Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
40e4035a65
Bump ruff from 0.0.251 to 0.0.252
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.251 to 0.0.252.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.251...v0.0.252)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-27 05:24:31 +00:00
193 changed files with 5046 additions and 10382 deletions

View File

@ -16,8 +16,7 @@ on:
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
repository-projects: read
jobs:
build_linux:
@ -25,7 +24,7 @@ jobs:
strategy:
matrix:
os: [ ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@ -116,7 +115,7 @@ jobs:
strategy:
matrix:
os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@ -213,7 +212,7 @@ jobs:
strategy:
matrix:
os: [ windows-latest ]
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
@ -322,6 +321,7 @@ jobs:
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v3
@ -425,7 +425,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.8.5
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
@ -433,7 +433,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.8.5
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
@ -466,13 +466,12 @@ jobs:
- name: Build and test and push docker images
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker_multi.sh
deploy_arm:
permissions:
packages: write
needs: [ deploy ]
# Only run on 64bit machines
runs-on: [self-hosted, linux, ARM64]
@ -495,9 +494,8 @@ jobs:
- name: Build and test and push docker images
env:
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
GHCR_USERNAME: ${{ github.actor }}
GHCR_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
build_helpers/publish_docker_arm64.sh

View File

@ -8,17 +8,16 @@ repos:
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v1.0.1"
rev: "v0.991"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.3.0.5
- types-cachetools==5.3.0.0
- types-filelock==3.2.7
- types-requests==2.28.11.17
- types-tabulate==0.9.0.2
- types-python-dateutil==2.8.19.12
- SQLAlchemy==2.0.9
- types-requests==2.28.11.13
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.6
# stages: [push]
- repo: https://github.com/pycqa/isort
@ -30,7 +29,7 @@ repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
# Ruff version.
rev: 'v0.0.255'
rev: 'v0.0.251'
hooks:
- id: ruff

View File

@ -1,4 +1,4 @@
FROM python:3.10.11-slim-bullseye as base
FROM python:3.10.10-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@ -8,8 +8,8 @@ if [ -n "$2" ] || [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
&& curl 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.guess' -o config.guess \
&& curl 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.sub' -o config.sub \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub \
&& ./configure --prefix=${INSTALL_LOC}/ \
&& make
if [ $? -ne 0 ]; then

View File

@ -8,17 +8,12 @@ import yaml
pre_commit_file = Path('.pre-commit-config.yaml')
require_dev = Path('requirements-dev.txt')
require = Path('requirements.txt')
with require_dev.open('r') as rfile:
requirements = rfile.readlines()
with require.open('r') as rfile:
requirements.extend(rfile.readlines())
# Extract types only
type_reqs = [r.strip('\n') for r in requirements if r.startswith(
'types-') or r.startswith('SQLAlchemy')]
type_reqs = [r.strip('\n') for r in requirements if r.startswith('types-')]
with pre_commit_file.open('r') as file:
f = yaml.load(file, Loader=yaml.FullLoader)

View File

@ -3,22 +3,18 @@
# Use BuildKit, otherwise building on ARM fails
export DOCKER_BUILDKIT=1
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
GHCR_IMAGE_NAME=ghcr.io/freqtrade/freqtrade
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_FREQAI_TORCH=${TAG_FREQAI}torch
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
TAG_FREQAI_RL_ARM=${TAG_FREQAI_RL}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@ -42,13 +38,13 @@ if [ $? -ne 0 ]; then
echo "failed building multiarch images"
return 1
fi
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
# Tag image for upload and next build step
docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker tag freqtrade:$TAG_FREQAI_RL_ARM ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
@ -63,6 +59,7 @@ fi
docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
@ -85,35 +82,14 @@ docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
# Create special Torch tag - which is identical to the RL tag.
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_TORCH} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_TORCH}
# copy images to ghcr.io
alias crane="docker run --rm -i -v $(pwd)/.crane:/home/nonroot/.docker/ gcr.io/go-containerregistry/crane"
mkdir .crane
chmod a+rwx .crane
echo "${GHCR_TOKEN}" | crane auth login ghcr.io -u "${GHCR_USERNAME}" --password-stdin
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_RL}
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_TORCH}
crane copy ${IMAGE_NAME}:${TAG_FREQAI} ${GHCR_IMAGE_NAME}:${TAG_FREQAI}
crane copy ${IMAGE_NAME}:${TAG_PLOT} ${GHCR_IMAGE_NAME}:${TAG_PLOT}
crane copy ${IMAGE_NAME}:${TAG} ${GHCR_IMAGE_NAME}:${TAG}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
echo 'Tagging image as latest'
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:latest
crane copy ${IMAGE_NAME}:latest ${GHCR_IMAGE_NAME}:latest
fi
docker images
rm -rf .crane
# Cleanup old images from arm64 node.
docker image prune -a --force --filter "until=24h"

View File

@ -2,8 +2,6 @@
# The below assumes a correctly setup docker buildx environment
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
@ -13,6 +11,7 @@ TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
echo "Running for ${TAG}"
CACHE_IMAGE=freqtradeorg/freqtrade_cache
CACHE_TAG=${CACHE_IMAGE}:${TAG_PI}_cache
# Add commit and commit_message to docker container
@ -58,9 +57,9 @@ fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_FREQAI} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -274,20 +274,19 @@ A backtesting result will look like that:
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|---------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
==================== EXIT REASON STATS ====================
========================================================= EXIT REASON STATS ==========================================================
| Exit Reason | Exits | Wins | Draws | Losses |
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| exit_signal | 56 | 36 | 0 | 20 |
| force_exit | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|---------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
================== SUMMARY METRICS ==================
| Metric | Value |
|-----------------------------+---------------------|

View File

@ -12,9 +12,6 @@ This page provides you some basic concepts on how Freqtrade works and operates.
* **Indicators**: Technical indicators (SMA, EMA, RSI, ...).
* **Limit order**: Limit orders which execute at the defined limit price or better.
* **Market order**: Guaranteed to fill, may move price depending on the order size.
* **Current Profit**: Currently pending (unrealized) profit for this trade. This is mainly used throughout the bot and UI.
* **Realized Profit**: Already realized profit. Only relevant in combination with [partial exits](strategy-callbacks.md#adjust-trade-position) - which also explains the calculation logic for this.
* **Total Profit**: Combined realized and unrealized profit. The relative number (%) is calculated against the total investment in this trade.
## Fee handling
@ -60,10 +57,10 @@ This loop will be repeated again and again until the bot is stopped.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Calls `bot_loop_start()` strategy callback.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).

View File

@ -74,8 +74,3 @@ Webhook terminology changed from "sell" to "exit", and from "buy" to "entry", re
* `webhooksell`, `webhookexit` -> `exit`
* `webhooksellfill`, `webhookexitfill` -> `exit_fill`
* `webhooksellcancel`, `webhookexitcancel` -> `exit_cancel`
## Removal of `populate_any_indicators`
version 2023.3 saw the removal of `populate_any_indicators` in favor of split methods for feature engineering and targets. Please read the [migration document](strategy_migration.md#freqai-strategy) for full details.

View File

@ -236,161 +236,3 @@ If you want to predict multiple targets you must specify all labels in the same
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
df['&s-up_or_down'] = np.where( df["close"].shift(-100) == df["close"], 'same', df['&s-up_or_down'])
```
## PyTorch Module
### Quick start
The easiest way to quickly run a pytorch model is with the following command (for regression task):
```bash
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel PyTorchMLPRegressor --strategy-path freqtrade/templates
```
!!! note "Installation/docker"
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
### Structure
#### Model
You can construct your own Neural Network architecture in PyTorch by simply defining your `nn.Module` class inside your custom [`IFreqaiModel` file](#using-different-prediction-models) and then using that class in your `def train()` function. Here is an example of logistic regression model implementation using PyTorch (should be used with nn.BCELoss criterion) for classification tasks.
```python
class LogisticRegression(nn.Module):
def __init__(self, input_size: int):
super().__init__()
# Define your layers
self.linear = nn.Linear(input_size, 1)
self.activation = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Define the forward pass
out = self.linear(x)
out = self.activation(out)
return out
class MyCoolPyTorchClassifier(BasePyTorchClassifier):
"""
This is a custom IFreqaiModel showing how a user might setup their own
custom Neural Network architecture for their training.
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
class_names = self.get_class_names()
self.convert_label_column_to_int(data_dictionary, dk, class_names)
n_features = data_dictionary["train_features"].shape[-1]
model = LogisticRegression(
input_dim=n_features
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer
```
#### Trainer
The `PyTorchModelTrainer` performs the idiomatic PyTorch train loop:
Define our model, loss function, and optimizer, and then move them to the appropriate device (GPU or CPU). Inside the loop, we iterate through the batches in the dataloader, move the data to the device, compute the prediction and loss, backpropagate, and update the model parameters using the optimizer.
In addition, the trainer is responsible for the following:
- saving and loading the model
- converting the data from `pandas.DataFrame` to `torch.Tensor`.
#### Integration with Freqai module
Like all freqai models, PyTorch models inherit `IFreqaiModel`. `IFreqaiModel` declares three abstract methods: `train`, `fit`, and `predict`. we implement these methods in three levels of hierarchy.
From top to bottom:
1. `BasePyTorchModel` - Implements the `train` method. all `BasePyTorch*` inherit it. responsible for general data preparation (e.g., data normalization) and calling the `fit` method. Sets `device` attribute used by children classes. Sets `model_type` attribute used by the parent class.
2. `BasePyTorch*` - Implements the `predict` method. Here, the `*` represents a group of algorithms, such as classifiers or regressors. responsible for data preprocessing, predicting, and postprocessing if needed.
3. `PyTorch*Classifier` / `PyTorch*Regressor` - implements the `fit` method. responsible for the main train flaw, where we initialize the trainer and model objects.
![image](assets/freqai_pytorch-diagram.png)
#### Full example
Building a PyTorch regressor using MLP (multilayer perceptron) model, MSELoss criterion, and AdamW optimizer.
```python
class PyTorchMLPRegressor(BasePyTorchRegressor):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
target_tensor_type=torch.float,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary)
return trainer
```
Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. The `fit` method specifies the training building blocks: model, optimizer, criterion, and trainer. We inherit both `BasePyTorchRegressor` and `BasePyTorchModel`, where the former implements the `predict` method that is suitable for our regression task, and the latter implements the train method.
??? Note "Setting Class Names for Classifiers"
When using classifiers, the user must declare the class names (or targets) by overriding the `IFreqaiModel.class_names` attribute. This is achieved by setting `self.freqai.class_names` in the FreqAI strategy inside the `set_freqai_targets` method.
For example, if you are using a binary classifier to predict price movements as up or down, you can set the class names as follows:
```python
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
return dataframe
```
To see a full example, you can refer to the [classifier test strategy class](https://github.com/freqtrade/freqtrade/blob/develop/tests/strategy/strats/freqai_test_classifier.py).

View File

@ -6,8 +6,8 @@ Low level feature engineering is performed in the user strategy within a set of
| Function | Description |
|---------------|-------------|
| `feature_engineering_expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering_expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
@ -182,11 +182,11 @@ In total, the number of features the user of the presented example strat has cre
$= 3 * 3 * 3 * 2 * 2 = 108$.
### Gain finer control over `feature_engineering_*` functions with `metadata`
### Gain finer control over `feature_engineering_*` functions with `metadata`
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
```python
```py
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
if metadata["tf"] == "1h":
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)

View File

@ -46,7 +46,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| `shuffle_after_split` | Split the data into train and test sets, and then shuffle both sets individually. <br> **Datatype:** Boolean. <br> Default: `False`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Integer. <br> Default: `0`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Boolean. <br> Default: `False`.
### Data split parameters
@ -84,28 +84,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
| `drop_ohlc_from_features` | Do not include the normalized ohlc data in the feature set passed to the agent during training (ohlc will still be used for driving the environment in all cases) <br> **Datatype:** Boolean. <br> **Default:** `False`
### PyTorch parameters
#### general
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `learning_rate` | Learning rate to be passed to the optimizer. <br> **Datatype:** float. <br> Default: `3e-4`.
| `model_kwargs` | Parameters to be passed to the model class. <br> **Datatype:** dict. <br> Default: `{}`.
| `trainer_kwargs` | Parameters to be passed to the trainer class. <br> **Datatype:** dict. <br> Default: `{}`.
#### trainer_kwargs
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `max_iters` | The number of training iterations to run. iteration here refers to the number of times we call self.optimizer.step(). used to calculate n_epochs. <br> **Datatype:** int. <br> Default: `100`.
| `batch_size` | The size of the batches to use during training.. <br> **Datatype:** int. <br> Default: `64`.
| `max_n_eval_batches` | The maximum number batches to use for evaluation.. <br> **Datatype:** int, optional. <br> Default: `None`.
### Additional parameters

View File

@ -55,7 +55,7 @@ where `ReinforcementLearner` will use the templated `ReinforcementLearner` from
dataframe["&-action"] = 0
```
Most of the function remains the same as for typical Regressors, however, the function below shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
```python
def feature_engineering_standard(self, dataframe, **kwargs):
@ -176,11 +176,9 @@ As you begin to modify the strategy and the prediction model, you will quickly r
factor = 100
pair = self.pair.replace(':', '')
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period_10_shift-1_{pair}_"
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
@ -248,13 +246,13 @@ FreqAI also provides a built in episodic summary logger called `self.tensorboard
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("invalid")
self.tensorboard_log("is_valid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)`. In this case the metric values are not incremented.
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
### Choosing a base environment

View File

@ -128,9 +128,6 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
???+ danger "Continual learning enforces a constant parameter space"
Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis).
## Hyperopt
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):

View File

@ -71,10 +71,6 @@ pip install -r requirements-freqai.txt
!!! Note
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since it does not provide wheels for this platform.
!!! Note "python 3.11"
Some dependencies (Catboost, Torch) currently don't support python 3.11. Freqtrade therefore only supports python 3.10 for these models/dependencies.
Tests involving these dependencies are skipped on 3.11.
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.

View File

@ -149,7 +149,7 @@ The below example assumes a timeframe of 1 hour:
* Locks each pair after selling for an additional 5 candles (`CooldownPeriod`), giving other pairs a chance to get filled.
* Stops trading for 4 hours (`4 * 1h candles`) if the last 2 days (`48 * 1h candles`) had 20 trades, which caused a max-drawdown of more than 20%. (`MaxDrawdown`).
* Stops trading if more than 4 stoploss occur for all pairs within a 1 day (`24 * 1h candles`) limit (`StoplossGuard`).
* Locks all pairs that had 2 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs that had 4 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
``` python

View File

@ -290,8 +290,10 @@ cd freqtrade
#### Freqtrade install: Conda Environment
Prepare conda-freqtrade environment, using file `environment.yml`, which exist in main freqtrade directory
```bash
conda create --name freqtrade python=3.10
conda env create -n freqtrade-conda -f environment.yml
```
!!! Note "Creating Conda Environment"
@ -300,9 +302,12 @@ conda create --name freqtrade python=3.10
```bash
# choose your own packages
conda env create -n [name of the environment] [python version] [packages]
# point to file with packages
conda env create -n [name of the environment] -f [file]
```
#### Enter/exit freqtrade environment
#### Enter/exit freqtrade-conda environment
To check available environments, type
@ -314,7 +319,7 @@ Enter installed environment
```bash
# enter conda environment
conda activate freqtrade
conda activate freqtrade-conda
# exit conda environment - don't do it now
conda deactivate
@ -324,7 +329,6 @@ Install last python dependencies with pip
```bash
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt
python3 -m pip install -e .
```
@ -332,7 +336,7 @@ Patch conda libta-lib (Linux only)
```bash
# Ensure that the environment is active!
conda activate freqtrade
conda activate freqtrade-conda
cd build_helpers
bash install_ta-lib.sh ${CONDA_PREFIX} nosudo
@ -351,8 +355,8 @@ conda env list
# activate base environment
conda activate
# activate freqtrade environment
conda activate freqtrade
# activate freqtrade-conda environment
conda activate freqtrade-conda
#deactivate any conda environments
conda deactivate

View File

@ -42,14 +42,14 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
| `producers` | **Required.** List of producers <br> **Datatype:** Array.
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br> **Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br> **Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br>*Defaults to `8080`.*<br> **Datatype:** Integer
| `producers.port` | **Required.** The port matching the above host.<br> **Datatype:** string
| `producers.secure` | **Optional.** Use ssl in websockets connection. Default False.<br> **Datatype:** string
| `producers.ws_token` | **Required.** `ws_token` as configured on the producer.<br> **Datatype:** string
| | **Optional settings**
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br> **Datatype:** Integer - in seconds.
| `ping_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `wait_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `sleep_time` | Sleep time before retrying to connect.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `False`.*<br> **Datatype:** Boolean.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `message_size_limit` | Size limit per message<br>*Defaults to `8`.*<br> **Datatype:** Integer - Megabytes.
Instead of (or as well as) calculating indicators in `populate_indicators()` the follower instance listens on the connection to a producer instance's messages (or multiple producer instances in advanced configurations) and requests the producer's most recently analyzed dataframes for each pair in the active whitelist.

View File

@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==9.1.6
mkdocs-material==9.0.13
mdx_truly_sane_lists==1.3
pymdown-extensions==9.11
pymdown-extensions==9.9.2
jinja2==3.1.2

View File

@ -9,6 +9,9 @@ This same command can also be used to update freqUI, should there be a new relea
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
!!! info "Alpha release"
FreqUI is still considered an alpha release - if you encounter bugs or inconsistencies please open a [FreqUI issue](https://github.com/freqtrade/frequi/issues/new/choose).
!!! Note "developers"
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.

View File

@ -23,22 +23,10 @@ These modes can be configured with these values:
'stoploss_on_exchange_limit_ratio': 0.99
```
Stoploss on exchange is only supported for the following exchanges, and not all exchanges support both stop-limit and stop-market.
The Order-type will be ignored if only one mode is available.
| Exchange | stop-loss type |
|----------|-------------|
| Binance | limit |
| Binance Futures | market, limit |
| Huobi | limit |
| kraken | market, limit |
| Gate | limit |
| Okx | limit |
| Kucoin | stop-limit, stop-market|
!!! Note "Tight stoploss"
<ins>Do not set too low/tight stoploss value when using stop loss on exchange!</ins>
If set to low/tight you will have greater risk of missing fill on the order and stoploss will not work.
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gate (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio

View File

@ -51,8 +51,7 @@ During hyperopt, this runs only once at startup.
## Bot loop start
A simple callback which is called once at the start of every bot throttling iteration in dry/live mode (roughly every 5
seconds, unless configured differently) or once per candle in backtest/hyperopt mode.
A simple callback which is called once at the start of every bot throttling iteration (roughly every 5 seconds, unless configured differently).
This can be used to perform calculations which are pair independent (apply to all pairs), loading of external data, etc.
``` python
@ -62,12 +61,11 @@ class AwesomeStrategy(IStrategy):
# ... populate_* methods
def bot_loop_start(self, current_time: datetime, **kwargs) -> None:
def bot_loop_start(self, **kwargs) -> None:
"""
Called at the start of the bot iteration (one loop).
Might be used to perform pair-independent tasks
(e.g. gather some remote resource for comparison)
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
"""
if self.config['runmode'].value in ('live', 'dry_run'):
@ -318,11 +316,11 @@ class AwesomeStrategy(IStrategy):
# evaluate highest to lowest, so that highest possible stop is used
if current_profit > 0.40:
return stoploss_from_open(0.25, current_profit, is_short=trade.is_short, leverage=trade.leverage)
return stoploss_from_open(0.25, current_profit, is_short=trade.is_short)
elif current_profit > 0.25:
return stoploss_from_open(0.15, current_profit, is_short=trade.is_short, leverage=trade.leverage)
return stoploss_from_open(0.15, current_profit, is_short=trade.is_short)
elif current_profit > 0.20:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short, leverage=trade.leverage)
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
# return maximum stoploss value, keeping current stoploss price unchanged
return 1

View File

@ -881,7 +881,7 @@ All columns of the informative dataframe will be available on the returning data
### *stoploss_from_open()*
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the entry point instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired trade profit above the entry point.
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the open price instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired percentage above the open price.
??? Example "Returning a stoploss relative to the open price from the custom stoploss function"
@ -889,8 +889,6 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit, False)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
This function will consider leverage - so at 10x leverage, the actual stoploss would be 0.7% above $100 (0.7% * 10x = 7%).
``` python
@ -909,7 +907,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short, leverage=trade.leverage)
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return 1
@ -956,14 +954,12 @@ In some situations it may be confusing to deal with stops relative to current ra
## Additional data (Wallets)
The strategy provides access to the `wallets` object. This contains the current balances on the exchange.
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
!!! Note "Backtesting / Hyperopt"
Wallets behaves differently depending on the function it's called.
Within `populate_*()` methods, it'll return the full wallet as configured.
Within [callbacks](strategy-callbacks.md), you'll get the wallet state corresponding to the actual simulated wallet at that point in the simulation process.
!!! Note
Wallets is not available during backtesting / hyperopt.
Please always check if `wallets` is available to avoid failures during backtesting.
Please always check if `Wallets` is available to avoid failures during backtesting.
``` python
if self.wallets:
@ -1040,10 +1036,11 @@ from datetime import timedelta, datetime, timezone
# Within populate indicators (or populate_buy):
if self.config['runmode'].value in ('live', 'dry_run'):
# fetch closed trades for the last 2 days
trades = Trade.get_trades_proxy(
pair=metadata['pair'], is_open=False,
open_date=datetime.now(timezone.utc) - timedelta(days=2))
# fetch closed trades for the last 2 days
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=2),
Trade.is_open.is_(False),
]).all()
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
sumprofit = sum(trade.close_profit for trade in trades)
if sumprofit < 0:

View File

@ -152,7 +152,7 @@ You can create your own keyboard in `config.json`:
!!! Note "Supported Commands"
Only the following commands are allowed. Command arguments are not supported!
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopentry`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`, `/marketdir`
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopentry`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`
## Telegram commands
@ -179,7 +179,6 @@ official commands. You can ask at any moment for help with `/help`.
| `/count` | Displays number of trades used and available
| `/locks` | Show currently locked pairs.
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
| `/marketdir [long | short | even | none]` | Updates the user managed variable that represents the current market direction. If no direction is provided, the currently set direction will be displayed.
| **Modify Trade states** |
| `/forceexit <trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
@ -243,7 +242,7 @@ Enter Tag is configurable via Strategy.
> **Enter Tag:** Awesome Long Signal
> **Open Rate:** `0.00007489`
> **Current Rate:** `0.00007489`
> **Unrealized Profit:** `12.95%`
> **Current Profit:** `12.95%`
> **Stoploss:** `0.00007389 (-0.02%)`
### /status table
@ -279,7 +278,6 @@ Return a summary of your profit/loss and performance.
> ∙ `33.095 EUR`
>
> **Total Trade Count:** `138`
> **Bot started:** `2022-07-11 18:40:44`
> **First Trade opened:** `3 days ago`
> **Latest Trade opened:** `2 minutes ago`
> **Avg. Duration:** `2:33:45`
@ -293,7 +291,6 @@ The relative profit of `15.2 Σ%` is be based on the starting capital - so in th
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
Bot started date will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.
### /forceexit <trade_id>
@ -419,27 +416,3 @@ ARDR/ETH 0.366667 0.143059 -0.01
### /version
> **Version:** `0.14.3`
### /marketdir
If a market direction is provided the command updates the user managed variable that represents the current market direction.
This variable is not set to any valid market direction on bot startup and must be set by the user. The example below is for `/marketdir long`:
```
Successfully updated marketdirection from none to long.
```
If no market direction is provided the command outputs the currently set market directions. The example below is for `/marketdir`:
```
Currently set marketdirection: even
```
You can use the market direction in your strategy via `self.market_direction`.
!!! Warning "Bot restarts"
Please note that the market direction is not persisted, and will be reset after a bot restart/reload.
!!! Danger "Backtesting"
As this value/variable is intended to be changed manually in dry/live trading.
Strategies using `market_direction` will probably not produce reliable, reproducible results (changes to this variable will not be reflected for backtesting). Use at your own risk.

View File

@ -955,47 +955,3 @@ Print trades with id 2 and 3 as json
``` bash
freqtrade show-trades --db-url sqlite:///tradesv3.sqlite --trade-ids 2 3 --print-json
```
### Strategy-Updater
Updates listed strategies or all strategies within the strategies folder to be v3 compliant.
If the command runs without --strategy-list then all strategies inside the strategies folder will be converted.
Your original strategy will remain available in the `user_data/strategies_orig_updater/` directory.
!!! Warning "Conversion results"
Strategy updater will work on a "best effort" approach. Please do your due diligence and verify the results of the conversion.
We also recommend to run a python formatter (e.g. `black`) to format results in a sane manner.
```
usage: freqtrade strategy-updater [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
options:
-h, --help show this help message and exit
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a space-separated list of strategies to
backtest. Please note that timeframe needs to be set
either in config or via command line. When using this
together with `--export trades`, the strategy-name is
injected into the filename (so `backtest-data.json`
becomes `backtest-data-SampleStrategy.json`
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH, --data-dir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```

View File

@ -26,7 +26,7 @@ Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib-0.4.25-cp38-cp38-win_amd64.whl` (make sure to use the version matching your python version).
Freqtrade provides these dependencies for the latest 3 Python versions (3.8, 3.9, 3.10 and 3.11) and for 64bit Windows.
Freqtrade provides these dependencies for the latest 3 Python versions (3.8, 3.9 and 3.10) and for 64bit Windows.
Other versions must be downloaded from the above link.
``` powershell

View File

@ -0,0 +1,74 @@
name: freqtrade
channels:
- conda-forge
# - defaults
dependencies:
# 1/4 req main
- python>=3.8,<=3.10
- numpy
- pandas
- pip
- py-find-1st
- aiohttp
- SQLAlchemy
- python-telegram-bot<20.0.0
- arrow
- cachetools
- requests
- urllib3
- jsonschema
- TA-Lib
- tabulate
- jinja2
- blosc
- sdnotify
- fastapi
- uvicorn
- pyjwt
- aiofiles
- psutil
- colorama
- questionary
- prompt-toolkit
- schedule
- python-dateutil
- joblib
- pyarrow
# ============================
# 2/4 req dev
- coveralls
- mypy
- pytest
- pytest-asyncio
- pytest-cov
- pytest-mock
- isort
- nbconvert
# ============================
# 3/4 req hyperopt
- scipy
- scikit-learn<1.2.0
- filelock
- scikit-optimize
- progressbar2
# ============================
# 4/4 req plot
- plotly
- jupyter
- pip:
- pycoingecko
# - py_find_1st
- tables
- pytest-random-order
- ccxt
- ruff
- -e .
# - python-rapidjso

View File

@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2023.4.dev'
__version__ = '2023.3.dev'
if 'dev' in __version__:
from pathlib import Path

View File

@ -22,6 +22,5 @@ from freqtrade.commands.optimize_commands import (start_backtesting, start_backt
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
from freqtrade.commands.strategy_utils_commands import start_strategy_update
from freqtrade.commands.trade_commands import start_trading
from freqtrade.commands.webserver_commands import start_webserver

View File

@ -40,8 +40,8 @@ def setup_analyze_configuration(args: Dict[str, Any], method: RunMode) -> Dict[s
if (not Path(signals_file).exists()):
raise OperationalException(
f"Cannot find latest backtest signals file: {signals_file}."
"Run backtesting with `--export signals`."
(f"Cannot find latest backtest signals file: {signals_file}."
"Run backtesting with `--export signals`.")
)
return config

View File

@ -111,13 +111,10 @@ ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
"list-data", "hyperopt-list", "hyperopt-show", "backtest-filter",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv",
"strategy-updater"]
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
ARGS_STRATEGY_UTILS = ["strategy_list", "strategy_path", "recursive_strategy_search"]
class Arguments:
"""
@ -201,8 +198,8 @@ class Arguments:
start_list_freqAI_models, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_config, start_new_strategy, start_plot_dataframe,
start_plot_profit, start_show_trades, start_strategy_update,
start_test_pairlist, start_trading, start_webserver)
start_plot_profit, start_show_trades, start_test_pairlist,
start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@ -443,11 +440,3 @@ class Arguments:
parents=[_common_parser])
webserver_cmd.set_defaults(func=start_webserver)
self._build_args(optionlist=ARGS_WEBSERVER, parser=webserver_cmd)
# Add strategy_updater subcommand
strategy_updater_cmd = subparsers.add_parser('strategy-updater',
help='updates outdated strategy'
'files to the current version',
parents=[_common_parser])
strategy_updater_cmd.set_defaults(func=start_strategy_update)
self._build_args(optionlist=ARGS_STRATEGY_UTILS, parser=strategy_updater_cmd)

View File

@ -204,14 +204,11 @@ def start_list_data(args: Dict[str, Any]) -> None:
pair, timeframe, candle_type,
*dhc.ohlcv_data_min_max(pair, timeframe, candle_type)
) for pair, timeframe, candle_type in paircombs]
print(tabulate([
(pair, timeframe, candle_type,
start.strftime(DATETIME_PRINT_FORMAT),
end.strftime(DATETIME_PRINT_FORMAT))
for pair, timeframe, candle_type, start, end in sorted(
paircombs1,
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2]))
for pair, timeframe, candle_type, start, end in paircombs1
],
headers=("Pair", "Timeframe", "Type", 'From', 'To'),
tablefmt='psql', stralign='right'))

View File

@ -1,7 +1,7 @@
import logging
from typing import Any, Dict
from sqlalchemy import func, select
from sqlalchemy import func
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.enums import RunMode
@ -20,7 +20,7 @@ def start_convert_db(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
init_db(config['db_url'])
session_target = Trade.session
session_target = Trade._session
init_db(config['db_url_from'])
logger.info("Starting db migration.")
@ -36,16 +36,16 @@ def start_convert_db(args: Dict[str, Any]) -> None:
session_target.commit()
for pairlock in PairLock.get_all_locks():
for pairlock in PairLock.query:
pairlock_count += 1
make_transient(pairlock)
session_target.add(pairlock)
session_target.commit()
# Update sequences
max_trade_id = session_target.scalar(select(func.max(Trade.id)))
max_order_id = session_target.scalar(select(func.max(Order.id)))
max_pairlock_id = session_target.scalar(select(func.max(PairLock.id)))
max_trade_id = session_target.query(func.max(Trade.id)).scalar()
max_order_id = session_target.query(func.max(Order.id)).scalar()
max_pairlock_id = session_target.query(func.max(PairLock.id)).scalar()
set_sequence_ids(session_target.get_bind(),
trade_id=max_trade_id,

View File

@ -1,55 +0,0 @@
import logging
import sys
import time
from pathlib import Path
from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.strategyupdater import StrategyUpdater
logger = logging.getLogger(__name__)
def start_strategy_update(args: Dict[str, Any]) -> None:
"""
Start the strategy updating script
:param args: Cli args from Arguments()
:return: None
"""
if sys.version_info == (3, 8): # pragma: no cover
sys.exit("Freqtrade strategy updater requires Python version >= 3.9")
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
filtered_strategy_objs = []
if args['strategy_list']:
filtered_strategy_objs = [
strategy_obj for strategy_obj in strategy_objs
if strategy_obj['name'] in args['strategy_list']
]
else:
# Use all available entries.
filtered_strategy_objs = strategy_objs
processed_locations = set()
for strategy_obj in filtered_strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
start_conversion(strategy_obj, config)
def start_conversion(strategy_obj, config):
print(f"Conversion of {Path(strategy_obj['location']).name} started.")
instance_strategy_updater = StrategyUpdater()
start = time.perf_counter()
instance_strategy_updater.start(config, strategy_obj)
elapsed = time.perf_counter() - start
print(f"Conversion of {Path(strategy_obj['location']).name} took {elapsed:.1f} seconds.")

View File

@ -27,7 +27,10 @@ def _extend_validator(validator_class):
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
yield from validate_properties(validator, properties, instance, schema)
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
return validators.extend(
validator_class, {'properties': set_defaults}

View File

@ -58,7 +58,7 @@ def load_config_file(path: str) -> Dict[str, Any]:
"""
try:
# Read config from stdin if requested in the options
with Path(path).open() if path != '-' else sys.stdin as file:
with open(path) if path != '-' else sys.stdin as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(

View File

@ -116,7 +116,7 @@ class TimeRange:
:param text: value from --timerange
:return: Start and End range period
"""
if not text:
if text is None:
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),

View File

@ -36,10 +36,9 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', '
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
AVAILABLE_PROTECTIONS = ['CooldownPeriod',
'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5', 'feather']
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['parquet']
AVAILABLE_PROTECTIONS = ['CooldownPeriod', 'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5']
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['feather', 'parquet']
BACKTEST_BREAKDOWNS = ['day', 'week', 'month']
BACKTEST_CACHE_AGE = ['none', 'day', 'week', 'month']
BACKTEST_CACHE_DEFAULT = 'day'
@ -64,7 +63,6 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
CUSTOM_TAG_MAX_LENGTH = 255
ENV_VAR_PREFIX = 'FREQTRADE__'
@ -590,7 +588,6 @@ CONF_SCHEMA = {
"rl_config": {
"type": "object",
"properties": {
"drop_ohlc_from_features": {"type": "boolean", "default": False},
"train_cycles": {"type": "integer"},
"max_trade_duration_candles": {"type": "integer"},
"add_state_info": {"type": "boolean", "default": False},
@ -599,7 +596,7 @@ CONF_SCHEMA = {
"model_type": {"type": "string", "default": "PPO"},
"policy_type": {"type": "string", "default": "MlpPolicy"},
"net_arch": {"type": "array", "default": [128, 128]},
"randomize_starting_position": {"type": "boolean", "default": False},
"randomize_startinng_position": {"type": "boolean", "default": False},
"model_reward_parameters": {
"type": "object",
"properties": {

View File

@ -246,8 +246,14 @@ def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
"""
Compatibility support for older backtest data.
"""
df['open_date'] = pd.to_datetime(df['open_date'], utc=True)
df['close_date'] = pd.to_datetime(df['close_date'], utc=True)
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = False
@ -340,7 +346,7 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
return df_final[df_final['open_trades'] > max_open_trades]
def trade_list_to_dataframe(trades: Union[List[Trade], List[LocalTrade]]) -> pd.DataFrame:
def trade_list_to_dataframe(trades: List[LocalTrade]) -> pd.DataFrame:
"""
Convert list of Trade objects to pandas Dataframe
:param trades: List of trade objects
@ -367,7 +373,7 @@ def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataF
filters = []
if strategy:
filters.append(Trade.strategy == strategy)
trades = trade_list_to_dataframe(list(Trade.get_trades(filters).all()))
trades = trade_list_to_dataframe(Trade.get_trades(filters).all())
return trades

View File

@ -34,7 +34,7 @@ def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
cols = DEFAULT_DATAFRAME_COLUMNS
df = DataFrame(ohlcv, columns=cols)
df['date'] = to_datetime(df['date'], unit='ms', utc=True)
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats

View File

@ -21,7 +21,6 @@ from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.exchange.types import OrderBook
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager
from freqtrade.rpc.rpc_types import RPCAnalyzedDFMsg
from freqtrade.util import PeriodicCache
@ -119,7 +118,8 @@ class DataProvider:
:param new_candle: This is a new candle
"""
if self.__rpc:
msg: RPCAnalyzedDFMsg = {
self.__rpc.send_msg(
{
'type': RPCMessageType.ANALYZED_DF,
'data': {
'key': pair_key,
@ -127,7 +127,7 @@ class DataProvider:
'la': datetime.now(timezone.utc)
}
}
self.__rpc.send_msg(msg)
)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,

View File

@ -24,9 +24,9 @@ def _load_signal_candles(backtest_dir: Path):
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_signals.pkl")
try:
with scpf.open("rb") as scp:
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
scp = open(scpf, "rb")
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
except Exception as e:
logger.error("Cannot load signal candles from pickled results: ", e)

View File

@ -4,7 +4,7 @@ from typing import Optional
from pandas import DataFrame, read_feather, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
from freqtrade.enums import CandleType
from .idatahandler import IDataHandler
@ -63,7 +63,10 @@ class FeatherDataHandler(IDataHandler):
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_append(
@ -89,11 +92,12 @@ class FeatherDataHandler(IDataHandler):
:param data: List of Lists containing trade data,
column sequence as in DEFAULT_TRADES_COLUMNS
"""
filename = self._pair_trades_filename(self._datadir, pair)
self.create_dir_if_needed(filename)
# filename = self._pair_trades_filename(self._datadir, pair)
tradesdata = DataFrame(data, columns=DEFAULT_TRADES_COLUMNS)
tradesdata.to_feather(filename, compression_level=9, compression='lz4')
raise NotImplementedError()
# array = pa.array(data)
# array
# feather.write_feather(data, filename)
def trades_append(self, pair: str, data: TradeList):
"""
@ -112,13 +116,14 @@ class FeatherDataHandler(IDataHandler):
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
filename = self._pair_trades_filename(self._datadir, pair)
if not filename.exists():
return []
raise NotImplementedError()
# filename = self._pair_trades_filename(self._datadir, pair)
# tradesdata = misc.file_load_json(filename)
tradesdata = read_feather(filename)
# if not tradesdata:
# return []
return tradesdata.values.tolist()
# return tradesdata
@classmethod
def _get_file_extension(cls):

View File

@ -75,7 +75,10 @@ class JsonDataHandler(IDataHandler):
return DataFrame(columns=self._columns)
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_append(

View File

@ -62,7 +62,10 @@ class ParquetDataHandler(IDataHandler):
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_append(

View File

@ -5,7 +5,6 @@ from freqtrade.enums.exitchecktuple import ExitCheckTuple
from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.marketstatetype import MarketDirection
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.pricetype import PriceType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType

View File

@ -1,15 +0,0 @@
from enum import Enum
class MarketDirection(Enum):
"""
Enum for various market directions.
"""
LONG = "long"
SHORT = "short"
EVEN = "even"
NONE = "none"
def __str__(self):
# convert to string
return self.value

View File

@ -4,7 +4,6 @@ from enum import Enum
class RPCMessageType(str, Enum):
STATUS = 'status'
WARNING = 'warning'
EXCEPTION = 'exception'
STARTUP = 'startup'
ENTRY = 'entry'

View File

@ -8,15 +8,15 @@ from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange_utils import (ROUND_DOWN, ROUND_UP, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
available_exchanges, ccxt_exchanges,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds,
validate_exchange, validate_exchanges)
from freqtrade.exchange.exchange_utils import (amount_to_contract_precision, amount_to_contracts,
amount_to_precision, available_exchanges,
ccxt_exchanges, contracts_to_amount,
date_minus_candles, is_exchange_known_ccxt,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.gate import Gate
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.huobi import Huobi

View File

@ -23,7 +23,7 @@ class Binance(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"stoploss_order_types": {"limit": "stop_loss_limit"},
"order_time_in_force": ["GTC", "FOK", "IOC", "PO"],
"order_time_in_force": ['GTC', 'FOK', 'IOC'],
"ohlcv_candle_limit": 1000,
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
@ -31,7 +31,6 @@ class Binance(Exchange):
}
_ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
"order_time_in_force": ["GTC", "FOK", "IOC"],
"tickers_have_price": False,
"floor_leverage": True,
"stop_price_type_field": "workingType",
@ -196,7 +195,7 @@ class Binance(Exchange):
leverage_tiers_path = (
Path(__file__).parent / 'binance_leverage_tiers.json'
)
with leverage_tiers_path.open() as json_file:
with open(leverage_tiers_path) as json_file:
return json_load(json_file)
else:
try:

File diff suppressed because it is too large Load Diff

View File

@ -27,10 +27,11 @@ class Bybit(Exchange):
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
"ohlcv_candle_limit": 1000,
"ohlcv_has_history": False,
}
_ft_has_futures: Dict = {
"ohlcv_candle_limit": 200,
"ohlcv_has_history": True,
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
@ -114,7 +115,7 @@ class Bybit(Exchange):
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
return data
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT:
params = {'leverage': leverage}
self.set_margin_mode(pair, self.margin_mode, accept_fail=True, params=params)

View File

@ -30,14 +30,13 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFun
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, remove_credentials, retrier,
retrier_async)
from freqtrade.exchange.exchange_utils import (ROUND, ROUND_DOWN, ROUND_UP, CcxtModuleType,
amount_to_contract_precision, amount_to_contracts,
amount_to_precision, contracts_to_amount,
date_minus_candles, is_exchange_known_ccxt,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds)
from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.exchange.types import OHLCVResponse, OrderBook, Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
@ -60,8 +59,8 @@ class Exchange:
# or by specifying them in the configuration.
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"stop_price_param": "stopPrice",
"order_time_in_force": ["GTC"],
"time_in_force_parameter": "timeInForce",
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_has_history": True, # Some exchanges (Kraken) don't provide history via ohlcv
@ -70,7 +69,6 @@ class Exchange:
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
"ohlcv_volume_currency": "base", # "base" or "quote"
"tickers_have_quoteVolume": True,
"tickers_have_bid_ask": True, # bid / ask empty for fetch_tickers
"tickers_have_price": True,
"trades_pagination": "time", # Possible are "time" or "id"
"trades_pagination_arg": "since",
@ -82,8 +80,6 @@ class Exchange:
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
# Override createMarketBuyOrderRequiresPrice where ccxt has it wrong
"marketOrderRequiresPrice": False,
}
_ft_has: Dict = {}
_ft_has_futures: Dict = {}
@ -209,8 +205,6 @@ class Exchange:
and self._api_async.session):
logger.debug("Closing async ccxt session.")
self.loop.run_until_complete(self._api_async.close())
if self.loop and not self.loop.is_closed():
self.loop.close()
def validate_config(self, config):
# Check if timeframe is available
@ -736,14 +730,12 @@ class Exchange:
"""
return amount_to_precision(amount, self.get_precision_amount(pair), self.precisionMode)
def price_to_precision(self, pair: str, price: float, *, rounding_mode: int = ROUND) -> float:
def price_to_precision(self, pair: str, price: float) -> float:
"""
Returns the price rounded to the precision the Exchange accepts.
The default price_rounding_mode in conf is ROUND.
For stoploss calculations, must use ROUND_UP for longs, and ROUND_DOWN for shorts.
Returns the price rounded up to the precision the Exchange accepts.
Rounds up
"""
return price_to_precision(price, self.get_precision_price(pair),
self.precisionMode, rounding_mode=rounding_mode)
return price_to_precision(price, self.get_precision_price(pair), self.precisionMode)
def price_get_one_pip(self, pair: str, price: float) -> float:
"""
@ -766,12 +758,12 @@ class Exchange:
return self._get_stake_amount_limit(pair, price, stoploss, 'min', leverage)
def get_max_pair_stake_amount(self, pair: str, price: float, leverage: float = 1.0) -> float:
max_stake_amount = self._get_stake_amount_limit(pair, price, 0.0, 'max', leverage)
max_stake_amount = self._get_stake_amount_limit(pair, price, 0.0, 'max')
if max_stake_amount is None:
# * Should never be executed
raise OperationalException(f'{self.name}.get_max_pair_stake_amount should'
'never set max_stake_amount to None')
return max_stake_amount
return max_stake_amount / leverage
def _get_stake_amount_limit(
self,
@ -789,41 +781,43 @@ class Exchange:
except KeyError:
raise ValueError(f"Can't get market information for symbol {pair}")
if isMin:
# reserve some percent defined in config (5% default) + stoploss
margin_reserve: float = 1.0 + self._config.get('amount_reserve_percent',
DEFAULT_AMOUNT_RESERVE_PERCENT)
stoploss_reserve = (
margin_reserve / (1 - abs(stoploss)) if abs(stoploss) != 1 else 1.5
)
# it should not be more than 50%
stoploss_reserve = max(min(stoploss_reserve, 1.5), 1)
else:
margin_reserve = 1.0
stoploss_reserve = 1.0
stake_limits = []
limits = market['limits']
if (limits['cost'][limit] is not None):
stake_limits.append(
self._contracts_to_amount(pair, limits['cost'][limit]) * stoploss_reserve
self._contracts_to_amount(
pair,
limits['cost'][limit]
)
)
if (limits['amount'][limit] is not None):
stake_limits.append(
self._contracts_to_amount(pair, limits['amount'][limit]) * price * margin_reserve
self._contracts_to_amount(
pair,
limits['amount'][limit] * price
)
)
if not stake_limits:
return None if isMin else float('inf')
# reserve some percent defined in config (5% default) + stoploss
amount_reserve_percent = 1.0 + self._config.get('amount_reserve_percent',
DEFAULT_AMOUNT_RESERVE_PERCENT)
amount_reserve_percent = (
amount_reserve_percent / (1 - abs(stoploss)) if abs(stoploss) != 1 else 1.5
)
# it should not be more than 50%
amount_reserve_percent = max(min(amount_reserve_percent, 1.5), 1)
# The value returned should satisfy both limits: for amount (base currency) and
# for cost (quote, stake currency), so max() is used here.
# See also #2575 at github.
return self._get_stake_amount_considering_leverage(
max(stake_limits) if isMin else min(stake_limits),
max(stake_limits) * amount_reserve_percent,
leverage or 1.0
)
) if isMin else min(stake_limits)
def _get_stake_amount_considering_leverage(self, stake_amount: float, leverage: float) -> float:
"""
@ -1024,10 +1018,10 @@ class Exchange:
# Order handling
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT:
self.set_margin_mode(pair, self.margin_mode, accept_fail)
self._set_leverage(leverage, pair, accept_fail)
self.set_margin_mode(pair, self.margin_mode)
self._set_leverage(leverage, pair)
def _get_params(
self,
@ -1039,18 +1033,12 @@ class Exchange:
) -> Dict:
params = self._params.copy()
if time_in_force != 'GTC' and ordertype != 'market':
params.update({'timeInForce': time_in_force.upper()})
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: time_in_force.upper()})
if reduceOnly:
params.update({'reduceOnly': True})
return params
def _order_needs_price(self, ordertype: str) -> bool:
return (
ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False)
or self._ft_has.get('marketOrderRequiresPrice', False)
)
def create_order(
self,
*,
@ -1073,7 +1061,8 @@ class Exchange:
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
needs_price = self._order_needs_price(ordertype)
needs_price = (ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False))
rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
if not reduceOnly:
@ -1097,7 +1086,7 @@ class Exchange:
f'Tried to {side} amount {amount} at rate {rate}.'
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
raise ExchangeError(
f'Could not create {ordertype} {side} order on market {pair}. '
f'Tried to {side} amount {amount} at rate {rate}. '
f'Message: {e}') from e
@ -1116,11 +1105,11 @@ class Exchange:
"""
if not self._ft_has.get('stoploss_on_exchange'):
raise OperationalException(f"stoploss is not implemented for {self.name}.")
price_param = self._ft_has['stop_price_param']
return (
order.get(price_param, None) is None
or ((side == "sell" and stop_loss > float(order[price_param])) or
(side == "buy" and stop_loss < float(order[price_param])))
order.get('stopPrice', None) is None
or ((side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice'])))
)
def _get_stop_order_type(self, user_order_type) -> Tuple[str, str]:
@ -1147,21 +1136,14 @@ class Exchange:
"sell" else (stop_price >= limit_rate))
# Ensure rate is less than stop price
if bad_stop_price:
# This can for example happen if the stop / liquidation price is set to 0
# Which is possible if a market-order closes right away.
# The InvalidOrderException will bubble up to exit_positions, where it will be
# handled gracefully.
raise InvalidOrderException(
"In stoploss limit order, stop price should be more than limit price. "
f"Stop price: {stop_price}, Limit price: {limit_rate}, "
f"Limit Price pct: {limit_price_pct}"
)
raise OperationalException(
'In stoploss limit order, stop price should be more than limit price')
return limit_rate
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
# Verify if stopPrice works for your exchange, else configure stop_price_param
params.update({self._ft_has['stop_price_param']: stop_price})
# Verify if stopPrice works for your exchange!
params.update({'stopPrice': stop_price})
return params
@retrier(retries=0)
@ -1187,12 +1169,12 @@ class Exchange:
user_order_type = order_types.get('stoploss', 'market')
ordertype, user_order_type = self._get_stop_order_type(user_order_type)
round_mode = ROUND_DOWN if side == 'buy' else ROUND_UP
stop_price_norm = self.price_to_precision(pair, stop_price, rounding_mode=round_mode)
stop_price_norm = self.price_to_precision(pair, stop_price)
limit_rate = None
if user_order_type == 'limit':
limit_rate = self._get_stop_limit_rate(stop_price, order_types, side)
limit_rate = self.price_to_precision(pair, limit_rate, rounding_mode=round_mode)
limit_rate = self.price_to_precision(pair, limit_rate)
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
@ -1218,7 +1200,7 @@ class Exchange:
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
self._lev_prep(pair, leverage, side, accept_fail=True)
self._lev_prep(pair, leverage, side)
order = self._api.create_order(symbol=pair, type=ordertype, side=side,
amount=amount, price=limit_rate, params=params)
self._log_exchange_response('create_stoploss_order', order)
@ -2543,6 +2525,7 @@ class Exchange:
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""
@ -2560,7 +2543,7 @@ class Exchange:
self._log_exchange_response('set_leverage', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.BadRequest, ccxt.InsufficientFunds) as e:
except ccxt.BadRequest as e:
if not accept_fail:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
@ -2771,10 +2754,10 @@ class Exchange:
raise OperationalException(
f"{self.name} does not support {self.margin_mode} {self.trading_mode}")
liquidation_price = None
isolated_liq = None
if self._config['dry_run'] or not self.exchange_has("fetchPositions"):
liquidation_price = self.dry_run_liquidation_price(
isolated_liq = self.dry_run_liquidation_price(
pair=pair,
open_rate=open_rate,
is_short=is_short,
@ -2789,16 +2772,16 @@ class Exchange:
positions = self.fetch_positions(pair)
if len(positions) > 0:
pos = positions[0]
liquidation_price = pos['liquidationPrice']
isolated_liq = pos['liquidationPrice']
if liquidation_price is not None:
buffer_amount = abs(open_rate - liquidation_price) * self.liquidation_buffer
liquidation_price_buffer = (
liquidation_price - buffer_amount
if isolated_liq is not None:
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
isolated_liq = (
isolated_liq - buffer_amount
if is_short else
liquidation_price + buffer_amount
isolated_liq + buffer_amount
)
return max(liquidation_price_buffer, 0.0)
return isolated_liq
else:
return None

View File

@ -2,12 +2,11 @@
Exchange support utils
"""
from datetime import datetime, timedelta, timezone
from math import ceil, floor
from math import ceil
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGITS, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
from freqtrade.util import FtPrecise
@ -220,51 +219,35 @@ def amount_to_contract_precision(
return amount
def price_to_precision(
price: float,
price_precision: Optional[float],
precisionMode: Optional[int],
*,
rounding_mode: int = ROUND,
) -> float:
def price_to_precision(price: float, price_precision: Optional[float],
precisionMode: Optional[int]) -> float:
"""
Returns the price rounded to the precision the Exchange accepts.
Returns the price rounded up to the precision the Exchange accepts.
Partial Re-implementation of ccxt internal method decimal_to_precision(),
which does not support rounding up.
For stoploss calculations, must use ROUND_UP for longs, and ROUND_DOWN for shorts.
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
!!! Rounds up
:param price: price to convert
:param price_precision: price precision to use. Used from markets[pair]['precision']['price']
:param precisionMode: precision mode to use. Should be used from precisionMode
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
:param rounding_mode: rounding mode to use. Defaults to ROUND
:return: price rounded up to the precision the Exchange accepts
"""
if price_precision is not None and precisionMode is not None:
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=price_precision,
# counting_mode=self.precisionMode,
# ))
if precisionMode == TICK_SIZE:
if rounding_mode == ROUND:
ticks = price / price_precision
rounded_ticks = round(ticks)
return rounded_ticks * price_precision
precision = FtPrecise(price_precision)
price_str = FtPrecise(price)
missing = price_str % precision
if not missing == FtPrecise("0"):
return round(float(str(price_str - missing + precision)), 14)
return price
elif precisionMode in (SIGNIFICANT_DIGITS, DECIMAL_PLACES):
ndigits = round(price_precision)
if rounding_mode == ROUND:
return round(price, ndigits)
ticks = price * (10**ndigits)
if rounding_mode == ROUND_UP:
return ceil(ticks) / (10**ndigits)
if rounding_mode == TRUNCATE:
return int(ticks) / (10**ndigits)
if rounding_mode == ROUND_DOWN:
return floor(ticks) / (10**ndigits)
raise ValueError(f"Unknown rounding_mode {rounding_mode}")
raise ValueError(f"Unknown precisionMode {precisionMode}")
price = round(float(str(price_str - missing + precision)), 14)
else:
symbol_prec = price_precision
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price

View File

@ -5,6 +5,7 @@ from typing import Any, Dict, List, Optional, Tuple
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, PriceType, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback2
@ -27,13 +28,10 @@ class Gate(Exchange):
"order_time_in_force": ['GTC', 'IOC'],
"stoploss_order_types": {"limit": "limit"},
"stoploss_on_exchange": True,
"marketOrderRequiresPrice": True,
}
_ft_has_futures: Dict = {
"needs_trading_fees": True,
"marketOrderRequiresPrice": False,
"tickers_have_bid_ask": False,
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
"stop_price_type_field": "price_type",
@ -51,6 +49,14 @@ class Gate(Exchange):
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
def validate_ordertypes(self, order_types: Dict) -> None:
if self.trading_mode != TradingMode.FUTURES:
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
super().validate_stop_ordertypes(order_types)
def _get_params(
self,
side: BuySell,
@ -68,7 +74,8 @@ class Gate(Exchange):
)
if ordertype == 'market' and self.trading_mode == TradingMode.FUTURES:
params['type'] = 'market'
params.update({'timeInForce': 'IOC'})
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: 'IOC'})
return params
def get_trades_for_order(self, order_id: str, pair: str, since: datetime,

View File

@ -12,7 +12,6 @@ from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, Invali
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.exchange_utils import ROUND_DOWN, ROUND_UP
from freqtrade.exchange.types import Tickers
@ -110,7 +109,6 @@ class Kraken(Exchange):
if self.trading_mode == TradingMode.FUTURES:
params.update({'reduceOnly': True})
round_mode = ROUND_DOWN if side == 'buy' else ROUND_UP
if order_types.get('stoploss', 'market') == 'limit':
ordertype = "stop-loss-limit"
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
@ -118,11 +116,11 @@ class Kraken(Exchange):
limit_rate = stop_price * limit_price_pct
else:
limit_rate = stop_price * (2 - limit_price_pct)
params['price2'] = self.price_to_precision(pair, limit_rate, rounding_mode=round_mode)
params['price2'] = self.price_to_precision(pair, limit_rate)
else:
ordertype = "stop-loss"
stop_price = self.price_to_precision(pair, stop_price, rounding_mode=round_mode)
stop_price = self.price_to_precision(pair, stop_price)
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
@ -160,6 +158,7 @@ class Kraken(Exchange):
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""

View File

@ -1,16 +1,14 @@
import logging
from typing import Any, Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.enums.pricetype import PriceType
from freqtrade.exceptions import (DDosProtection, OperationalException, RetryableOrderError,
TemporaryError)
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier
from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
@ -26,14 +24,11 @@ class Okx(Exchange):
"ohlcv_candle_limit": 100, # Warning, special case with data prior to X months
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
"stoploss_order_types": {"limit": "limit"},
"stoploss_on_exchange": True,
"stop_price_param": "stopLossPrice",
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
"stop_price_type_field": "slTriggerPxType",
"stop_price_type_field": "tpTriggerPxType",
"stop_price_type_value_mapping": {
PriceType.LAST: "last",
PriceType.MARK: "index",
@ -126,9 +121,10 @@ class Okx(Exchange):
return params
@retrier
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
try:
# TODO-lev: Test me properly (check mgnMode passed)
res = self._api.set_leverage(
leverage=leverage,
symbol=pair,
@ -161,61 +157,3 @@ class Okx(Exchange):
pair_tiers = self._leverage_tiers[pair]
return pair_tiers[-1]['maxNotional'] / leverage
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = super()._get_stop_params(side, ordertype, stop_price)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
params['posSide'] = self._get_posSide(side, True)
return params
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
if self._config['dry_run']:
return self.fetch_dry_run_order(order_id)
try:
params1 = {'stop': True}
order_reg = self._api.fetch_order(order_id, pair, params=params1)
self._log_exchange_response('fetch_stoploss_order', order_reg)
return order_reg
except ccxt.OrderNotFound:
pass
params2 = {'stop': True, 'ordType': 'conditional'}
for method in (self._api.fetch_open_orders, self._api.fetch_closed_orders,
self._api.fetch_canceled_orders):
try:
orders = method(pair, params=params2)
orders_f = [order for order in orders if order['id'] == order_id]
if orders_f:
order = orders_f[0]
if (order['status'] == 'closed'
and (real_order_id := order.get('info', {}).get('ordId')) is not None):
# Once a order triggered, we fetch the regular followup order.
order_reg = self.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order_reg)
order_reg['id_stop'] = order_reg['id']
order_reg['id'] = order_id
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
return order_reg
order['type'] = 'stoploss'
return order
except ccxt.BaseError:
pass
raise RetryableOrderError(
f'StoplossOrder not found (pair: {pair} id: {order_id}).')
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if order['type'] == 'stop':
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']
def cancel_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
params1 = {'stop': True}
# 'ordType': 'conditional'
#
return self.cancel_order(
order_id=order_id,
pair=pair,
params=params1,
)

View File

@ -47,7 +47,7 @@ class Base3ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action], category="actions")
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
@ -66,7 +66,7 @@ class Base3ActionRLEnv(BaseEnvironment):
elif action == Actions.Sell.value and not self.can_short:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "exit"
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
@ -74,7 +74,7 @@ class Base3ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -48,10 +48,20 @@ class Base4ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action], category="actions")
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
@ -59,16 +69,16 @@ class Base4ActionRLEnv(BaseEnvironment):
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "enter_long"
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "enter_short"
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "exit"
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
@ -76,7 +86,7 @@ class Base4ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -49,10 +49,20 @@ class Base5ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action], category="actions")
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
@ -60,21 +70,21 @@ class Base5ActionRLEnv(BaseEnvironment):
self._last_trade_tick = None
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "enter_long"
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "enter_short"
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Long_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "exit_long"
trade_type = "neutral"
self._last_trade_tick = None
elif action == Actions.Short_exit.value:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "exit_short"
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
@ -82,7 +92,7 @@ class Base5ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):

View File

@ -137,8 +137,7 @@ class BaseEnvironment(gym.Env):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def tensorboard_log(self, metric: str, value: Optional[Union[int, float]] = None,
inc: Optional[bool] = None, category: str = "custom"):
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
@ -150,24 +149,17 @@ class BaseEnvironment(gym.Env):
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("invalid")
self.tensorboard_log("is_valid")
return -2
:param metric: metric to be tracked and incremented
:param value: `metric` value
:param inc: (deprecated) sets whether the `value` is incremented or not
:param category: `metric` category
:param value: value to increment `metric` by
:param inc: sets whether the `value` is incremented or not
"""
increment = True if value is None else False
value = 1 if increment else value
if category not in self.tensorboard_metrics:
self.tensorboard_metrics[category] = {}
if not increment or metric not in self.tensorboard_metrics[category]:
self.tensorboard_metrics[category][metric] = value
if not inc or metric not in self.tensorboard_metrics:
self.tensorboard_metrics[metric] = value
else:
self.tensorboard_metrics[category][metric] += value
self.tensorboard_metrics[metric] += value
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}

View File

@ -114,7 +114,6 @@ class BaseReinforcementLearningModel(IFreqaiModel):
# normalize all data based on train_dataset only
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
data_dictionary = dk.normalize_data(data_dictionary)
# data cleaning/analysis
@ -149,8 +148,12 @@ class BaseReinforcementLearningModel(IFreqaiModel):
env_info = self.pack_env_dict(dk.pair)
self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train,
**env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df,
prices=prices_test,
**env_info))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
@ -235,9 +238,6 @@ class BaseReinforcementLearningModel(IFreqaiModel):
filtered_dataframe, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = self.drop_ohlc_from_df(filtered_dataframe, dk)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
@ -285,6 +285,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# %-raw_volume_gen_shift-2_ETH/USDT_1h
# price data for model training and evaluation
tf = self.config['timeframe']
rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
@ -317,24 +318,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
prices_test.rename(columns=rename_dict, inplace=True)
prices_test.reset_index(drop=True)
train_df = self.drop_ohlc_from_df(train_df, dk)
test_df = self.drop_ohlc_from_df(test_df, dk)
return prices_train, prices_test
def drop_ohlc_from_df(self, df: DataFrame, dk: FreqaiDataKitchen):
"""
Given a dataframe, drop the ohlc data
"""
drop_list = ['%-raw_open', '%-raw_low', '%-raw_high', '%-raw_close']
if self.rl_config["drop_ohlc_from_features"]:
df.drop(drop_list, axis=1, inplace=True)
feature_list = dk.training_features_list
dk.training_features_list = [e for e in feature_list if e not in drop_list]
return df
def load_model_from_disk(self, dk: FreqaiDataKitchen) -> Any:
"""
Can be used by user if they are trying to limit_ram_usage *and*

View File

@ -13,7 +13,7 @@ class TensorboardCallback(BaseCallback):
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super().__init__(verbose)
super(TensorboardCallback, self).__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
@ -46,12 +46,14 @@ class TensorboardCallback(BaseCallback):
local_info = self.locals["infos"][0]
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for metric in local_info:
if metric not in ["episode", "terminal_observation"]:
self.logger.record(f"info/{metric}", local_info[metric])
for info in local_info:
if info not in ["episode", "terminal_observation"]:
self.logger.record(f"_info/{info}", local_info[info])
for category in tensorboard_metrics:
for metric in tensorboard_metrics[category]:
self.logger.record(f"{category}/{metric}", tensorboard_metrics[category][metric])
for info in tensorboard_metrics:
if info in [action.name for action in self.actions]:
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
else:
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
return True

View File

@ -1,147 +0,0 @@
import logging
from typing import Dict, List, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch
from pandas import DataFrame
from torch.nn import functional as F
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class BasePyTorchClassifier(BasePyTorchModel):
"""
A PyTorch implementation of a classifier.
User must implement fit method
Important!
- User must declare the target class names in the strategy,
under IStrategy.set_freqai_targets method.
for example, in your strategy:
```
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
return dataframe
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.class_name_to_index = None
self.index_to_class_name = None
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
:raises ValueError: if 'class_names' doesn't exist in model meta_data.
"""
class_names = self.model.model_meta_data.get("class_names", None)
if not class_names:
raise ValueError(
"Missing class names. "
"self.model.model_meta_data['class_names'] is None."
)
if not self.class_name_to_index:
self.init_class_names_to_index_mapping(class_names)
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
)
logits = self.model.model(x)
probs = F.softmax(logits, dim=-1)
predicted_classes = torch.argmax(probs, dim=-1)
predicted_classes_str = self.decode_class_names(predicted_classes)
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
return (pred_df, dk.do_predict)
def encode_class_names(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str],
):
"""
encode class name, str -> int
assuming first column of *_labels data frame to be the target column
containing the class names
"""
target_column_name = dk.label_list[0]
for split in self.splits:
label_df = data_dictionary[f"{split}_labels"]
self.assert_valid_class_names(label_df[target_column_name], class_names)
label_df[target_column_name] = list(
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
)
@staticmethod
def assert_valid_class_names(
target_column: pd.Series,
class_names: List[str]
):
non_defined_labels = set(target_column) - set(class_names)
if len(non_defined_labels) != 0:
raise OperationalException(
f"Found non defined labels: {non_defined_labels}, ",
f"expecting labels: {class_names}"
)
def decode_class_names(self, class_ints: torch.Tensor) -> List[str]:
"""
decode class name, int -> str
"""
return list(map(lambda x: self.index_to_class_name[x.item()], class_ints))
def init_class_names_to_index_mapping(self, class_names):
self.class_name_to_index = {s: i for i, s in enumerate(class_names)}
self.index_to_class_name = {i: s for i, s in enumerate(class_names)}
logger.info(f"encoded class name to index: {self.class_name_to_index}")
def convert_label_column_to_int(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str]
):
self.init_class_names_to_index_mapping(class_names)
self.encode_class_names(data_dictionary, dk, class_names)
def get_class_names(self) -> List[str]:
if not self.class_names:
raise ValueError(
"self.class_names is empty, "
"set self.freqai.class_names = ['class a', 'class b', 'class c'] "
"inside IStrategy.set_freqai_targets method."
)
return self.class_names

View File

@ -1,83 +0,0 @@
import logging
from abc import ABC, abstractmethod
from time import time
from typing import Any
import torch
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
logger = logging.getLogger(__name__)
class BasePyTorchModel(IFreqaiModel, ABC):
"""
Base class for PyTorch type models.
User *must* inherit from this class and set fit() and predict() and
data_convertor property.
"""
def __init__(self, **kwargs):
super().__init__(config=kwargs["config"])
self.dd.model_type = "pytorch"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
test_size = self.freqai_info.get('data_split_parameters', {}).get('test_size')
self.splits = ["train", "test"] if test_size != 0 else ["train"]
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
model = self.fit(data_dictionary, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model
@property
@abstractmethod
def data_convertor(self) -> PyTorchDataConvertor:
"""
a class responsible for converting `*_features` & `*_labels` pandas dataframes
to pytorch tensors.
"""
raise NotImplementedError("Abstract property")

View File

@ -1,49 +0,0 @@
import logging
from typing import Tuple
import numpy as np
import numpy.typing as npt
from pandas import DataFrame
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class BasePyTorchRegressor(BasePyTorchModel):
"""
A PyTorch implementation of a regressor.
User must implement fit method
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
)
y = self.model.model(x)
pred_df = DataFrame(y.detach().numpy(), columns=[dk.label_list[0]])
return (pred_df, dk.do_predict)

View File

@ -126,7 +126,7 @@ class FreqaiDataDrawer:
"""
exists = self.global_metadata_path.is_file()
if exists:
with self.global_metadata_path.open("r") as fp:
with open(self.global_metadata_path, "r") as fp:
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
return metatada_dict
return {}
@ -139,7 +139,7 @@ class FreqaiDataDrawer:
"""
exists = self.pair_dictionary_path.is_file()
if exists:
with self.pair_dictionary_path.open("r") as fp:
with open(self.pair_dictionary_path, "r") as fp:
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
else:
logger.info("Could not find existing datadrawer, starting from scratch")
@ -152,7 +152,7 @@ class FreqaiDataDrawer:
if self.freqai_info.get('write_metrics_to_disk', False):
exists = self.metric_tracker_path.is_file()
if exists:
with self.metric_tracker_path.open("r") as fp:
with open(self.metric_tracker_path, "r") as fp:
self.metric_tracker = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
logger.info("Loading existing metric tracker from disk.")
else:
@ -166,7 +166,7 @@ class FreqaiDataDrawer:
exists = self.historic_predictions_path.is_file()
if exists:
try:
with self.historic_predictions_path.open("rb") as fp:
with open(self.historic_predictions_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
@ -176,7 +176,7 @@ class FreqaiDataDrawer:
except EOFError:
logger.warning(
'Historical prediction file was corrupted. Trying to load backup file.')
with self.historic_predictions_bkp_path.open("rb") as fp:
with open(self.historic_predictions_bkp_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
@ -189,7 +189,7 @@ class FreqaiDataDrawer:
"""
Save historic predictions pickle to disk
"""
with self.historic_predictions_path.open("wb") as fp:
with open(self.historic_predictions_path, "wb") as fp:
cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL)
# create a backup
@ -200,16 +200,16 @@ class FreqaiDataDrawer:
Save metric tracker of all pair metrics collected.
"""
with self.save_lock:
with self.metric_tracker_path.open('w') as fp:
with open(self.metric_tracker_path, 'w') as fp:
rapidjson.dump(self.metric_tracker, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_drawer_to_disk(self) -> None:
def save_drawer_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with self.save_lock:
with self.pair_dictionary_path.open('w') as fp:
with open(self.pair_dictionary_path, 'w') as fp:
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
@ -218,7 +218,7 @@ class FreqaiDataDrawer:
Save global metadata json to disk
"""
with self.save_lock:
with self.global_metadata_path.open('w') as fp:
with open(self.global_metadata_path, 'w') as fp:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
@ -424,7 +424,7 @@ class FreqaiDataDrawer:
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
return
@ -446,7 +446,7 @@ class FreqaiDataDrawer:
dump(model, save_path / f"{dk.model_filename}_model.joblib")
elif self.model_type == 'keras':
model.save(save_path / f"{dk.model_filename}_model.h5")
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None:
@ -457,7 +457,7 @@ class FreqaiDataDrawer:
dk.data["training_features_list"] = dk.training_features_list
dk.data["label_list"] = dk.label_list
# store the metadata
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
# save the train data to file so we can check preds for area of applicability later
@ -471,7 +471,7 @@ class FreqaiDataDrawer:
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
cloudpickle.dump(
dk.pca, (dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("wb")
dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb")
)
self.model_dictionary[coin] = model
@ -491,12 +491,12 @@ class FreqaiDataDrawer:
Load only metadata into datakitchen to increase performance during
presaved backtesting (prediction file loading).
"""
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any: # noqa: C901
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any:
"""
loads all data required to make a prediction on a sub-train time range
:returns:
@ -514,7 +514,7 @@ class FreqaiDataDrawer:
dk.data = self.meta_data_dictionary[coin]["meta_data"]
dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin]["train_df"]
else:
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.data_dictionary["train_features"] = pd.read_pickle(
@ -537,11 +537,6 @@ class FreqaiDataDrawer:
self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
elif self.model_type == 'pytorch':
import torch
zip = torch.load(dk.data_path / f"{dk.model_filename}_model.zip")
model = zip["pytrainer"]
model = model.load_from_checkpoint(zip)
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
@ -557,7 +552,7 @@ class FreqaiDataDrawer:
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
dk.pca = cloudpickle.load(
(dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("rb")
open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb")
)
return model

View File

@ -251,7 +251,7 @@ class FreqaiDataKitchen:
(drop_index == 0) & (drop_index_labels == 0)
]
logger.info(
f"{self.pair}: dropped {len(unfiltered_df) - len(filtered_df)} training points"
f"dropped {len(unfiltered_df) - len(filtered_df)} training points"
f" due to NaNs in populated dataset {len(unfiltered_df)}."
)
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
@ -675,7 +675,7 @@ class FreqaiDataKitchen:
]
logger.info(
f"{self.pair}: SVM tossed {len(y_pred) - kept_points.sum()}"
f"SVM tossed {len(y_pred) - kept_points.sum()}"
f" test points from {len(y_pred)} total points."
)
@ -949,7 +949,7 @@ class FreqaiDataKitchen:
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f"{self.pair}: DI tossed {len(do_predict) - do_predict.sum()} predictions for "
f"DI tossed {len(do_predict) - do_predict.sum()} predictions for "
"being too far from training data."
)
@ -1291,7 +1291,7 @@ class FreqaiDataKitchen:
return dataframe
def use_strategy_to_populate_indicators( # noqa: C901
def use_strategy_to_populate_indicators(
self,
strategy: IStrategy,
corr_dataframes: dict = {},
@ -1315,59 +1315,128 @@ class FreqaiDataKitchen:
dataframe: DataFrame = dataframe containing populated indicators
"""
# check if the user is using the deprecated populate_any_indicators function
# this is a hack to check if the user is using the populate_any_indicators function
new_version = inspect.getsource(strategy.populate_any_indicators) == (
inspect.getsource(IStrategy.populate_any_indicators))
if not new_version:
raise OperationalException(
"You are using the `populate_any_indicators()` function"
" which was deprecated on March 1, 2023. Please refer "
"to the strategy migration guide to use the new "
"feature_engineering_* methods: \n"
"https://www.freqtrade.io/en/stable/strategy_migration/#freqai-strategy \n"
"And the feature_engineering_* documentation: \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
)
if new_version:
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
for tf in tfs:
if tf not in base_dataframes:
base_dataframes[tf] = pd.DataFrame()
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
# ensure corr pairs are always last
for corr_pair in corr_pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)
return dataframe
else:
# the user is using the populate_any_indicators functions which is deprecated
df = self.use_strategy_to_populate_indicators_old_version(
strategy, corr_dataframes, base_dataframes, pair,
prediction_dataframe, do_corr_pairs)
return df
def use_strategy_to_populate_indicators_old_version(
self,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
pair: str = "",
prediction_dataframe: DataFrame = pd.DataFrame(),
do_corr_pairs: bool = True,
) -> DataFrame:
"""
Use the user defined strategy for populating indicators during retrain
:param strategy: IStrategy = user defined strategy object
:param corr_dataframes: dict = dict containing the df pair dataframes
(for user defined timeframes)
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
:param metadata: dict = strategy furnished pair metadata
:return:
dataframe: DataFrame = dataframe containing populated indicators
"""
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
# so we create empty dictionaries, which allows us to pass None to
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
for tf in tfs:
if tf not in base_dataframes:
base_dataframes[tf] = pd.DataFrame()
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
for tf in tfs:
base_dataframes[tf] = None
for p in pairs:
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = None
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
sgi = False
for tf in tfs:
if tf == tfs[-1]:
sgi = True # doing this last allows user to use all tf raw prices in labels
dataframe = strategy.populate_any_indicators(
pair,
dataframe.copy(),
tf,
informative=base_dataframes[tf],
set_generalized_indicators=sgi
)
# ensure corr pairs are always last
for corr_pair in corr_pairs:
for corr_pair in pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
if self.live:
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
for tf in tfs:
if pairs and do_corr_pairs:
dataframe = strategy.populate_any_indicators(
corr_pair,
dataframe.copy(),
tf,
informative=corr_dataframes[corr_pair][tf]
)
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)

View File

@ -1,3 +1,4 @@
import inspect
import logging
import threading
import time
@ -83,7 +84,6 @@ class IFreqaiModel(ABC):
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
self.class_names: List[str] = [] # used in classification subclasses
self.pair_it = 0
self.pair_it_train = 0
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
@ -105,10 +105,8 @@ class IFreqaiModel(ABC):
self.data_provider: Optional[DataProvider] = None
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
self.can_short = True # overridden in start() with strategy.can_short
self.model: Any = None
if self.ft_params.get('principal_component_analysis', False) and self.continual_learning:
self.ft_params.update({'principal_component_analysis': False})
logger.warning('User tried to use PCA with continual learning. Deactivating PCA.')
self.warned_deprecated_populate_any_indicators = False
record_params(config, self.full_path)
@ -140,6 +138,9 @@ class IFreqaiModel(ABC):
self.data_provider = strategy.dp
self.can_short = strategy.can_short
# check if the strategy has deprecated populate_any_indicators function
self.check_deprecated_populate_any_indicators(strategy)
if self.live:
self.inference_timer('start')
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
@ -158,7 +159,8 @@ class IFreqaiModel(ABC):
dk = self.start_backtesting(dataframe, metadata, self.dk, strategy)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
else:
logger.info("Backtesting using historic predictions (live models)")
logger.info(
"Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk)
dataframe = dk.return_dataframe
@ -307,7 +309,7 @@ class IFreqaiModel(ABC):
if check_features:
self.dd.load_metadata(dk)
dataframe_dummy_features = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe.tail(1), pair=pair
strategy, prediction_dataframe=dataframe.tail(1), pair=metadata["pair"]
)
dk.find_features(dataframe_dummy_features)
self.check_if_feature_list_matches_strategy(dk)
@ -317,7 +319,7 @@ class IFreqaiModel(ABC):
else:
if populate_indicators:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=pair
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
populate_indicators = False
@ -333,10 +335,6 @@ class IFreqaiModel(ABC):
dataframe_train = dk.slice_dataframe(tr_train, dataframe_base_train)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe_base_backtest)
dataframe_train = dk.remove_special_chars_from_feature_names(dataframe_train)
dataframe_backtest = dk.remove_special_chars_from_feature_names(dataframe_backtest)
dk.get_unique_classes_from_labels(dataframe_train)
if not self.model_exists(dk):
dk.find_features(dataframe_train)
dk.find_labels(dataframe_train)
@ -346,14 +344,13 @@ class IFreqaiModel(ABC):
except Exception as msg:
logger.warning(
f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.", exc_info=True)
self.model = None
f"Message: {msg}, skipping.")
self.dd.pair_dict[pair]["trained_timestamp"] = int(
tr_train.stopts)
if self.plot_features and self.model is not None:
if self.plot_features:
plot_feature_importance(self.model, pair, dk, self.plot_features)
if self.save_backtest_models and self.model is not None:
if self.save_backtest_models:
logger.info('Saving backtest model to disk.')
self.dd.save_data(self.model, pair, dk)
else:
@ -494,7 +491,7 @@ class IFreqaiModel(ABC):
"strategy is furnishing the same features as the pretrained"
"model. In case of --strategy-list, please be aware that FreqAI "
"requires all strategies to maintain identical "
"feature_engineering_* functions"
"populate_any_indicator() functions"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
@ -572,9 +569,8 @@ class IFreqaiModel(ABC):
file_type = ".joblib"
elif self.dd.model_type == 'keras':
file_type = ".h5"
elif self.dd.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
elif 'stable_baselines' in self.dd.model_type or 'sb3_contrib' == self.dd.model_type:
file_type = ".zip"
path_to_modelfile = Path(dk.data_path / f"{dk.model_filename}_model{file_type}")
file_exists = path_to_modelfile.is_file()
if file_exists:
@ -607,7 +603,7 @@ class IFreqaiModel(ABC):
:param strategy: IStrategy = user defined strategy object
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
:param data_load_timerange: TimeRange = the amount of data to be loaded
for populating indicators
for populate_any_indicators
(larger than new_trained_timerange so that
new_trained_timerange does not contain any NaNs)
"""
@ -813,7 +809,7 @@ class IFreqaiModel(ABC):
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
"is included in the column names when you are creating features "
"in `feature_engineering_*` functions.")
"in `populate_any_indicators()`.")
self.get_corr_dataframes = not bool(self.corr_dataframes)
elif self.corr_dataframes:
dataframe = dk.attach_corr_pair_columns(
@ -940,6 +936,26 @@ class IFreqaiModel(ABC):
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
return dk
def check_deprecated_populate_any_indicators(self, strategy: IStrategy):
"""
Check and warn if the deprecated populate_any_indicators function is used.
:param strategy: strategy object
"""
if not self.warned_deprecated_populate_any_indicators:
self.warned_deprecated_populate_any_indicators = True
old_version = inspect.getsource(strategy.populate_any_indicators) != (
inspect.getsource(IStrategy.populate_any_indicators))
if old_version:
logger.warning("DEPRECATION WARNING: "
"You are using the deprecated populate_any_indicators function. "
"This function will raise an error on March 1 2023. "
"Please update your strategy by using "
"the new feature_engineering functions. See \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
"for details.")
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.

View File

@ -14,20 +14,16 @@ logger = logging.getLogger(__name__)
class CatboostClassifier(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
train_data = Pool(

View File

@ -15,20 +15,16 @@ logger = logging.getLogger(__name__)
class CatboostClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
cbc = CatBoostClassifier(

View File

@ -14,20 +14,16 @@ logger = logging.getLogger(__name__)
class CatboostRegressor(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
train_data = Pool(

View File

@ -15,20 +15,16 @@ logger = logging.getLogger(__name__)
class CatboostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
cbr = CatBoostRegressor(

View File

@ -12,20 +12,16 @@ logger = logging.getLogger(__name__)
class LightGBMClassifier(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:

View File

@ -13,20 +13,16 @@ logger = logging.getLogger(__name__)
class LightGBMClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
lgb = LGBMClassifier(**self.model_training_parameters)

View File

@ -12,20 +12,18 @@ logger = logging.getLogger(__name__)
class LightGBMRegressor(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:

View File

@ -13,20 +13,16 @@ logger = logging.getLogger(__name__)
class LightGBMRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
lgb = LGBMRegressor(**self.model_training_parameters)

View File

@ -1,89 +0,0 @@
from typing import Any, Dict
import torch
from freqtrade.freqai.base_models.BasePyTorchClassifier import BasePyTorchClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.torch.PyTorchDataConvertor import (DefaultPyTorchDataConvertor,
PyTorchDataConvertor)
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
class PyTorchMLPClassifier(BasePyTorchClassifier):
"""
This class implements the fit method of IFreqaiModel.
in the fit method we initialize the model and trainer objects.
the only requirement from the model is to be aligned to PyTorchClassifier
predict method that expects the model to predict a tensor of type long.
parameters are passed via `model_training_parameters` under the freqai
section in the config file. e.g:
{
...
"freqai": {
...
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
},
"model_kwargs": {
"hidden_dim": 512,
"dropout_percent": 0.2,
"n_layer": 1,
},
}
}
}
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(
target_tensor_type=torch.long,
squeeze_target_tensor=True
)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:raises ValueError: If self.class_names is not defined in the parent class.
"""
class_names = self.get_class_names()
self.convert_label_column_to_int(data_dictionary, dk, class_names)
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=len(class_names),
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@ -1,83 +0,0 @@
from typing import Any, Dict
import torch
from freqtrade.freqai.base_models.BasePyTorchRegressor import BasePyTorchRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.torch.PyTorchDataConvertor import (DefaultPyTorchDataConvertor,
PyTorchDataConvertor)
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
class PyTorchMLPRegressor(BasePyTorchRegressor):
"""
This class implements the fit method of IFreqaiModel.
in the fit method we initialize the model and trainer objects.
the only requirement from the model is to be aligned to PyTorchRegressor
predict method that expects the model to predict tensor of type float.
the trainer defines the training loop.
parameters are passed via `model_training_parameters` under the freqai
section in the config file. e.g:
{
...
"freqai": {
...
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
},
"model_kwargs": {
"hidden_dim": 512,
"dropout_percent": 0.2,
"n_layer": 1,
},
}
}
}
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@ -100,7 +100,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
self.tensorboard_log("invalid", category="actions")
self.tensorboard_log("is_valid")
return -2
pnl = self.get_unrealized_profit()

View File

@ -18,20 +18,16 @@ logger = logging.getLogger(__name__)
class XGBoostClassifier(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"].to_numpy()

View File

@ -18,20 +18,16 @@ logger = logging.getLogger(__name__)
class XGBoostRFClassifier(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"].to_numpy()

View File

@ -12,20 +12,16 @@ logger = logging.getLogger(__name__)
class XGBoostRFRegressor(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"]

View File

@ -12,20 +12,16 @@ logger = logging.getLogger(__name__)
class XGBoostRegressor(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"]

View File

@ -13,20 +13,16 @@ logger = logging.getLogger(__name__)
class XGBoostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
xgb = XGBRegressor(**self.model_training_parameters)

View File

@ -1,67 +0,0 @@
from abc import ABC, abstractmethod
from typing import List, Optional
import pandas as pd
import torch
class PyTorchDataConvertor(ABC):
"""
This class is responsible for converting `*_features` & `*_labels` pandas dataframes
to pytorch tensors.
"""
@abstractmethod
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
"""
:param df: "*_features" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
@abstractmethod
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
"""
:param df: "*_labels" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
"""
A default conversion that keeps features dataframe shapes.
"""
def __init__(
self,
target_tensor_type: Optional[torch.dtype] = None,
squeeze_target_tensor: bool = False
):
"""
:param target_tensor_type: type of target tensor, for classification use
torch.long, for regressor use torch.float or torch.double.
:param squeeze_target_tensor: controls the target shape, used for loss functions
that requires 0D or 1D.
"""
self._target_tensor_type = target_tensor_type
self._squeeze_target_tensor = squeeze_target_tensor
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
x = torch.from_numpy(df.values).float()
if device:
x = x.to(device)
return [x]
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
y = torch.from_numpy(df.values)
if self._target_tensor_type:
y = y.to(self._target_tensor_type)
if self._squeeze_target_tensor:
y = y.squeeze()
if device:
y = y.to(device)
return [y]

View File

@ -1,97 +0,0 @@
import logging
from typing import List
import torch
from torch import nn
logger = logging.getLogger(__name__)
class PyTorchMLPModel(nn.Module):
"""
A multi-layer perceptron (MLP) model implemented using PyTorch.
This class mainly serves as a simple example for the integration of PyTorch model's
to freqai. It is not optimized at all and should not be used for production purposes.
:param input_dim: The number of input features. This parameter specifies the number
of features in the input data that the MLP will use to make predictions.
:param output_dim: The number of output classes. This parameter specifies the number
of classes that the MLP will predict.
:param hidden_dim: The number of hidden units in each layer. This parameter controls
the complexity of the MLP and determines how many nonlinear relationships the MLP
can represent. Increasing the number of hidden units can increase the capacity of
the MLP to model complex patterns, but it also increases the risk of overfitting
the training data. Default: 256
:param dropout_percent: The dropout rate for regularization. This parameter specifies
the probability of dropping out a neuron during training to prevent overfitting.
The dropout rate should be tuned carefully to balance between underfitting and
overfitting. Default: 0.2
:param n_layer: The number of layers in the MLP. This parameter specifies the number
of layers in the MLP architecture. Adding more layers to the MLP can increase its
capacity to model complex patterns, but it also increases the risk of overfitting
the training data. Default: 1
:returns: The output of the MLP, with shape (batch_size, output_dim)
"""
def __init__(self, input_dim: int, output_dim: int, **kwargs):
super().__init__()
hidden_dim: int = kwargs.get("hidden_dim", 256)
dropout_percent: int = kwargs.get("dropout_percent", 0.2)
n_layer: int = kwargs.get("n_layer", 1)
self.input_layer = nn.Linear(input_dim, hidden_dim)
self.blocks = nn.Sequential(*[Block(hidden_dim, dropout_percent) for _ in range(n_layer)])
self.output_layer = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=dropout_percent)
def forward(self, tensors: List[torch.Tensor]) -> torch.Tensor:
x: torch.Tensor = tensors[0]
x = self.relu(self.input_layer(x))
x = self.dropout(x)
x = self.blocks(x)
x = self.output_layer(x)
return x
class Block(nn.Module):
"""
A building block for a multi-layer perceptron (MLP).
:param hidden_dim: The number of hidden units in the feedforward network.
:param dropout_percent: The dropout rate for regularization.
:returns: torch.Tensor. with shape (batch_size, hidden_dim)
"""
def __init__(self, hidden_dim: int, dropout_percent: int):
super().__init__()
self.ff = FeedForward(hidden_dim)
self.dropout = nn.Dropout(p=dropout_percent)
self.ln = nn.LayerNorm(hidden_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ff(self.ln(x))
x = self.dropout(x)
return x
class FeedForward(nn.Module):
"""
A simple fully-connected feedforward neural network block.
:param hidden_dim: The number of hidden units in the block.
:return: torch.Tensor. with shape (batch_size, hidden_dim)
"""
def __init__(self, hidden_dim: int):
super().__init__()
self.net = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.net(x)

View File

@ -1,208 +0,0 @@
import logging
import math
from pathlib import Path
from typing import Any, Dict, List, Optional
import pandas as pd
import torch
from torch import nn
from torch.optim import Optimizer
from torch.utils.data import DataLoader, TensorDataset
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
from freqtrade.freqai.torch.PyTorchTrainerInterface import PyTorchTrainerInterface
logger = logging.getLogger(__name__)
class PyTorchModelTrainer(PyTorchTrainerInterface):
def __init__(
self,
model: nn.Module,
optimizer: Optimizer,
criterion: nn.Module,
device: str,
init_model: Dict,
data_convertor: PyTorchDataConvertor,
model_meta_data: Dict[str, Any] = {},
**kwargs
):
"""
:param model: The PyTorch model to be trained.
:param optimizer: The optimizer to use for training.
:param criterion: The loss function to use for training.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
:param init_model: A dictionary containing the initial model/optimizer
state_dict and model_meta_data saved by self.save() method.
:param model_meta_data: Additional metadata about the model (optional).
:param data_convertor: convertor from pd.DataFrame to torch.tensor.
:param max_iters: The number of training iterations to run.
iteration here refers to the number of times we call
self.optimizer.step(). used to calculate n_epochs.
:param batch_size: The size of the batches to use during training.
:param max_n_eval_batches: The maximum number batches to use for evaluation.
"""
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.model_meta_data = model_meta_data
self.device = device
self.max_iters: int = kwargs.get("max_iters", 100)
self.batch_size: int = kwargs.get("batch_size", 64)
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
self.data_convertor = data_convertor
if init_model:
self.load_from_checkpoint(init_model)
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]):
"""
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param splits: splits to use in training, splits must contain "train",
optional "test" could be added by setting freqai.data_split_parameters.test_size > 0
in the config file.
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
"""
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary, splits)
epochs = self.calc_n_epochs(
n_obs=len(data_dictionary["train_features"]),
batch_size=self.batch_size,
n_iters=self.max_iters
)
for epoch in range(1, epochs + 1):
# training
losses = []
for i, batch_data in enumerate(data_loaders_dictionary["train"]):
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
train_loss = sum(losses) / len(losses)
log_message = f"epoch {epoch}/{epochs}: train loss {train_loss:.4f}"
# evaluation
if "test" in splits:
test_loss = self.estimate_loss(
data_loaders_dictionary,
self.max_n_eval_batches,
"test"
)
log_message += f" ; test loss {test_loss:.4f}"
logger.info(log_message)
@torch.no_grad()
def estimate_loss(
self,
data_loader_dictionary: Dict[str, DataLoader],
max_n_eval_batches: Optional[int],
split: str,
) -> float:
self.model.eval()
n_batches = 0
losses = []
for i, batch_data in enumerate(data_loader_dictionary[split]):
if max_n_eval_batches and i > max_n_eval_batches:
n_batches += 1
break
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
losses.append(loss.item())
self.model.train()
return sum(losses) / len(losses)
def create_data_loaders_dictionary(
self,
data_dictionary: Dict[str, pd.DataFrame],
splits: List[str]
) -> Dict[str, DataLoader]:
"""
Converts the input data to PyTorch tensors using a data loader.
"""
data_loader_dictionary = {}
for split in splits:
x = self.data_convertor.convert_x(data_dictionary[f"{split}_features"])
y = self.data_convertor.convert_y(data_dictionary[f"{split}_labels"])
dataset = TensorDataset(*x, *y)
data_loader = DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=True,
num_workers=0,
)
data_loader_dictionary[split] = data_loader
return data_loader_dictionary
@staticmethod
def calc_n_epochs(n_obs: int, batch_size: int, n_iters: int) -> int:
"""
Calculates the number of epochs required to reach the maximum number
of iterations specified in the model training parameters.
the motivation here is that `max_iters` is easier to optimize and keep stable,
across different n_obs - the number of data points.
"""
n_batches = math.ceil(n_obs // batch_size)
epochs = math.ceil(n_iters // n_batches)
if epochs <= 10:
logger.warning("User set `max_iters` in such a way that the trainer will only perform "
f" {epochs} epochs. Please consider increasing this value accordingly")
if epochs <= 1:
logger.warning("Epochs set to 1. Please review your `max_iters` value")
epochs = 1
return epochs
def save(self, path: Path):
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
"""
torch.save({
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"model_meta_data": self.model_meta_data,
"pytrainer": self
}, path)
def load(self, path: Path):
checkpoint = torch.load(path)
return self.load_from_checkpoint(checkpoint)
def load_from_checkpoint(self, checkpoint: Dict):
"""
when using continual_learning, DataDrawer will load the dictionary
(containing state dicts and model_meta_data) by calling torch.load(path).
you can access this dict from any class that inherits IFreqaiModel by calling
get_init_model method.
"""
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
self.model_meta_data = checkpoint["model_meta_data"]
return self

View File

@ -1,53 +0,0 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List
import pandas as pd
import torch
from torch import nn
class PyTorchTrainerInterface(ABC):
@abstractmethod
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]) -> None:
"""
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
:param splits: splits to use in training, splits must contain "train",
optional "test" could be added by setting freqai.data_split_parameters.test_size > 0
in the config file.
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
"""
@abstractmethod
def save(self, path: Path) -> None:
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
"""
def load(self, path: Path) -> nn.Module:
"""
:param path: path to zip file.
:returns: pytorch model.
"""
checkpoint = torch.load(path)
return self.load_from_checkpoint(checkpoint)
@abstractmethod
def load_from_checkpoint(self, checkpoint: Dict) -> nn.Module:
"""
when using continual_learning, DataDrawer will load the dictionary
(containing state dicts and model_meta_data) by calling torch.load(path).
you can access this dict from any class that inherits IFreqaiModel by calling
get_init_model method.
:checkpoint checkpoint: dict containing the model & optimizer state dicts,
model_meta_data, etc..
"""

View File

@ -211,7 +211,7 @@ def record_params(config: Dict[str, Any], full_path: Path) -> None:
"pairs": config.get('exchange', {}).get('pair_whitelist')
}
with params_record_path.open("w") as handle:
with open(params_record_path, "w") as handle:
rapidjson.dump(
run_params,
handle,

View File

@ -21,19 +21,15 @@ from freqtrade.enums import (ExitCheckTuple, ExitType, RPCMessageType, RunMode,
State, TradingMode)
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
InvalidOrderException, PricingError)
from freqtrade.exchange import (ROUND_DOWN, ROUND_UP, timeframe_to_minutes, timeframe_to_next_date,
timeframe_to_seconds)
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.mixins import LoggingMixin
from freqtrade.persistence import Order, PairLocks, Trade, init_db
from freqtrade.persistence.key_value_store import set_startup_time
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager
from freqtrade.rpc.external_message_consumer import ExternalMessageConsumer
from freqtrade.rpc.rpc_types import (RPCBuyMsg, RPCCancelMsg, RPCProtectionMsg, RPCSellCancelMsg,
RPCSellMsg)
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import FtPrecise
@ -131,19 +127,19 @@ class FreqtradeBot(LoggingMixin):
for minutes in [0, 15, 30, 45]:
t = str(time(time_slot, minutes, 2))
self._schedule.every().day.at(t).do(update)
self.last_process: Optional[datetime] = None
self.last_process = datetime(1970, 1, 1, tzinfo=timezone.utc)
self.strategy.ft_bot_start()
# Initialize protections AFTER bot start - otherwise parameters are not loaded.
self.protections = ProtectionManager(self.config, self.strategy.protections)
def notify_status(self, msg: str, msg_type=RPCMessageType.STATUS) -> None:
def notify_status(self, msg: str) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
via RPC about changes in the bot status.
"""
self.rpc.send_msg({
'type': msg_type,
'type': RPCMessageType.STATUS,
'status': msg
})
@ -183,7 +179,6 @@ class FreqtradeBot(LoggingMixin):
performs startup tasks
"""
migrate_binance_futures_names(self.config)
set_startup_time()
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
# Update older trades with precision and precision mode
@ -217,8 +212,7 @@ class FreqtradeBot(LoggingMixin):
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
self.strategy.gather_informative_pairs())
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)(
current_time=datetime.now(timezone.utc))
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
self.strategy.analyze(self.active_pair_whitelist)
@ -592,7 +586,7 @@ class FreqtradeBot(LoggingMixin):
min_entry_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_entry_rate,
0.0)
self.strategy.stoploss)
min_exit_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
current_exit_rate,
self.strategy.stoploss)
@ -600,7 +594,7 @@ class FreqtradeBot(LoggingMixin):
stake_available = self.wallets.get_available_stake_amount()
logger.debug(f"Calling adjust_trade_position for pair {trade.pair}")
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None, supress_error=True)(
default_retval=None)(
trade=trade,
current_time=datetime.now(timezone.utc), current_rate=current_entry_rate,
current_profit=current_entry_profit, min_stake=min_entry_stake,
@ -639,7 +633,7 @@ class FreqtradeBot(LoggingMixin):
return
remaining = (trade.amount - amount) * current_exit_rate
if min_exit_stake and remaining < min_exit_stake:
if remaining < min_exit_stake:
logger.info(f"Remaining amount of {remaining} would be smaller "
f"than the minimum of {min_exit_stake}.")
return
@ -706,8 +700,7 @@ class FreqtradeBot(LoggingMixin):
pos_adjust = trade is not None
enter_limit_requested, stake_amount, leverage = self.get_valid_enter_price_and_stake(
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_,
pos_adjust)
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_)
if not stake_amount:
return False
@ -816,9 +809,6 @@ class FreqtradeBot(LoggingMixin):
precision_mode=self.exchange.precisionMode,
contract_size=self.exchange.get_contract_size(pair),
)
stoploss = self.strategy.stoploss if not self.edge else self.edge.get_stoploss(pair)
trade.adjust_stop_loss(trade.open_rate, stoploss, initial=True)
else:
# This is additional buy, we reset fee_open_currency so timeout checking can work
trade.is_open = True
@ -828,7 +818,7 @@ class FreqtradeBot(LoggingMixin):
trade.orders.append(order_obj)
trade.recalc_trade_from_orders()
Trade.session.add(trade)
Trade.query.session.add(trade)
Trade.commit()
# Updating wallets
@ -851,18 +841,16 @@ class FreqtradeBot(LoggingMixin):
def cancel_stoploss_on_exchange(self, trade: Trade) -> Trade:
# First cancelling stoploss on exchange ...
if trade.stoploss_order_id:
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
try:
logger.info(f"Canceling stoploss on exchange for {trade}")
co = self.exchange.cancel_stoploss_order_with_result(
trade.stoploss_order_id, trade.pair, trade.amount)
self.update_trade_state(trade, trade.stoploss_order_id, co, stoploss_order=True)
trade.update_order(co)
# Reset stoploss order id.
trade.stoploss_order_id = None
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id} "
f"for pair {trade.pair}")
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
return trade
def get_valid_enter_price_and_stake(
@ -872,12 +860,7 @@ class FreqtradeBot(LoggingMixin):
trade: Optional[Trade],
order_adjust: bool,
leverage_: Optional[float],
pos_adjust: bool,
) -> Tuple[float, float, float]:
"""
Validate and eventually adjust (within limits) limit, amount and leverage
:return: Tuple with (price, amount, leverage)
"""
if price:
enter_limit_requested = price
@ -923,9 +906,7 @@ class FreqtradeBot(LoggingMixin):
# We do however also need min-stake to determine leverage, therefore this is ignored as
# edge-case for now.
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, enter_limit_requested,
self.strategy.stoploss if not pos_adjust else 0.0,
leverage)
pair, enter_limit_requested, self.strategy.stoploss, leverage)
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, enter_limit_requested, leverage)
@ -949,11 +930,12 @@ class FreqtradeBot(LoggingMixin):
return enter_limit_requested, stake_amount, leverage
def _notify_enter(self, trade: Trade, order: Order, order_type: str,
def _notify_enter(self, trade: Trade, order: Order, order_type: Optional[str] = None,
fill: bool = False, sub_trade: bool = False) -> None:
"""
Sends rpc notification when a entry order occurred.
"""
msg_type = RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY
open_rate = order.safe_price
if open_rate is None:
@ -964,9 +946,9 @@ class FreqtradeBot(LoggingMixin):
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=False)
msg: RPCBuyMsg = {
msg = {
'trade_id': trade.id,
'type': RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY,
'type': msg_type,
'buy_tag': trade.enter_tag,
'enter_tag': trade.enter_tag,
'exchange': trade.exchange.capitalize(),
@ -978,7 +960,6 @@ class FreqtradeBot(LoggingMixin):
'order_type': order_type,
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': order.safe_amount_after_fee if fill else (order.amount or trade.amount),
'open_date': trade.open_date or datetime.utcnow(),
@ -997,7 +978,7 @@ class FreqtradeBot(LoggingMixin):
current_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=False)
msg: RPCCancelMsg = {
msg = {
'trade_id': trade.id,
'type': RPCMessageType.ENTRY_CANCEL,
'buy_tag': trade.enter_tag,
@ -1009,9 +990,7 @@ class FreqtradeBot(LoggingMixin):
'limit': trade.open_rate,
'order_type': order_type,
'stake_amount': trade.stake_amount,
'open_rate': trade.open_rate,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date,
@ -1034,16 +1013,12 @@ class FreqtradeBot(LoggingMixin):
trades_closed = 0
for trade in trades:
try:
try:
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
trades_closed += 1
Trade.commit()
continue
except InvalidOrderException as exception:
logger.warning(
f'Unable to handle stoploss on exchange for {trade.pair}: {exception}')
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
trades_closed += 1
Trade.commit()
continue
# Check if we can sell our current pair
if trade.open_order_id is None and trade.is_open and self.handle_trade(trade):
trades_closed += 1
@ -1147,7 +1122,8 @@ class FreqtradeBot(LoggingMixin):
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Exiting the trade forcefully')
self.emergency_exit(trade, stop_price)
self.execute_trade_exit(trade, stop_price, exit_check=ExitCheckTuple(
exit_type=ExitType.EMERGENCY_EXIT))
except ExchangeError:
trade.stoploss_order_id = None
@ -1175,8 +1151,7 @@ class FreqtradeBot(LoggingMixin):
logger.warning('Unable to fetch stoploss order: %s', exception)
if stoploss_order:
self.update_trade_state(trade, trade.stoploss_order_id, stoploss_order,
stoploss_order=True)
trade.update_order(stoploss_order)
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
@ -1240,9 +1215,7 @@ class FreqtradeBot(LoggingMixin):
:param order: Current on exchange stoploss order
:return: None
"""
stoploss_norm = self.exchange.price_to_precision(
trade.pair, trade.stoploss_or_liquidation,
rounding_mode=ROUND_DOWN if trade.is_short else ROUND_UP)
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stoploss_or_liquidation)
if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side):
# we check if the update is necessary
@ -1252,8 +1225,13 @@ class FreqtradeBot(LoggingMixin):
# cancelling the current stoploss on exchange first
logger.info(f"Cancelling current stoploss on exchange for pair {trade.pair} "
f"(orderid:{order['id']}) in order to add another one ...")
self.cancel_stoploss_on_exchange(trade)
try:
co = self.exchange.cancel_stoploss_order_with_result(order['id'], trade.pair,
trade.amount)
trade.update_order(co)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {order['id']} "
f"for pair {trade.pair}")
# Create new stoploss order
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
@ -1297,22 +1275,20 @@ class FreqtradeBot(LoggingMixin):
if order['side'] == trade.entry_side:
self.handle_cancel_enter(trade, order, reason)
else:
canceled = self.handle_cancel_exit(trade, order, reason)
canceled = self.handle_cancel_exit(
trade, order, reason)
canceled_count = trade.get_exit_order_count()
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
logger.warning(f'Emergency exiting trade {trade}, as the exit order '
f'timed out {max_timeouts} times.')
self.emergency_exit(trade, order['price'])
def emergency_exit(self, trade: Trade, price: float) -> None:
try:
self.execute_trade_exit(
trade, price,
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_EXIT))
except DependencyException as exception:
logger.warning(
f'Unable to emergency exit trade {trade.pair}: {exception}')
try:
self.execute_trade_exit(
trade, order['price'],
exit_check=ExitCheckTuple(exit_type=ExitType.EMERGENCY_EXIT))
except DependencyException as exception:
logger.warning(
f'Unable to emergency sell trade {trade.pair}: {exception}')
def replace_order(self, order: Dict, order_obj: Optional[Order], trade: Trade) -> None:
"""
@ -1339,7 +1315,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=order_obj.price)(
trade=trade, order=order_obj, pair=trade.pair,
current_time=datetime.now(timezone.utc), proposed_rate=proposed_rate,
current_order_rate=order_obj.safe_price, entry_tag=trade.enter_tag,
current_order_rate=order_obj.price, entry_tag=trade.enter_tag,
side=trade.entry_side)
replacing = True
@ -1355,8 +1331,7 @@ class FreqtradeBot(LoggingMixin):
# place new order only if new price is supplied
self.execute_entry(
pair=trade.pair,
stake_amount=(
order_obj.safe_remaining * order_obj.safe_price / trade.leverage),
stake_amount=(order_obj.remaining * order_obj.price / trade.leverage),
price=adjusted_entry_price,
trade=trade,
is_short=trade.is_short,
@ -1370,8 +1345,6 @@ class FreqtradeBot(LoggingMixin):
"""
for trade in Trade.get_open_order_trades():
if not trade.open_order_id:
continue
try:
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
except (ExchangeError):
@ -1396,9 +1369,6 @@ class FreqtradeBot(LoggingMixin):
"""
was_trade_fully_canceled = False
side = trade.entry_side.capitalize()
if not trade.open_order_id:
logger.warning(f"No open order for {trade}.")
return False
# Cancelled orders may have the status of 'canceled' or 'closed'
if order['status'] not in constants.NON_OPEN_EXCHANGE_STATES:
@ -1485,34 +1455,35 @@ class FreqtradeBot(LoggingMixin):
return False
try:
order = self.exchange.cancel_order_with_result(
order['id'], trade.pair, trade.amount)
co = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
except InvalidOrderException:
logger.exception(
f"Could not cancel {trade.exit_side} order {trade.open_order_id}")
return False
trade.close_rate = None
trade.close_rate_requested = None
trade.close_profit = None
trade.close_profit_abs = None
# Set exit_reason for fill message
exit_reason_prev = trade.exit_reason
trade.exit_reason = trade.exit_reason + f", {reason}" if trade.exit_reason else reason
self.update_trade_state(trade, trade.open_order_id, co)
# Order might be filled above in odd timing issues.
if order.get('status') in ('canceled', 'cancelled'):
if co.get('status') in ('canceled', 'cancelled'):
trade.exit_reason = None
trade.open_order_id = None
else:
trade.exit_reason = exit_reason_prev
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
cancelled = True
else:
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
trade.exit_reason = None
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
self.update_trade_state(trade, trade.open_order_id, order)
trade.open_order_id = None
self.update_trade_state(trade, trade.open_order_id, order)
logger.info(f'{trade.exit_side.capitalize()} order {reason} for {trade}.')
trade.close_rate = None
trade.close_rate_requested = None
self._notify_exit_cancel(
trade,
order_type=self.strategy.order_types['exit'],
@ -1669,13 +1640,13 @@ class FreqtradeBot(LoggingMixin):
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
profit_ratio = trade.calc_profit_ratio(order_rate, amount, trade.open_rate)
else:
order_rate = trade.safe_close_rate
order_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit = trade.calc_profit(rate=order_rate) + (0.0 if fill else trade.realized_profit)
profit_ratio = trade.calc_profit_ratio(order_rate)
amount = trade.amount
gain = "profit" if profit_ratio > 0 else "loss"
msg: RPCSellMsg = {
msg = {
'type': (RPCMessageType.EXIT_FILL if fill
else RPCMessageType.EXIT),
'trade_id': trade.id,
@ -1701,7 +1672,6 @@ class FreqtradeBot(LoggingMixin):
'close_date': trade.close_date or datetime.utcnow(),
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency'),
'sub_trade': sub_trade,
'cumulative_profit': trade.realized_profit,
@ -1725,14 +1695,14 @@ class FreqtradeBot(LoggingMixin):
raise DependencyException(
f"Order_obj not found for {order_id}. This should not have happened.")
profit_rate: float = trade.safe_close_rate
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.exchange.get_rate(
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
msg: RPCSellCancelMsg = {
msg = {
'type': RPCMessageType.EXIT_CANCEL,
'trade_id': trade.id,
'exchange': trade.exchange.capitalize(),
@ -1754,7 +1724,6 @@ class FreqtradeBot(LoggingMixin):
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.now(timezone.utc),
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
'sub_trade': sub_trade,
@ -1769,8 +1738,7 @@ class FreqtradeBot(LoggingMixin):
#
def update_trade_state(
self, trade: Trade, order_id: Optional[str],
action_order: Optional[Dict[str, Any]] = None,
self, trade: Trade, order_id: str, action_order: Optional[Dict[str, Any]] = None,
stoploss_order: bool = False, send_msg: bool = True) -> bool:
"""
Checks trades with open orders and updates the amount if necessary
@ -1786,11 +1754,11 @@ class FreqtradeBot(LoggingMixin):
return False
# Update trade with order values
if not stoploss_order:
logger.info(f'Found open order for {trade}')
logger.info(f'Found open order for {trade}')
try:
order = action_order or self.exchange.fetch_order_or_stoploss_order(
order_id, trade.pair, stoploss_order)
order = action_order or self.exchange.fetch_order_or_stoploss_order(order_id,
trade.pair,
stoploss_order)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', order_id, exception)
return False
@ -1819,7 +1787,7 @@ class FreqtradeBot(LoggingMixin):
# TODO: should shorting/leverage be supported by Edge,
# then this will need to be fixed.
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
if order.get('side') == trade.entry_side or (trade.amount > 0 and trade.is_open):
if order.get('side') == trade.entry_side or trade.amount > 0:
# Must also run for partial exits
# TODO: Margin will need to use interest_rate as well.
# interest_rate = self.exchange.get_interest_rate()
@ -1855,27 +1823,21 @@ class FreqtradeBot(LoggingMixin):
self.handle_protections(trade.pair, trade.trade_direction)
elif send_msg and not trade.open_order_id and not stoploss_order:
# Enter fill
self._notify_enter(trade, order, order.order_type, fill=True, sub_trade=sub_trade)
self._notify_enter(trade, order, fill=True, sub_trade=sub_trade)
def handle_protections(self, pair: str, side: LongShort) -> None:
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(pair, datetime.now(timezone.utc), reason='Auto lock')
prot_trig = self.protections.stop_per_pair(pair, side=side)
if prot_trig:
msg: RPCProtectionMsg = {
'type': RPCMessageType.PROTECTION_TRIGGER,
'base_currency': self.exchange.get_pair_base_currency(prot_trig.pair),
**prot_trig.to_json() # type: ignore
}
msg = {'type': RPCMessageType.PROTECTION_TRIGGER, }
msg.update(prot_trig.to_json())
self.rpc.send_msg(msg)
prot_trig_glb = self.protections.global_stop(side=side)
if prot_trig_glb:
msg = {
'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
'base_currency': self.exchange.get_pair_base_currency(prot_trig_glb.pair),
**prot_trig_glb.to_json() # type: ignore
}
msg = {'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL, }
msg.update(prot_trig_glb.to_json())
self.rpc.send_msg(msg)
def apply_fee_conditional(self, trade: Trade, trade_base_currency: str,

View File

@ -6,7 +6,8 @@ import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterator, List, Mapping, Optional, TextIO, Union
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
from typing.io import IO
from urllib.parse import urlparse
import orjson
@ -80,7 +81,7 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool =
else:
if log:
logger.info(f'dumping json to "{filename}"')
with filename.open('w') as fp:
with open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
logger.debug(f'done json to "{filename}"')
@ -97,12 +98,12 @@ def file_dump_joblib(filename: Path, data: Any, log: bool = True) -> None:
if log:
logger.info(f'dumping joblib to "{filename}"')
with filename.open('wb') as fp:
with open(filename, 'wb') as fp:
joblib.dump(data, fp)
logger.debug(f'done joblib dump to "{filename}"')
def json_load(datafile: Union[gzip.GzipFile, TextIO]) -> Any:
def json_load(datafile: IO) -> Any:
"""
load data with rapidjson
Use this to have a consistent experience,
@ -111,7 +112,7 @@ def json_load(datafile: Union[gzip.GzipFile, TextIO]) -> Any:
return rapidjson.load(datafile, number_mode=rapidjson.NM_NATIVE)
def file_load_json(file: Path):
def file_load_json(file):
if file.suffix != ".gz":
gzipfile = file.with_suffix(file.suffix + '.gz')
@ -124,7 +125,7 @@ def file_load_json(file: Path):
pairdata = json_load(datafile)
elif file.is_file():
logger.debug(f"Loading historical data from file {file}")
with file.open() as datafile:
with open(file) as datafile:
pairdata = json_load(datafile)
else:
return None

View File

@ -29,7 +29,7 @@ def get_strategy_run_id(strategy) -> str:
# Include _ft_params_from_file - so changing parameter files cause cache eviction
digest.update(rapidjson.dumps(
strategy._ft_params_from_file, default=str, number_mode=rapidjson.NM_NAN).encode('utf-8'))
with Path(strategy.__file__).open('rb') as fp:
with open(strategy.__file__, 'rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()

View File

@ -93,7 +93,7 @@ class Backtesting:
if self.config.get('strategy_list'):
if self.config.get('freqai', {}).get('enabled', False):
logger.warning("Using --strategy-list with FreqAI REQUIRES all strategies "
"to have identical feature_engineering_* functions.")
"to have identical populate_any_indicators.")
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
@ -203,10 +203,9 @@ class Backtesting:
# since a "perfect" stoploss-exit is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
# Update can_short flag
self._can_short = self.trading_mode != TradingMode.SPOT and strategy.can_short
self.strategy.ft_bot_start()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
@ -441,8 +440,11 @@ class Backtesting:
side_1 * abs(self.strategy.trailing_stop_positive / leverage)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(
(trade.stop_loss_pct or 0.0) / leverage))
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(trade.stop_loss_pct / leverage))
if is_short:
assert stop_rate > row[LOW_IDX]
else:
assert stop_rate < row[HIGH_IDX]
# Limit lower-end to candle low to avoid exits below the low.
# This still remains "worst case" - but "worst realistic case".
@ -470,7 +472,7 @@ class Backtesting:
# - (Expected abs profit - open_rate - open_fee) / (fee_close -1)
roi_rate = trade.open_rate * roi / leverage
open_fee_rate = side_1 * trade.open_rate * (1 + side_1 * trade.fee_open)
close_rate = -(roi_rate + open_fee_rate) / ((trade.fee_close or 0.0) - side_1 * 1)
close_rate = -(roi_rate + open_fee_rate) / (trade.fee_close - side_1 * 1)
if is_short:
is_new_roi = row[OPEN_IDX] < close_rate
else:
@ -523,7 +525,7 @@ class Backtesting:
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
stake_available = self.wallets.get_available_stake_amount()
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None, supress_error=True)(
default_retval=None)(
trade=trade, # type: ignore[arg-type]
current_time=current_date, current_rate=current_rate,
current_profit=current_profit, min_stake=min_stake,
@ -561,7 +563,7 @@ class Backtesting:
pos_trade = self._get_exit_for_signal(trade, row, exit_, amount)
if pos_trade is not None:
order = pos_trade.orders[-1]
if self._get_order_filled(order.ft_price, row):
if self._get_order_filled(order.price, row):
order.close_bt_order(current_date, trade)
trade.recalc_trade_from_orders()
self.wallets.update()
@ -662,7 +664,6 @@ class Backtesting:
side=trade.exit_side,
order_type=order_type,
status="open",
ft_price=close_rate,
price=close_rate,
average=close_rate,
amount=amount,
@ -741,12 +742,12 @@ class Backtesting:
proposed_leverage=1.0,
max_leverage=max_leverage,
side=direction, entry_tag=entry_tag,
) if self.trading_mode != TradingMode.SPOT else 1.0
) if self._can_short else 1.0
# Cap leverage between 1.0 and max_leverage.
leverage = min(max(leverage, 1.0), max_leverage)
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, propose_rate, -0.05 if not pos_adjust else 0.0, leverage=leverage) or 0
pair, propose_rate, -0.05, leverage=leverage) or 0
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, propose_rate, leverage=leverage)
stake_available = self.wallets.get_available_stake_amount()
@ -886,7 +887,6 @@ class Backtesting:
order_date=current_time,
order_filled_date=current_time,
order_update_date=current_time,
ft_price=propose_rate,
price=propose_rate,
average=propose_rate,
amount=amount,
@ -895,7 +895,7 @@ class Backtesting:
cost=stake_amount + trade.fee_open,
)
trade.orders.append(order)
if pos_adjust and self._get_order_filled(order.ft_price, row):
if pos_adjust and self._get_order_filled(order.price, row):
order.close_bt_order(current_time, trade)
else:
trade.open_order_id = str(self.order_id_counter)
@ -1008,15 +1008,15 @@ class Backtesting:
# only check on new candles for open entry orders
if order.side == trade.entry_side and current_time > order.order_date_utc:
requested_rate = strategy_safe_wrapper(self.strategy.adjust_entry_price,
default_retval=order.ft_price)(
default_retval=order.price)(
trade=trade, # type: ignore[arg-type]
order=order, pair=trade.pair, current_time=current_time,
proposed_rate=row[OPEN_IDX], current_order_rate=order.ft_price,
proposed_rate=row[OPEN_IDX], current_order_rate=order.price,
entry_tag=trade.enter_tag, side=trade.trade_direction
) # default value is current order price
# cancel existing order whenever a new rate is requested (or None)
if requested_rate == order.ft_price:
if requested_rate == order.price:
# assumption: there can't be multiple open entry orders at any given time
return False
else:
@ -1028,12 +1028,8 @@ class Backtesting:
if requested_rate:
self._enter_trade(pair=trade.pair, row=row, trade=trade,
requested_rate=requested_rate,
requested_stake=(
order.safe_remaining * order.ft_price / trade.leverage),
requested_stake=(order.remaining * order.price / trade.leverage),
direction='short' if trade.is_short else 'long')
# Delete trade if no successful entries happened (if placing the new order failed)
if trade.open_order_id is None and trade.nr_of_successful_entries == 0:
return True
self.replaced_entry_orders += 1
else:
# assumption: there can't be multiple open entry orders at any given time
@ -1099,7 +1095,7 @@ class Backtesting:
for trade in list(LocalTrade.bt_trades_open_pp[pair]):
# 3. Process entry orders.
order = trade.select_order(trade.entry_side, is_open=True)
if order and self._get_order_filled(order.ft_price, row):
if order and self._get_order_filled(order.price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
self.wallets.update()
@ -1110,7 +1106,7 @@ class Backtesting:
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.ft_price, row):
if order and self._get_order_filled(order.price, row):
order.close_bt_order(current_time, trade)
trade.open_order_id = None
sub_trade = order.safe_amount_after_fee != trade.amount
@ -1119,7 +1115,7 @@ class Backtesting:
trade.recalc_trade_from_orders()
else:
trade.close_date = current_time
trade.close(order.ft_price, show_msg=False)
trade.close(order.price, show_msg=False)
# logger.debug(f"{pair} - Backtesting exit {trade}")
LocalTrade.close_bt_trade(trade)
@ -1159,8 +1155,6 @@ class Backtesting:
while current_time <= end_date:
open_trade_count_start = LocalTrade.bt_open_open_trade_count
self.check_abort()
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)(
current_time=current_time)
for i, pair in enumerate(data):
row_index = indexes[pair]
row = self.validate_row(data, pair, row_index, current_time)

View File

@ -1,3 +1,4 @@
import io
import logging
from copy import deepcopy
from datetime import datetime, timezone
@ -23,8 +24,6 @@ logger = logging.getLogger(__name__)
NON_OPT_PARAM_APPENDIX = " # value loaded from strategy"
HYPER_PARAMS_FILE_FORMAT = rapidjson.NM_NATIVE | rapidjson.NM_NAN
def hyperopt_serializer(x):
if isinstance(x, np.integer):
@ -78,18 +77,9 @@ class HyperoptTools():
with filename.open('w') as f:
rapidjson.dump(final_params, f, indent=2,
default=hyperopt_serializer,
number_mode=HYPER_PARAMS_FILE_FORMAT
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
)
@staticmethod
def load_params(filename: Path) -> Dict:
"""
Load parameters from file
"""
with filename.open('r') as f:
params = rapidjson.load(f, number_mode=HYPER_PARAMS_FILE_FORMAT)
return params
@staticmethod
def try_export_params(config: Config, strategy_name: str, params: Dict):
if params.get(FTHYPT_FILEVERSION, 1) >= 2 and not config.get('disableparamexport', False):
@ -200,7 +190,7 @@ class HyperoptTools():
for s in ['buy', 'sell', 'protection',
'roi', 'stoploss', 'trailing', 'max_open_trades']:
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=HYPER_PARAMS_FILE_FORMAT))
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
HyperoptTools._params_pretty_print(params, 'buy', "Buy hyperspace params:",
@ -474,8 +464,8 @@ class HyperoptTools():
return
try:
Path(csv_file).open('w+').close()
except OSError:
io.open(csv_file, 'w+').close()
except IOError:
logger.error(f"Failed to create CSV file: {csv_file}")
return

View File

@ -865,11 +865,6 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if (results.get('results_per_enter_tag') is not None
or results.get('results_per_buy_tag') is not None):
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
@ -889,6 +884,11 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
for period in backtest_breakdown:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results['trades'], period=period)
@ -917,11 +917,11 @@ def show_backtest_results(config: Config, backtest_stats: Dict):
strategy, results, stake_currency,
config.get('backtest_breakdown', []))
if len(backtest_stats['strategy']) > 0:
if len(backtest_stats['strategy']) > 1:
# Print Strategy summary table
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
print(f"{results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}")
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)

View File

@ -1,6 +1,5 @@
# flake8: noqa: F401
from freqtrade.persistence.key_value_store import KeyStoreKeys, KeyValueStore
from freqtrade.persistence.models import init_db
from freqtrade.persistence.pairlock_middleware import PairLocks
from freqtrade.persistence.trade_model import LocalTrade, Order, Trade

View File

@ -1,9 +1,7 @@
from sqlalchemy.orm import DeclarativeBase, Session, scoped_session
from typing import Any
from sqlalchemy.orm import declarative_base
SessionType = scoped_session[Session]
class ModelBase(DeclarativeBase):
pass
_DECL_BASE: Any = declarative_base()

Some files were not shown because too many files have changed in this diff Show More