6 +943,7 @@ class FreqtradeBot(LoggingMixin):
elif order['side'] == 'sell':
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
Trade.commit()
def handle_cancel_buy(self, trade: Trade, order: Dict, reason: str) -> bool:
"""
@@ -1042,6 +954,16 @@ class FreqtradeBot(LoggingMixin):
# Cancelled orders may have the status of 'canceled' or 'closed'
if order['status'] not in ('cancelled', 'canceled', 'closed'):
filled_val = order.get('filled', 0.0) or 0.0
filled_stake = filled_val * trade.open_rate
minstake = self.exchange.get_min_pair_stake_amount(
trade.pair, trade.open_rate, self.strategy.stoploss)
if filled_val > 0 and filled_stake < minstake:
logger.warning(
f"Order {trade.open_order_id} for {trade.pair} not cancelled, "
f"as the filled amount of {filled_val} would result in an unsellable trade.")
return False
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
# Avoid race condition where the order could not be cancelled coz its already filled.
@@ -1150,16 +1072,16 @@ class FreqtradeBot(LoggingMixin):
raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> bool:
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellCheckTuple) -> bool:
"""
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
:param sellreason: Reason the sell was triggered
:param sell_reason: Reason the sell was triggered
:return: True if it succeeds (supported) False (not supported)
"""
sell_type = 'sell'
if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
if sell_reason.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
sell_type = 'stoploss'
# if stoploss is on exchange and we are on dry_run mode,
@@ -1171,15 +1093,17 @@ class FreqtradeBot(LoggingMixin):
# First cancelling stoploss on exchange ...
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
try:
self.exchange.cancel_stoploss_order(trade.stoploss_order_id, trade.pair)
co = self.exchange.cancel_stoploss_order_with_result(trade.stoploss_order_id,
trade.pair, trade.amount)
trade.update_order(co)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
order_type = self.strategy.order_types[sell_type]
if sell_reason == SellType.EMERGENCY_SELL:
if sell_reason.sell_type == SellType.EMERGENCY_SELL:
# Emergency sells (default to market!)
order_type = self.strategy.order_types.get("emergencysell", "market")
if sell_reason == SellType.FORCE_SELL:
if sell_reason.sell_type == SellType.FORCE_SELL:
# Force sells (default to the sell_type defined in the strategy,
# but we allow this value to be changed)
order_type = self.strategy.order_types.get("forcesell", order_type)
@@ -1189,8 +1113,8 @@ class FreqtradeBot(LoggingMixin):
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
time_in_force=time_in_force,
sell_reason=sell_reason.value):
time_in_force=time_in_force, sell_reason=sell_reason.sell_reason,
current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of selling {trade.pair}")
return False
@@ -1213,13 +1137,13 @@ class FreqtradeBot(LoggingMixin):
trade.open_order_id = order['id']
trade.sell_order_status = ''
trade.close_rate_requested = limit
trade.sell_reason = sell_reason.value
trade.sell_reason = sell_reason.sell_reason
# In case of market sell orders the order can be closed immediately
if order.get('status', 'unknown') == 'closed':
self.update_trade_state(trade, trade.open_order_id, order)
Trade.query.session.flush()
Trade.commit()
# Lock pair for one candle to prevent immediate rebuys
# Lock pair for one candle to prevent immediate re-buys
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
@@ -1229,12 +1153,12 @@ class FreqtradeBot(LoggingMixin):
def _notify_sell(self, trade: Trade, order_type: str, fill: bool = False) -> None:
"""
Sends rpc notification when a sell occured.
Sends rpc notification when a sell occurred.
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
# Use cached rates here - it was updated seconds ago.
current_rate = self.get_sell_rate(trade.pair, False) if not fill else None
current_rate = self.exchange.get_sell_rate(trade.pair, False) if not fill else None
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
@@ -1270,7 +1194,7 @@ class FreqtradeBot(LoggingMixin):
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a sell cancel occured.
Sends rpc notification when a sell cancel occurred.
"""
if trade.sell_order_status == reason:
return
@@ -1279,7 +1203,7 @@ class FreqtradeBot(LoggingMixin):
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.get_sell_rate(trade.pair, False)
current_rate = self.exchange.get_sell_rate(trade.pair, False)
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
@@ -1323,7 +1247,7 @@ class FreqtradeBot(LoggingMixin):
Handles closing both buy and sell orders.
:param trade: Trade object of the trade we're analyzing
:param order_id: Order-id of the order we're analyzing
:param action_order: Already aquired order object
:param action_order: Already acquired order object
:return: True if order has been cancelled without being filled partially, False otherwise
"""
if not order_id:
@@ -1358,6 +1282,7 @@ class FreqtradeBot(LoggingMixin):
# Handling of this will happen in check_handle_timeout.
return True
trade.update(order)
Trade.commit()
# Updating wallets when order is closed
if not trade.is_open:
@@ -1393,7 +1318,7 @@ class FreqtradeBot(LoggingMixin):
def get_real_amount(self, trade: Trade, order: Dict) -> float:
"""
Detect and update trade fee.
Calls trade.update_fee() uppon correct detection.
Calls trade.update_fee() upon correct detection.
Returns modified amount if the fee was taken from the destination currency.
Necessary for exchanges which charge fees in base currency (e.g. binance)
:return: identical (or new) amount for the trade
@@ -1426,8 +1351,8 @@ class FreqtradeBot(LoggingMixin):
"""
fee-detection fallback to Trades. Parses result of fetch_my_trades to get correct fee.
"""
trades = self.exchange.get_trades_for_order(order['id'], trade.pair,
trade.open_date)
trades = self.exchange.get_trades_for_order(self.exchange.get_order_id_conditional(order),
trade.pair, trade.open_date)
if len(trades) == 0:
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)

View File

@@ -6,7 +6,7 @@ import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any
from typing import Any, Iterator, List
from typing.io import IO
import rapidjson
@@ -56,6 +56,7 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool =
"""
Dump JSON data into a file
:param filename: file to create
:param is_zip: if file should be zip
:param data: JSON Data to save
:return:
"""
@@ -202,3 +203,14 @@ def render_template_with_fallback(templatefile: str, templatefallbackfile: str,
return render_template(templatefile, arguments)
except TemplateNotFound:
return render_template(templatefallbackfile, arguments)
def chunks(lst: List[Any], n: int) -> Iterator[List[Any]]:
"""
Split lst into chunks of the size n.
:param lst: list to split into chunks
:param n: number of max elements per chunk
:return: None
"""
for chunk in range(0, len(lst), n):
yield (lst[chunk:chunk + n])

View File

@@ -15,8 +15,9 @@ from freqtrade.configuration import TimeRange, remove_credentials, validate_conf
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data import history
from freqtrade.data.btanalysis import trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import SellType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.mixins import LoggingMixin
@@ -26,7 +27,7 @@ from freqtrade.persistence import LocalTrade, PairLocks, Trade
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
from freqtrade.strategy.interface import IStrategy, SellCheckTuple
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@@ -63,9 +64,7 @@ class Backtesting:
self.all_results: Dict[str, Dict] = {}
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
dataprovider = DataProvider(self.config, self.exchange)
IStrategy.dp = dataprovider
self.dataprovider = DataProvider(self.config, None)
if self.config.get('strategy_list', None):
for strat in list(self.config['strategy_list']):
@@ -96,7 +95,7 @@ class Backtesting:
"PrecisionFilter not allowed for backtesting multiple strategies."
)
dataprovider.add_pairlisthandler(self.pairlists)
self.dataprovider.add_pairlisthandler(self.pairlists)
self.pairlists.refresh_pairlist()
if len(self.pairlists.whitelist) == 0:
@@ -112,15 +111,11 @@ class Backtesting:
PairLocks.timeframe = self.config['timeframe']
PairLocks.use_db = False
PairLocks.reset_locks()
if self.config.get('enable_protections', False):
self.protections = ProtectionManager(self.config)
self.wallets = Wallets(self.config, self.exchange, log=False)
# Get maximum required startup period
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
# Load one (first) strategy
self._set_strategy(self.strategylist[0])
def __del__(self):
LoggingMixin.show_output = True
@@ -132,10 +127,17 @@ class Backtesting:
Load strategy into backtesting
"""
self.strategy: IStrategy = strategy
strategy.dp = self.dataprovider
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
if self.config.get('enable_protections', False):
conf = self.config
if hasattr(strategy, 'protections'):
conf = deepcopy(conf)
conf['protections'] = strategy.protections
self.protections = ProtectionManager(self.config, strategy.protections)
def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]:
"""
@@ -159,7 +161,7 @@ class Backtesting:
logger.info(f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
f'({(max_date - min_date).days} days).')
# Adjust startts forward if not enough data is available
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
@@ -176,6 +178,8 @@ class Backtesting:
Trade.use_db = False
PairLocks.reset_locks()
Trade.reset_trades()
self.rejected_trades = 0
self.dataprovider.clear_cache()
def _get_ohlcv_as_lists(self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]:
"""
@@ -189,8 +193,9 @@ class Backtesting:
data: Dict = {}
# Create dict with data
for pair, pair_data in processed.items():
pair_data.loc[:, 'buy'] = 0 # cleanup from previous run
pair_data.loc[:, 'sell'] = 0 # cleanup from previous run
if not pair_data.empty:
pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist
pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
@@ -214,6 +219,28 @@ class Backtesting:
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
if trade.stop_loss > sell_row[HIGH_IDX]:
# our stoploss was already higher than candle high,
# possibly due to a cancelled trade exit.
# sell at open price.
return sell_row[OPEN_IDX]
# Special case: trailing triggers within same candle as trade opened. Assume most
# pessimistic price movement, which is moving just enough to arm stoploss and
# immediately going down to stop price.
if (sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0
and self.strategy.trailing_stop_positive):
if self.strategy.trailing_only_offset_is_reached:
# Worst case: price reaches stop_positive_offset and dives down.
stop_rate = (sell_row[OPEN_IDX] *
(1 + abs(self.strategy.trailing_stop_positive_offset) -
abs(self.strategy.trailing_stop_positive)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = sell_row[OPEN_IDX] * (1 - abs(self.strategy.trailing_stop_positive))
assert stop_rate < sell_row[HIGH_IDX]
return stop_rate
# Set close_rate to stoploss
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
@@ -250,12 +277,13 @@ class Backtesting:
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
sell_row[DATE_IDX], sell_row[BUY_IDX], sell_row[SELL_IDX],
sell_row[DATE_IDX].to_pydatetime(), sell_row[BUY_IDX],
sell_row[SELL_IDX],
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
if sell.sell_flag:
trade.close_date = sell_row[DATE_IDX]
trade.sell_reason = sell.sell_type.value
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.sell_reason = sell.sell_reason
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
@@ -265,7 +293,8 @@ class Backtesting:
pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount,
rate=closerate,
time_in_force=time_in_force,
sell_reason=sell.sell_type.value):
sell_reason=sell.sell_reason,
current_time=sell_row[DATE_IDX].to_pydatetime()):
return None
trade.close(closerate, show_msg=False)
@@ -285,7 +314,7 @@ class Backtesting:
# Confirm trade entry:
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=stake_amount, rate=row[OPEN_IDX],
time_in_force=time_in_force):
time_in_force=time_in_force, current_time=row[DATE_IDX].to_pydatetime()):
return None
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
@@ -293,7 +322,7 @@ class Backtesting:
trade = LocalTrade(
pair=pair,
open_rate=row[OPEN_IDX],
open_date=row[DATE_IDX],
open_date=row[DATE_IDX].to_pydatetime(),
stake_amount=stake_amount,
amount=round(stake_amount / row[OPEN_IDX], 8),
fee_open=self.fee,
@@ -315,7 +344,7 @@ class Backtesting:
for trade in open_trades[pair]:
sell_row = data[pair][-1]
trade.close_date = sell_row[DATE_IDX]
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.sell_reason = SellType.FORCE_SELL.value
trade.close(sell_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
@@ -325,10 +354,18 @@ class Backtesting:
trades.append(trade1)
return trades
def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool:
# Always allow trades when max_open_trades is enabled.
if max_open_trades <= 0 or open_trade_count < max_open_trades:
return True
# Rejected trade
self.rejected_trades += 1
return False
def backtest(self, processed: Dict,
start_date: datetime, end_date: datetime,
max_open_trades: int = 0, position_stacking: bool = False,
enable_protections: bool = False) -> DataFrame:
enable_protections: bool = False) -> Dict[str, Any]:
"""
Implement backtesting functionality
@@ -347,6 +384,10 @@ class Backtesting:
trades: List[LocalTrade] = []
self.prepare_backtest(enable_protections)
# Update dataprovider cache
for pair, dataframe in processed.items():
self.dataprovider._set_cached_df(pair, self.timeframe, dataframe)
# Use dict of lists with data for performance
# (looping lists is a lot faster than pandas DataFrames)
data: Dict = self._get_ohlcv_as_lists(processed)
@@ -363,8 +404,9 @@ class Backtesting:
open_trade_count_start = open_trade_count
for i, pair in enumerate(data):
row_index = indexes[pair]
try:
row = data[pair][indexes[pair]]
row = data[pair][row_index]
except IndexError:
# missing Data for one pair at the end.
# Warnings for this are shown during data loading
@@ -373,16 +415,22 @@ class Backtesting:
# Waits until the time-counter reaches the start of the data for this pair.
if row[DATE_IDX] > tmp:
continue
indexes[pair] += 1
row_index += 1
self.dataprovider._set_dataframe_max_index(row_index)
indexes[pair] = row_index
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
# don't open on the last row
if ((position_stacking or len(open_trades[pair]) == 0)
and (max_open_trades <= 0 or open_trade_count_start < max_open_trades)
and tmp != end_date
and row[BUY_IDX] == 1 and row[SELL_IDX] != 1
and not PairLocks.is_pair_locked(pair, row[DATE_IDX])):
if (
(position_stacking or len(open_trades[pair]) == 0)
and self.trade_slot_available(max_open_trades, open_trade_count_start)
and tmp != end_date
and row[BUY_IDX] == 1
and row[SELL_IDX] != 1
and not PairLocks.is_pair_locked(pair, row[DATE_IDX])
):
trade = self._enter_trade(pair, row)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
@@ -397,7 +445,7 @@ class Backtesting:
for trade in open_trades[pair]:
# also check the buying candle for sell conditions.
trade_entry = self._get_sell_trade_entry(trade, row)
# Sell occured
# Sell occurred
if trade_entry:
# logger.debug(f"{pair} - Backtesting sell {trade}")
open_trade_count -= 1
@@ -415,7 +463,14 @@ class Backtesting:
trades += self.handle_left_open(open_trades, data=data)
self.wallets.update()
return trade_list_to_dataframe(trades)
results = trade_list_to_dataframe(trades)
return {
'results': results,
'config': self.strategy.config,
'locks': PairLocks.get_all_locks(),
'rejected_signals': self.rejected_trades,
'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']),
}
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange):
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
@@ -437,32 +492,32 @@ class Backtesting:
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange,
startup_candles=self.required_startup)
min_date, max_date = history.get_timerange(preprocessed)
preprocessed = trim_dataframes(preprocessed, timerange, self.required_startup)
if not preprocessed:
raise OperationalException(
"No data left after adjusting for startup candles.")
min_date, max_date = history.get_timerange(preprocessed)
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
f'({(max_date - min_date).days} days).')
# Execute backtest and store results
results = self.backtest(
processed=preprocessed,
start_date=min_date.datetime,
end_date=max_date.datetime,
start_date=min_date,
end_date=max_date,
max_open_trades=max_open_trades,
position_stacking=self.config.get('position_stacking', False),
enable_protections=self.config.get('enable_protections', False),
)
backtest_end_time = datetime.now(timezone.utc)
self.all_results[self.strategy.get_strategy_name()] = {
'results': results,
'config': self.strategy.config,
'locks': PairLocks.get_all_locks(),
'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']),
results.update({
'backtest_start_time': int(backtest_start_time.timestamp()),
'backtest_end_time': int(backtest_end_time.timestamp()),
}
})
self.all_results[self.strategy.get_strategy_name()] = results
return min_date, max_date
def start(self) -> None:
@@ -481,7 +536,7 @@ class Backtesting:
stats = generate_backtest_stats(data, self.all_results,
min_date=min_date, max_date=max_date)
if self.config.get('export', False):
if self.config.get('export', 'none') == 'trades':
store_backtest_stats(self.config['exportfilename'], stats)
# Show backtest results

View File

@@ -4,24 +4,24 @@
This module contains the hyperopt logic
"""
import locale
import logging
import random
import warnings
from datetime import datetime
from datetime import datetime, timezone
from math import ceil
from operator import itemgetter
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import progressbar
import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.misc import file_dump_json, plural
from freqtrade.optimize.backtesting import Backtesting
@@ -30,8 +30,8 @@ from freqtrade.optimize.hyperopt_auto import HyperOptAuto
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
from freqtrade.strategy import IStrategy
# Suppress scikit-learn FutureWarnings from skopt
@@ -65,6 +65,13 @@ class Hyperopt:
custom_hyperopt: IHyperOpt
def __init__(self, config: Dict[str, Any]) -> None:
self.buy_space: List[Dimension] = []
self.sell_space: List[Dimension] = []
self.roi_space: List[Dimension] = []
self.stoploss_space: List[Dimension] = []
self.trailing_space: List[Dimension] = []
self.dimensions: List[Dimension] = []
self.config = config
self.backtesting = Backtesting(self.config)
@@ -73,15 +80,15 @@ class Hyperopt:
self.custom_hyperopt = HyperOptAuto(self.config)
else:
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
strategy = str(self.config['strategy'])
self.results_file = (self.config['user_data_dir'] /
'hyperopt_results' /
f'strategy_{strategy}_hyperopt_results_{time_now}.pickle')
self.results_file: Path = (self.config['user_data_dir'] / 'hyperopt_results' /
f'strategy_{strategy}_{time_now}.fthypt')
self.data_pickle_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.total_epochs = config.get('epochs', 0)
@@ -91,9 +98,7 @@ class Hyperopt:
self.clean_hyperopt()
self.num_epochs_saved = 0
# Previous evaluations
self.epochs: List = []
self.current_best_epoch: Optional[Dict[str, Any]] = None
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
@@ -114,7 +119,7 @@ class Hyperopt:
self.max_open_trades = 0
self.position_stacking = self.config.get('position_stacking', False)
if self.has_space('sell'):
if HyperoptTools.has_space(self.config, 'sell'):
# Make sure use_sell_signal is enabled
if 'ask_strategy' not in self.config:
self.config['ask_strategy'] = {}
@@ -140,9 +145,7 @@ class Hyperopt:
logger.info(f"Removing `{p}`.")
p.unlink()
def _get_params_dict(self, raw_params: List[Any]) -> Dict:
dimensions: List[Dimension] = self.dimensions
def _get_params_dict(self, dimensions: List[Dimension], raw_params: List[Any]) -> Dict:
# Ensure the number of dimensions match
# the number of parameters in the list.
@@ -153,21 +156,30 @@ class Hyperopt:
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params)}
def _save_results(self) -> None:
def _save_result(self, epoch: Dict) -> None:
"""
Save hyperopt results to file
Store one line per epoch.
While not a valid json object - this allows appending easily.
:param epoch: result dictionary for this epoch.
"""
num_epochs = len(self.epochs)
if num_epochs > self.num_epochs_saved:
logger.debug(f"Saving {num_epochs} {plural(num_epochs, 'epoch')}.")
dump(self.epochs, self.results_file)
self.num_epochs_saved = num_epochs
logger.debug(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
f"saved to '{self.results_file}'.")
# Store hyperopt filename
latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {'latest_hyperopt': str(self.results_file.name)},
log=False)
def default_parser(x):
if isinstance(x, np.integer):
return int(x)
return str(x)
with self.results_file.open('a') as f:
rapidjson.dump(epoch, f, default=default_parser,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN)
f.write("\n")
self.num_epochs_saved += 1
logger.debug(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
f"saved to '{self.results_file}'.")
# Store hyperopt filename
latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {'latest_hyperopt': str(self.results_file.name)},
log=False)
def _get_params_details(self, params: Dict) -> Dict:
"""
@@ -175,18 +187,16 @@ class Hyperopt:
"""
result: Dict = {}
if self.has_space('buy'):
result['buy'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('buy')}
if self.has_space('sell'):
result['sell'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('sell')}
if self.has_space('roi'):
result['roi'] = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('stoploss'):
result['stoploss'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('stoploss')}
if self.has_space('trailing'):
if HyperoptTools.has_space(self.config, 'buy'):
result['buy'] = {p.name: params.get(p.name) for p in self.buy_space}
if HyperoptTools.has_space(self.config, 'sell'):
result['sell'] = {p.name: params.get(p.name) for p in self.sell_space}
if HyperoptTools.has_space(self.config, 'roi'):
result['roi'] = {str(k): v for k, v in
self.custom_hyperopt.generate_roi_table(params).items()}
if HyperoptTools.has_space(self.config, 'stoploss'):
result['stoploss'] = {p.name: params.get(p.name) for p in self.stoploss_space}
if HyperoptTools.has_space(self.config, 'trailing'):
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
return result
@@ -208,71 +218,58 @@ class Hyperopt:
)
self.hyperopt_table_header = 2
def has_space(self, space: str) -> bool:
def init_spaces(self):
"""
Tell if the space value is contained in the configuration
Assign the dimensions in the hyperoptimization space.
"""
# The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
return any(s in self.config['spaces'] for s in [space, 'all'])
else:
return any(s in self.config['spaces'] for s in [space, 'all', 'default'])
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
"""
Return the dimensions in the hyperoptimization space.
:param space: Defines hyperspace to return dimensions for.
If None, then the self.has_space() will be used to return dimensions
for all hyperspaces used.
"""
spaces: List[Dimension] = []
if space == 'buy' or (space is None and self.has_space('buy')):
if HyperoptTools.has_space(self.config, 'buy'):
logger.debug("Hyperopt has 'buy' space")
spaces += self.custom_hyperopt.indicator_space()
self.buy_space = self.custom_hyperopt.indicator_space()
if space == 'sell' or (space is None and self.has_space('sell')):
if HyperoptTools.has_space(self.config, 'sell'):
logger.debug("Hyperopt has 'sell' space")
spaces += self.custom_hyperopt.sell_indicator_space()
self.sell_space = self.custom_hyperopt.sell_indicator_space()
if space == 'roi' or (space is None and self.has_space('roi')):
if HyperoptTools.has_space(self.config, 'roi'):
logger.debug("Hyperopt has 'roi' space")
spaces += self.custom_hyperopt.roi_space()
self.roi_space = self.custom_hyperopt.roi_space()
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
if HyperoptTools.has_space(self.config, 'stoploss'):
logger.debug("Hyperopt has 'stoploss' space")
spaces += self.custom_hyperopt.stoploss_space()
self.stoploss_space = self.custom_hyperopt.stoploss_space()
if space == 'trailing' or (space is None and self.has_space('trailing')):
if HyperoptTools.has_space(self.config, 'trailing'):
logger.debug("Hyperopt has 'trailing' space")
spaces += self.custom_hyperopt.trailing_space()
return spaces
self.trailing_space = self.custom_hyperopt.trailing_space()
self.dimensions = (self.buy_space + self.sell_space + self.roi_space +
self.stoploss_space + self.trailing_space)
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function. Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
params_dict = self._get_params_dict(raw_params)
params_details = self._get_params_details(params_dict)
backtest_start_time = datetime.now(timezone.utc)
params_dict = self._get_params_dict(self.dimensions, raw_params)
if self.has_space('roi'):
# Apply parameters
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.custom_hyperopt.generate_roi_table(params_dict))
if self.has_space('buy'):
if HyperoptTools.has_space(self.config, 'buy'):
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.buy_strategy_generator(params_dict))
if self.has_space('sell'):
if HyperoptTools.has_space(self.config, 'sell'):
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.sell_strategy_generator(params_dict))
if self.has_space('stoploss'):
if HyperoptTools.has_space(self.config, 'stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']
if self.has_space('trailing'):
if HyperoptTools.has_space(self.config, 'trailing'):
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = d['trailing_stop_positive']
@@ -281,30 +278,42 @@ class Hyperopt:
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
processed = load(self.data_pickle_file)
min_date, max_date = get_timerange(processed)
backtesting_results = self.backtesting.backtest(
with self.data_pickle_file.open('rb') as f:
processed = load(f, mmap_mode='r')
bt_results = self.backtesting.backtest(
processed=processed,
start_date=min_date.datetime,
end_date=max_date.datetime,
start_date=self.min_date,
end_date=self.max_date,
max_open_trades=self.max_open_trades,
position_stacking=self.position_stacking,
enable_protections=self.config.get('enable_protections', False),
)
return self._get_results_dict(backtesting_results, min_date, max_date,
params_dict, params_details,
backtest_end_time = datetime.now(timezone.utc)
bt_results.update({
'backtest_start_time': int(backtest_start_time.timestamp()),
'backtest_end_time': int(backtest_end_time.timestamp()),
})
return self._get_results_dict(bt_results, self.min_date, self.max_date,
params_dict,
processed=processed)
def _get_results_dict(self, backtesting_results, min_date, max_date,
params_dict, params_details, processed: Dict[str, DataFrame]):
results_metrics = self._calculate_results_metrics(backtesting_results)
results_explanation = self._format_results_explanation_string(results_metrics)
params_dict, processed: Dict[str, DataFrame]
) -> Dict[str, Any]:
params_details = self._get_params_details(params_dict)
trade_count = results_metrics['trade_count']
total_profit = results_metrics['total_profit']
strat_stats = generate_strategy_stats(
processed, self.backtesting.strategy.get_strategy_name(),
backtesting_results, min_date, max_date, market_change=0
)
results_explanation = HyperoptTools.format_results_explanation_string(
strat_stats, self.config['stake_currency'])
not_optimized = self.backtesting.strategy.get_params_dict()
trade_count = strat_stats['total_trades']
total_profit = strat_stats['profit_total']
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
@@ -312,50 +321,20 @@ class Hyperopt:
# path. We do not want to optimize 'hodl' strategies.
loss: float = MAX_LOSS
if trade_count >= self.config['hyperopt_min_trades']:
loss = self.calculate_loss(results=backtesting_results, trade_count=trade_count,
min_date=min_date.datetime, max_date=max_date.datetime,
loss = self.calculate_loss(results=backtesting_results['results'],
trade_count=trade_count,
min_date=min_date, max_date=max_date,
config=self.config, processed=processed)
return {
'loss': loss,
'params_dict': params_dict,
'params_details': params_details,
'results_metrics': results_metrics,
'params_not_optimized': not_optimized,
'results_metrics': strat_stats,
'results_explanation': results_explanation,
'total_profit': total_profit,
}
def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
wins = len(backtesting_results[backtesting_results['profit_ratio'] > 0])
draws = len(backtesting_results[backtesting_results['profit_ratio'] == 0])
losses = len(backtesting_results[backtesting_results['profit_ratio'] < 0])
return {
'trade_count': len(backtesting_results.index),
'wins': wins,
'draws': draws,
'losses': losses,
'winsdrawslosses': f"{wins:>4} {draws:>4} {losses:>4}",
'avg_profit': backtesting_results['profit_ratio'].mean() * 100.0,
'median_profit': backtesting_results['profit_ratio'].median() * 100.0,
'total_profit': backtesting_results['profit_abs'].sum(),
'profit': backtesting_results['profit_ratio'].sum() * 100.0,
'duration': backtesting_results['trade_duration'].mean(),
}
def _format_results_explanation_string(self, results_metrics: Dict) -> str:
"""
Return the formatted results explanation in a string
"""
stake_cur = self.config['stake_currency']
return (f"{results_metrics['trade_count']:6d} trades. "
f"{results_metrics['wins']}/{results_metrics['draws']}"
f"/{results_metrics['losses']} Wins/Draws/Losses. "
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Median profit {results_metrics['median_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} min."
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8')
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
return Optimizer(
dimensions,
@@ -374,25 +353,31 @@ class Hyperopt:
def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1)
def prepare_hyperopt_data(self) -> None:
data, timerange = self.backtesting.load_bt_data()
logger.info("Dataload complete. Calculating indicators")
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
self.min_date, self.max_date = get_timerange(processed)
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(self.max_date - self.min_date).days} days)..')
dump(processed, self.data_pickle_file)
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
self.hyperopt_table_header = -1
data, timerange = self.backtesting.load_bt_data()
logger.info("Dataload complete. Calculating indicators")
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
# Initialize spaces ...
self.init_spaces()
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange,
startup_candles=self.backtesting.required_startup)
min_date, max_date = get_timerange(preprocessed)
logger.info(f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
dump(preprocessed, self.data_pickle_file)
self.prepare_hyperopt_data()
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange.close()
@@ -400,15 +385,12 @@ class Hyperopt:
self.backtesting.exchange._api_async = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
self.backtesting.strategy.dp = None # type: ignore
IStrategy.dp = None # type: ignore
cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
self.dimensions: List[Dimension] = self.hyperopt_space()
self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.print_colorized:
@@ -474,25 +456,21 @@ class Hyperopt:
if is_best:
self.current_best_loss = val['loss']
self.epochs.append(val)
self.current_best_epoch = val
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self._save_results()
self._save_result(val)
pbar.update(current)
except KeyboardInterrupt:
print('User interrupted..')
self._save_results()
logger.info(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
f"saved to '{self.results_file}'.")
if self.epochs:
sorted_epochs = sorted(self.epochs, key=itemgetter('loss'))
best_epoch = sorted_epochs[0]
HyperoptTools.print_epoch_details(best_epoch, self.total_epochs, self.print_json)
if self.current_best_epoch:
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
self.print_json)
else:
# This is printed when Ctrl+C is pressed quickly, before first epochs have
# a chance to be evaluated.

View File

@@ -9,23 +9,11 @@ from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
# This is assumed to be expected avg profit * expected trade count.
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
# expected max profit = 3.85
#
# Note, this is ratio. 3.85 stated above means 385Σ%, 3.0 means 300Σ%.
#
# In this implementation it's only used in calculation of the resulting value
# of the objective function as a normalization coefficient and does not
# represent any limit for profits as in the Freqtrade legacy default loss function.
EXPECTED_MAX_PROFIT = 3.0
class OnlyProfitHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation takes only profit into account.
This implementation takes only absolute profit into account, not looking at any other indicator.
"""
@staticmethod
@@ -34,5 +22,5 @@ class OnlyProfitHyperOptLoss(IHyperOptLoss):
"""
Objective function, returns smaller number for better results.
"""
total_profit = results['profit_ratio'].sum()
return 1 - total_profit / EXPECTED_MAX_PROFIT
total_profit = results['profit_abs'].sum()
return -1 * total_profit

285
freqtrade/optimize/hyperopt_tools.py Normal file → Executable file
View File

@@ -1,19 +1,16 @@
import io
import logging
from collections import OrderedDict
from pathlib import Path
from pprint import pformat
from typing import Dict, List
from typing import Any, Dict, List
import rapidjson
import tabulate
from colorama import Fore, Style
from joblib import load
from pandas import isna, json_normalize
from freqtrade.exceptions import OperationalException
from freqtrade.misc import round_dict
from freqtrade.misc import round_coin_value, round_dict
logger = logging.getLogger(__name__)
@@ -21,13 +18,38 @@ logger = logging.getLogger(__name__)
class HyperoptTools():
@staticmethod
def has_space(config: Dict[str, Any], space: str) -> bool:
"""
Tell if the space value is contained in the configuration
"""
# The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
return any(s in config['spaces'] for s in [space, 'all'])
else:
return any(s in config['spaces'] for s in [space, 'all', 'default'])
@staticmethod
def _read_results_pickle(results_file: Path) -> List:
"""
Read hyperopt results from pickle file
LEGACY method - new files are written as json and cannot be read with this method.
"""
from joblib import load
logger.info(f"Reading pickled epochs from '{results_file}'")
data = load(results_file)
return data
@staticmethod
def _read_results(results_file: Path) -> List:
"""
Read hyperopt results from file
"""
logger.info("Reading epochs from '%s'", results_file)
data = load(results_file)
import rapidjson
logger.info(f"Reading epochs from '{results_file}'")
with results_file.open('r') as f:
data = [rapidjson.loads(line) for line in f]
return data
@staticmethod
@@ -37,7 +59,10 @@ class HyperoptTools():
"""
epochs: List = []
if results_file.is_file() and results_file.stat().st_size > 0:
epochs = HyperoptTools._read_results(results_file)
if results_file.suffix == '.pickle':
epochs = HyperoptTools._read_results_pickle(results_file)
else:
epochs = HyperoptTools._read_results(results_file)
# Detection of some old format, without 'is_best' field saved
if epochs[0].get('is_best') is None:
raise OperationalException(
@@ -47,12 +72,13 @@ class HyperoptTools():
return epochs
@staticmethod
def print_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
def show_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
"""
Display details of the hyperopt result
"""
params = results.get('params_details', {})
non_optimized = results.get('params_not_optimized', {})
# Default header string
if header_str is None:
@@ -65,73 +91,107 @@ class HyperoptTools():
if print_json:
result_dict: Dict = {}
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
HyperoptTools._params_update_for_json(result_dict, params, s)
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
HyperoptTools._params_pretty_print(params, 'buy', "Buy hyperspace params:")
HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:")
HyperoptTools._params_pretty_print(params, 'buy', "Buy hyperspace params:",
non_optimized)
HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:",
non_optimized)
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:")
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:")
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod
def _params_update_for_json(result_dict, params, space: str) -> None:
if space in params:
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
if (space in params) or (space in non_optimized):
space_params = HyperoptTools._space_params(params, space)
if space in ['buy', 'sell']:
result_dict.setdefault('params', {}).update(space_params)
elif space == 'roi':
# TODO: get rid of OrderedDict when support for python 3.6 will be
# dropped (dicts keep the order as the language feature)
space_non_optimized = HyperoptTools._space_params(non_optimized, space)
all_space_params = space_params
# Merge non optimized params if there are any
if len(space_non_optimized) > 0:
all_space_params = {**space_params, **space_non_optimized}
if space in ['buy', 'sell']:
result_dict.setdefault('params', {}).update(all_space_params)
elif space == 'roi':
# Convert keys in min_roi dict to strings because
# rapidjson cannot dump dicts with integer keys...
# OrderedDict is used to keep the numeric order of the items
# in the dict.
result_dict['minimal_roi'] = OrderedDict(
(str(k), v) for k, v in space_params.items()
)
result_dict['minimal_roi'] = {str(k): v for k, v in all_space_params.items()}
else: # 'stoploss', 'trailing'
result_dict.update(space_params)
result_dict.update(all_space_params)
@staticmethod
def _params_pretty_print(params, space: str, header: str) -> None:
if space in params:
def _params_pretty_print(params, space: str, header: str, non_optimized={}) -> None:
if space in params or space in non_optimized:
space_params = HyperoptTools._space_params(params, space, 5)
params_result = f"\n# {header}\n"
result = f"\n# {header}\n"
if space == 'stoploss':
params_result += f"stoploss = {space_params.get('stoploss')}"
result += f"stoploss = {space_params.get('stoploss')}"
elif space == 'roi':
# TODO: get rid of OrderedDict when support for python 3.6 will be
# dropped (dicts keep the order as the language feature)
minimal_roi_result = rapidjson.dumps(
OrderedDict(
(str(k), v) for k, v in space_params.items()
),
default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
params_result += f"minimal_roi = {minimal_roi_result}"
minimal_roi_result = rapidjson.dumps({
str(k): v for k, v in space_params.items()
}, default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
result += f"minimal_roi = {minimal_roi_result}"
elif space == 'trailing':
for k, v in space_params.items():
params_result += f'{k} = {v}\n'
result += f'{k} = {v}\n'
else:
params_result += f"{space}_params = {pformat(space_params, indent=4)}"
params_result = params_result.replace("}", "\n}").replace("{", "{\n ")
no_params = HyperoptTools._space_params(non_optimized, space, 5)
params_result = params_result.replace("\n", "\n ")
print(params_result)
result += f"{space}_params = {HyperoptTools._pprint(space_params, no_params)}"
result = result.replace("\n", "\n ")
print(result)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
d = params[space]
# Round floats to `r` digits after the decimal point if requested
return round_dict(d, r) if r else d
d = params.get(space)
if d:
# Round floats to `r` digits after the decimal point if requested
return round_dict(d, r) if r else d
return {}
@staticmethod
def _pprint(params, non_optimized, indent: int = 4):
"""
Pretty-print hyperopt results (based on 2 dicts - with add. comment)
"""
p = params.copy()
p.update(non_optimized)
result = '{\n'
for k, param in p.items():
result += " " * indent + f'"{k}": '
result += f'"{param}",' if isinstance(param, str) else f'{param},'
if k in non_optimized:
result += " # value loaded from strategy"
result += "\n"
result += '}'
return result
@staticmethod
def is_best_loss(results, current_best_loss: float) -> bool:
return results['loss'] < current_best_loss
return bool(results['loss'] < current_best_loss)
@staticmethod
def format_results_explanation_string(results_metrics: Dict, stake_currency: str) -> str:
"""
Return the formatted results explanation in a string
"""
return (f"{results_metrics['total_trades']:6d} trades. "
f"{results_metrics['wins']}/{results_metrics['draws']}"
f"/{results_metrics['losses']} Wins/Draws/Losses. "
f"Avg profit {results_metrics['profit_mean'] * 100: 6.2f}%. "
f"Median profit {results_metrics['profit_median'] * 100: 6.2f}%. "
f"Total profit {results_metrics['profit_total_abs']: 11.8f} {stake_currency} "
f"({results_metrics['profit_total'] * 100: 7.2f}%). "
f"Avg duration {results_metrics['holding_avg']} min."
)
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
@@ -140,6 +200,47 @@ class HyperoptTools():
f"{results['results_explanation']} " +
f"Objective: {results['loss']:.5f}")
@staticmethod
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.winsdrawslosses'] = 'N/A'
if not has_drawdown:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.max_drawdown_abs'] = None
trials['results_metrics.max_drawdown'] = None
if not legacy_mode:
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
f"{x['results_metrics.losses']:>4}", axis=1)
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.winsdrawslosses',
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
'results_metrics.profit_total', 'results_metrics.holding_avg',
'results_metrics.max_drawdown', 'results_metrics.max_drawdown_abs',
'loss', 'is_initial_point', 'is_best']]
else:
# Legacy mode
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses', 'results_metrics.avg_profit',
'results_metrics.total_profit', 'results_metrics.profit',
'results_metrics.duration', 'results_metrics.max_drawdown',
'results_metrics.max_drawdown_abs', 'loss', 'is_initial_point',
'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'Max Drawdown',
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best']
return trials
@staticmethod
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
print_colorized: bool, remove_header: int) -> str:
@@ -150,47 +251,56 @@ class HyperoptTools():
return ''
tabulate.PRESERVE_WHITESPACE = True
trials = json_normalize(results, max_level=1)
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.winsdrawslosses'] = 'N/A'
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'Objective',
'is_initial_point', 'is_best']
legacy_mode = 'results_metrics.total_trades' not in trials
has_drawdown = 'results_metrics.max_drawdown_abs' in trials.columns
trials = HyperoptTools.prepare_trials_columns(trials, legacy_mode, has_drawdown)
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
perc_multi = 1 if legacy_mode else 100
trials['Epoch'] = trials['Epoch'].apply(
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: '{:,.2f}%'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
lambda x: f'{x * perc_multi:,.2f}%'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: '{:,.1f} m'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
lambda x: f'{x:,.1f} m'.rjust(7, ' ') if isinstance(x, float) else f"{x}"
if not isna(x) else "--".rjust(7, ' ')
)
trials['Objective'] = trials['Objective'].apply(
lambda x: '{:,.5f}'.format(x).rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
lambda x: f'{x:,.5f}'.rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
)
stake_currency = config['stake_currency']
if has_drawdown:
trials['Max Drawdown'] = trials.apply(
lambda x: '{} {}'.format(
round_coin_value(x['max_drawdown_abs'], stake_currency),
'({:,.2f}%)'.format(x['Max Drawdown'] * perc_multi).rjust(10, ' ')
).rjust(25 + len(stake_currency))
if x['Max Drawdown'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
axis=1
)
else:
trials = trials.drop(columns=['Max Drawdown'])
trials = trials.drop(columns=['max_drawdown_abs'])
trials['Profit'] = trials.apply(
lambda x: '{:,.8f} {} {}'.format(
x['Total profit'], config['stake_currency'],
'({:,.2f}%)'.format(x['Profit']).rjust(10, ' ')
).rjust(25+len(config['stake_currency']))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(config['stake_currency'])),
lambda x: '{} {}'.format(
round_coin_value(x['Total profit'], stake_currency),
'({:,.2f}%)'.format(x['Profit'] * perc_multi).rjust(10, ' ')
).rjust(25+len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
axis=1
)
trials = trials.drop(columns=['Total profit'])
@@ -251,11 +361,21 @@ class HyperoptTools():
trials['Best'] = ''
trials['Stake currency'] = config['stake_currency']
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.avg_profit', 'results_metrics.median_profit',
'results_metrics.total_profit',
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']
if 'results_metrics.total_trades' in trials:
base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.profit_mean', 'results_metrics.profit_median',
'results_metrics.profit_total',
'Stake currency',
'results_metrics.profit_total_abs', 'results_metrics.holding_avg',
'loss', 'is_initial_point', 'is_best']
perc_multi = 100
else:
perc_multi = 1
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.avg_profit', 'results_metrics.median_profit',
'results_metrics.total_profit',
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
trials = trials[base_metrics + param_metrics]
@@ -272,21 +392,24 @@ class HyperoptTools():
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Epoch'] = trials['Epoch'].astype(str)
trials['Trades'] = trials['Trades'].astype(str)
trials['Median profit'] = trials['Median profit'] * perc_multi
trials['Total profit'] = trials['Total profit'].apply(
lambda x: '{:,.8f}'.format(x) if x != 0.0 else ""
lambda x: f'{x:,.8f}' if x != 0.0 else ""
)
trials['Profit'] = trials['Profit'].apply(
lambda x: '{:,.2f}'.format(x) if not isna(x) else ""
lambda x: f'{x:,.2f}' if not isna(x) else ""
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: '{:,.2f}%'.format(x) if not isna(x) else ""
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: '{:,.1f} m'.format(x) if not isna(x) else ""
lambda x: f'{x * perc_multi:,.2f}%' if not isna(x) else ""
)
if perc_multi == 1:
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: f'{x:,.1f} m' if isinstance(
x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else ""
)
trials['Objective'] = trials['Objective'].apply(
lambda x: '{:,.5f}'.format(x) if x != 100000 else ""
lambda x: f'{x:,.5f}' if x != 100000 else ""
)
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])

View File

@@ -3,7 +3,6 @@ from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List, Union
from arrow import Arrow
from numpy import int64
from pandas import DataFrame
from tabulate import tabulate
@@ -22,7 +21,7 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
Stores backtest results
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for diectories, <directory>/backtest-result-<datetime>.json will be used as filename
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
:param stats: Dataframe containing the backtesting statistics
"""
if recordfilename.is_dir():
@@ -44,7 +43,7 @@ def _get_line_floatfmt(stake_currency: str) -> List[str]:
Generate floatformat (goes in line with _generate_result_line())
"""
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
'.2f', 'd', 'd', 'd', 'd']
'.2f', 'd', 's', 's']
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
@@ -53,7 +52,17 @@ def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
"""
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Wins', 'Draws', 'Losses']
'Win Draw Loss Win%']
def _generate_wins_draws_losses(wins, draws, losses):
if wins > 0 and losses == 0:
wl_ratio = '100'
elif wins == 0:
wl_ratio = '0'
else:
wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100'
return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}'
def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict:
@@ -153,7 +162,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
return tabular_data
def generate_strategy_metrics(all_results: Dict) -> List[Dict]:
def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
"""
Generate summary per strategy
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
@@ -165,6 +174,17 @@ def generate_strategy_metrics(all_results: Dict) -> List[Dict]:
tabular_data.append(_generate_result_line(
results['results'], results['config']['dry_run_wallet'], strategy)
)
try:
max_drawdown_per, _, _, _, _ = calculate_max_drawdown(results['results'],
value_col='profit_ratio')
max_drawdown_abs, _, _, _, _ = calculate_max_drawdown(results['results'],
value_col='profit_abs')
except ValueError:
max_drawdown_per = 0
max_drawdown_abs = 0
tabular_data[-1]['max_drawdown_per'] = round(max_drawdown_per * 100, 2)
tabular_data[-1]['max_drawdown_abs'] = \
round_coin_value(max_drawdown_abs, results['config']['stake_currency'], False)
return tabular_data
@@ -194,7 +214,47 @@ def generate_edge_table(results: dict) -> str:
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
""" Generate overall trade statistics """
if len(results) == 0:
return {
'wins': 0,
'losses': 0,
'draws': 0,
'holding_avg': timedelta(),
'winner_holding_avg': timedelta(),
'loser_holding_avg': timedelta(),
}
winning_trades = results.loc[results['profit_ratio'] > 0]
draw_trades = results.loc[results['profit_ratio'] == 0]
losing_trades = results.loc[results['profit_ratio'] < 0]
zero_duration_trades = len(results.loc[(results['trade_duration'] == 0) &
(results['sell_reason'] == 'trailing_stop_loss')])
holding_avg = (timedelta(minutes=round(results['trade_duration'].mean()))
if not results.empty else timedelta())
winner_holding_avg = (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
if not winning_trades.empty else timedelta())
loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
if not losing_trades.empty else timedelta())
return {
'wins': len(winning_trades),
'losses': len(losing_trades),
'draws': len(draw_trades),
'holding_avg': holding_avg,
'holding_avg_s': holding_avg.total_seconds(),
'winner_holding_avg': winner_holding_avg,
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
'loser_holding_avg': loser_holding_avg,
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
'zero_duration_trades': zero_duration_trades,
}
def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
""" Generate daily statistics """
if len(results) == 0:
return {
'backtest_best_day': 0,
@@ -204,8 +264,6 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
'winning_days': 0,
'draw_days': 0,
'losing_days': 0,
'winner_holding_avg': timedelta(),
'loser_holding_avg': timedelta(),
}
daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum()
daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10)
@@ -217,9 +275,6 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
draw_days = sum(daily_profit == 0)
losing_days = sum(daily_profit < 0)
winning_trades = results.loc[results['profit_ratio'] > 0]
losing_trades = results.loc[results['profit_ratio'] < 0]
return {
'backtest_best_day': best_rel,
'backtest_worst_day': worst_rel,
@@ -228,16 +283,152 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
'winning_days': winning_days,
'draw_days': draw_days,
'losing_days': losing_days,
'winner_holding_avg': (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
if not winning_trades.empty else timedelta()),
'loser_holding_avg': (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
if not losing_trades.empty else timedelta()),
}
def generate_strategy_stats(btdata: Dict[str, DataFrame],
strategy: str,
content: Dict[str, Any],
min_date: datetime, max_date: datetime,
market_change: float
) -> Dict[str, Any]:
"""
:param btdata: Backtest data
:param strategy: Strategy name
:param content: Backtest result data in the format:
{'results: results, 'config: config}}.
:param min_date: Backtest start date
:param max_date: Backtest end date
:param market_change: float indicating the market change
:return: Dictionary containing results per strategy and a strategy summary.
"""
results: Dict[str, DataFrame] = content['results']
if not isinstance(results, DataFrame):
return {}
config = content['config']
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
starting_balance = config['dry_run_wallet']
stake_currency = config['stake_currency']
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results, skip_nan=False)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results.loc[results['is_open']],
skip_nan=True)
daily_stats = generate_daily_stats(results)
trade_stats = generate_trading_stats(results)
best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
backtest_days = (max_date - min_date).days
strat_stats = {
'trades': results.to_dict(orient='records'),
'locks': [lock.to_json() for lock in content['locks']],
'best_pair': best_pair,
'worst_pair': worst_pair,
'results_per_pair': pair_results,
'sell_reason_summary': sell_reason_stats,
'left_open_trades': left_open_results,
'total_trades': len(results),
'total_volume': float(results['stake_amount'].sum()),
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0,
'profit_total': results['profit_abs'].sum() / starting_balance,
'profit_total_abs': results['profit_abs'].sum(),
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_end_ts': int(max_date.timestamp() * 1000),
'backtest_days': backtest_days,
'backtest_run_start_ts': content['backtest_start_time'],
'backtest_run_end_ts': content['backtest_end_time'],
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
'market_change': market_change,
'pairlist': list(btdata.keys()),
'stake_amount': config['stake_amount'],
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'starting_balance': starting_balance,
'dry_run_wallet': starting_balance,
'final_balance': content['final_balance'],
'rejected_signals': content['rejected_signals'],
'max_open_trades': max_open_trades,
'max_open_trades_setting': (config['max_open_trades']
if config['max_open_trades'] != float('inf') else -1),
'timeframe': config['timeframe'],
'timerange': config.get('timerange', ''),
'enable_protections': config.get('enable_protections', False),
'strategy_name': strategy,
# Parameters relevant for backtesting
'stoploss': config['stoploss'],
'trailing_stop': config.get('trailing_stop', False),
'trailing_stop_positive': config.get('trailing_stop_positive'),
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset', 0.0),
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
'use_custom_stoploss': config.get('use_custom_stoploss', False),
'minimal_roi': config['minimal_roi'],
'use_sell_signal': config['ask_strategy']['use_sell_signal'],
'sell_profit_only': config['ask_strategy']['sell_profit_only'],
'sell_profit_offset': config['ask_strategy']['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ask_strategy']['ignore_roi_if_buy_signal'],
**daily_stats,
**trade_stats
}
try:
max_drawdown, _, _, _, _ = calculate_max_drawdown(
results, value_col='profit_ratio')
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
results, value_col='profit_abs')
strat_stats.update({
'max_drawdown': max_drawdown,
'max_drawdown_abs': drawdown_abs,
'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT),
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
'drawdown_end': drawdown_end.strftime(DATETIME_PRINT_FORMAT),
'drawdown_end_ts': drawdown_end.timestamp() * 1000,
'max_drawdown_low': low_val,
'max_drawdown_high': high_val,
})
csum_min, csum_max = calculate_csum(results, starting_balance)
strat_stats.update({
'csum_min': csum_min,
'csum_max': csum_max
})
except ValueError:
strat_stats.update({
'max_drawdown': 0.0,
'max_drawdown_abs': 0.0,
'max_drawdown_low': 0.0,
'max_drawdown_high': 0.0,
'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_start_ts': 0,
'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_end_ts': 0,
'csum_min': 0,
'csum_max': 0
})
return strat_stats
def generate_backtest_stats(btdata: Dict[str, DataFrame],
all_results: Dict[str, Dict[str, Union[DataFrame, Dict]]],
min_date: Arrow, max_date: Arrow
min_date: datetime, max_date: datetime
) -> Dict[str, Any]:
"""
:param btdata: Backtest data
@@ -245,132 +436,17 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
{ Strategy: {'results: results, 'config: config}}.
:param min_date: Backtest start date
:param max_date: Backtest end date
:return:
Dictionary containing results per strategy and a stratgy summary.
:return: Dictionary containing results per strategy and a strategy summary.
"""
result: Dict[str, Any] = {'strategy': {}}
market_change = calculate_market_change(btdata, 'close')
for strategy, content in all_results.items():
results: Dict[str, DataFrame] = content['results']
if not isinstance(results, DataFrame):
continue
config = content['config']
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
starting_balance = config['dry_run_wallet']
stake_currency = config['stake_currency']
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results, skip_nan=False)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results.loc[results['is_open']],
skip_nan=True)
daily_stats = generate_daily_stats(results)
best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
backtest_days = (max_date - min_date).days
strat_stats = {
'trades': results.to_dict(orient='records'),
'locks': [lock.to_json() for lock in content['locks']],
'best_pair': best_pair,
'worst_pair': worst_pair,
'results_per_pair': pair_results,
'sell_reason_summary': sell_reason_stats,
'left_open_trades': left_open_results,
'total_trades': len(results),
'total_volume': float(results['stake_amount'].sum()),
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
'profit_total': results['profit_abs'].sum() / starting_balance,
'profit_total_abs': results['profit_abs'].sum(),
'backtest_start': min_date.datetime,
'backtest_start_ts': min_date.int_timestamp * 1000,
'backtest_end': max_date.datetime,
'backtest_end_ts': max_date.int_timestamp * 1000,
'backtest_days': backtest_days,
'backtest_run_start_ts': content['backtest_start_time'],
'backtest_run_end_ts': content['backtest_end_time'],
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
'market_change': market_change,
'pairlist': list(btdata.keys()),
'stake_amount': config['stake_amount'],
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'starting_balance': starting_balance,
'dry_run_wallet': starting_balance,
'final_balance': content['final_balance'],
'max_open_trades': max_open_trades,
'max_open_trades_setting': (config['max_open_trades']
if config['max_open_trades'] != float('inf') else -1),
'timeframe': config['timeframe'],
'timerange': config.get('timerange', ''),
'enable_protections': config.get('enable_protections', False),
'strategy_name': strategy,
# Parameters relevant for backtesting
'stoploss': config['stoploss'],
'trailing_stop': config.get('trailing_stop', False),
'trailing_stop_positive': config.get('trailing_stop_positive'),
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset', 0.0),
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
'use_custom_stoploss': config.get('use_custom_stoploss', False),
'minimal_roi': config['minimal_roi'],
'use_sell_signal': config['ask_strategy']['use_sell_signal'],
'sell_profit_only': config['ask_strategy']['sell_profit_only'],
'sell_profit_offset': config['ask_strategy']['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ask_strategy']['ignore_roi_if_buy_signal'],
**daily_stats,
}
strat_stats = generate_strategy_stats(btdata, strategy, content,
min_date, max_date, market_change=market_change)
result['strategy'][strategy] = strat_stats
try:
max_drawdown, _, _, _, _ = calculate_max_drawdown(
results, value_col='profit_ratio')
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
results, value_col='profit_abs')
strat_stats.update({
'max_drawdown': max_drawdown,
'max_drawdown_abs': drawdown_abs,
'drawdown_start': drawdown_start,
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
'drawdown_end': drawdown_end,
'drawdown_end_ts': drawdown_end.timestamp() * 1000,
'max_drawdown_low': low_val,
'max_drawdown_high': high_val,
})
csum_min, csum_max = calculate_csum(results, starting_balance)
strat_stats.update({
'csum_min': csum_min,
'csum_max': csum_max
})
except ValueError:
strat_stats.update({
'max_drawdown': 0.0,
'max_drawdown_abs': 0.0,
'max_drawdown_low': 0.0,
'max_drawdown_high': 0.0,
'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_start_ts': 0,
'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc),
'drawdown_end_ts': 0,
'csum_min': 0,
'csum_max': 0
})
strategy_results = generate_strategy_metrics(all_results=all_results)
strategy_results = generate_strategy_comparison(all_results=all_results)
result['strategy_comparison'] = strategy_results
@@ -393,7 +469,8 @@ def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: st
floatfmt = _get_line_floatfmt(stake_currency)
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
t['profit_total_pct'], t['duration_avg'],
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses'])
] for t in pair_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
@@ -410,9 +487,7 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
headers = [
'Sell Reason',
'Sells',
'Wins',
'Draws',
'Losses',
'Win Draws Loss Win%',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
@@ -420,7 +495,8 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
]
output = [[
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
t['sell_reason'], t['trades'],
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
t['profit_mean_pct'], t['profit_sum_pct'],
round_coin_value(t['profit_total_abs'], stake_currency, False),
t['profit_total_pct'],
@@ -431,18 +507,28 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
def text_table_strategy(strategy_results, stake_currency: str) -> str:
"""
Generate summary table per strategy
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades used for backtest
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:return: pretty printed table with tabulate as string
"""
floatfmt = _get_line_floatfmt(stake_currency)
headers = _get_line_header('Strategy', stake_currency)
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
# therefore we slip this column in only for strategy summary here.
headers.append('Drawdown')
# Align drawdown string on the center two space separator.
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
dd_pad_per = max([len(dd) for dd in drawdown])
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
for t, dd in zip(strategy_results, drawdown)]
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
] for t in strategy_results]
t['profit_total_pct'], t['duration_avg'],
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown]
for t, drawdown in zip(strategy_results, drawdown)]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
@@ -452,25 +538,36 @@ def text_table_add_metrics(strat_results: Dict) -> str:
if len(strat_results['trades']) > 0:
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
zero_duration_trades = '--'
if 'zero_duration_trades' in strat_results:
zero_duration_trades_per = \
100.0 / strat_results['total_trades'] * strat_results['zero_duration_trades']
zero_duration_trades = f'{zero_duration_trades_per:.2f}% ' \
f'({strat_results["zero_duration_trades"]})'
metrics = [
('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
('Backtesting from', strat_results['backtest_start']),
('Backtesting to', strat_results['backtest_end']),
('Max open trades', strat_results['max_open_trades']),
('', ''), # Empty line to improve readability
('Total trades', strat_results['total_trades']),
('Total/Daily Avg Trades',
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
('Starting balance', round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])),
('Final balance', round_coin_value(strat_results['final_balance'],
strat_results['stake_currency'])),
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"),
('Trades per day', strat_results['trades_per_day']),
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2):}%"),
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
strat_results['stake_currency'])),
('Total trade volume', round_coin_value(strat_results['total_volume'],
strat_results['stake_currency'])),
('', ''), # Empty line to improve readability
('Best Pair', f"{strat_results['best_pair']['key']} "
f"{round(strat_results['best_pair']['profit_sum_pct'], 2)}%"),
@@ -488,6 +585,8 @@ def text_table_add_metrics(strat_results: Dict) -> str:
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Zero Duration Trades', zero_duration_trades),
('Rejected Buy signals', strat_results.get('rejected_signals', 'N/A')),
('', ''), # Empty line to improve readability
('Min balance', round_coin_value(strat_results['csum_min'],
@@ -502,8 +601,8 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])),
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
strat_results['stake_currency'])),
('Drawdown Start', strat_results['drawdown_start'].strftime(DATETIME_PRINT_FORMAT)),
('Drawdown End', strat_results['drawdown_end'].strftime(DATETIME_PRINT_FORMAT)),
('Drawdown Start', strat_results['drawdown_start']),
('Drawdown End', strat_results['drawdown_end']),
('Market change', f"{round(strat_results['market_change'] * 100, 2)}%"),
]
@@ -522,37 +621,43 @@ def text_table_add_metrics(strat_results: Dict) -> str:
return message
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str):
"""
Print results for one strategy
"""
# Print results
print(f"Result for strategy {strategy}")
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()
def show_backtest_results(config: Dict, backtest_stats: Dict):
stake_currency = config['stake_currency']
for strategy, results in backtest_stats['strategy'].items():
# Print results
print(f"Result for strategy {strategy}")
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()
show_backtest_result(strategy, results, stake_currency)
if len(backtest_stats['strategy']) > 1:
# Print Strategy summary table

View File

@@ -1,7 +1,7 @@
import logging
from typing import List
from sqlalchemy import inspect
from sqlalchemy import inspect, text
logger = logging.getLogger(__name__)
@@ -62,15 +62,17 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
# Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}")
# drop indexes on backup table
for index in inspector.get_indexes(table_back_name):
engine.execute(f"drop index {index['name']}")
with engine.begin() as connection:
connection.execute(text(f"alter table trades rename to {table_back_name}"))
# drop indexes on backup table
for index in inspector.get_indexes(table_back_name):
connection.execute(text(f"drop index {index['name']}"))
# let SQLAlchemy create the schema as required
decl_base.metadata.create_all(engine)
# Copy data back - following the correct schema
engine.execute(f"""insert into trades
with engine.begin() as connection:
connection.execute(text(f"""insert into trades
(id, exchange, pair, is_open,
fee_open, fee_open_cost, fee_open_currency,
fee_close, fee_close_cost, fee_open_currency, open_rate,
@@ -104,11 +106,12 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
{strategy} strategy, {timeframe} timeframe,
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs
from {table_back_name}
""")
"""))
def migrate_open_orders_to_trades(engine):
engine.execute("""
with engine.begin() as connection:
connection.execute(text("""
insert into orders (ft_trade_id, ft_pair, order_id, ft_order_side, ft_is_open)
select id ft_trade_id, pair ft_pair, open_order_id,
case when close_rate_requested is null then 'buy'
@@ -120,7 +123,30 @@ def migrate_open_orders_to_trades(engine):
'stoploss' ft_order_side, 1 ft_is_open
from trades
where stoploss_order_id is not null
""")
"""))
def migrate_orders_table(decl_base, inspector, engine, table_back_name: str, cols: List):
# Schema migration necessary
with engine.begin() as connection:
connection.execute(text(f"alter table orders rename to {table_back_name}"))
# drop indexes on backup table
for index in inspector.get_indexes(table_back_name):
connection.execute(text(f"drop index {index['name']}"))
# let SQLAlchemy create the schema as required
decl_base.metadata.create_all(engine)
with engine.begin() as connection:
connection.execute(text(f"""
insert into orders ( id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
order_date, order_filled_date, order_update_date)
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, null average, remaining, cost,
order_date, order_filled_date, order_update_date
from {table_back_name}
"""))
def check_migrate(engine, decl_base, previous_tables) -> None:
@@ -145,6 +171,11 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
logger.info('Moving open orders to Orders table.')
migrate_open_orders_to_trades(engine)
else:
pass
# Empty for now - as there is only one iteration of the orders table so far.
# table_back_name = get_backup_name(tabs, 'orders_bak')
cols_order = inspector.get_columns('orders')
if not has_column(cols_order, 'average'):
tabs = get_table_names_for_table(inspector, 'orders')
# Empty for now - as there is only one iteration of the orders table so far.
table_back_name = get_backup_name(tabs, 'orders_bak')
migrate_orders_table(decl_base, inspector, engine, table_back_name, cols)

View File

@@ -9,14 +9,12 @@ from typing import Any, Dict, List, Optional
from sqlalchemy import (Boolean, Column, DateTime, Float, ForeignKey, Integer, String,
create_engine, desc, func, inspect)
from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Query, relationship
from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.orm import Query, declarative_base, relationship, scoped_session, sessionmaker
from sqlalchemy.pool import StaticPool
from sqlalchemy.sql.schema import UniqueConstraint
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.enums import SellType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.misc import safe_value_fallback
from freqtrade.persistence.migrations import check_migrate
@@ -41,16 +39,18 @@ def init_db(db_url: str, clean_open_orders: bool = False) -> None:
"""
kwargs = {}
# Take care of thread ownership if in-memory db
if db_url == 'sqlite://':
kwargs.update({
'connect_args': {'check_same_thread': False},
'poolclass': StaticPool,
'echo': False,
})
# Take care of thread ownership
if db_url.startswith('sqlite://'):
kwargs.update({
'connect_args': {'check_same_thread': False},
})
try:
engine = create_engine(db_url, **kwargs)
engine = create_engine(db_url, future=True, **kwargs)
except NoSuchModuleError:
raise OperationalException(f"Given value for db_url: '{db_url}' "
f"is no valid database URL! (See {_SQL_DOCS_URL})")
@@ -58,7 +58,7 @@ def init_db(db_url: str, clean_open_orders: bool = False) -> None:
# https://docs.sqlalchemy.org/en/13/orm/contextual.html#thread-local-scope
# Scoped sessions proxy requests to the appropriate thread-local session.
# We should use the scoped_session object - not a seperately initialized version
Trade._session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
Trade._session = scoped_session(sessionmaker(bind=engine, autoflush=True))
Trade.query = Trade._session.query_property()
Order.query = Trade._session.query_property()
PairLock.query = Trade._session.query_property()
@@ -77,7 +77,7 @@ def cleanup_db() -> None:
Flushes all pending operations to disk.
:return: None
"""
Trade.query.session.flush()
Trade.commit()
def clean_dry_run_db() -> None:
@@ -89,6 +89,7 @@ def clean_dry_run_db() -> None:
# Check we are updating only a dry_run order not a prod one
if 'dry_run' in trade.open_order_id:
trade.open_order_id = None
Trade.commit()
class Order(_DECL_BASE):
@@ -112,16 +113,17 @@ class Order(_DECL_BASE):
trade = relationship("Trade", back_populates="orders")
ft_order_side = Column(String, nullable=False)
ft_pair = Column(String, nullable=False)
ft_order_side = Column(String(25), nullable=False)
ft_pair = Column(String(25), nullable=False)
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
order_id = Column(String, nullable=False, index=True)
status = Column(String, nullable=True)
symbol = Column(String, nullable=True)
order_type = Column(String, nullable=True)
side = Column(String, nullable=True)
order_id = Column(String(255), nullable=False, index=True)
status = Column(String(255), nullable=True)
symbol = Column(String(25), nullable=True)
order_type = Column(String(50), nullable=True)
side = Column(String(25), nullable=True)
price = Column(Float, nullable=True)
average = Column(Float, nullable=True)
amount = Column(Float, nullable=True)
filled = Column(Float, nullable=True)
remaining = Column(Float, nullable=True)
@@ -150,6 +152,7 @@ class Order(_DECL_BASE):
self.price = order.get('price', self.price)
self.amount = order.get('amount', self.amount)
self.filled = order.get('filled', self.filled)
self.average = order.get('average', self.average)
self.remaining = order.get('remaining', self.remaining)
self.cost = order.get('cost', self.cost)
if 'timestamp' in order and order['timestamp'] is not None:
@@ -175,6 +178,7 @@ class Order(_DECL_BASE):
if filtered_orders:
oobj = filtered_orders[0]
oobj.update_from_ccxt_object(order)
Order.query.session.commit()
else:
logger.warning(f"Did not find order for {order}.")
@@ -427,12 +431,13 @@ class LocalTrade():
elif order_type in ('stop_loss_limit', 'stop-loss', 'stop-loss-limit', 'stop'):
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
self.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
if self.is_open:
logger.info(f'{order_type.upper()} is hit for {self}.')
self.close(safe_value_fallback(order, 'average', 'price'))
else:
raise ValueError(f'Unknown order type: {order_type}')
cleanup_db()
Trade.commit()
def close(self, rate: float, *, show_msg: bool = True) -> None:
"""
@@ -567,23 +572,6 @@ class LocalTrade():
else:
return None
@staticmethod
def get_trades(trade_filter=None) -> Query:
"""
Helper function to query Trades using filters.
:param trade_filter: Optional filter to apply to trades
Can be either a Filter object, or a List of filters
e.g. `(trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True),])`
e.g. `(trade_filter=Trade.id == trade_id)`
:return: unsorted query object
"""
if trade_filter is not None:
if not isinstance(trade_filter, list):
trade_filter = [trade_filter]
return Trade.query.filter(*trade_filter)
else:
return Trade.query
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
@@ -636,83 +624,7 @@ class LocalTrade():
"""
Query trades from persistence layer
"""
return Trade.get_trades(Trade.is_open.is_(True)).all()
@staticmethod
def get_open_order_trades():
"""
Returns all open trades
"""
return Trade.get_trades(Trade.open_order_id.isnot(None)).all()
@staticmethod
def get_open_trades_without_assigned_fees():
"""
Returns all open trades which don't have open fees set correctly
"""
return Trade.get_trades([Trade.fee_open_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(True),
]).all()
@staticmethod
def get_sold_trades_without_assigned_fees():
"""
Returns all closed trades which don't have fees set correctly
"""
return Trade.get_trades([Trade.fee_close_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(False),
]).all()
@staticmethod
def total_open_trades_stakes() -> float:
"""
Calculates total invested amount in open trades
in stake currency
"""
if Trade.use_db:
total_open_stake_amount = Trade.query.with_entities(
func.sum(Trade.stake_amount)).filter(Trade.is_open.is_(True)).scalar()
else:
total_open_stake_amount = sum(
t.stake_amount for t in Trade.get_trades_proxy(is_open=True))
return total_open_stake_amount or 0
@staticmethod
def get_overall_performance() -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, including profit and trade count
"""
pair_rates = Trade.query.with_entities(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
func.count(Trade.pair).label('count')
).filter(Trade.is_open.is_(False))\
.group_by(Trade.pair) \
.order_by(desc('profit_sum')) \
.all()
return [
{
'pair': pair,
'profit': rate,
'count': count
}
for pair, rate, count in pair_rates
]
@staticmethod
def get_best_pair():
"""
Get best pair with closed trade.
:returns: Tuple containing (pair, profit_sum)
"""
best_pair = Trade.query.with_entities(
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
).filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(desc('profit_sum')).first()
return best_pair
return Trade.get_trades_proxy(is_open=True)
@staticmethod
def stoploss_reinitialization(desired_stoploss):
@@ -749,15 +661,15 @@ class Trade(_DECL_BASE, LocalTrade):
orders = relationship("Order", order_by="Order.id", cascade="all, delete-orphan")
exchange = Column(String, nullable=False)
pair = Column(String, nullable=False, index=True)
exchange = Column(String(25), nullable=False)
pair = Column(String(25), nullable=False, index=True)
is_open = Column(Boolean, nullable=False, default=True, index=True)
fee_open = Column(Float, nullable=False, default=0.0)
fee_open_cost = Column(Float, nullable=True)
fee_open_currency = Column(String, nullable=True)
fee_open_currency = Column(String(25), nullable=True)
fee_close = Column(Float, nullable=False, default=0.0)
fee_close_cost = Column(Float, nullable=True)
fee_close_currency = Column(String, nullable=True)
fee_close_currency = Column(String(25), nullable=True)
open_rate = Column(Float)
open_rate_requested = Column(Float)
# open_trade_value - calculated via _calc_open_trade_value
@@ -771,7 +683,7 @@ class Trade(_DECL_BASE, LocalTrade):
amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String)
open_order_id = Column(String(255))
# absolute value of the stop loss
stop_loss = Column(Float, nullable=True, default=0.0)
# percentage value of the stop loss
@@ -781,16 +693,16 @@ class Trade(_DECL_BASE, LocalTrade):
# percentage value of the initial stop loss
initial_stop_loss_pct = Column(Float, nullable=True)
# stoploss order id which is on exchange
stoploss_order_id = Column(String, nullable=True, index=True)
stoploss_order_id = Column(String(255), nullable=True, index=True)
# last update time of the stoploss order on exchange
stoploss_last_update = Column(DateTime, nullable=True)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=True, default=0.0)
# Lowest price reached
min_rate = Column(Float, nullable=True)
sell_reason = Column(String, nullable=True)
sell_order_status = Column(String, nullable=True)
strategy = Column(String, nullable=True)
sell_reason = Column(String(100), nullable=True)
sell_order_status = Column(String(100), nullable=True)
strategy = Column(String(100), nullable=True)
timeframe = Column(Integer, nullable=True)
def __init__(self, **kwargs):
@@ -803,14 +715,18 @@ class Trade(_DECL_BASE, LocalTrade):
Order.query.session.delete(order)
Trade.query.session.delete(self)
Trade.query.session.flush()
Trade.commit()
@staticmethod
def commit():
Trade.query.session.commit()
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
) -> List['LocalTrade']:
"""
Helper function to query Trades.
Helper function to query Trades.j
Returns a List of trades, filtered on the parameters given.
In live mode, converts the filter to a database query and returns all rows
In Backtest mode, uses filters on Trade.trades to get the result.
@@ -835,6 +751,109 @@ class Trade(_DECL_BASE, LocalTrade):
close_date=close_date
)
@staticmethod
def get_trades(trade_filter=None) -> Query:
"""
Helper function to query Trades using filters.
NOTE: Not supported in Backtesting.
:param trade_filter: Optional filter to apply to trades
Can be either a Filter object, or a List of filters
e.g. `(trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True),])`
e.g. `(trade_filter=Trade.id == trade_id)`
:return: unsorted query object
"""
if not Trade.use_db:
raise NotImplementedError('`Trade.get_trades()` not supported in backtesting mode.')
if trade_filter is not None:
if not isinstance(trade_filter, list):
trade_filter = [trade_filter]
return Trade.query.filter(*trade_filter)
else:
return Trade.query
@staticmethod
def get_open_order_trades():
"""
Returns all open trades
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades(Trade.open_order_id.isnot(None)).all()
@staticmethod
def get_open_trades_without_assigned_fees():
"""
Returns all open trades which don't have open fees set correctly
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades([Trade.fee_open_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(True),
]).all()
@staticmethod
def get_sold_trades_without_assigned_fees():
"""
Returns all closed trades which don't have fees set correctly
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades([Trade.fee_close_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(False),
]).all()
@staticmethod
def total_open_trades_stakes() -> float:
"""
Calculates total invested amount in open trades
in stake currency
"""
if Trade.use_db:
total_open_stake_amount = Trade.query.with_entities(
func.sum(Trade.stake_amount)).filter(Trade.is_open.is_(True)).scalar()
else:
total_open_stake_amount = sum(
t.stake_amount for t in LocalTrade.get_trades_proxy(is_open=True))
return total_open_stake_amount or 0
@staticmethod
def get_overall_performance() -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, including profit and trade count
NOTE: Not supported in Backtesting.
"""
pair_rates = Trade.query.with_entities(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(Trade.is_open.is_(False))\
.group_by(Trade.pair) \
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'pair': pair,
'profit': profit,
'profit_abs': profit_abs,
'count': count
}
for pair, profit, profit_abs, count in pair_rates
]
@staticmethod
def get_best_pair():
"""
Get best pair with closed trade.
NOTE: Not supported in Backtesting.
:returns: Tuple containing (pair, profit_sum)
"""
best_pair = Trade.query.with_entities(
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
).filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(desc('profit_sum')).first()
return best_pair
class PairLock(_DECL_BASE):
"""
@@ -844,8 +863,8 @@ class PairLock(_DECL_BASE):
id = Column(Integer, primary_key=True)
pair = Column(String, nullable=False, index=True)
reason = Column(String, nullable=True)
pair = Column(String(25), nullable=False, index=True)
reason = Column(String(255), nullable=True)
# Time the pair was locked (start time)
lock_time = Column(DateTime, nullable=False)
# Time until the pair is locked (end time)

View File

@@ -49,7 +49,7 @@ class PairLocks():
)
if PairLocks.use_db:
PairLock.query.session.add(lock)
PairLock.query.session.flush()
PairLock.query.session.commit()
else:
PairLocks.locks.append(lock)
@@ -99,7 +99,7 @@ class PairLocks():
for lock in locks:
lock.active = False
if PairLocks.use_db:
PairLock.query.session.flush()
PairLock.query.session.commit()
@staticmethod
def is_global_lock(now: Optional[datetime] = None) -> bool:

View File

@@ -47,7 +47,7 @@ def init_plotscript(config, markets: List, startup_candles: int = 0):
data = load_data(
datadir=config.get('datadir'),
pairs=pairs,
timeframe=config.get('timeframe', '5m'),
timeframe=config['timeframe'],
timerange=timerange,
startup_candles=startup_candles,
data_format=config.get('dataformat_ohlcv', 'json'),
@@ -56,7 +56,7 @@ def init_plotscript(config, markets: List, startup_candles: int = 0):
if startup_candles and data:
min_date, max_date = get_timerange(data)
logger.info(f"Loading data from {min_date} to {max_date}")
timerange.adjust_start_if_necessary(timeframe_to_seconds(config.get('timeframe', '5m')),
timerange.adjust_start_if_necessary(timeframe_to_seconds(config['timeframe']),
startup_candles, min_date)
no_trades = False
@@ -77,7 +77,8 @@ def init_plotscript(config, markets: List, startup_candles: int = 0):
)
except ValueError as e:
raise OperationalException(e) from e
trades = trim_dataframe(trades, timerange, 'open_date')
if not trades.empty:
trades = trim_dataframe(trades, timerange, 'open_date')
return {"ohlcv": data,
"trades": trades,
@@ -95,20 +96,34 @@ def add_indicators(fig, row, indicators: Dict[str, Dict], data: pd.DataFrame) ->
Dict key must correspond to dataframe column.
:param data: candlestick DataFrame
"""
plot_kinds = {
'scatter': go.Scatter,
'bar': go.Bar,
}
for indicator, conf in indicators.items():
logger.debug(f"indicator {indicator} with config {conf}")
if indicator in data:
kwargs = {'x': data['date'],
'y': data[indicator].values,
'mode': 'lines',
'name': indicator
}
if 'color' in conf:
kwargs.update({'line': {'color': conf['color']}})
scatter = go.Scatter(
**kwargs
)
fig.add_trace(scatter, row, 1)
plot_type = conf.get('type', 'scatter')
color = conf.get('color')
if plot_type == 'bar':
kwargs.update({'marker_color': color or 'DarkSlateGrey',
'marker_line_color': color or 'DarkSlateGrey'})
else:
if color:
kwargs.update({'line': {'color': color}})
kwargs['mode'] = 'lines'
if plot_type != 'scatter':
logger.warning(f'Indicator {indicator} has unknown plot trace kind {plot_type}'
f', assuming "scatter".')
kwargs.update(conf.get('plotly', {}))
trace = plot_kinds[plot_type](**kwargs)
fig.add_trace(trace, row, 1)
else:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not found '
@@ -273,8 +288,8 @@ def plot_area(fig, row: int, data: pd.DataFrame, indicator_a: str,
:param fig: Plot figure to append to
:param row: row number for this plot
:param data: candlestick DataFrame
:param indicator_a: indicator name as populated in stragetie
:param indicator_b: indicator name as populated in stragetie
:param indicator_a: indicator name as populated in strategy
:param indicator_b: indicator name as populated in strategy
:param label: label for the filled area
:param fill_color: color to be used for the filled area
:return: fig with added filled_traces plot
@@ -540,8 +555,11 @@ def load_and_plot_trades(config: Dict[str, Any]):
df_analyzed = strategy.analyze_ticker(data, {'pair': pair})
df_analyzed = trim_dataframe(df_analyzed, timerange)
trades_pair = trades.loc[trades['pair'] == pair]
trades_pair = extract_trades_of_period(df_analyzed, trades_pair)
if not trades.empty:
trades_pair = trades.loc[trades['pair'] == pair]
trades_pair = extract_trades_of_period(df_analyzed, trades_pair)
else:
trades_pair = trades
fig = generate_candlestick_graph(
pair=pair,
@@ -565,6 +583,9 @@ def plot_profit(config: Dict[str, Any]) -> None:
But should be somewhat proportional, and therefor useful
in helping out to find a good algorithm.
"""
if 'timeframe' not in config:
raise OperationalException('Timeframe must be set in either config or via --timeframe.')
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
plot_elements = init_plotscript(config, list(exchange.markets))
trades = plot_elements['trades']
@@ -581,7 +602,8 @@ def plot_profit(config: Dict[str, Any]) -> None:
# Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements['pairs'], plot_elements['ohlcv'],
trades, config.get('timeframe', '5m'),
trades, config['timeframe'],
config.get('stake_currency', ''))
store_plot_file(fig, filename='freqtrade-profit-plot.html',
directory=config['user_data_dir'] / 'plot', auto_open=True)
directory=config['user_data_dir'] / 'plot',
auto_open=config.get('plot_auto_open', False))

View File

@@ -71,14 +71,14 @@ class AgeFilter(IPairList):
daily_candles = candles[(p, '1d')] if (p, '1d') in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
logger.info(f"Validated {len(pairlist)} pairs.")
self.log_once(f"Validated {len(pairlist)} pairs.", logger.info)
return pairlist
def _validate_pair_loc(self, pair: str, daily_candles: Optional[DataFrame]) -> bool:
"""
Validate age for the ticker
:param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.load_markets()
:param ticker: ticker dict as returned from ccxt.fetch_tickers()
:return: True if the pair can stay, false if it should be removed
"""
# Check symbol in cache
@@ -86,7 +86,7 @@ class AgeFilter(IPairList):
return True
if daily_candles is not None:
if len(daily_candles) > self._min_days_listed:
if len(daily_candles) >= self._min_days_listed:
# We have fetched at least the minimum required number of daily candles
# Add to cache, store the time we last checked this symbol
self._symbolsChecked[pair] = int(arrow.utcnow().float_timestamp) * 1000

View File

@@ -7,7 +7,7 @@ from copy import deepcopy
from typing import Any, Dict, List
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active
from freqtrade.exchange import Exchange, market_is_active
from freqtrade.mixins import LoggingMixin
@@ -16,7 +16,7 @@ logger = logging.getLogger(__name__)
class IPairList(LoggingMixin, ABC):
def __init__(self, exchange, pairlistmanager,
def __init__(self, exchange: Exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
"""
@@ -28,7 +28,7 @@ class IPairList(LoggingMixin, ABC):
"""
self._enabled = True
self._exchange = exchange
self._exchange: Exchange = exchange
self._pairlistmanager = pairlistmanager
self._config = config
self._pairlistconfig = pairlistconfig
@@ -68,7 +68,7 @@ class IPairList(LoggingMixin, ABC):
filter_pairlist() method.
:param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.load_markets()
:param ticker: ticker dict as returned from ccxt.fetch_tickers()
:return: True if the pair can stay, false if it should be removed
"""
raise NotImplementedError()

View File

@@ -19,7 +19,7 @@ class PerformanceFilter(IPairList):
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
If no Pairlist requires tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return False
@@ -39,7 +39,12 @@ class PerformanceFilter(IPairList):
:return: new allowlist
"""
# Get the trading performance for pairs from database
performance = pd.DataFrame(Trade.get_overall_performance())
try:
performance = pd.DataFrame(Trade.get_overall_performance())
except AttributeError:
# Performancefilter does not work in backtesting.
self.log_once("PerformanceFilter is not available in this mode.", logger.warning)
return pairlist
# Skip performance-based sorting if no performance data is available
if len(performance) == 0:

View File

@@ -48,7 +48,7 @@ class PrecisionFilter(IPairList):
Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very
low value pairs.
:param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.load_markets()
:param ticker: ticker dict as returned from ccxt.fetch_tickers()
:return: True if the pair can stay, false if it should be removed
"""
stop_price = ticker['ask'] * self._stoploss

View File

@@ -27,9 +27,13 @@ class PriceFilter(IPairList):
self._max_price = pairlistconfig.get('max_price', 0)
if self._max_price < 0:
raise OperationalException("PriceFilter requires max_price to be >= 0")
self._max_value = pairlistconfig.get('max_value', 0)
if self._max_value < 0:
raise OperationalException("PriceFilter requires max_value to be >= 0")
self._enabled = ((self._low_price_ratio > 0) or
(self._min_price > 0) or
(self._max_price > 0))
(self._max_price > 0) or
(self._max_value > 0))
@property
def needstickers(self) -> bool:
@@ -51,6 +55,8 @@ class PriceFilter(IPairList):
active_price_filters.append(f"below {self._min_price:.8f}")
if self._max_price != 0:
active_price_filters.append(f"above {self._max_price:.8f}")
if self._max_value != 0:
active_price_filters.append(f"Value above {self._max_value:.8f}")
if len(active_price_filters):
return f"{self.name} - Filtering pairs priced {' or '.join(active_price_filters)}."
@@ -61,7 +67,7 @@ class PriceFilter(IPairList):
"""
Check if if one price-step (pip) is > than a certain barrier.
:param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.load_markets()
:param ticker: ticker dict as returned from ccxt.fetch_tickers()
:return: True if the pair can stay, false if it should be removed
"""
if ticker.get('last', None) is None or ticker.get('last') == 0:
@@ -79,6 +85,32 @@ class PriceFilter(IPairList):
f"because 1 unit is {changeperc * 100:.3f}%", logger.info)
return False
# Perform low_amount check
if self._max_value != 0:
price = ticker['last']
market = self._exchange.markets[pair]
limits = market['limits']
if ('amount' in limits and 'min' in limits['amount']
and limits['amount']['min'] is not None):
min_amount = limits['amount']['min']
min_precision = market['precision']['amount']
min_value = min_amount * price
if self._exchange.precisionMode == 4:
# tick size
next_value = (min_amount + min_precision) * price
else:
# Decimal places
min_precision = pow(0.1, min_precision)
next_value = (min_amount + min_precision) * price
diff = next_value - min_value
if diff > self._max_value:
self.log_once(f"Removed {pair} from whitelist, "
f"because min value change of {diff} > {self._max_value}.",
logger.info)
return False
# Perform min_price check.
if self._min_price != 0:
if ticker['last'] < self._min_price:
@@ -89,7 +121,7 @@ class PriceFilter(IPairList):
# Perform max_price check.
if self._max_price != 0:
if ticker['last'] > self._max_price:
self.log_once(f"Removed {ticker['symbol']} from whitelist, "
self.log_once(f"Removed {pair} from whitelist, "
f"because last price > {self._max_price:.8f}", logger.info)
return False

Some files were not shown because too many files have changed in this diff Show More