Compare commits

..

493 Commits

Author SHA1 Message Date
hroff-1902
2a9653cd4e Merge pull request #3228 from freqtrade/new_release2020.4
New release 2020.4
2020-04-28 12:18:54 +03:00
Matthias
fa6fe618ac Version bump 2020.4 2020-04-28 10:55:27 +02:00
Matthias
ce3fa533ae Merge branch 'master' into new_release2020.4 2020-04-28 07:51:05 +02:00
Matthias
5870d9dfc0 Merge pull request #3226 from freqtrade/dependabot/pip/develop/mkdocs-material-5.1.3
Bump mkdocs-material from 5.1.1 to 5.1.3
2020-04-27 11:25:48 +02:00
Matthias
73185471df Merge pull request #3225 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.11.0
Bump pytest-asyncio from 0.10.0 to 0.11.0
2020-04-27 11:19:25 +02:00
Matthias
1d55514991 Merge pull request #3224 from freqtrade/dependabot/pip/develop/progressbar2-3.51.0
Bump progressbar2 from 3.50.1 to 3.51.0
2020-04-27 11:16:31 +02:00
Matthias
5b84e92b2e Merge pull request #3223 from freqtrade/dependabot/pip/develop/ccxt-1.27.1
Bump ccxt from 1.26.53 to 1.27.1
2020-04-27 11:15:16 +02:00
dependabot-preview[bot]
abbb3254b2 Bump mkdocs-material from 5.1.1 to 5.1.3
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 5.1.1 to 5.1.3.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/5.1.1...5.1.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-27 09:03:59 +00:00
dependabot-preview[bot]
52c92a19e3 Bump pytest-asyncio from 0.10.0 to 0.11.0
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.10.0 to 0.11.0.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.10.0...v0.11.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-27 09:03:30 +00:00
dependabot-preview[bot]
2122384ec1 Bump progressbar2 from 3.50.1 to 3.51.0
Bumps [progressbar2](https://github.com/WoLpH/python-progressbar) from 3.50.1 to 3.51.0.
- [Release notes](https://github.com/WoLpH/python-progressbar/releases)
- [Changelog](https://github.com/WoLpH/python-progressbar/blob/develop/CHANGES.rst)
- [Commits](https://github.com/WoLpH/python-progressbar/compare/v3.50.1...v3.51.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-27 09:02:49 +00:00
dependabot-preview[bot]
77a2ff8917 Bump ccxt from 1.26.53 to 1.27.1
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.26.53 to 1.27.1.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.26.53...1.27.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-27 09:02:21 +00:00
hroff-1902
9ed627091b Merge pull request #3216 from freqtrade/hyperopt_docs
Hyperopt should mention that a strategy is mandatory.
2020-04-27 10:13:14 +03:00
Matthias
e928c5fdaf Update docs/hyperopt.md
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-04-27 07:15:37 +02:00
hroff-1902
485e324d36 Merge pull request #2872 from freqtrade/interface_ordertimeoutcallback
Buy order timeout callback
2020-04-25 19:02:15 +03:00
Matthias
255a43c98e Update price timeout example 2020-04-25 17:25:18 +02:00
Matthias
927a7ee330 Merge pull request #3218 from freqtrade/setup_sh
[minor] Update "final" message in setup.sh
2020-04-25 17:05:34 +02:00
Matthias
e1a347df90 Use subcommand, add 3rd line 2020-04-25 16:55:13 +02:00
Matthias
deb14e0c85 Update "final" message in setup.sh
closes #2773
2020-04-25 16:32:11 +02:00
Matthias
a3a045dbd4 Add small section noting that a strategy file is always necessary
fix #3047
2020-04-25 15:54:46 +02:00
Matthias
1761f5af1a Merge pull request #3214 from hroff-1902/hyperopt-best-asterisk
Better handling and description of asterisk in Hyperopt output
2020-04-25 15:28:02 +02:00
hroff-1902
d9f255a6c0 Fix asterisk printing for csv output 2020-04-25 12:49:14 +03:00
hroff-1902
c230a94d55 Fix #3065 2020-04-25 11:23:54 +03:00
hroff-1902
2d994f6feb Better printing of asterisk 2020-04-24 21:57:29 +03:00
Matthias
a19ea0f46f Merge pull request #3207 from hroff-1902/hyperopt-cleanup5
Minor: Remove unused methods in hyperopt
2020-04-24 19:17:40 +02:00
hroff-1902
6e5f0869b3 Remove another unused method 2020-04-24 18:39:08 +03:00
hroff-1902
5c012d79eb Remove unused method 2020-04-24 18:14:07 +03:00
hroff-1902
c5b204ea87 Merge pull request #3205 from freqtrade/fix/ftx_dynamic_crash
fix crash with Dynamic whitelist with pairfilter on FTX
2020-04-24 15:51:38 +03:00
Matthias
9627604ec3 change wording of log message 2020-04-24 07:58:18 +02:00
Matthias
f4995780e5 Verify last is not None - to avoid crashing
fix #3117
2020-04-23 20:04:36 +02:00
Matthias
461b0ef738 Add test verifying we're not reintroducing this in the future
Tests case of FTX, which returns mostly empty ticker info
2020-04-23 20:04:14 +02:00
Matthias
e6d3e2e7d3 Merge pull request #3203 from jpribyl/update_expectancy_docs
Update wording in expectancy docs and add example
2020-04-23 19:44:02 +02:00
jpribyl
662ec1cd60 Update wording in expectancy docs and add example 2020-04-22 18:45:33 -06:00
hroff-1902
1057c4e4ba Merge pull request #3202 from freqtrade/docs/sqlhelper
Update sql cheatsheet to allow manual closing trades correctly
2020-04-22 09:01:19 +03:00
Matthias
adf0bb69b8 Update sql cheatsheet to allow manual closing trades correctly 2020-04-22 06:39:03 +02:00
hroff-1902
5138b83afd Merge pull request #3200 from freqtrade/docker_log_location
Docker log location
2020-04-21 23:43:41 +03:00
Matthias
6b53197dfc Fix documentation to use --logfile, not --logfilename (which does not
exist)
2020-04-21 20:42:58 +02:00
Matthias
87f1060abc Default docker to log into log-dir 2020-04-21 19:47:49 +02:00
Matthias
102c4cf261 Merge pull request #3197 from freqtrade/dependabot/pip/develop/ccxt-1.26.53
Bump ccxt from 1.26.32 to 1.26.53
2020-04-20 13:45:14 +02:00
Matthias
6ea671ea0e Merge pull request #3192 from freqtrade/dependabot/pip/develop/pytest-mock-3.1.0
Bump pytest-mock from 3.0.0 to 3.1.0
2020-04-20 13:44:03 +02:00
Matthias
9a34deb4ea Merge pull request #3193 from freqtrade/dependabot/pip/develop/urllib3-1.25.9
Bump urllib3 from 1.25.8 to 1.25.9
2020-04-20 13:43:18 +02:00
Matthias
cdb91f00ff Merge pull request #3195 from freqtrade/dependabot/pip/develop/questionary-1.5.2
Bump questionary from 1.5.1 to 1.5.2
2020-04-20 13:24:57 +02:00
Matthias
f35c51f69c Merge pull request #3196 from freqtrade/dependabot/pip/develop/numpy-1.18.3
Bump numpy from 1.18.2 to 1.18.3
2020-04-20 13:23:47 +02:00
Matthias
f1fb22202e Merge pull request #3194 from freqtrade/dependabot/pip/develop/mkdocs-material-5.1.1
Bump mkdocs-material from 5.1.0 to 5.1.1
2020-04-20 13:23:21 +02:00
dependabot-preview[bot]
a7249f3865 Bump ccxt from 1.26.32 to 1.26.53
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.26.32 to 1.26.53.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.26.32...1.26.53)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:28:19 +00:00
dependabot-preview[bot]
597f053ae3 Bump numpy from 1.18.2 to 1.18.3
Bumps [numpy](https://github.com/numpy/numpy) from 1.18.2 to 1.18.3.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.18.2...v1.18.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:27:37 +00:00
dependabot-preview[bot]
84d09eb96d Bump questionary from 1.5.1 to 1.5.2
Bumps [questionary](https://github.com/tmbo/questionary) from 1.5.1 to 1.5.2.
- [Release notes](https://github.com/tmbo/questionary/releases)
- [Commits](https://github.com/tmbo/questionary/compare/1.5.1...1.5.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:27:16 +00:00
dependabot-preview[bot]
d395d7ac7d Bump mkdocs-material from 5.1.0 to 5.1.1
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 5.1.0 to 5.1.1.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/5.1.0...5.1.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:26:31 +00:00
dependabot-preview[bot]
4742fc6657 Bump urllib3 from 1.25.8 to 1.25.9
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.8 to 1.25.9.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/master/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.8...1.25.9)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:26:09 +00:00
dependabot-preview[bot]
76dd388b3c Bump pytest-mock from 3.0.0 to 3.1.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.0.0 to 3.1.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.0.0...v3.1.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-20 09:25:17 +00:00
Matthias
431b244f43 Merge branch 'develop' into interface_ordertimeoutcallback 2020-04-19 06:58:44 +02:00
hroff-1902
4bbade245c Merge pull request #3181 from freqtrade/fix/cancel_problems
Fix several cancel order problems
2020-04-18 11:16:59 +03:00
hroff-1902
def8635b6d Merge pull request #3184 from freqtrade/fix/hyperopt_randfailure
Fix random test failure in hyperopt
2020-04-18 09:49:09 +03:00
Matthias
a6bdf686ae Merge pull request #3183 from freqtrade/hroff-1902-patch-1
minor: fix typo in the docs
2020-04-18 06:56:45 +02:00
Matthias
c775d65126 Update typehint for cancel_order 2020-04-18 06:55:25 +02:00
hroff-1902
2f60d9cad4 minor: fix typo in the docs 2020-04-17 23:23:22 +03:00
hroff-1902
e3e38ba68f Merge pull request #3182 from freqtrade/hyperopt_install
document to install hyperopt dependencies
2020-04-17 23:22:18 +03:00
Matthias
506781f410 Reword hyperopt install docs 2020-04-17 20:48:27 +02:00
Matthias
0273539f06 Remove exceptionhandler, this exception is handled in
cancel_with_response
2020-04-17 19:55:53 +02:00
Matthias
55af8bf26f document to install hyperopt dependencies 2020-04-17 19:49:43 +02:00
Matthias
1069cb3616 Use cancel_order_with_result when cancelling orders after timeout 2020-04-17 17:53:56 +02:00
Matthias
5e3e0e819f Add tests for cancel_order_with_result 2020-04-17 17:53:18 +02:00
Matthias
800891a475 Add tests for cancel_order_with_result 2020-04-17 07:18:46 +02:00
Matthias
fc684b0091 Ensure deleting filled is not raising an error if filled does not exist 2020-04-17 06:59:52 +02:00
hroff-1902
68be239a0e Merge pull request #3146 from freqtrade/buy_order_timeout_logging
Improve handling for buy order cancels
2020-04-16 23:41:45 +03:00
Matthias
1f70fcfa2d Update logmessage 2020-04-16 20:19:34 +02:00
hroff-1902
9364a9c4c4 Merge pull request #3168 from freqtrade/fix_pairlist_caching
Fix pairlist caching
2020-04-16 18:39:00 +03:00
hroff-1902
df79011aba Merge pull request #3112 from freqtrade/trade_state_updates
Trade state updates
2020-04-16 12:05:19 +03:00
Matthias
d36e2cf6ab Fix random test failure in hyperopt 2020-04-16 07:06:47 +02:00
hroff-1902
b07d61f3d9 Merge pull request #3169 from freqtrade/fix_pricefilter
Fix pricefilter
2020-04-15 20:53:59 +03:00
Matthias
05c9a9b530 Merge pull request #3172 from freqtrade/dependabot/pip/develop/ccxt-1.26.32
Bump ccxt from 1.26.12 to 1.26.32
2020-04-15 14:34:38 +02:00
Matthias
9e69287740 Merge pull request #3173 from freqtrade/dependabot/pip/develop/jinja2-2.11.2
Bump jinja2 from 2.11.1 to 2.11.2
2020-04-15 14:25:16 +02:00
dependabot-preview[bot]
16a810a0f6 Bump jinja2 from 2.11.1 to 2.11.2
Bumps [jinja2](https://github.com/pallets/jinja) from 2.11.1 to 2.11.2.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/master/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/2.11.1...2.11.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-15 12:14:53 +00:00
dependabot-preview[bot]
8314759228 Bump ccxt from 1.26.12 to 1.26.32
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.26.12 to 1.26.32.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.26.12...1.26.32)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-15 12:14:35 +00:00
hroff-1902
8b6a7e685e Merge pull request #3133 from freqtrade/backtesting_filenameexpanding
[minor] Fix filename handling with --strategy-list
2020-04-15 12:02:19 +03:00
Matthias
99f3e9ed77 Remove wrong comment 2020-04-15 07:55:15 +02:00
Matthias
33b6c7de5b Add tests for price_one_pip 2020-04-15 07:53:31 +02:00
Matthias
36e714a7b2 Add price_get_one_pip filter 2020-04-15 07:19:27 +02:00
Matthias
ac008a4758 Remove obsolete comment in tests 2020-04-15 06:58:54 +02:00
Matthias
2b7376f6f3 Implement log-filtering for all pairlists 2020-04-14 20:45:30 +02:00
Matthias
1b2bf2c9b6 Add test for cached log method 2020-04-14 20:39:54 +02:00
Matthias
ceca0a659c Simplify cached stuff to only what's needed 2020-04-14 20:25:58 +02:00
Matthias
13ee7a55c4 Fix #3166
Always call _gen_pair_whitelist if volumepairlist is not the first in
the list.
2020-04-14 20:21:30 +02:00
Matthias
5d876ca0a3 Use log-spamprevention methods 2020-04-14 20:21:10 +02:00
Matthias
7c15375f5d Add log_on_refresh - using TTL caching to avoid spamming logs 2020-04-14 20:20:36 +02:00
Matthias
cfe1e4876a Improve testcase for cancel_order_empty 2020-04-14 19:20:47 +02:00
Matthias
c8ccdbcb9a Merge pull request #3150 from freqtrade/version_docker
[minor] have version-detection fall back to freqtrade_commit
2020-04-14 15:53:05 +02:00
hroff-1902
f2b1802666 Merge pull request #3137 from freqtrade/fix_maxdrawdown
[minor] Fix maxdrawdown
2020-04-14 16:03:25 +03:00
Matthias
55a052bcf6 fix typo in comment
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-04-14 08:05:46 +02:00
Matthias
ddf37ef059 Add test to demonstrate that the dataframe is not changed 2020-04-14 08:02:42 +02:00
hroff-1902
4d80f52db4 Merge pull request #3134 from freqtrade/backtesting_memory
Backtesting memory and dataframe
2020-04-13 23:08:45 +03:00
Matthias
9239c00866 Merge pull request #3159 from freqtrade/dependabot/pip/develop/ccxt-1.26.12
Bump ccxt from 1.25.81 to 1.26.12
2020-04-13 19:25:52 +02:00
dependabot-preview[bot]
a1d2124e45 Bump ccxt from 1.25.81 to 1.26.12
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.25.81 to 1.26.12.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.25.81...1.26.12)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 12:29:38 +00:00
Matthias
e333716635 Merge pull request #3156 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.6.1
Bump python-telegram-bot from 12.5.1 to 12.6.1
2020-04-13 14:28:25 +02:00
Matthias
3d74bdf039 Merge pull request #3154 from freqtrade/dependabot/pip/develop/cachetools-4.1.0
Bump cachetools from 4.0.0 to 4.1.0
2020-04-13 14:28:13 +02:00
Matthias
afc48782b7 Merge pull request #3155 from freqtrade/dependabot/pip/develop/coveralls-2.0.0
Bump coveralls from 1.11.1 to 2.0.0
2020-04-13 13:47:15 +02:00
dependabot-preview[bot]
a166fc887f Bump python-telegram-bot from 12.5.1 to 12.6.1
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.5.1 to 12.6.1.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.5.1...v12.6.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 11:47:14 +00:00
dependabot-preview[bot]
fb0d76b94a Bump cachetools from 4.0.0 to 4.1.0
Bumps [cachetools](https://github.com/tkem/cachetools) from 4.0.0 to 4.1.0.
- [Release notes](https://github.com/tkem/cachetools/releases)
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v4.0.0...v4.1.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 11:47:12 +00:00
Matthias
e4ec0a9e0c Merge pull request #3158 from freqtrade/dependabot/pip/develop/mkdocs-material-5.1.0
Bump mkdocs-material from 4.6.3 to 5.1.0
2020-04-13 13:46:45 +02:00
Matthias
8885a3b866 Merge pull request #3153 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.16
Bump sqlalchemy from 1.3.15 to 1.3.16
2020-04-13 13:45:54 +02:00
dependabot-preview[bot]
cfcce0e657 Bump mkdocs-material from 4.6.3 to 5.1.0
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.6.3 to 5.1.0.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.6.3...5.1.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 08:32:29 +00:00
dependabot-preview[bot]
350b4d5e7d Bump coveralls from 1.11.1 to 2.0.0
Bumps [coveralls](https://github.com/coveralls-clients/coveralls-python) from 1.11.1 to 2.0.0.
- [Release notes](https://github.com/coveralls-clients/coveralls-python/releases)
- [Changelog](https://github.com/coveralls-clients/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/coveralls-clients/coveralls-python/compare/1.11.1...2.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 08:31:00 +00:00
dependabot-preview[bot]
eac4dbcd28 Bump sqlalchemy from 1.3.15 to 1.3.16
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.15 to 1.3.16.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-13 08:30:31 +00:00
Matthias
4ee0cbb575 Reset index to correctly gather index 2020-04-12 10:40:02 +02:00
Matthias
952d2f7513 have version-detection fall back to freqtrade_commit
this allows freqtrade --version to work in docker too.

sample command:
`docker-compose run --rm freqtrade -version`
2020-04-12 09:55:21 +02:00
Matthias
18a6c98a82 Merge pull request #3054 from Fredrik81/progress-bar
Hyperopt: Progressbar during hyperopt
2020-04-12 09:32:52 +02:00
Fredrik81
2c1c1c7f16 Update freqtrade/optimize/hyperopt.py
nice find

Co-Authored-By: Matthias <xmatthias@outlook.com>
2020-04-11 17:42:32 +02:00
Fredrik81
d9e54ab7a4 Update freqtrade/optimize/hyperopt.py
nice find

Co-Authored-By: Matthias <xmatthias@outlook.com>
2020-04-11 17:42:19 +02:00
Matthias
c03f637f5b Improve safe_value_fallback test 2020-04-09 20:01:21 +02:00
Matthias
f39706cabd Fix #3130 - when corder['remaining'] contains none-type 2020-04-09 19:35:27 +02:00
Matthias
cbf5bf6735 Add safe_value_fallback function 2020-04-09 19:34:48 +02:00
Matthias
346e09fed1 Add test verifying that cancel_order with empty remaining is causing the
bug
2020-04-09 19:32:10 +02:00
Fredrik81
4707484a4c Fix issue with colring enabled + styling 2020-04-09 11:42:13 +02:00
Matthias
5cff72a42e Improve logging to ensure which branch is used for buy order cancels 2020-04-09 09:22:38 +02:00
Matthias
68a5e0c51b Merge pull request #3138 from orkblutt/develop
trades history RPC
2020-04-08 08:23:13 +02:00
Matthias
02192f28cd Small stylistic updates 2020-04-08 07:56:21 +02:00
Fredrik81
cdc774549e Merge branch 'develop' into progress-bar 2020-04-08 01:56:43 +02:00
Matthias
492c2799dc Rename rest-client script history to trades 2020-04-07 19:52:34 +02:00
Matthias
296c616ce7 Add test for api-trades call 2020-04-07 19:50:13 +02:00
Matthias
bdc85ec89b Move create_mock_tests to conftest and add test for test_trade-history 2020-04-07 19:42:16 +02:00
Fredrik81
132f5f73f5 Update hyperopt.py 2020-04-07 10:44:18 +02:00
Fredrik81
c95906cfcf Update hyperopt.py 2020-04-07 10:42:15 +02:00
Matthias
9387585756 Merge pull request #3127 from orehunt/max_drawdown_fix_db_plot
use equality instead of index for row lookups
2020-04-06 20:10:23 +02:00
Ork Blutt
200111fef6 fix method return value 2020-04-06 16:07:43 +02:00
Ork Blutt
2444fb9cd6 fix broken tests: remove duplicated value 2020-04-06 15:56:57 +02:00
orehunt
20abb379aa trim trades to the available ohlcv data before plotting profits 2020-04-06 15:54:17 +02:00
Ork Blutt
c1f9595086 fix broken tests 2020-04-06 15:49:24 +02:00
Fredrik81
d5609d4997 Changed back to progressbar2 for better handling of logger.
Coloring still needs some work (bug + what colors to use)
2020-04-06 13:12:32 +02:00
Matthias
4a85422ce0 Merge pull request #3143 from freqtrade/dependabot/pip/develop/pytest-mock-3.0.0
Bump pytest-mock from 2.0.0 to 3.0.0
2020-04-06 11:56:15 +02:00
Matthias
56d22675bc Merge pull request #3142 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.5.1
Bump python-telegram-bot from 12.5 to 12.5.1
2020-04-06 11:55:52 +02:00
Matthias
f72db44bd7 Merge pull request #3141 from freqtrade/dependabot/pip/develop/flask-1.1.2
Bump flask from 1.1.1 to 1.1.2
2020-04-06 11:55:27 +02:00
Ork Blutt
815660c070 fix tests 2020-04-06 11:32:00 +02:00
dependabot-preview[bot]
be76e3c554 Bump python-telegram-bot from 12.5 to 12.5.1
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.5 to 12.5.1.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.5...v12.5.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-06 09:23:21 +00:00
Matthias
914303a7c5 Merge pull request #3140 from freqtrade/dependabot/pip/develop/plotly-4.6.0
Bump plotly from 4.5.4 to 4.6.0
2020-04-06 11:22:39 +02:00
Matthias
27a6787a77 Merge pull request #3139 from freqtrade/dependabot/pip/develop/ccxt-1.25.81
Bump ccxt from 1.25.38 to 1.25.81
2020-04-06 11:21:53 +02:00
dependabot-preview[bot]
0b30cb7f8f Bump pytest-mock from 2.0.0 to 3.0.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 2.0.0 to 3.0.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v2.0.0...v3.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-06 09:11:33 +00:00
dependabot-preview[bot]
144d252e19 Bump flask from 1.1.1 to 1.1.2
Bumps [flask](https://github.com/pallets/flask) from 1.1.1 to 1.1.2.
- [Release notes](https://github.com/pallets/flask/releases)
- [Changelog](https://github.com/pallets/flask/blob/master/CHANGES.rst)
- [Commits](https://github.com/pallets/flask/compare/1.1.1...1.1.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-06 09:10:30 +00:00
dependabot-preview[bot]
5de7ee3bdb Bump plotly from 4.5.4 to 4.6.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.5.4 to 4.6.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.5.4...v4.6.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-06 09:10:07 +00:00
dependabot-preview[bot]
a1e81a51ef Bump ccxt from 1.25.38 to 1.25.81
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.25.38 to 1.25.81.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.25.38...1.25.81)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-04-06 09:09:54 +00:00
Ork Blutt
6256025c73 various adjustement from PR discussion 2020-04-06 11:00:31 +02:00
Ork Blutt
8555c5b211 fix return value 2020-04-05 17:03:51 +02:00
Ork Blutt
15c45b984d removing whitespace 2020-04-05 16:47:46 +02:00
Ork Blutt
0a14d5ec46 trades history RPC 2020-04-05 16:14:02 +02:00
Matthias
41d5c40f10 Correctly test drawdown plot 2020-04-05 14:44:44 +02:00
Matthias
4e907e2304 Use timeframe_to_prev_date to move trade-date to candle 2020-04-05 14:35:53 +02:00
Matthias
e204170eb6 Fix max_drawdown bug finding low before high! 2020-04-05 14:29:40 +02:00
Matthias
a99c53f1ec Add test showing that high is before low 2020-04-05 14:29:03 +02:00
Matthias
d4dde01140 Add test 2020-04-02 20:23:20 +02:00
Matthias
c465552df4 Update comment to mention .copy() usage 2020-04-02 20:17:54 +02:00
Matthias
de47186263 Use .loc for assignments 2020-04-02 19:31:48 +02:00
Matthias
3fcd531eac Copy dataframe in interfac.py (reduces memory consumption) 2020-04-02 19:30:59 +02:00
Matthias
cf6e6488c7 Fix filename handling with --strategy-list 2020-04-02 17:29:18 +02:00
hroff-1902
2915917680 Merge pull request #3107 from orehunt/check_dataframe_after_signals
check that the strategy dataframe matches the one given by the bot
2020-03-31 20:08:03 +03:00
orehunt
45fb4d25ab use equality instead of index for row lookups 2020-03-31 18:47:53 +02:00
hroff-1902
92bd550851 Merge pull request #3126 from freqtrade/max_drawdown_percent
[minor] Plot percent correctly
2020-03-30 21:37:23 +03:00
Matthias
54d20cb81c Plot percent correctly 2020-03-30 20:08:07 +02:00
Matthias
9e1f7cb71c Merge pull request #3122 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.5
Bump prompt-toolkit from 3.0.4 to 3.0.5
2020-03-30 12:00:47 +02:00
Matthias
f93cc52dcc Merge pull request #3124 from freqtrade/dependabot/pip/develop/ccxt-1.25.38
Bump ccxt from 1.24.83 to 1.25.38
2020-03-30 11:55:26 +02:00
Matthias
372f7f3e88 Merge pull request #3125 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.5
Bump python-telegram-bot from 12.4.2 to 12.5
2020-03-30 11:55:03 +02:00
Matthias
e0861b9381 Merge pull request #3123 from freqtrade/dependabot/pip/develop/flake8-tidy-imports-4.1.0
Bump flake8-tidy-imports from 4.0.0 to 4.1.0
2020-03-30 11:54:19 +02:00
dependabot-preview[bot]
d8d6fe3574 Bump python-telegram-bot from 12.4.2 to 12.5
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.4.2 to 12.5.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.4.2...v12.5)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-30 08:58:54 +00:00
dependabot-preview[bot]
2de10d4c56 Bump ccxt from 1.24.83 to 1.25.38
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.24.83 to 1.25.38.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.24.83...1.25.38)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-30 08:58:21 +00:00
dependabot-preview[bot]
7e60e0549a Bump flake8-tidy-imports from 4.0.0 to 4.1.0
Bumps [flake8-tidy-imports](https://github.com/adamchainz/flake8-tidy-imports) from 4.0.0 to 4.1.0.
- [Release notes](https://github.com/adamchainz/flake8-tidy-imports/releases)
- [Changelog](https://github.com/adamchainz/flake8-tidy-imports/blob/master/HISTORY.rst)
- [Commits](https://github.com/adamchainz/flake8-tidy-imports/compare/4.0.0...4.1.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-30 08:57:16 +00:00
dependabot-preview[bot]
7e1719cfc7 Bump prompt-toolkit from 3.0.4 to 3.0.5
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.4 to 3.0.5.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.4...3.0.5)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-30 08:56:50 +00:00
hroff-1902
3a7199834d Merge pull request #3121 from freqtrade/remove_defaultstrategy
[minor] Remove defaultstrategy occurance from docs
2020-03-30 09:22:02 +03:00
Matthias
f1b92e2569 Improve wording of documentation 2020-03-30 08:11:38 +02:00
Matthias
a5d00ce717 Remove defaultstrategy occurance from docs 2020-03-30 07:56:17 +02:00
Matthias
83cc121b70 Add tsts for assert_df (ensuring it raises when it should) 2020-03-29 11:44:36 +02:00
Matthias
cd2e738e35 Add test for assert error 2020-03-29 11:40:13 +02:00
Matthias
0887a0212c Adjust tests to pass validation 2020-03-29 11:29:31 +02:00
Matthias
78aa658255 Remove unnecessary test (it's a copy of the remaining test) 2020-03-29 11:27:40 +02:00
Matthias
9abfdaaaa2 Merge pull request #3119 from freqtrade/new_release
New release 2020.3
2020-03-28 19:49:39 +01:00
Matthias
da191e4ac8 Version bump 2020.3 2020-03-28 17:45:44 +01:00
Matthias
75de96ae6d Merge branch 'master' into new_release 2020-03-28 17:45:17 +01:00
orehunt
3ef568029f different exception messages 2020-03-26 07:05:30 +01:00
hroff-1902
39ea126698 Merge pull request #3090 from freqtrade/remove_partial_candle_docs
Remove partial candle documentation
2020-03-25 19:55:44 +03:00
Matthias
95011919d3 Remove questionable handling of orders 2020-03-25 11:18:33 +01:00
Matthias
3c1b155e9f Remove filled if amount is modified to suit fee structure 2020-03-25 09:43:04 +01:00
Matthias
1e2fadbc02 Fix failing test 2020-03-25 09:43:04 +01:00
Matthias
f04f606b70 Updateing order amount should use filled - not amount if possible 2020-03-25 09:43:04 +01:00
Matthias
19e5dbddc6 Add filled to all orders 2020-03-25 09:43:04 +01:00
Matthias
f3103be15c Fix test 2020-03-25 09:43:04 +01:00
Matthias
700cedc573 Unify handling of open orders to update_trade_state 2020-03-25 09:43:04 +01:00
Matthias
7c47c6e3bd check for timeouts before exiting positions 2020-03-25 09:43:04 +01:00
Matthias
270ac2e8c1 Add check_order_cancelled_empty method to exchange 2020-03-25 09:43:04 +01:00
Matthias
9c351007f5 Provide reason for cancelled sell order 2020-03-25 09:43:04 +01:00
Matthias
1817e6fbdf Combine real_amount updating into one method 2020-03-25 09:43:04 +01:00
Matthias
91b058cf11 Fix typo in tests 2020-03-25 09:43:04 +01:00
Matthias
53efc56b8a Merge pull request #3096 from freqtrade/max_open_trades
Update max_open_trades documentation
2020-03-25 09:37:40 +01:00
Matthias
6f687c97ce Update docs/configuration.md
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-25 09:24:37 +01:00
hroff-1902
be5b68627c Merge pull request #3093 from freqtrade/trades_abs_profit
Add close_profit_abs column
2020-03-25 11:13:56 +03:00
Matthias
dfac7448d1 fix typo
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-25 08:33:22 +01:00
Matthias
4ea6f9d7eb Merge pull request #3110 from freqtrade/fix_random_test
[minor] Test warnings with filter always on
2020-03-25 08:32:45 +01:00
Matthias
d9a5e1cd48 Update docs/exchanges.md
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-25 08:30:18 +01:00
hroff-1902
65f19fde40 Merge pull request #3097 from freqtrade/parse_config_error
Improve config parse error handling
2020-03-25 09:18:16 +03:00
Matthias
be41981ef0 Test warnings with filter always on 2020-03-24 20:10:15 +01:00
orehunt
0f53e646fd check that the strategy dataframe matches the one given by the bot 2020-03-24 14:08:34 +01:00
Matthias
030c487d6b Merge pull request #3100 from freqtrade/dependabot/pip/develop/pandas-1.0.3
Bump pandas from 1.0.2 to 1.0.3
2020-03-23 10:41:06 +01:00
Matthias
51edddcaf6 Merge pull request #3101 from freqtrade/dependabot/pip/develop/ccxt-1.24.83
Bump ccxt from 1.24.31 to 1.24.83
2020-03-23 10:21:46 +01:00
dependabot-preview[bot]
cb1bc5d5ab Bump pandas from 1.0.2 to 1.0.3
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.0.2 to 1.0.3.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/master/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.0.2...v1.0.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-23 09:15:43 +00:00
Matthias
9b43d9d75e Merge pull request #3099 from freqtrade/dependabot/pip/develop/tabulate-0.8.7
Bump tabulate from 0.8.6 to 0.8.7
2020-03-23 10:15:31 +01:00
Matthias
c3787afa2e Merge pull request #3098 from freqtrade/dependabot/pip/develop/numpy-1.18.2
Bump numpy from 1.18.1 to 1.18.2
2020-03-23 10:14:25 +01:00
dependabot-preview[bot]
98dc4b4ca3 Bump ccxt from 1.24.31 to 1.24.83
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.24.31 to 1.24.83.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.24.31...1.24.83)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-23 09:06:41 +00:00
dependabot-preview[bot]
de91e169bc Bump tabulate from 0.8.6 to 0.8.7
Bumps [tabulate](https://github.com/astanin/python-tabulate) from 0.8.6 to 0.8.7.
- [Release notes](https://github.com/astanin/python-tabulate/releases)
- [Changelog](https://github.com/astanin/python-tabulate/blob/master/CHANGELOG)
- [Commits](https://github.com/astanin/python-tabulate/compare/v0.8.6...v0.8.7)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-23 09:05:12 +00:00
dependabot-preview[bot]
f4a69ba5a7 Bump numpy from 1.18.1 to 1.18.2
Bumps [numpy](https://github.com/numpy/numpy) from 1.18.1 to 1.18.2.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.18.1...v1.18.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-23 09:04:50 +00:00
Matthias
d581b7e2d7 Add fallback if no error could be determined 2020-03-23 07:57:30 +01:00
Matthias
8f7e113d79 Add additional test 2020-03-23 07:54:27 +01:00
Matthias
6c55b40fe0 Add test verifying config printing 2020-03-22 20:15:33 +01:00
Matthias
45aaa8c09d Parse and show relevant configuration section 2020-03-22 20:09:01 +01:00
Matthias
acd402187a Update max_open_trades documentation 2020-03-22 19:39:36 +01:00
hroff-1902
e079d36f84 Merge pull request #3094 from freqtrade/gitignore
[minor] Add example notebook to gitignore again
2020-03-22 18:38:33 +03:00
Matthias
f14c496ce9 Remove calc_close_profit from RPC
This is now possible - but only for closed trades, so certain occurances
need to remain.
2020-03-22 11:28:18 +01:00
Matthias
efd94c84de Add example notebook to gitignore again 2020-03-22 11:22:49 +01:00
Matthias
2c434e9b11 Add close_proit_abs column 2020-03-22 11:16:23 +01:00
Matthias
e30faf8c8c Remove partial candle documentation
It wasn't working 100% correctly - see #2993
2020-03-21 20:04:05 +01:00
hroff-1902
fb4e9b3938 Merge pull request #3025 from yazeed/minor_create_trade_optimization
minor create_trade() optimization
2020-03-21 10:36:39 +03:00
Matthias
f320c0a410 Merge pull request #3087 from hroff-1902/edge-cosmetics-1
minor: Edge cosmetics
2020-03-20 08:12:21 +01:00
Yazeed Al Oyoun
942792f123 updated as suggested 2020-03-20 05:48:53 +01:00
hroff-1902
3e0ffdce75 Adjust tests 2020-03-20 04:21:17 +03:00
hroff-1902
5f9479b39f Edge import cosmetics 2020-03-20 02:10:44 +03:00
hroff-1902
d1bfe12bde Merge pull request #3086 from freqtrade/ftx_cancel_order
Ftx cancel order
2020-03-19 23:43:29 +03:00
Matthias
5e702f6891 Verify cancel_order returnvalue is a dictionary 2020-03-19 19:44:14 +01:00
Matthias
ecf3a3e070 Add test validating different return values 2020-03-19 19:44:10 +01:00
Matthias
ac6eef6922 Merge pull request #3062 from Fredrik81/plot-trades
Plotting: Fix if no file exists and new skip option
2020-03-18 20:00:50 +01:00
Matthias
3e1bef888a Fix flake8 error 2020-03-18 19:40:13 +01:00
Fredrik81
0920d6fce4 Update freqtrade/data/btanalysis.py
Co-Authored-By: Matthias <xmatthias@outlook.com>
2020-03-18 11:01:09 +01:00
Fredrik81
05250ba661 Update docs/plotting.md
Co-Authored-By: Matthias <xmatthias@outlook.com>
2020-03-18 11:00:33 +01:00
hroff-1902
961ad07dba Merge pull request #3079 from freqtrade/fix_pypi_install
Add template and jupyter files to release
2020-03-18 01:07:53 +03:00
Matthias
4f46fb9bf5 Add template and jupyter files to release 2020-03-17 19:33:18 +01:00
Matthias
50e348b81c Merge pull request #3069 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.15
Bump sqlalchemy from 1.3.13 to 1.3.15
2020-03-16 10:19:32 +01:00
Matthias
84b27585e6 Merge pull request #3074 from freqtrade/dependabot/pip/develop/mypy-0.770
Bump mypy from 0.761 to 0.770
2020-03-16 10:19:05 +01:00
dependabot-preview[bot]
62d449251c Bump mypy from 0.761 to 0.770
Bumps [mypy](https://github.com/python/mypy) from 0.761 to 0.770.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.761...v0.770)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:54:12 +00:00
dependabot-preview[bot]
7a7530d57d Bump sqlalchemy from 1.3.13 to 1.3.15
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.13 to 1.3.15.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:53:20 +00:00
Matthias
7fb266671d Merge pull request #3073 from freqtrade/dependabot/pip/develop/pytest-5.4.1
Bump pytest from 5.3.5 to 5.4.1
2020-03-16 09:52:58 +01:00
Matthias
addb4b5f8f Merge pull request #3071 from freqtrade/dependabot/pip/develop/ccxt-1.24.31
Bump ccxt from 1.23.81 to 1.24.31
2020-03-16 09:52:10 +01:00
Matthias
d2ab7633ef Merge pull request #3072 from freqtrade/dependabot/pip/develop/plotly-4.5.4
Bump plotly from 4.5.3 to 4.5.4
2020-03-16 09:51:35 +01:00
Matthias
ba1bd2d5a4 Merge pull request #3070 from freqtrade/dependabot/pip/develop/pandas-1.0.2
Bump pandas from 1.0.1 to 1.0.2
2020-03-16 09:51:21 +01:00
dependabot-preview[bot]
3eee0c43a7 Bump pytest from 5.3.5 to 5.4.1
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.5 to 5.4.1.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.5...5.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:18:33 +00:00
dependabot-preview[bot]
8cfff40fcf Bump plotly from 4.5.3 to 4.5.4
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.5.3 to 4.5.4.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.5.3...v4.5.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:18:07 +00:00
dependabot-preview[bot]
0b34175752 Bump ccxt from 1.23.81 to 1.24.31
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.23.81 to 1.24.31.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/doc/exchanges-by-country.rst)
- [Commits](https://github.com/ccxt/ccxt/compare/1.23.81...1.24.31)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:17:53 +00:00
dependabot-preview[bot]
e8a92cb313 Bump pandas from 1.0.1 to 1.0.2
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.0.1 to 1.0.2.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/master/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.0.1...v1.0.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-16 08:17:21 +00:00
Fredrik81
06198c0028 Missed configuration.py 2020-03-15 21:27:45 +01:00
Fredrik81
8c33e07dc6 Update based on comments 2020-03-15 21:20:32 +01:00
hroff-1902
0847652df0 Merge pull request #3066 from freqtrade/backtest_small_improvements
Backtest small improvements
2020-03-15 20:20:15 +03:00
Matthias
3d4664c2a6 Remove unnecessary import 2020-03-15 15:40:12 +01:00
Matthias
e1b08ad76c Add docstring to store_backtest_result 2020-03-15 15:38:26 +01:00
Matthias
fe50a0f3a1 Move test for store_bt_results to optimize_reports 2020-03-15 15:36:53 +01:00
Matthias
e95665ceca Make backtestresult storing independent from printing 2020-03-15 15:36:23 +01:00
Matthias
a13d581658 Move backtest-result visualization out of backtesting class 2020-03-15 15:17:53 +01:00
Matthias
6106d59e1a Move store_backtest_results to optimize_reports 2020-03-15 15:17:35 +01:00
Matthias
328dbd3930 Remove unnecessary parameter to generate_text_table_sell_reason 2020-03-15 15:04:48 +01:00
Matthias
a1bbeaa668 Merge branch 'develop' into interface_ordertimeoutcallback 2020-03-15 14:56:14 +01:00
hroff-1902
57ff3ff450 Merge branch 'develop' into plot-trades 2020-03-15 13:31:00 +03:00
hroff-1902
3b89e7d393 Merge pull request #3064 from freqtrade/exportfilename_path
convert exportfilename to Path when config parsing
2020-03-15 13:12:19 +03:00
Matthias
0f1640bed4 convert exportfilename to Path when config parsing 2020-03-15 09:39:45 +01:00
Fredrik81
2c0980aa3a Tests 2020-03-15 00:09:08 +01:00
Fredrik81
cf7e80f45d Docs and logging 2020-03-14 23:55:13 +01:00
Fredrik81
27faf12fde Fix if no file exists 2020-03-14 22:15:03 +01:00
hroff-1902
5d1b1573b7 Merge pull request #3061 from freqtrade/edge_test_warning
Edge test warning
2020-03-14 13:51:05 +03:00
Matthias
308d8fe2a9 Remove deprecation warnings due to date conversion 2020-03-14 10:44:46 +01:00
Matthias
c56cbc21b1 Remove indexing warning in edge 2020-03-14 10:42:01 +01:00
hroff-1902
5bfbf92e69 Merge pull request #3032 from hroff-1902/no-ticker-2
Do not use "ticker" where it's not a ticker
2020-03-13 21:10:29 +03:00
hroff-1902
59fadabb5b Fix merging 2020-03-13 20:26:14 +03:00
hroff-1902
51f52c8609 Merge branch 'develop' into no-ticker-2 2020-03-13 16:43:52 +03:00
hroff-1902
a7ed51c642 return back the name of the hyperopt data file 2020-03-13 04:04:23 +03:00
hroff-1902
ddfe5b5f1c dataframe -> df_analyzed in plotting 2020-03-13 04:00:24 +03:00
hroff-1902
b2952cd42a remove redundant dict 2020-03-13 03:58:16 +03:00
hroff-1902
ebb0187f40 dataframe -> df_analyzed in backtesting and edge 2020-03-13 03:54:56 +03:00
hroff-1902
c6bb32d419 Merge pull request #3045 from orehunt/jsondatahandler-ohlc-respect-timerange
check again for emptiness after trimming dataframe
2020-03-12 22:46:31 +03:00
Matthias
6f67b8d9b9 iCheck after clean_dataframe, too 2020-03-12 19:50:46 +01:00
Fredrik81
5737139979 Small fix 2020-03-12 16:47:09 +01:00
Fredrik81
1a59fc11be doh 2020-03-12 02:36:18 +01:00
Fredrik81
df1ae565dc clean-up 2020-03-12 02:26:41 +01:00
Fredrik81
9387ed923c fix for empty lines 2020-03-12 02:07:50 +01:00
Fredrik81
40a413c524 More remove of progressbar2 2020-03-11 22:50:23 +01:00
Fredrik81
755763ec42 Update requirements 2020-03-11 22:43:27 +01:00
Fredrik81
81cbb92556 Switch to TQDM 2020-03-11 22:30:36 +01:00
Matthias
129a88d5da Extract emptyness check to it's own method 2020-03-11 19:53:28 +01:00
hroff-1902
ed5b0ee36b Merge pull request #3053 from freqtrade/hyperopt_default_volume
Hyperopt - add default volume > 0 filter
2020-03-11 08:17:54 +03:00
Fredrik81
3a8b68c0fd Initial work on progressbar 2020-03-10 20:30:36 +01:00
Matthias
2b1c146940 Add default volume > 0 filter 2020-03-10 16:05:33 +01:00
Matthias
84f0bb9a5d Merge pull request #3051 from hroff-1902/fix-sortino
Adjust handling of zero stdev in loss functions
2020-03-10 13:10:39 +01:00
Matthias
14e7f0bb13 Merge pull request #3049 from hroff-1902/hyperopt-no-unlimited
Do not allow unlimited stake_amount for hyperopt
2020-03-10 11:46:22 +01:00
hroff-1902
73c19da4b9 Adjust handling of zero stdev in loss functions 2020-03-10 13:44:16 +03:00
hroff-1902
1b6e77649a Add test for hyperopt 2020-03-10 12:42:31 +03:00
hroff-1902
81b6a950ac Adjust test for backtesting 2020-03-10 12:42:11 +03:00
hroff-1902
f7ad6c20c7 Do not allow unlimited stake_amount for hyperopt 2020-03-10 12:41:23 +03:00
hroff-1902
c49fefc94d Merge pull request #3044 from freqtrade/default_max_order_book
order_book_max - change example setting
2020-03-10 11:17:27 +03:00
Matthias
a046c4829c Apply suggestions from code review
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-10 09:03:44 +01:00
hroff-1902
52d89eadde Merge pull request #3021 from Fredrik81/print-csv
Hyperopt: Add export CSV-file option
2020-03-10 10:46:58 +03:00
hroff-1902
f148b5f734 cosmetics in lambdas 2020-03-10 10:38:37 +03:00
hroff-1902
19a9782a40 Merge pull request #3040 from freqtrade/pairlist_message
reduce Pairlist message warning level
2020-03-10 10:26:19 +03:00
Matthias
42038da7f1 Update docs/configuration.md
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-10 07:57:25 +01:00
Fredrik81
bd158eefd2 Fixed loggin 2020-03-10 03:02:52 +01:00
hroff-1902
df2c8b5f32 Merge pull request #3042 from freqtrade/hyperopt_sample_comment
Update hyperopt samples docstring
2020-03-09 23:25:36 +03:00
Fredrik81
2f5fc731bb Removed overwrite option 2020-03-09 18:53:30 +01:00
orehunt
3eaae4661d check again for emptiness after trimming dataframe 2020-03-09 17:51:21 +01:00
Matthias
e0afbcd4af Additional warning about order_book-max 2020-03-09 17:41:44 +01:00
Matthias
74a17c7b7b Clarify warning in the documentation 2020-03-09 17:38:35 +01:00
Matthias
5da63d399b Reduce default order_book_max to 1 2020-03-09 17:38:25 +01:00
Matthias
856ba203d9 Update hyperopt samples docstring 2020-03-09 15:46:46 +01:00
Matthias
c049651784 whitelist_for_active_markets should not remove blacklisted items 2020-03-09 11:30:28 +01:00
Matthias
5cbf325fda Allow different loglevels for message 2020-03-09 11:30:13 +01:00
Matthias
bf2dc90c3c Merge pull request #3039 from freqtrade/dependabot/pip/develop/plotly-4.5.3
Bump plotly from 4.5.2 to 4.5.3
2020-03-09 09:58:46 +01:00
Matthias
964d97da17 Merge pull request #3038 from freqtrade/dependabot/pip/develop/scikit-learn-0.22.2.post1
Bump scikit-learn from 0.22.2 to 0.22.2.post1
2020-03-09 09:57:46 +01:00
Matthias
5c190f82e4 Merge pull request #3035 from freqtrade/dependabot/pip/develop/wrapt-1.12.1
Bump wrapt from 1.12.0 to 1.12.1
2020-03-09 09:54:23 +01:00
Matthias
f125709954 Merge pull request #3037 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.4
Bump prompt-toolkit from 3.0.3 to 3.0.4
2020-03-09 09:53:53 +01:00
Matthias
a3b0b8a7c5 Merge pull request #3036 from freqtrade/dependabot/pip/develop/ccxt-1.23.81
Bump ccxt from 1.23.30 to 1.23.81
2020-03-09 09:45:49 +01:00
dependabot-preview[bot]
4cc0d3dbc4 Bump plotly from 4.5.2 to 4.5.3
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.5.2 to 4.5.3.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.5.2...v4.5.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-09 08:35:16 +00:00
dependabot-preview[bot]
23127b8da0 Bump scikit-learn from 0.22.2 to 0.22.2.post1
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.22.2 to 0.22.2.post1.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.22.2...0.22.2.post1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-09 08:34:33 +00:00
dependabot-preview[bot]
46763e148b Bump prompt-toolkit from 3.0.3 to 3.0.4
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.3 to 3.0.4.
- [Release notes](https://github.com/prompt-toolkit/python-prompt-toolkit/releases)
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.3...3.0.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-09 08:33:59 +00:00
dependabot-preview[bot]
09c25faa51 Bump ccxt from 1.23.30 to 1.23.81
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.23.30 to 1.23.81.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.23.30...1.23.81)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-09 08:33:37 +00:00
dependabot-preview[bot]
c7b2f173eb Bump wrapt from 1.12.0 to 1.12.1
Bumps [wrapt](https://github.com/GrahamDumpleton/wrapt) from 1.12.0 to 1.12.1.
- [Release notes](https://github.com/GrahamDumpleton/wrapt/releases)
- [Changelog](https://github.com/GrahamDumpleton/wrapt/blob/develop/docs/changes.rst)
- [Commits](https://github.com/GrahamDumpleton/wrapt/compare/1.12.0...1.12.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-09 08:32:42 +00:00
Fredrik81
cb419614cd Spelling miss 2020-03-08 23:00:21 +01:00
Fredrik81
4ad93ed6bb Changed output for null columns 2020-03-08 22:41:05 +01:00
hroff-1902
3208faf7ed Do not use ticker where it's not a ticker 2020-03-08 20:47:02 +03:00
hroff-1902
77944175e2 Merge pull request #3030 from freqtrade/coingekko
Coingekko replacing coinmarketcap
2020-03-07 20:42:08 +03:00
Matthias
281cf577d1 Remove unsupported FIAT 2020-03-07 17:03:31 +01:00
Matthias
d51bb9acfb Update conda environment file 2020-03-07 13:11:36 +01:00
Matthias
1b3038390a Update comment 2020-03-07 13:05:46 +01:00
Matthias
acea49beaf Fix tests / test mocks 2020-03-07 13:01:26 +01:00
Matthias
df5adb6ca5 Exchange coingekko for coinmarketcap 2020-03-07 11:53:08 +01:00
Matthias
93fc14d726 Exchange dependencies to coingekko 2020-03-07 11:52:02 +01:00
Matthias
847df7b70c Merge pull request #3026 from yazeed/add_default_to_ignore_roi_if_buy_signal
default for ignore_roi_if_buy_signal in freqtradebot.py
2020-03-06 19:35:41 +01:00
Matthias
bbdbc59fd1 Merge pull request #3024 from yazeed/unifying_get_buy_sell_rate_msgs
consistency between get_sell_rate with get_buy_rate
2020-03-06 19:32:31 +01:00
hroff-1902
7b0009b38d Merge pull request #3029 from freqtrade/travis_failure
Fix travis build failure
2020-03-06 18:20:19 +03:00
Matthias
78908e2496 Fix travis build failure 2020-03-06 15:57:26 +01:00
Yazeed Al Oyoun
b8d05d8751 found instance of config get without default 2020-03-05 22:14:05 +01:00
Yazeed Al Oyoun
0587256733 minor create_trade() optimization 2020-03-05 21:57:01 +01:00
Yazeed Al Oyoun
4474482307 unifying get_sell_rate with get_buy_rate 2020-03-05 20:44:29 +01:00
Fredrik81
f0d56e23a3 PEP8 fix 2020-03-05 19:58:01 +01:00
Fredrik81
91db75a707 Added tests and updated doc 2020-03-05 19:43:43 +01:00
Matthias
459f1aa130 Merge pull request #2989 from hroff-1902/no-percent-1
No "percent" where "ratio" is to be used
2020-03-05 16:20:13 +01:00
hroff-1902
eee5727426 Adjust webhook docs 2020-03-05 17:44:38 +03:00
hroff-1902
7a3660cd6b Adjust webhook tests 2020-03-05 17:44:21 +03:00
hroff-1902
34093d1208 Merge branch 'develop' into no-percent-1 2020-03-05 14:27:12 +03:00
hroff-1902
bcec46c2aa Merge pull request #3019 from freqtrade/fix_testfailure
Fix random CI failure
2020-03-05 10:56:25 +03:00
Matthias
97b194a454 Throttle may take longer than .10s on slow machines
This made this test fluky on windows CI ...
2020-03-05 06:20:36 +01:00
Fredrik81
7606d814fa Initial work on csv-file export. Missing docs and tests 2020-03-05 01:58:33 +01:00
hroff-1902
57523d58df Merge pull request #2994 from Fredrik81/hyperopt-table
Added dynamic print table function to hyperopt
2020-03-04 23:44:53 +03:00
Fredrik81
090d1e8a70 Alignment and cleanups 2020-03-04 20:51:09 +01:00
hroff-1902
33c1c8f726 Merge pull request #3018 from freqtrade/max_drawdown
Max drawdown in plot-profit
2020-03-04 20:42:57 +03:00
hroff-1902
dea4ef957e Merge pull request #2982 from freqtrade/rate_side_optional
Rate side configurable
2020-03-04 16:07:08 +03:00
Matthias
2f54aff0ce Improve documentation wording for price sides 2020-03-04 06:44:59 +01:00
Matthias
8de35e1c83 Documentation suggestions from Review
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-03-04 06:40:19 +01:00
Fredrik81
7652a2bb95 Updated table layout and aligning better for hyperopt 2020-03-04 00:10:47 +01:00
Matthias
9d8970a76b Add test and formatting to drawdown 2020-03-03 20:23:44 +01:00
Matthias
53dcb5d5ed Fix logging expression 2020-03-03 19:36:03 +01:00
hroff-1902
4513edf450 Merge pull request #3017 from freqtrade/ci_windows_38
CI on windows with python 3.8
2020-03-03 17:21:55 +03:00
Matthias
9bebc9ba76 Fix powershell comparison 2020-03-03 09:40:41 +01:00
Matthias
720ed0eddd Remove flucky test assert 2020-03-03 09:36:04 +01:00
Matthias
d9e83cc4e2 Run CI on windows python 3.8 2020-03-03 09:33:08 +01:00
Matthias
33a63562cb make drawdown function less restrictive 2020-03-03 07:23:38 +01:00
Matthias
88e7cab5b9 Add max_drawdown to profit plot 2020-03-03 07:21:14 +01:00
Matthias
e050511ddc Add test for max_drawdown calculation 2020-03-03 07:20:41 +01:00
Matthias
3479f7d986 Add max_drawdown function 2020-03-03 07:15:03 +01:00
Fredrik81
4aca8d7fcc PEP8 fix 2020-03-03 01:35:18 +01:00
Fredrik81
399c419163 Changed table formating. Adding some code to align hyperopt table generation. WIP 2020-03-03 01:14:56 +01:00
hroff-1902
82bdd01843 Merge pull request #3003 from Fredrik81/cores-and-arguments
Hyperopt: fix number of CPU cores, jobs and total epochs
2020-03-03 02:12:21 +03:00
hroff-1902
52cd5f9127 Better use enumerate: more correct and more pythonic 2020-03-03 01:42:25 +03:00
hroff-1902
45c9496792 Do not run optimizer for 'jobs' epochs for the last iteration 2020-03-03 01:33:11 +03:00
hroff-1902
a7d4755859 optimize calculation of current_jobs 2020-03-03 01:20:14 +03:00
hroff-1902
92425642da Fix config_jobs 2020-03-03 01:00:24 +03:00
Fredrik81
0e4862b0c8 Added logging if argument is miss-configured 2020-03-02 22:58:54 +01:00
Fredrik81
7713cfeb79 Corrected logic for -j + and - argument 2020-03-02 21:02:32 +01:00
Matthias
6e2290c4f0 Allow last to be empty -
closes #3005
2020-03-02 20:05:54 +01:00
Matthias
35ef065d7b Merge pull request #3012 from freqtrade/dependabot/pip/develop/scikit-learn-0.22.2
Bump scikit-learn from 0.22.1 to 0.22.2
2020-03-02 10:54:20 +01:00
Matthias
dae04e2752 Merge pull request #3011 from freqtrade/dependabot/pip/develop/ccxt-1.23.30
Bump ccxt from 1.22.95 to 1.23.30
2020-03-02 10:50:25 +01:00
Matthias
4605bdad29 Merge pull request #3013 from freqtrade/dependabot/pip/develop/plotly-4.5.2
Bump plotly from 4.5.1 to 4.5.2
2020-03-02 10:49:55 +01:00
dependabot-preview[bot]
a17f3fb8be Bump plotly from 4.5.1 to 4.5.2
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.5.1 to 4.5.2.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.5.1...v4.5.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-02 08:39:25 +00:00
dependabot-preview[bot]
485075b8f2 Bump scikit-learn from 0.22.1 to 0.22.2
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.22.1 to 0.22.2.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.22.1...0.22.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-02 08:38:36 +00:00
dependabot-preview[bot]
e204e3277b Bump ccxt from 1.22.95 to 1.23.30
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.22.95 to 1.23.30.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.22.95...1.23.30)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-03-02 08:37:58 +00:00
hroff-1902
db1227f279 Merge pull request #3007 from yazeed/hyperopt_interface_sort
hyperopt_interface.py code styling
2020-03-02 02:22:44 +03:00
Yazeed Al Oyoun
77b7f95efb simple code styling fixes 2020-03-02 00:14:01 +01:00
hroff-1902
8475baba4e Merge pull request #2995 from freqtrade/stake_curr_empty
Allow Stake currency empty when using download-data
2020-03-02 00:53:09 +03:00
hroff-1902
e20b06408c Merge pull request #3000 from freqtrade/fix/jupyter_example
[minor] Fix jupyter notebook example
2020-03-02 00:49:21 +03:00
Fredrik81
f08c7eedf1 Changed jobs to be dynamic for last loop 2020-03-01 14:35:13 +01:00
Fredrik81
75b4f1a442 Fix alignment of higher values 2020-03-01 14:12:27 +01:00
Matthias
0f2d771634 update docs 2020-03-01 09:46:12 +01:00
Matthias
4d8430c687 Use string typehints to avoid import errors 2020-03-01 09:43:20 +01:00
Matthias
cd54875f03 Add documentation link to advanced functions 2020-03-01 09:40:07 +01:00
Matthias
791148176c Add callback functions to new-strategy --template advanced 2020-03-01 09:35:53 +01:00
Matthias
7736f8d018 Add tests for fallkback 2020-03-01 09:34:42 +01:00
Matthias
eda77aeec8 Add render_template fallback 2020-03-01 09:30:30 +01:00
Fredrik81
379275e2d6 Updated tests 2020-03-01 03:24:04 +01:00
Fredrik81
267416eced Changed test for new table printing 2020-03-01 03:11:00 +01:00
Fredrik81
e89fd33229 Fix for more arguments 2020-02-29 23:57:15 +01:00
Fredrik81
7a4edb1cd8 Fix: When total epochs is less than cpu cores 2020-02-29 23:41:59 +01:00
hroff-1902
0a2f854302 Merge pull request #3001 from freqtrade/doc-nonce
[minor] Add note about InvalidNonce to documentation
2020-03-01 01:28:34 +03:00
Fredrik81
23ae0653bd Changed table output to match hyperopt-list command 2020-02-29 23:24:08 +01:00
Matthias
60f04cff4d Simplify expression 2020-02-29 20:41:03 +01:00
Matthias
8fce82b412 Merge pull request #3002 from freqtrade/kraken_supported
Add official support for Kraken
2020-02-29 19:32:43 +01:00
Matthias
18d724f7a1 Adjust wording of supported exchanges 2020-02-29 19:22:36 +01:00
Matthias
d7373be553 Add official support for Kraken 2020-02-29 16:58:22 +01:00
Matthias
4c39f36084 Add note about InvalidNonce to documentation 2020-02-29 16:36:33 +01:00
hroff-1902
415f1dc25b Merge pull request #2999 from freqtrade/release_docs
[minor] improve and correct release documentation
2020-02-29 18:31:11 +03:00
hroff-1902
293d1fca5c Merge pull request #2998 from freqtrade/try_fix_randomfailure
Try fix random testfailure
2020-02-29 18:29:54 +03:00
Matthias
848054d140 Fix jupyter notebook example -
generate_candlestick_graph() needs a filtered pairlist, not a list
containing all pairs
2020-02-29 15:53:54 +01:00
Matthias
f25adf3b12 improve and correct release documentation 2020-02-29 15:48:36 +01:00
Matthias
9336d8ee02 Try fix random testfailure 2020-02-29 15:44:45 +01:00
Matthias
60579485e5 fix empty stake currency problem 2020-02-29 14:56:36 +01:00
Matthias
5277d71913 Add test for empty stake-currency 2020-02-29 14:56:04 +01:00
hroff-1902
0528af1700 Merge pull request #2879 from freqtrade/sortino_hyperopt_loss
Sortino hyperopt loss
2020-02-29 11:36:27 +03:00
Fredrik81
349aa2f957 Added dynamic print table function to hyperopt 2020-02-28 21:54:04 +01:00
hroff-1902
bee8e92f02 Final changes, use sqrt i.o. statistics.pstdev 2020-02-28 23:50:25 +03:00
hroff-1902
e411717de9 No percent where ratio is to be used 2020-02-28 12:36:39 +03:00
Matthias
ac7fa8252b Merge pull request #2985 from Fredrik81/pretty-backtesting
Changed table style of backtesting and alignment of headers
2020-02-28 06:20:34 +01:00
hroff-1902
866c51acc5 Merge pull request #2988 from freqtrade/fix/dryrun
run-mode not correctly set when using --dry-run
2020-02-27 22:09:18 +03:00
Matthias
a55964a622 we Must parse --dry-run before setting run-mode 2020-02-27 19:36:54 +01:00
Matthias
5a02026f82 Add test validating behaviour 2020-02-27 19:35:58 +01:00
hroff-1902
c0001fcb8c Merge pull request #2987 from Fredrik81/table-style
Minor change to standardize table style.
2020-02-27 18:30:14 +03:00
hroff-1902
c1c0b59223 Merge pull request #2974 from freqtrade/enhance_roi_doc
Add timeframe_to_minutes to ROI documentation
2020-02-27 18:18:24 +03:00
Fredrik81
15e59654d9 Minor change to standardize table style.
This PR will target commands.
2020-02-27 16:10:45 +01:00
Matthias
e5a9c81412 Add 0 entry to enhanced ROI example 2020-02-27 14:04:12 +01:00
Fredrik81
55d471190a Changed table style of backtesting and alignment of headers 2020-02-27 13:28:28 +01:00
hroff-1902
90065843a5 Merge pull request #2983 from freqtrade/runmode
Logging should be initialized first
2020-02-27 12:22:37 +03:00
Matthias
8623300d15 Merge pull request #2984 from freqtrade/dependabot/docker/python-3.8.2-slim-buster
Bump python from 3.8.1-slim-buster to 3.8.2-slim-buster
2020-02-27 08:26:20 +01:00
dependabot-preview[bot]
bbb438bd40 Bump python from 3.8.1-slim-buster to 3.8.2-slim-buster
Bumps python from 3.8.1-slim-buster to 3.8.2-slim-buster.

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-27 06:18:09 +00:00
Matthias
e5ec97495d Logging should be initialized first 2020-02-27 07:01:00 +01:00
hroff-1902
893d9cde8d Merge pull request #2943 from Fredrik81/add-print-table
Added function to print hyperopt-list as table using tabulate
2020-02-27 05:22:41 +03:00
Matthias
b6839289ec Add price_side to sample config files 2020-02-26 20:03:13 +01:00
Matthias
0fea3a7ea7 Some final polish to configurable_side 2020-02-26 19:50:17 +01:00
Matthias
3c5e716d8f Update some documentation regarding price_side 2020-02-26 19:39:12 +01:00
Matthias
8edc3eb5fb Use generator to generate sell price scaffold testing 2020-02-26 19:39:12 +01:00
Matthias
e1cb6f4ae3 fix and improve tests in test_freqtradebot 2020-02-26 19:39:12 +01:00
Matthias
e7b9891335 Adapt rpc tests to corrected price side 2020-02-26 19:39:12 +01:00
Matthias
e4b2949188 Change buy_rate calculation to use price_side 2020-02-26 19:39:12 +01:00
Matthias
5f71232038 Refactor get_buy_rate to use rate variable 2020-02-26 19:39:12 +01:00
Matthias
de48a697b0 Use price_side for get_sell_rate 2020-02-26 19:39:12 +01:00
Matthias
f91d7beaa1 Fix constants wrong parenteses 2020-02-26 19:39:12 +01:00
hroff-1902
30b0911645 Merge pull request #2976 from gaugau3000/doc_update_config_section
[Doc update config section] - [minor]
2020-02-26 12:45:06 +03:00
hroff-1902
e6d003f8f2 Merge pull request #2973 from freqtrade/support_non_pairs
Support non pairs
2020-02-26 12:20:45 +03:00
Matthias
f38accb77b Return empty string if no quote / base currency can be found 2020-02-26 07:09:54 +01:00
Matthias
4e218be51d Don't use markets[pair]['quote'] 2020-02-26 07:08:09 +01:00
Matthias
1021ffa1c3 Apply suggestions from code review
Add suggested changes to comments

Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-26 07:00:08 +01:00
Matthias
1e869b86f2 Update checkout aciton to v2
https://github.com/actions/checkout/issues/23 suggests that it's fixed in v2.
2020-02-26 06:54:04 +01:00
Matthias
af4469f073 Convert to str to avoid errors 2020-02-26 06:43:15 +01:00
Matthias
df49b98c25 Implement wording-changes
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-26 06:40:13 +01:00
hroff-1902
ce2e039e5f Update docs/configuration.md 2020-02-26 01:58:32 +03:00
gaugau3000
76c449c0c2 volume_pair_list_extra_doc_infos 2020-02-25 19:45:23 +00:00
gaugau3000
7d7318a3ea fix_wrong_order_type 2020-02-25 19:41:20 +00:00
Matthias
a030ce9348 Reformat if condition 2020-02-25 20:22:59 +01:00
Matthias
d44f6651c4 Fix small parenteses bug 2020-02-25 19:55:23 +01:00
Matthias
cfc22577be Add timeframe_to_minutes to ROI documentation 2020-02-25 16:54:48 +01:00
Matthias
47e46bf205 Add second example using dataprovider and current price 2020-02-25 14:48:46 +01:00
Matthias
31ac4598ba Fix last occurances of pair splitting 2020-02-25 07:16:37 +01:00
Matthias
d34515a5de Remove constraint to have pairs in base/quote format 2020-02-25 07:04:20 +01:00
Matthias
e8eaa8920e Use get_base_currency instead of splitting by / 2020-02-25 07:01:31 +01:00
Matthias
e9448dc5e2 Add tsts for quote and base currency 2020-02-25 07:01:23 +01:00
Fredrik81
cd7efde6c0 Fixed coloring so it's only targeting the values not the table borders 2020-02-24 22:06:21 +01:00
Matthias
61037ab7b8 Implement get_pair_base_curr and get_pair_quote_curr 2020-02-24 21:50:27 +01:00
Matthias
3e4f663418 Move pairlist validation to exchange (we need to use .quote) from
markets
2020-02-24 21:33:42 +01:00
Matthias
6581ba56ca Use markets.quote to validate 2020-02-24 20:41:45 +01:00
Fredrik81
23bf135b8a Alignment of table content, changed coloring, changed 'Best' column to show if it's initial_point or best 2020-02-24 11:01:14 +01:00
Fredrik81
7eb62ed32e Remove old print option for hyperopt-list and made table as default 2020-02-24 00:33:01 +01:00
Matthias
e37f055dad Improve some tests 2020-02-23 13:12:00 +01:00
Matthias
9301f81fc8 Add test for user-sell_timeout handling 2020-02-23 13:09:46 +01:00
Matthias
634e7cc34a Implement handle_buy_trade_customcallback 2020-02-23 13:08:11 +01:00
Matthias
8cd77b2e27 Add some tests for strategy_wrapper 2020-02-22 11:55:40 +01:00
Matthias
365fdf4c37 Add docstring to strategy wrapper 2020-02-22 11:41:22 +01:00
Matthias
4a188525ec Fix documentation note syntax 2020-02-22 11:28:13 +01:00
Matthias
63502ed976 Add new advanced-strategy documentation file 2020-02-22 08:14:08 +01:00
Matthias
bc30162a31 Add some documentation 2020-02-21 20:54:21 +01:00
Matthias
135d9ddf7a Fix test due to changed dry-run cancel order 2020-02-21 20:35:54 +01:00
Matthias
bf556c8678 Merge branch 'develop' into interface_ordertimeoutcallback 2020-02-21 20:35:07 +01:00
Matthias
6c01542fed Ad check_sell_timeout 2020-02-21 20:27:13 +01:00
Matthias
8c1a933221 cancel_order should return a dict 2020-02-21 20:23:43 +01:00
Fredrik81
09226fd5d5 PEP8 correction 2020-02-20 19:18:42 +01:00
Fredrik81
e7b12704de Added test for details 2020-02-20 19:12:55 +01:00
Yazeed Al Oyoun
09a1c9eed6 fixed docs description of hyperopts 2020-02-19 22:25:34 +01:00
Yazeed Al Oyoun
41b4fa3b7f fixed two more typos 2020-02-19 02:59:51 +01:00
Yazeed Al Oyoun
3fb6818bd8 Merge branch 'develop' into sortino_hyperopt_loss 2020-02-19 02:37:25 +01:00
Yazeed Al Oyoun
df26c357d2 doc updates 2020-02-19 01:31:25 +01:00
Fredrik Rydin
585545405d Changed tests 2020-02-19 00:51:44 +01:00
Fredrik Rydin
2058b492eb Added function to print hyperopt-list as table using tabulate 2020-02-18 22:46:53 +01:00
hroff-1902
674898bd32 Fix usage of vars in the commented out line 2020-02-16 15:26:40 +03:00
hroff-1902
42dfda9231 Adjust docstring 2020-02-16 13:46:07 +03:00
hroff-1902
fbe5cc44da Use statistics.pstdev 2020-02-16 13:43:23 +03:00
hroff-1902
1e84b2770c Fix values of downside_returns 2020-02-16 04:10:53 +03:00
hroff-1902
161dd1a3e6 Rename risk_free_return to minumum_accepted_return 2020-02-16 03:55:16 +03:00
hroff-1902
b2328cdf4f Do not subtract risk_free_ratio twice 2020-02-13 07:07:35 +03:00
hroff-1902
9ec9a7b124 Fix t_index to be normalized 2020-02-09 21:20:15 +03:00
Yazeed Al Oyoun
6b279f297c fixed test 2020-02-07 16:45:07 +03:00
Yazeed Al Oyoun
e8b9d88eb6 moved line for total_downside 2020-02-07 16:44:55 +03:00
Yazeed Al Oyoun
a46b7bcd6d more fixes... 2020-02-07 16:44:43 +03:00
Yazeed Al Oyoun
951a19fb00 added tests for both sortino methods 2020-02-07 16:44:30 +03:00
Yazeed Al Oyoun
be34dc463b fixed bad commit 2020-02-07 16:44:01 +03:00
Yazeed Al Oyoun
9bcc5d2eed fixed downside_returns to read from profit_percent_after_slippage 2020-02-07 16:36:12 +03:00
Yazeed Al Oyoun
728ab0ff21 Added both SortinoHyperOptLoss and SortinoHyperOptLossDaily 2020-02-07 16:35:28 +03:00
Yazeed Al Oyoun
b56a1f0603 initial push of sortino, work not done, still need own tests 2020-02-07 16:34:20 +03:00
Yazeed Al Oyoun
deb0b7ad67 Added both SortinoHyperOptLoss and SortinoHyperOptLossDaily 2020-02-07 16:30:37 +03:00
Yazeed Al Oyoun
44d67389d2 initial push of sortino, work not done, still need own tests 2020-02-07 16:29:27 +03:00
Matthias
49dcc561b7 POC for check_buy_timeout 2020-02-06 20:30:17 +01:00
Matthias
2816b96650 Create strategy_wrapper to call user-defined code with 2020-02-06 20:26:04 +01:00
126 changed files with 3597 additions and 1543 deletions

View File

@@ -23,7 +23,7 @@ jobs:
python-version: [3.7, 3.8]
steps:
- uses: actions/checkout@v1
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v1
@@ -115,10 +115,10 @@ jobs:
strategy:
matrix:
os: [ windows-latest ]
python-version: [3.7]
python-version: [3.7, 3.8]
steps:
- uses: actions/checkout@v1
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v1
@@ -130,8 +130,7 @@ jobs:
if: startsWith(runner.os, 'Windows')
with:
path: ~\AppData\Local\pip\Cache
key: ${{ runner.os }}-pip
restore-keys: ${{ runner.os }}-pip
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: Installation
run: |
@@ -175,7 +174,7 @@ jobs:
docs_check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- uses: actions/checkout@v2
- name: Documentation syntax
run: |
@@ -195,7 +194,7 @@ jobs:
runs-on: ubuntu-18.04
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
steps:
- uses: actions/checkout@v1
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v1

1
.gitignore vendored
View File

@@ -6,7 +6,6 @@ user_data/*
!user_data/strategy/sample_strategy.py
!user_data/notebooks
user_data/notebooks/*
!user_data/notebooks/*example.ipynb
freqtrade-plot.html
freqtrade-profit-plot.html

View File

@@ -1,4 +1,3 @@
sudo: true
os:
- linux
dist: xenial
@@ -11,10 +10,10 @@ env:
global:
- IMAGE_NAME=freqtradeorg/freqtrade
install:
- cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies; cd ..
- export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
- export TA_LIBRARY_PATH=${HOME}/dependencies/lib
- export TA_INCLUDE_PATH=${HOME}/dependencies/lib/include
- export TA_INCLUDE_PATH=${HOME}/dependencies/include
- pip install -r requirements-dev.txt
- pip install -e .
jobs:

View File

@@ -1,4 +1,4 @@
FROM python:3.8.1-slim-buster
FROM python:3.8.2-slim-buster
RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev \

View File

@@ -2,3 +2,4 @@ include LICENSE
include README.md
include config.json.example
recursive-include freqtrade *.py
recursive-include freqtrade/templates/ *.j2 *.ipynb

View File

@@ -25,7 +25,8 @@ hesitate to read the source code and understand the mechanism of this bot.
## Exchange marketplaces supported
- [X] [Bittrex](https://bittrex.com/)
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](#a-note-on-binance))
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#blacklists))
- [X] [Kraken](https://kraken.com/)
- [ ] [113 others to tests](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
## Documentation

Binary file not shown.

View File

@@ -3,7 +3,15 @@
# Invoke-WebRequest -Uri "https://download.lfd.uci.edu/pythonlibs/xxxxxxx/TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl" -OutFile "TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl"
python -m pip install --upgrade pip
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
if ($pyv -eq '3.7') {
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
}
if ($pyv -eq '3.8') {
pip install build_helpers\TA_Lib-0.4.17-cp38-cp38-win_amd64.whl
}
pip install -r requirements-dev.txt
pip install -e .

View File

@@ -23,7 +23,7 @@
"ask_strategy":{
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"order_book_max": 1,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false

View File

@@ -23,7 +23,7 @@
"ask_strategy":{
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"order_book_max": 1,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false

View File

@@ -25,6 +25,7 @@
"sell": 30
},
"bid_strategy": {
"price_side": "bid",
"use_order_book": false,
"ask_last_balance": 0.0,
"order_book_top": 1,
@@ -34,9 +35,10 @@
}
},
"ask_strategy":{
"price_side": "ask",
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"order_book_max": 1,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false

View File

@@ -23,7 +23,7 @@
"ask_strategy":{
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"order_book_max": 1,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false

View File

@@ -3,6 +3,7 @@ version: '3'
services:
freqtrade:
image: freqtradeorg/freqtrade:master
# image: freqtradeorg/freqtrade:develop
# Build step - only needed when additional dependencies are needed
# build:
# context: .
@@ -14,7 +15,7 @@ services:
# Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/freqtrade.log
--logfile /freqtrade/user_data/logs/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--strategy SampleStrategy

View File

@@ -37,30 +37,30 @@ as the watchdog.
## Advanced Logging
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfilename` command line option can be used for this.
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfile` command line option can be used for this.
### Logging to syslog
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfilename` command line option with the value in the following format:
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfile` command line option with the value in the following format:
* `--logfilename syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
* `--logfile syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
The syslog address can be either a Unix domain socket (socket filename) or a UDP socket specification, consisting of IP address and UDP port, separated by the `:` character.
So, the following are the examples of possible usages:
* `--logfilename syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
* `--logfilename syslog` -- same as above, the shortcut for `/dev/log`.
* `--logfilename syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
* `--logfilename syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
* `--logfilename syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
* `--logfile syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
* `--logfile syslog` -- same as above, the shortcut for `/dev/log`.
* `--logfile syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
* `--logfile syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
* `--logfile syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
Log messages are send to `syslog` with the `user` facility. So you can see them with the following commands:
* `tail -f /var/log/user`, or
* install a comprehensive graphical viewer (for instance, 'Log File Viewer' for Ubuntu).
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
For `rsyslog` the messages from the bot can be redirected into a separate dedicated log file. To achieve this, add
```
@@ -78,9 +78,9 @@ $RepeatedMsgReduction on
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfilename` command line option with the value in the following format:
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:
* `--logfilename journald` -- send log messages to `journald`.
* `--logfile journald` -- send log messages to `journald`.
Log messages are send to `journald` with the `user` facility. So you can see them with the following commands:
@@ -89,4 +89,4 @@ Log messages are send to `journald` with the `user` facility. So you can see the
There are many other options in the `journalctl` utility to filter the messages, see manual pages for this utility.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.

View File

@@ -11,8 +11,8 @@ Now you have good Buy and Sell strategies and some historic data, you want to te
real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pairs) from your config file and load ticker data from `user_data/data/<exchange>` by default.
If no data is available for the exchange / pair / ticker interval combination, backtesting will ask you to download them first using `freqtrade download-data`.
Backtesting will use the crypto-currencies (pairs) from your config file and load historical candle (OHCLV) data from `user_data/data/<exchange>` by default.
If no data is available for the exchange / pair / timeframe (ticker interval) combination, backtesting will ask you to download them first using `freqtrade download-data`.
For details on downloading, please refer to the [Data Downloading](data-download.md) section in the documentation.
The result of backtesting will confirm if your bot has better odds of making a profit than a loss.
@@ -22,19 +22,19 @@ The result of backtesting will confirm if your bot has better odds of making a p
### Run a backtesting against the currencies listed in your config file
#### With 5 min tickers (Per default)
#### With 5 min candle (OHLCV) data (per default)
```bash
freqtrade backtesting
```
#### With 1 min tickers
#### With 1 min candle (OHLCV) data
```bash
freqtrade backtesting --ticker-interval 1m
```
#### Using a different on-disk ticker-data source
#### Using a different on-disk historical candle (OHLCV) data source
Assume you downloaded the history data from the Bittrex exchange and kept it in the `user_data/data/bittrex-20180101` directory.
You can then use this data for backtesting as follows:
@@ -223,7 +223,7 @@ You can then load the trades to perform further analysis as shown in our [data a
To compare multiple strategies, a list of Strategies can be provided to backtesting.
This is limited to 1 ticker-interval per run, however, data is only loaded once from disk so if you have multiple
This is limited to 1 timeframe (ticker interval) value per run. However, data is only loaded once from disk so if you have multiple
strategies you'd like to compare, this will give a nice runtime boost.
All listed Strategies need to be in the same directory.

View File

@@ -144,10 +144,10 @@ It is recommended to use version control to keep track of changes to your strate
### How to use **--strategy**?
This parameter will allow you to load your custom strategy class.
Per default without `--strategy` or `-s` the bot will load the
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
To test the bot installation, you can use the `SampleStrategy` installed by the `create-userdir` subcommand (usually `user_data/strategy/sample_strategy.py`).
The bot will search your strategy file within `user_data/strategies` and `freqtrade/strategy`.
The bot will search your strategy file within `user_data/strategies`.
To use other directories, please read the next section about `--strategy-path`.
To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this parameter.
@@ -275,7 +275,7 @@ Check the corresponding [Data Downloading](data-download.md) section for more de
## Hyperopt commands
To optimize your strategy, you can use hyperopt parameter hyperoptimization
to find optimal parameter values for your stategy.
to find optimal parameter values for your strategy.
```
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
@@ -323,7 +323,7 @@ optional arguments:
--print-all Print all results, not only the best ones.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format.
--print-json Print best results in JSON format.
-j JOBS, --job-workers JOBS
The number of concurrently running jobs for
hyperoptimization (hyperopt worker processes). If -1
@@ -341,10 +341,11 @@ optional arguments:
class (IHyperOptLoss). Different functions can
generate completely different results, since the
target for optimization is different. Built-in
Hyperopt-loss-functions are: DefaultHyperOptLoss,
OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
SharpeHyperOptLossDaily.(default:
`DefaultHyperOptLoss`).
Hyperopt-loss-functions are:
DefaultHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily.
(default: `DefaultHyperOptLoss`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@@ -34,20 +34,20 @@ The prevelance for all Options is as follows:
- CLI arguments override any other option
- Configuration files are used in sequence (last file wins), and override Strategy configurations.
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are market with [Strategy Override](#parameters-in-the-strategy) in the below table.
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Parameter | Description |
|------------|-------------|
| `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation which can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `ticker_interval` | The timeframe (ticker interval) to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
@@ -60,11 +60,13 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook).
| `bid_strategy.price_side` | Select the side of the spread the bot should look at to get the buy rate. [More information below](#buy-price-side).<br> *Defaults to `bid`.* <br> **Datatype:** String (either `ask` or `bid`).
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook-enabled).
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `ask_strategy.price_side` | Select the side of the spread the bot should look at to get the sell rate. [More information below](#sell-price-side).<br> *Defaults to `ask`.* <br> **Datatype:** String (either `ask` or `bid`).
| `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
@@ -111,8 +113,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store OHLCV historic data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store trades historic data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
### Parameters in the strategy
@@ -340,7 +342,7 @@ This is most of the time the default time in force. It means the order will rema
on exchange till it is canceled by user. It can be fully or partially fulfilled.
If partially fulfilled, the remaining will stay on the exchange till cancelled.
**FOK (Full Or Kill):**
**FOK (Fill Or Kill):**
It means if the order is not executed immediately AND fully then it is canceled by the exchange.
@@ -370,16 +372,18 @@ The possible values are: `gtc` (default), `fok` or `ioc`.
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports over 100 cryptocurrency
exchange markets and trading APIs. The complete up-to-date list can be found in the
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python). However, the bot was tested
with only Bittrex and Binance.
The bot was tested with the following exchanges:
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python).
However, the bot was tested by the development team with only Bittrex, Binance and Kraken,
so the these are the only officially supported exhanges:
- [Bittrex](https://bittrex.com/): "bittrex"
- [Binance](https://www.binance.com/): "binance"
- [Kraken](https://kraken.com/): "kraken"
Feel free to test other exchanges and submit your PR to improve the bot.
Some exchanges require special configuration, which can be found on the [Exchange-specific Notes](exchanges.md) documentation page.
#### Sample exchange configuration
A exchange configuration for "binance" would look as follows:
@@ -409,7 +413,7 @@ Advanced options can be configured using the `_ft_has_params` setting, which wil
Available options are listed in the exchange-class as `_ft_has_default`.
For example, to test the order type `FOK` with Kraken, and modify candle_limit to 200 (so you only get 200 candles per call):
For example, to test the order type `FOK` with Kraken, and modify candle limit to 200 (so you only get 200 candles per API call):
```json
"exchange": {
@@ -461,34 +465,89 @@ Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) s
!!! Note
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
#### Buy price side
The configuration setting `bid_strategy.price_side` defines the side of the spread the bot looks for when buying.
The following displays an orderbook.
``` explanation
...
103
102
101 # ask
-------------Current spread
99 # bid
98
97
...
```
If `bid_strategy.price_side` is set to `"bid"`, then the bot will use 99 as buying price.
In line with that, if `bid_strategy.price_side` is set to `"ask"`, then the bot will use 101 as buying price.
Using `ask` price often guarantees quicker filled orders, but the bot can also end up paying more than what would have been necessary.
Taker fees instead of maker fees will most likely apply even when using limit buy orders.
Also, prices at the "ask" side of the spread are higher than prices at the "bid" side in the orderbook, so the order behaves similar to a market order (however with a maximum price).
#### Buy price with Orderbook enabled
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the `bid` (buy) side of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the configured side (`bid_strategy.price_side`) of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
#### Buy price without Orderbook enabled
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `ask` (sell) price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `ask` price is not below the `last` price), it calculates a rate between `ask` and `last` price.
The following section uses `side` as the configured `bid_strategy.price_side`.
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `ask` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `side` price is above the `last` price), it calculates a rate between `side` and `last` price.
Using `ask` price often guarantees quicker success in the bid, but the bot can also end up paying more than what would have been necessary.
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
### Sell price
#### Sell price side
The configuration setting `ask_strategy.price_side` defines the side of the spread the bot looks for when selling.
The following displays an orderbook:
``` explanation
...
103
102
101 # ask
-------------Current spread
99 # bid
98
97
...
```
If `ask_strategy.price_side` is set to `"ask"`, then the bot will use 101 as selling price.
In line with that, if `ask_strategy.price_side` is set to `"bid"`, then the bot will use 99 as selling price.
#### Sell price with Orderbook enabled
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the `ask` orderbook side are validated for a profitable sell-possibility based on the strategy configuration and the sell order is placed at the first profitable spot.
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the configured orderbook side are validated for a profitable sell-possibility based on the strategy configuration (`minimal_roi` conditions) and the sell order is placed at the first profitable spot.
!!! Note
Using `order_book_max` higher than `order_book_min` only makes sense when ask_strategy.price_side is set to `"ask"`.
The idea here is to place the sell order early, to be ahead in the queue.
A fixed slot (mirroring `bid_strategy.order_book_top`) can be defined by setting `ask_strategy.order_book_min` and `ask_strategy.order_book_max` to the same number.
!!! Warning "Orderbook and stoploss_on_exchange"
Using `ask_strategy.order_book_max` higher than 1 may increase the risk, since an eventual [stoploss on exchange](#understand-order_types) will be needed to be cancelled as soon as the order is placed.
!!! Warning "Order_book_max > 1 - increased risks for stoplosses!"
Using `ask_strategy.order_book_max` higher than 1 will increase the risk the stoploss on exchange is cancelled too early, since an eventual [stoploss on exchange](#understand-order_types) will be cancelled as soon as the order is placed.
Also, the sell order will remain on the exchange for `unfilledtimeout.sell` (or until it's filled) - which can lead to missed stoplosses (with or without using stoploss on exchange).
!!! Warning "Order_book_max > 1 in dry-run"
Using `ask_strategy.order_book_max` higher than 1 will result in improper dry-run results (significantly better than real orders executed on exchange), since dry-run assumes orders to be filled almost instantly.
It is therefore advised to not use this setting for dry-runs.
#### Sell price without Orderbook enabled
When not using orderbook (`ask_strategy.use_order_book=False`), the `bid` price from the ticker will be used as the sell price.
When not using orderbook (`ask_strategy.use_order_book=False`), the price at the `ask_strategy.price_side` side (defaults to `"ask"`) from the ticker will be used as the sell price.
## Pairlists
@@ -532,6 +591,12 @@ It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklis
`refresh_period` allows setting the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
`VolumePairList` is based on the ticker data, as reported by the ccxt library:
* The `bidVolume` is the volume (amount) of current best bid in the orderbook.
* The `askVolume` is the volume (amount) of current best ask in the orderbook.
* The `quoteVolume` is the amount of quote (stake) currency traded (bought or sold) in last 24 hours.
```json
"pairlists": [{
"method": "VolumePairList",

View File

@@ -33,7 +33,7 @@ optional arguments:
Specify which tickers to download. Space-separated list. Default: `1m 5m`.
--erase Clean all existing data for the selected exchange/pairs/timeframes.
--data-format-ohlcv {json,jsongz}
Storage format for downloaded ohlcv data. (default: `json`).
Storage format for downloaded candle (OHLCV) data. (default: `json`).
--data-format-trades {json,jsongz}
Storage format for downloaded trades data. (default: `jsongz`).
@@ -105,7 +105,7 @@ Common arguments:
##### Example converting data
The following command will convert all ohlcv (candle) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
``` bash
@@ -192,15 +192,15 @@ Then run:
freqtrade download-data --exchange binance
```
This will download ticker data for all the currency pairs you defined in `pairs.json`.
This will download historical candle (OHLCV) data for all the currency pairs you defined in `pairs.json`.
### Other Notes
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the tickers, please use a different configuration file (you'll probably need to adjust ratelimits etc.)
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust ratelimits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10` (defaults to 30 days).
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
### Trades (tick) data

View File

@@ -165,7 +165,7 @@ Since CCXT does not provide unification for Stoploss On Exchange yet, we'll need
### Incomplete candles
While fetching OHLCV data, we're may end up getting incomplete candles (Depending on the exchange).
While fetching candle (OHLCV) data, we may end up getting incomplete candles (depending on the exchange).
To demonstrate this, we'll use daily candles (`"1d"`) to keep things simple.
We query the api (`ct.fetch_ohlcv()`) for the timeframe and look at the date of the last entry. If this entry changes or shows the date of a "incomplete" candle, then we should drop this since having incomplete candles is problematic because indicators assume that only complete candles are passed to them, and will generate a lot of false buy signals. By default, we're therefore removing the last candle assuming it's incomplete.
@@ -174,14 +174,14 @@ To check how the new exchange behaves, you can use the following snippet:
``` python
import ccxt
from datetime import datetime
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.converter import ohlcv_to_dataframe
ct = ccxt.binance()
timeframe = "1d"
pair = "XLM/BTC" # Make sure to use a pair that exists on that exchange!
raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe
df1 = parse_ticker_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
df1 = ohlcv_to_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1.tail(1))
print(datetime.utcnow())
@@ -234,7 +234,7 @@ git checkout -b new_release <commitid>
Determine if crucial bugfixes have been made between this commit and the current state, and eventually cherry-pick these.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7-1` should we need to do a second release that month.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7.1` should we need to do a second release that month. Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
* Commit this part
* push that branch to the remote and create a PR against the master branch
@@ -268,11 +268,6 @@ Once the PR against master is merged (best right after merging):
* Use "master" as reference (this step comes after the above PR is merged).
* Use the above changelog as release comment (as codeblock)
### After-release
* Update version in develop by postfixing that with `-dev` (`2019.6 -> 2019.6-dev`).
* Create a PR against develop to update that branch.
## Releases
### pypi

View File

@@ -79,7 +79,7 @@ So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
Expectancy = (5 X 0.28) 0.72 = 0.68
```
Superficially, this means that on average you expect this strategys trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
Superficially, this means that on average you expect this strategys trades to return 1.68 times the size of your loses. Said another way, you can expect to win $1.68 for every $1 you lose. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.
@@ -156,7 +156,7 @@ Edge module has following configuration options:
| `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> **Datatype:** Float
| `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> **Datatype:** Float
| `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> **Datatype:** Integer
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your timeframe (ticker interval). As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
| `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> **Datatype:** Boolean
## Running Edge independently

View File

@@ -62,6 +62,11 @@ res = [ f"{x['MarketCurrency']}/{x['BaseCurrency']}" for x in ct.publicGetMarket
print(res)
```
## All exchanges
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
## Random notes for other exchanges
* The Ocean (exchange id: `theocean`) exchange uses Web3 functionality and requires `web3` python package to be installed:
@@ -69,23 +74,13 @@ print(res)
$ pip3 install web3
```
### Send incomplete candles to the strategy
### Getting latest price / Incomplete candles
Most exchanges return incomplete candles via their ohlcv / klines interface.
By default, Freqtrade assumes that incomplete candles are returned and removes the last candle assuming it's an incomplete candle.
Most exchanges return current incomplete candle via their OHLCV/klines API interface.
By default, Freqtrade assumes that incomplete candle is fetched from the exchange and removes the last candle assuming it's the incomplete candle.
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#Incomplete-candles) from the Contributor documentation.
If the exchange does return incomplete candles and you would like to have incomplete candles in your strategy, you can set the following parameter in the configuration file.
Due to the danger of repainting, Freqtrade does not allow you to use this incomplete candle.
``` json
{
"exchange": {
"_ft_has_params": {"ohlcv_partial_candle": false}
}
}
```
!!! Warning "Danger of repainting"
Changing this parameter makes the strategy responsible to avoid repainting and handle this accordingly. Doing this is therefore not recommended, and should only be performed by experienced users who are fully aware of the impact this setting has.
However, if it is based on the need for the latest price for your strategy - then this requirement can be acquired using the [data provider](strategy-customization.md#possible-options-for-dataprovider) from within the strategy.

View File

@@ -100,7 +100,7 @@ $ tail -f /path/to/mylogfile.log | grep 'something'
```
from a separate terminal window.
On Windows, the `--logfilename` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
On Windows, the `--logfile` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
```
> type \path\to\mylogfile.log | findstr "something"
```

View File

@@ -6,9 +6,7 @@ algorithms included in the `scikit-optimize` package to accomplish this. The
search will burn all your CPU cores, make your laptop sound like a fighter jet
and still take a long time.
In general, the search for best parameters starts with a few random combinations and then uses Bayesian search with a
ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace
that minimizes the value of the [loss function](#loss-functions).
In general, the search for best parameters starts with a few random combinations (see [below](#reproducible-results) for more details) and then uses Bayesian search with a ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace that minimizes the value of the [loss function](#loss-functions).
Hyperopt requires historic data to be available, just as backtesting does.
To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
@@ -16,6 +14,24 @@ To learn how to get data for the pairs and exchange you're interested in, head o
!!! Bug
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
## Install hyperopt dependencies
Since Hyperopt dependencies are not needed to run the bot itself, are heavy, can not be easily built on some platforms (like Raspberry PI), they are not installed by default. Before you run Hyperopt, you need to install the corresponding dependencies, as described in this section below.
!!! Note
Since Hyperopt is a resource intensive process, running it on a Raspberry Pi is not recommended nor supported.
### Docker
The docker-image includes hyperopt dependencies, no further action needed.
### Easy installation script (setup.sh) / Manual installation
```bash
source .env/bin/activate
pip install -r requirements-hyperopt.txt
```
## Prepare Hyperopting
Before we start digging into Hyperopt, we recommend you to take a look at
@@ -31,9 +47,9 @@ This will create a new hyperopt file from a template, which will be located unde
Depending on the space you want to optimize, only some of the below are required:
* fill `buy_strategy_generator` - for buy signal optimization
* fill `indicator_space` - for buy signal optimzation
* fill `indicator_space` - for buy signal optimization
* fill `sell_strategy_generator` - for sell signal optimization
* fill `sell_indicator_space` - for sell signal optimzation
* fill `sell_indicator_space` - for sell signal optimization
!!! Note
`populate_indicators` needs to create all indicators any of thee spaces may use, otherwise hyperopt will not work.
@@ -47,6 +63,9 @@ Optional - can also be loaded from a strategy:
!!! Note
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
!!! Note
You always have to provide a strategy to Hyperopt, even if your custom Hyperopt class contains all methods.
Rarely you may also need to override:
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
@@ -81,11 +100,11 @@ There are two places you need to change in your hyperopt file to add a new buy h
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
1. Guards are conditions like "never buy if ADX < 10", or never buy if current price is over EMA10.
2. Triggers are ones that actually trigger buy in specific moment, like "buy when EMA5 crosses over EMA10" or "buy when close price touches lower bollinger band".
2. Triggers are ones that actually trigger buy in specific moment, like "buy when EMA5 crosses over EMA10" or "buy when close price touches lower Bollinger band".
Hyperoptimization will, for each eval round, pick one trigger and possibly
multiple guards. The constructed strategy will be something like
"*buy exactly when close price touches lower bollinger band, BUT only if
"*buy exactly when close price touches lower Bollinger band, BUT only if
ADX > 10*".
If you have updated the buy strategy, i.e. changed the contents of
@@ -103,9 +122,10 @@ Place the corresponding settings into the following methods
The configuration and rules are the same than for buy signals.
To avoid naming collisions in the search-space, please prefix all sell-spaces with `sell-`.
#### Using ticker-interval as part of the Strategy
#### Using timeframe as a part of the Strategy
The Strategy exposes the ticker-interval as `self.ticker_interval`. The same value is available as class-attribute `HyperoptName.ticker_interval`.
The Strategy class exposes the timeframe (ticker interval) value as the `self.ticker_interval` attribute.
The same value is available as class-attribute `HyperoptName.ticker_interval`.
In the case of the linked sample-value this would be `SampleHyperOpt.ticker_interval`.
## Solving a Mystery
@@ -159,6 +179,9 @@ So let's write the buy strategy using these values:
dataframe['macd'], dataframe['macdsignal']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -172,7 +195,7 @@ So let's write the buy strategy using these values:
Hyperopting will now call this `populate_buy_trend` as many times you ask it (`epochs`)
with different value combinations. It will then use the given historical data and make
buys based on the buy signals generated with the above function and based on the results
it will end with telling you which paramter combination produced the best profits.
it will end with telling you which parameter combination produced the best profits.
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
When you want to test an indicator that isn't used by the bot currently, remember to
@@ -191,8 +214,10 @@ Currently, the following loss functions are builtin:
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on daily trade returns)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on trade returns relative to standard deviation)
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation)
* `SortinoHyperOptLoss` (optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation)
* `SortinoHyperOptLossDaily` (optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation)
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
@@ -220,11 +245,11 @@ The `--spaces all` option determines that all possible parameters should be opti
!!! Warning
When switching parameters or changing configuration options, make sure to not use the argument `--continue` so temporary results can be removed.
### Execute Hyperopt with Different Ticker-Data Source
### Execute Hyperopt with different historical data source
If you would like to hyperopt parameters using an alternate ticker data that
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
use data from directory `user_data/data`.
If you would like to hyperopt parameters using an alternate historical data set that
you have on-disk, use the `--datadir PATH` option. By default, hyperopt
uses data from directory `user_data/data`.
### Running Hyperopt with Smaller Testset
@@ -272,7 +297,7 @@ In some situations, you may need to run Hyperopt (and Backtesting) with the
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
open trade is allowed for every traded pair. The total number of trades open for all pairs
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
some potential trades to be hidden (or masked) by previosly open trades.
some potential trades to be hidden (or masked) by previously open trades.
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
@@ -287,7 +312,7 @@ You can also enable position stacking in the configuration file by explicitly se
### Reproducible results
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with a leading asterisk sign at the Hyperopt output.
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with an asterisk character (`*`) in the first column in the Hyperopt output.
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
@@ -378,7 +403,7 @@ As stated in the comment, you can also use it as the value of the `minimal_roi`
#### Default ROI Search Space
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point):
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used timeframes, values are rounded to 5 digits after the decimal point):
| # step | 1m | | 5m | | 1h | | 1d | |
| ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
@@ -387,7 +412,7 @@ If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace f
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the ticker interval used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the ticker interval used.
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the timeframe (ticker interval) used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the timeframe used.
If you have the `generate_roi_table()` and `roi_space()` methods in your custom hyperopt file, remove them in order to utilize these adaptive ROI tables and the ROI hyperoptimization space generated by Freqtrade by default.

View File

@@ -23,44 +23,64 @@ The `freqtrade plot-dataframe` subcommand shows an interactive graph with three
Possible arguments:
```
usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-p PAIRS [PAIRS ...]] [--indicators1 INDICATORS1 [INDICATORS1 ...]]
[--indicators2 INDICATORS2 [INDICATORS2 ...]] [--plot-limit INT] [--db-url PATH]
[--trade-source {DB,file}] [--export EXPORT] [--export-filename PATH] [--timerange TIMERANGE]
[-i TICKER_INTERVAL]
usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-p PAIRS [PAIRS ...]]
[--indicators1 INDICATORS1 [INDICATORS1 ...]]
[--indicators2 INDICATORS2 [INDICATORS2 ...]]
[--plot-limit INT] [--db-url PATH]
[--trade-source {DB,file}] [--export EXPORT]
[--export-filename PATH]
[--timerange TIMERANGE] [-i TICKER_INTERVAL]
[--no-trades]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-separated.
Show profits for only these pairs. Pairs are space-
separated.
--indicators1 INDICATORS1 [INDICATORS1 ...]
Set indicators from your strategy you want in the first row of the graph. Space-separated list. Example:
Set indicators from your strategy you want in the
first row of the graph. Space-separated list. Example:
`ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`.
--indicators2 INDICATORS2 [INDICATORS2 ...]
Set indicators from your strategy you want in the third row of the graph. Space-separated list. Example:
Set indicators from your strategy you want in the
third row of the graph. Space-separated list. Example:
`fastd fastk`. Default: `['macd', 'macdsignal']`.
--plot-limit INT Specify tick limit for plotting. Notice: too high values cause huge files. Default: 750.
--db-url PATH Override trades database URL, this is useful in custom deployments (default: `sqlite:///tradesv3.sqlite`
for Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for Dry Run).
--plot-limit INT Specify tick limit for plotting. Notice: too high
values cause huge files. Default: 750.
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--trade-source {DB,file}
Specify the source for trades (Can be DB or file (backtest file)) Default: file
--export EXPORT Export backtest results, argument are: trades. Example: `--export=trades`
Specify the source for trades (Can be DB or file
(backtest file)) Default: file
--export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades`
--export-filename PATH
Save backtest results to the file with this filename. Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest_today.json`
Save backtest results to the file with this filename.
Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest
_today.json`
--timerange TIMERANGE
Specify what timerange of data to use.
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
`1d`).
--no-trades Skip using trades from backtesting file and DB.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@@ -68,9 +88,9 @@ Common arguments:
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the bot.
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
```
Example:
@@ -196,6 +216,7 @@ The first graph is good to get a grip of how the overall market progresses.
The second graph will show if your algorithm works or doesn't.
Perhaps you want an algorithm that steadily makes small profits, or one that acts less often, but makes big swings.
This graph will also highlight the start (and end) of the Max drawdown period.
The third graph can be useful to spot outliers, events in pairs that cause profit spikes.

View File

@@ -1,2 +1,2 @@
mkdocs-material==4.6.3
mkdocs-material==5.1.3
mdx_truly_sane_lists==1.2

View File

@@ -67,22 +67,32 @@ SELECT * FROM trades;
!!! Warning
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, forcesell <tradeid> should be used to accomplish the same thing.
It is strongly advised to backup your database file before making any manual changes.
It is strongly advised to backup your database file before making any manual changes.
!!! Note
This should not be necessary after /forcesell, as forcesell orders are closed automatically by the bot on the next iteration.
```sql
UPDATE trades
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate-1, sell_reason=<sell_reason>
SET is_open=0,
close_date=<close_date>,
close_rate=<close_rate>,
close_profit=close_rate/open_rate-1,
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * open_rate * 1 - fee_open),
sell_reason=<sell_reason>
WHERE id=<trade_ID_to_update>;
```
##### Example
### Example
```sql
UPDATE trades
SET is_open=0, close_date='2017-12-20 03:08:45.103418', close_rate=0.19638016, close_profit=0.0496, sell_reason='force_sell'
SET is_open=0,
close_date='2017-12-20 03:08:45.103418',
close_rate=0.19638016,
close_profit=0.0496,
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * open_rate * 1 - fee_open)
sell_reason='force_sell'
WHERE id=31;
```
@@ -99,10 +109,3 @@ VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, <open_rate>, <stake_amount>, <a
INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date)
VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
```
## Fix wrong fees in the table
If your DB was created before [PR#200](https://github.com/freqtrade/freqtrade/pull/200) was merged (before 12/23/17).
```sql
UPDATE trades SET fee=0.0025 WHERE fee=0.005;
```

91
docs/strategy-advanced.md Normal file
View File

@@ -0,0 +1,91 @@
# Advanced Strategies
This page explains some advanced concepts available for strategies.
If you're just getting started, please be familiar with the methods described in the [Strategy Customization](strategy-customization.md) documentation first.
## Custom order timeout rules
Simple, timebased order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
However, freqtrade also offers a custom callback for both ordertypes, which allows you to decide based on custom criteria if a order did time out or not.
!!! Note
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
### Custom order timeout example
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
The function must return either `True` (cancel order) or `False` (keep order alive).
``` python
from datetime import datetime, timestamp
from freqtrade.persistence import Trade
class Awesomestrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25
}
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
return True
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
return True
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
return True
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
return True
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
return True
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
return True
return False
```
!!! Note
For the above example, `unfilledtimeout` must be set to something bigger than 24h, otherwise that type of timeout will apply first.
### Custom order timeout example (using additional data)
``` python
from datetime import datetime, timestamp
from freqtrade.persistence import Trade
class Awesomestrategy(IStrategy):
# ... populate_* methods
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
unfilledtimeout = {
'buy': 60 * 25,
'sell': 60 * 25
}
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['bids'][0][0]
# Cancel buy order if price is more than 2% above the order.
if current_price > order['price'] * 1.02:
return True
return False
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
ob = self.dp.orderbook(pair, 1)
current_price = ob['asks'][0][0]
# Cancel sell order if price is more than 2% below the order.
if current_price < order['price'] * 0.98:
return True
return False
```

View File

@@ -1,7 +1,6 @@
# Strategy Customization
This page explains where to customize your strategies, and add new
indicators.
This page explains where to customize your strategies, and add new indicators.
## Install a custom strategy file
@@ -84,7 +83,7 @@ def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
@@ -249,6 +248,23 @@ minimal_roi = {
While technically not completely disabled, this would sell once the trade reaches 10000% Profit.
To use times based on candle duration (ticker_interval or timeframe), the following snippet can be handy.
This will allow you to change the ticket_interval for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
``` python
from freqtrade.exchange import timeframe_to_minutes
class AwesomeStrategy(IStrategy):
ticker_interval = "1d"
ticker_interval_mins = timeframe_to_minutes(ticker_interval)
minimal_roi = {
"0": 0.05, # 5% for the first 3 candles
str(ticker_interval_mins * 3)): 0.02, # 2% after 3 candles
str(ticker_interval_mins * 6)): 0.01, # 1% After 6 candles
}
```
### Stoploss
Setting a stoploss is highly recommended to protect your capital from strong moves against you.
@@ -267,13 +283,14 @@ If your exchange supports it, it's recommended to also set `"stoploss_on_exchang
For more information on order_types please look [here](configuration.md#understand-order_types).
### Ticker interval
### Timeframe (ticker interval)
This is the set of candles the bot should download and use for the analysis.
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
Please note that the same buy/sell signals may work with one interval, but not the other.
This setting is accessible within the strategy by using `self.ticker_interval`.
Please note that the same buy/sell signals may work well with one timeframe, but not with the others.
This setting is accessible within the strategy methods as the `self.ticker_interval` attribute.
### Metadata dict
@@ -318,14 +335,14 @@ Please always check the mode of operation to select the correct method to get da
#### Possible options for DataProvider
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
- `ohlcv(pair, timeframe)` - Currently cached ticker data for the pair, returns DataFrame or empty DataFrame.
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
- `get_pair_dataframe(pair, timeframe)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
- `runmode` - Property containing the current runmode.
#### Example: fetch live ohlcv / historic data for the first informative pair
#### Example: fetch live / historical candle (OHLCV) data for the first informative pair
``` python
if self.dp:
@@ -360,8 +377,8 @@ if self.dp:
``` python
if self.dp:
for pair, ticker in self.dp.available_pairs:
print(f"available {pair}, {ticker}")
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
```
#### Get data for non-tradeable pairs

View File

@@ -121,7 +121,6 @@ from freqtrade.data.btanalysis import analyze_trade_parallelism
# Analyze the above
parallel_trades = analyze_trade_parallelism(trades, '5m')
parallel_trades.plot()
```
@@ -134,11 +133,14 @@ Freqtrade offers interactive plotting capabilities based on plotly.
from freqtrade.plot.plotting import generate_candlestick_graph
# Limit graph period to keep plotly quick and reactive
# Filter trades to one pair
trades_red = trades.loc[trades['pair'] == pair]
data_red = data['2019-06-01':'2019-06-10']
# Generate candlestick graph
graph = generate_candlestick_graph(pair=pair,
data=data_red,
trades=trades,
trades=trades_red,
indicators1=['sma20', 'ema50', 'ema55'],
indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']
)

View File

@@ -61,8 +61,8 @@ $ freqtrade new-config --config config_binance.json
? Do you want to enable Dry-run (simulated trades)? Yes
? Please insert your stake currency: BTC
? Please insert your stake amount: 0.05
? Please insert max_open_trades (Integer or 'unlimited'): 5
? Please insert your ticker interval: 15m
? Please insert max_open_trades (Integer or 'unlimited'): 3
? Please insert your timeframe (ticker interval): 5m
? Please insert your display Currency (for reporting): USD
? Select exchange binance
? Do you want to enable Telegram? No
@@ -77,7 +77,7 @@ Results will be located in `user_data/strategies/<strategyclassname>.py`.
``` output
usage: freqtrade new-strategy [-h] [--userdir PATH] [-s NAME]
[--template {full,minimal}]
[--template {full,minimal,advanced}]
optional arguments:
-h, --help show this help message and exit
@@ -86,10 +86,10 @@ optional arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
--template {full,minimal,advanced}
Use a template which is either `minimal`, `full`
(containing multiple sample indicators) or `advanced`.
Default: `full`.
```
@@ -105,6 +105,12 @@ With custom user directory
freqtrade new-strategy --userdir ~/.freqtrade/ --strategy AwesomeStrategy
```
Using the advanced template (populates all optional functions and methods)
```bash
freqtrade new-strategy --strategy AwesomeStrategy --template advanced
```
## Create new hyperopt
Creates a new hyperopt from a template similar to SampleHyperopt.
@@ -114,7 +120,7 @@ Results will be located in `user_data/hyperopts/<classname>.py`.
``` output
usage: freqtrade new-hyperopt [-h] [--userdir PATH] [--hyperopt NAME]
[--template {full,minimal}]
[--template {full,minimal,advanced}]
optional arguments:
-h, --help show this help message and exit
@@ -122,10 +128,10 @@ optional arguments:
Path to userdata directory.
--hyperopt NAME Specify hyperopt class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
--template {full,minimal,advanced}
Use a template which is either `minimal`, `full`
(containing multiple sample indicators) or `advanced`.
Default: `full`.
```
### Sample usage of new-hyperopt
@@ -258,7 +264,7 @@ All exchanges supported by the ccxt library: _1btcxe, acx, adara, allcoin, anxpr
## List Timeframes
Use the `list-timeframes` subcommand to see the list of ticker intervals (timeframes) available for the exchange.
Use the `list-timeframes` subcommand to see the list of timeframes (ticker intervals) available for the exchange.
```
usage: freqtrade list-timeframes [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--exchange EXCHANGE] [-1]
@@ -429,6 +435,7 @@ usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--min-total-profit FLOAT]
[--max-total-profit FLOAT] [--no-color]
[--print-json] [--no-details]
[--export-csv FILE]
optional arguments:
-h, --help show this help message and exit
@@ -450,6 +457,8 @@ optional arguments:
useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format.
--no-details Do not print best epoch details.
--export-csv FILE Export to CSV-File. This will disable table print.
Example: --export-csv hyperopt.csv
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
@@ -458,9 +467,10 @@ Common arguments:
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH

View File

@@ -23,12 +23,12 @@ Sample configuration (tested using IFTTT).
"webhooksell": {
"value1": "Selling {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhooksellcancel": {
"value1": "Cancelling Open Sell Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
},
"webhookstatus": {
"value1": "Status: {status}",
@@ -87,7 +87,7 @@ Possible parameters are:
* `open_rate`
* `current_rate`
* `profit_amount`
* `profit_percent`
* `profit_ratio`
* `stake_currency`
* `fiat_currency`
* `sell_reason`
@@ -108,7 +108,7 @@ Possible parameters are:
* `open_rate`
* `current_rate`
* `profit_amount`
* `profit_percent`
* `profit_ratio`
* `stake_currency`
* `fiat_currency`
* `sell_reason`

View File

@@ -45,7 +45,7 @@ dependencies:
- pip:
# Required for app
- cython
- coinmarketcap
- pycoingecko
- ccxt
- TA-Lib
- py_find_1st

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2020.02'
__version__ = '2020.4'
if __version__ == 'develop':
@@ -24,4 +24,11 @@ if __version__ == 'develop':
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
# git not available, ignore
pass
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
from pathlib import Path
versionfile = Path('./freqtrade_commit')
if versionfile.is_file():
__version__ = f"docker-{versionfile.read_text()[:8]}"
except Exception:
pass

View File

@@ -59,7 +59,7 @@ ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchang
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
"timerange", "ticker_interval"]
"timerange", "ticker_interval", "no_trades"]
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"]
@@ -69,7 +69,8 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"print_colorized", "print_json", "hyperopt_list_no_details"]
"print_colorized", "print_json", "hyperopt_list_no_details",
"export_csv"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"]
@@ -296,7 +297,7 @@ class Arguments:
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert OHLCV data from one format to another.',
help='Convert candle (OHLCV) data from one format to another.',
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
@@ -305,7 +306,7 @@ class Arguments:
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade-data from one format to another.',
help='Convert trade data from one format to another.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))

View File

@@ -76,7 +76,7 @@ def ask_user_config() -> Dict[str, Any]:
{
"type": "text",
"name": "ticker_interval",
"message": "Please insert your ticker interval:",
"message": "Please insert your timeframe (ticker interval):",
"default": "5m",
},
{

View File

@@ -221,6 +221,13 @@ AVAILABLE_CLI_OPTIONS = {
action='store_true',
default=False,
),
"export_csv": Arg(
'--export-csv',
help='Export to CSV-File.'
' This will disable table print.'
' Example: --export-csv hyperopt.csv',
metavar='FILE',
),
"hyperopt_jobs": Arg(
'-j', '--job-workers',
help='The number of concurrently running jobs for hyperoptimization '
@@ -257,7 +264,8 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
'Different functions can generate completely different results, '
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily, '
'SortinoHyperOptLoss, SortinoHyperOptLossDaily.'
'(default: `%(default)s`).',
metavar='NAME',
default=constants.DEFAULT_HYPEROPT_LOSS,
@@ -347,7 +355,7 @@ AVAILABLE_CLI_OPTIONS = {
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
help='Storage format for downloaded candle (OHLCV) data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='json'
),
@@ -379,9 +387,9 @@ AVAILABLE_CLI_OPTIONS = {
# Templating options
"template": Arg(
'--template',
help='Use a template which is either `minimal` or '
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
choices=['full', 'minimal'],
help='Use a template which is either `minimal`, '
'`full` (containing multiple sample indicators) or `advanced`. Default: `%(default)s`.',
choices=['full', 'minimal', 'advanced'],
default='full',
),
# Plot dataframe
@@ -405,6 +413,11 @@ AVAILABLE_CLI_OPTIONS = {
metavar='INT',
default=750,
),
"no_trades": Arg(
'--no-trades',
help='Skip using trades from backtesting file and DB.',
action='store_true',
),
"trade_source": Arg(
'--trade-source',
help='Specify the source for trades (Can be DB or file (backtest file)) '

View File

@@ -8,7 +8,7 @@ from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template
from freqtrade.misc import render_template, render_template_with_fallback
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@@ -32,10 +32,27 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
"""
Deploy new strategy from template to strategy_path
"""
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
fallback = 'full'
indicators = render_template_with_fallback(
templatefile=f"subtemplates/indicators_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/indicators_{fallback}.j2",
)
buy_trend = render_template_with_fallback(
templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/buy_trend_{fallback}.j2",
)
sell_trend = render_template_with_fallback(
templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/sell_trend_{fallback}.j2",
)
plot_config = render_template_with_fallback(
templatefile=f"subtemplates/plot_config_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/plot_config_{fallback}.j2",
)
additional_methods = render_template_with_fallback(
templatefile=f"subtemplates/strategy_methods_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/strategy_methods_empty.j2",
)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
@@ -43,6 +60,7 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
"additional_methods": additional_methods,
})
logger.info(f"Writing strategy to `{strategy_path}`.")
@@ -73,14 +91,23 @@ def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: st
"""
Deploys a new hyperopt template to hyperopt_path
"""
buy_guards = render_template(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
sell_guards = render_template(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
buy_space = render_template(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
sell_space = render_template(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
fallback = 'full'
buy_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
)
sell_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
)
buy_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
)
sell_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,

View File

@@ -21,6 +21,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
export_csv = config.get('export_csv', None)
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
@@ -46,26 +47,26 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
trials = _hyperopt_filter_trials(trials, filteroptions)
# TODO: fetch the interval for epochs to print from the cli option
epoch_start, epoch_stop = 0, None
if print_colorized:
colorama_init(autoreset=True)
try:
# Human-friendly indexes used here (starting from 1)
for val in trials[epoch_start:epoch_stop]:
Hyperopt.print_results_explanation(val, total_epochs,
not filteroptions['only_best'], print_colorized)
except KeyboardInterrupt:
print('User interrupted..')
if not export_csv:
try:
print(Hyperopt.get_result_table(config, trials, total_epochs,
not filteroptions['only_best'], print_colorized, 0))
except KeyboardInterrupt:
print('User interrupted..')
if trials and not no_details:
sorted_trials = sorted(trials, key=itemgetter('loss'))
results = sorted_trials[0]
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
if trials and export_csv:
Hyperopt.export_csv_file(
config, trials, total_epochs, not filteroptions['only_best'], export_csv
)
def start_hyperopt_show(args: Dict[str, Any]) -> None:
"""
@@ -75,6 +76,12 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_json = config.get('print_json', False)
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
n = config.get('hyperopt_show_index', -1)
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
@@ -87,10 +94,6 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
@@ -99,20 +102,17 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
trials = _hyperopt_filter_trials(trials, filteroptions)
trials_epochs = len(trials)
n = config.get('hyperopt_show_index', -1)
if n > trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
if n < -trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
# Translate epoch index from human-readable format to pythonic
if n > 0:
n -= 1
print_json = config.get('print_json', False)
if trials:
val = trials[n]
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
@@ -129,52 +129,52 @@ def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
if filteroptions['filter_min_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
x for x in trials
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
if filteroptions['filter_max_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
x for x in trials
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
if filteroptions['filter_min_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
x for x in trials
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
x for x in trials
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
if filteroptions['filter_min_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
]
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
]
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
x for x in trials
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
x for x in trials
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
logger.info(f"{len(trials)} " +
("best " if filteroptions['only_best'] else "") +

View File

@@ -58,7 +58,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
print(tabulate(objss_to_print, headers='keys', tablefmt='pipe'))
print(tabulate(objss_to_print, headers='keys', tablefmt='psql', stralign='right'))
def start_list_strategies(args: Dict[str, Any]) -> None:
@@ -192,7 +192,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
else:
# print data as a table, with the human-readable summary
print(f"{summary_str}:")
print(tabulate(tabular_data, headers='keys', tablefmt='pipe'))
print(tabulate(tabular_data, headers='keys', tablefmt='psql', stralign='right'))
elif not (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or
args.get('print_csv', False)):

View File

@@ -17,10 +17,15 @@ def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[
"""
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
no_unlimited_runmodes = {
RunMode.BACKTEST: 'backtesting',
RunMode.HYPEROPT: 'hyperoptimization',
}
if (method in no_unlimited_runmodes.keys() and
config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT):
raise DependencyException(
f'The value of `stake_amount` cannot be set as "{constants.UNLIMITED_STAKE_AMOUNT}" '
f'for {no_unlimited_runmodes[method]}')
return config

View File

@@ -150,15 +150,3 @@ def _validate_whitelist(conf: Dict[str, Any]) -> None:
if (pl.get('method') == 'StaticPairList'
and not conf.get('exchange', {}).get('pair_whitelist')):
raise OperationalException("StaticPairList requires pair_whitelist to be set.")
if pl.get('method') == 'StaticPairList':
stake = conf['stake_currency']
invalid_pairs = []
for pair in conf['exchange'].get('pair_whitelist'):
if not pair.endswith(f'/{stake}'):
invalid_pairs.append(pair)
if invalid_pairs:
raise OperationalException(
f"Stake-currency '{stake}' not compatible with pair-whitelist. "
f"Please remove the following pairs: {invalid_pairs}")

View File

@@ -96,6 +96,8 @@ class Configuration:
# Keep a copy of the original configuration file
config['original_config'] = deepcopy(config)
self._process_logging_options(config)
self._process_runmode(config)
self._process_common_options(config)
@@ -146,8 +148,6 @@ class Configuration:
def _process_common_options(self, config: Dict[str, Any]) -> None:
self._process_logging_options(config)
# Set strategy if not specified in config and or if it's non default
if self.args.get("strategy") or not config.get('strategy'):
config.update({'strategy': self.args.get("strategy")})
@@ -167,10 +167,6 @@ class Configuration:
if 'sd_notify' in self.args and self.args["sd_notify"]:
config['internals'].update({'sd_notify': True})
self._args_to_config(config, argname='dry_run',
logstring='Parameter --dry-run detected, '
'overriding dry_run to: {} ...')
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
"""
Extract information for sys.argv and load directory configurations
@@ -200,6 +196,7 @@ class Configuration:
if self.args.get('exportfilename'):
self._args_to_config(config, argname='exportfilename',
logstring='Storing backtest results to {} ...')
config['exportfilename'] = Path(config['exportfilename'])
else:
config['exportfilename'] = (config['user_data_dir']
/ 'backtest_results/backtest-result.json')
@@ -286,6 +283,9 @@ class Configuration:
self._args_to_config(config, argname='print_json',
logstring='Parameter --print-json detected ...')
self._args_to_config(config, argname='export_csv',
logstring='Parameter --export-csv detected: {}')
self._args_to_config(config, argname='hyperopt_jobs',
logstring='Parameter -j/--job-workers detected: {}')
@@ -359,6 +359,9 @@ class Configuration:
self._args_to_config(config, argname='erase',
logstring='Erase detected. Deleting existing data.')
self._args_to_config(config, argname='no_trades',
logstring='Parameter --no-trades detected.')
self._args_to_config(config, argname='timeframes',
logstring='timeframes --timeframes: {}')
@@ -376,10 +379,14 @@ class Configuration:
def _process_runmode(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='dry_run',
logstring='Parameter --dry-run detected, '
'overriding dry_run to: {} ...')
if not self.runmode:
# Handle real mode, infer dry/live from config
self.runmode = RunMode.DRY_RUN if config.get('dry_run', True) else RunMode.LIVE
logger.info(f"Runmode set to {self.runmode}.")
logger.info(f"Runmode set to {self.runmode.value}.")
config.update({'runmode': self.runmode})

View File

@@ -33,8 +33,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
"plot", "strategies", ]
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs",
"notebooks", "plot", "strategies", ]
folder = Path(directory)
if not folder.is_dir():
if create_dir:

View File

@@ -1,13 +1,15 @@
"""
This module contain functions to load the configuration file
"""
import rapidjson
import logging
import re
import sys
from pathlib import Path
from typing import Any, Dict
from freqtrade.exceptions import OperationalException
import rapidjson
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
@@ -15,6 +17,26 @@ logger = logging.getLogger(__name__)
CONFIG_PARSE_MODE = rapidjson.PM_COMMENTS | rapidjson.PM_TRAILING_COMMAS
def log_config_error_range(path: str, errmsg: str) -> str:
"""
Parses configuration file and prints range around error
"""
if path != '-':
offsetlist = re.findall(r'(?<=Parse\serror\sat\soffset\s)\d+', errmsg)
if offsetlist:
offset = int(offsetlist[0])
text = Path(path).read_text()
# Fetch an offset of 80 characters around the error line
subtext = text[offset-min(80, offset):offset+80]
segments = subtext.split('\n')
if len(segments) > 3:
# Remove first and last lines, to avoid odd truncations
return '\n'.join(segments[1:-1])
else:
return subtext
return ''
def load_config_file(path: str) -> Dict[str, Any]:
"""
Loads a config file from the given path
@@ -29,5 +51,12 @@ def load_config_file(path: str) -> Dict[str, Any]:
raise OperationalException(
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.')
except rapidjson.JSONDecodeError as e:
err_range = log_config_error_range(path, str(e))
raise OperationalException(
f'{e}\n'
f'Please verify the following segment of your configuration:\n{err_range}'
if err_range else 'Please verify your configuration file for syntax errors.'
)
return config

View File

@@ -45,7 +45,7 @@ class TimeRange:
"""
Adjust startts by <startup_candles> candles.
Applies only if no startup-candles have been available.
:param timeframe_secs: Ticker timeframe in seconds e.g. `timeframe_to_seconds('5m')`
:param timeframe_secs: Timeframe in seconds e.g. `timeframe_to_seconds('5m')`
:param startup_candles: Number of candles to move start-date forward
:param min_date: Minimum data date loaded. Key kriterium to decide if start-time
has to be moved

View File

@@ -15,6 +15,7 @@ UNLIMITED_STAKE_AMOUNT = 'unlimited'
DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05
REQUIRED_ORDERTIF = ['buy', 'sell']
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
ORDERBOOK_SIDES = ['ask', 'bid']
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
@@ -42,7 +43,7 @@ SUPPORTED_FIAT = [
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
"BTC", "ETH", "XRP", "LTC", "BCH"
]
MINIMAL_CONFIG = {
@@ -113,15 +114,16 @@ CONF_SCHEMA = {
'minimum': 0,
'maximum': 1,
'exclusiveMaximum': False,
'use_order_book': {'type': 'boolean'},
'order_book_top': {'type': 'integer', 'maximum': 20, 'minimum': 1},
'check_depth_of_market': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'bids_to_ask_delta': {'type': 'number', 'minimum': 0},
}
},
},
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'bid'},
'use_order_book': {'type': 'boolean'},
'order_book_top': {'type': 'integer', 'maximum': 20, 'minimum': 1},
'check_depth_of_market': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'bids_to_ask_delta': {'type': 'number', 'minimum': 0},
}
},
},
'required': ['ask_last_balance']
@@ -129,6 +131,7 @@ CONF_SCHEMA = {
'ask_strategy': {
'type': 'object',
'properties': {
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'ask'},
'use_order_book': {'type': 'boolean'},
'order_book_min': {'type': 'integer', 'minimum': 1},
'order_book_max': {'type': 'integer', 'minimum': 1, 'maximum': 50},
@@ -251,7 +254,6 @@ CONF_SCHEMA = {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+/[0-9A-Z]+$'
},
'uniqueItems': True
},
@@ -259,7 +261,6 @@ CONF_SCHEMA = {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+/[0-9A-Z]+$'
},
'uniqueItems': True
},
@@ -301,6 +302,7 @@ SCHEMA_TRADE_REQUIRED = [
'last_stake_amount_min_ratio',
'dry_run',
'dry_run_wallet',
'ask_strategy',
'bid_strategy',
'unfilledtimeout',
'stoploss',

View File

@@ -3,7 +3,7 @@ Helpers when analyzing backtest data
"""
import logging
from pathlib import Path
from typing import Dict, Union
from typing import Dict, Union, Tuple
import numpy as np
import pandas as pd
@@ -111,7 +111,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
t.calc_profit(), t.calc_profit_ratio(),
t.open_rate, t.close_rate, t.amount,
(round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2)
if t.close_date else None),
if t.close_date else None),
t.sell_reason,
t.fee_open, t.fee_close,
t.open_rate_requested,
@@ -129,39 +129,56 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
return trades
def load_trades(source: str, db_url: str, exportfilename: str) -> pd.DataFrame:
def load_trades(source: str, db_url: str, exportfilename: Path,
no_trades: bool = False) -> pd.DataFrame:
"""
Based on configuration option "trade_source":
* loads data from DB (using `db_url`)
* loads data from backtestfile (using `exportfilename`)
:param source: "DB" or "file" - specify source to load from
:param db_url: sqlalchemy formatted url to a database
:param exportfilename: Json file generated by backtesting
:param no_trades: Skip using trades, only return backtesting data columns
:return: DataFrame containing trades
"""
if no_trades:
df = pd.DataFrame(columns=BT_DATA_COLUMNS)
return df
if source == "DB":
return load_trades_from_db(db_url)
elif source == "file":
return load_backtest_data(Path(exportfilename))
return load_backtest_data(exportfilename)
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
date_index=False) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
if date_index:
trades_start = dataframe.index[0]
trades_stop = dataframe.index[-1]
else:
trades_start = dataframe.iloc[0]['date']
trades_stop = dataframe.iloc[-1]['date']
trades = trades.loc[(trades['open_time'] >= trades_start) &
(trades['close_time'] <= trades_stop)]
return trades
def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param tickers: Dict of Dataframes, dict key should be pair.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
"""
df_comb = pd.concat([tickers[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in tickers], axis=1)
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
@@ -188,3 +205,30 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
value_col: str = 'profitperc'
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
idxmin = max_drawdown_df['drawdown'].idxmin()
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date

View File

@@ -13,12 +13,12 @@ from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
fill_missing: bool = True, drop_incomplete: bool = True) -> DataFrame:
"""
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
:param ticker: ticker list, as returned by exchange.async_get_candle_history
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
to a Dataframe
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
@@ -26,21 +26,18 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols)
df = DataFrame(ohlcv, columns=cols)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
# Some exchanges return int values for volume and even for ohlc.
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
df = df.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(df, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
@@ -49,11 +46,11 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
Clense a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param data: DataFrame containing candle (OHLCV) data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
@@ -88,16 +85,16 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
"""
from freqtrade.exchange import timeframe_to_minutes
ohlc_dict = {
ohlcv_dict = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}
ticker_minutes = timeframe_to_minutes(timeframe)
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict)
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].fillna(method='ffill')
@@ -159,20 +156,20 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
"""
Converts trades list to ohlcv list
Converts trades list to OHLCV list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv Dataframe.
:param timeframe: Timeframe to resample data to
:return: OHLCV Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
timeframe_minutes = timeframe_to_minutes(timeframe)
df = pd.DataFrame(trades)
df['datetime'] = pd.to_datetime(df['datetime'])
df = df.set_index('datetime')
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
@@ -206,7 +203,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
Convert OHLCV from one format to another
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
@@ -216,7 +213,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
@@ -224,7 +221,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:

View File

@@ -1,7 +1,7 @@
"""
Dataprovider
Responsible to provide data to the bot
including Klines, tickers, historic data
including ticker and orderbook data, live and historical candle (OHLCV) data
Common Interface for bot and strategy to access data.
"""
import logging
@@ -43,10 +43,10 @@ class DataProvider:
def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
"""
Get ohlcv data for the given pair as DataFrame
Get candle (OHLCV) data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for
:param timeframe: Ticker timeframe to get data for
:param timeframe: Timeframe to get data for
:param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified)
"""
@@ -58,7 +58,7 @@ class DataProvider:
def historic_ohlcv(self, pair: str, timeframe: str = None) -> DataFrame:
"""
Get stored historic ohlcv data
Get stored historical candle (OHLCV) data
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
"""
@@ -69,17 +69,17 @@ class DataProvider:
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
"""
Return pair ohlcv data, either live or cached historical -- depending
Return pair candle (OHLCV) data, either live or cached historical -- depending
on the runmode.
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
:return: Dataframe for this pair
"""
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
# Get live ohlcv data.
# Get live OHLCV data.
data = self.ohlcv(pair=pair, timeframe=timeframe)
else:
# Get historic ohlcv data (cached on disk).
# Get historical OHLCV data (cached on disk).
data = self.historic_ohlcv(pair=pair, timeframe=timeframe)
if len(data) == 0:
logger.warning(f"No data found for ({pair}, {timeframe}).")

View File

@@ -9,7 +9,7 @@ from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.data.converter import ohlcv_to_dataframe, trades_to_ohlcv
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
@@ -28,10 +28,10 @@ def load_pair_history(pair: str,
data_handler: IDataHandler = None,
) -> DataFrame:
"""
Load cached ticker history for the given pair.
Load cached ohlcv history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param datadir: Path to the data storage location.
:param data_format: Format of the data. Ignored if data_handler is set.
:param timerange: Limit data to be loaded to this timerange
@@ -63,10 +63,10 @@ def load_data(datadir: Path,
data_format: str = 'json',
) -> Dict[str, DataFrame]:
"""
Load ticker history data for a list of pairs.
Load ohlcv history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
@@ -104,10 +104,10 @@ def refresh_data(datadir: Path,
timerange: Optional[TimeRange] = None,
) -> None:
"""
Refresh ticker history data for a list of pairs.
Refresh ohlcv history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange
@@ -165,7 +165,7 @@ def _download_pair_history(datadir: Path,
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download
:param timeframe: Ticker Timeframe (e.g 5m)
:param timeframe: Timeframe (e.g "5m")
:param timerange: range of time to download
:return: bool with success state
"""
@@ -194,8 +194,8 @@ def _download_pair_history(datadir: Path,
days=-30).float_timestamp) * 1000
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
if data.empty:
data = new_dataframe
else:
@@ -362,7 +362,7 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
:param pair: pair used for log output.
:param min_date: start-date of the data
:param max_date: end-date of the data
:param timeframe_min: ticker Timeframe in minutes
:param timeframe_min: Timeframe in minutes
"""
# total difference in minutes / timeframe-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)

View File

@@ -55,7 +55,7 @@ class IDataHandler(ABC):
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
@@ -67,7 +67,7 @@ class IDataHandler(ABC):
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
@@ -129,10 +129,10 @@ class IDataHandler(ABC):
warn_no_data: bool = True
) -> DataFrame:
"""
Load cached ticker history for the given pair.
Load cached candle (OHLCV) data for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange
:param fill_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
@@ -147,12 +147,7 @@ class IDataHandler(ABC):
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
@@ -160,13 +155,30 @@ class IDataHandler(ABC):
if timerange_startup:
self._validate_pairdata(pair, pairdf, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
return pairdf
# incomplete candles should only be dropped if we didn't trim the end beforehand.
return clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
pairdf = clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
self._check_empty_df(pairdf, pair, timeframe, warn_no_data)
return pairdf
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str, warn_no_data: bool):
"""
Warn on empty dataframe
"""
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return True
return False
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
"""

View File

@@ -60,7 +60,7 @@ class JsonDataHandler(IDataHandler):
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
@@ -83,7 +83,7 @@ class JsonDataHandler(IDataHandler):
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:param timeframe: Timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)

View File

@@ -8,10 +8,10 @@ import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.exceptions import OperationalException
from freqtrade.data.history import get_timerange, load_data, refresh_data
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
@@ -54,7 +54,7 @@ class Edge:
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
if self.config['stake_amount'] != UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
@@ -96,7 +96,7 @@ class Edge:
logger.info('Using local backtesting data (using whitelist in given config) ...')
if self._refresh_pairs:
history.refresh_data(
refresh_data(
datadir=self.config['datadir'],
pairs=pairs,
exchange=self.exchange,
@@ -104,7 +104,7 @@ class Edge:
timerange=self._timerange,
)
data = history.load_data(
data = load_data(
datadir=self.config['datadir'],
pairs=pairs,
timeframe=self.strategy.ticker_interval,
@@ -119,10 +119,10 @@ class Edge:
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.strategy.tickerdata_to_dataframe(data)
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
# Print timeframe
min_date, max_date = history.get_timerange(preprocessed)
min_date, max_date = get_timerange(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
@@ -137,10 +137,10 @@ class Edge:
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.strategy.advise_sell(
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
@@ -246,7 +246,8 @@ class Edge:
# we set stake amount to an arbitrary amount.
# as it doesn't change the calculation.
# all returned values are relative. they are percentages.
# all returned values are relative.
# they are defined as ratios.
stake = 0.015
fee = self.fee
open_fee = fee / 2
@@ -269,8 +270,8 @@ class Edge:
result['sell_fee'] = result['sell_sum'] * close_fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
# profit_percent
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# profit_ratio
result['profit_ratio'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
@@ -316,7 +317,7 @@ class Edge:
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
df = results.groupby(['pair', 'stoploss'])[['profit_abs', 'trade_duration']].agg(
groupby_aggregator).reset_index(col_level=1)
# Dropping level 0 as we don't need it
@@ -358,11 +359,11 @@ class Edge:
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values
sell_column = ticker_data['sell'].values
date_column = ticker_data['date'].values
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
def _find_trades_for_stoploss_range(self, df, pair, stoploss_range):
buy_column = df['buy'].values
sell_column = df['sell'].values
date_column = df['date'].values
ohlc_columns = df[['open', 'high', 'low', 'close']].values
result: list = []
for stoploss in stoploss_range:
@@ -399,9 +400,8 @@ class Edge:
# trade opens in reality on the next candle
open_trade_index += 1
stop_price_percentage = stoploss + 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * stop_price_percentage)
stop_price = (open_price * (stoploss + 1))
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
@@ -441,7 +441,7 @@ class Edge:
trade = {'pair': pair,
'stoploss': stoploss,
'profit_percent': '',
'profit_ratio': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],

View File

@@ -35,3 +35,10 @@ class TemporaryError(FreqtradeException):
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""
class StrategyError(FreqtradeException):
"""
Errors with custom user-code deteced.
Usually caused by errors in the strategy.
"""

View File

@@ -18,7 +18,7 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from pandas import DataFrame
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.converter import ohlcv_to_dataframe
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
@@ -226,6 +226,18 @@ class Exchange:
markets = self.markets
return sorted(set([x['quote'] for _, x in markets.items()]))
def get_pair_quote_currency(self, pair: str) -> str:
"""
Return a pair's quote currency
"""
return self.markets.get(pair, {}).get('quote', '')
def get_pair_base_currency(self, pair: str) -> str:
"""
Return a pair's quote currency
"""
return self.markets.get(pair, {}).get('base', '')
def klines(self, pair_interval: Tuple[str, str], copy: bool = True) -> DataFrame:
if pair_interval in self._klines:
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
@@ -298,7 +310,7 @@ class Exchange:
if not self.markets:
logger.warning('Unable to validate pairs (assuming they are correct).')
return
invalid_pairs = []
for pair in pairs:
# Note: ccxt has BaseCurrency/QuoteCurrency format for pairs
# TODO: add a support for having coins in BTC/USDT format
@@ -320,6 +332,13 @@ class Exchange:
logger.warning(f"Pair {pair} is restricted for some users on this exchange."
f"Please check if you are impacted by this restriction "
f"on the exchange and eventually remove {pair} from your whitelist.")
if (self._config['stake_currency'] and
self.get_pair_quote_currency(pair) != self._config['stake_currency']):
invalid_pairs.append(pair)
if invalid_pairs:
raise OperationalException(
f"Stake-currency '{self._config['stake_currency']}' not compatible with "
f"pair-whitelist. Please remove the following pairs: {invalid_pairs}")
def get_valid_pair_combination(self, curr_1: str, curr_2: str) -> str:
"""
@@ -332,7 +351,7 @@ class Exchange:
def validate_timeframes(self, timeframe: Optional[str]) -> None:
"""
Checks if ticker interval from config is a supported timeframe on the exchange
Check if timeframe from config is a supported timeframe on the exchange
"""
if not hasattr(self._api, "timeframes") or self._api.timeframes is None:
# If timeframes attribute is missing (or is None), the exchange probably
@@ -345,7 +364,7 @@ class Exchange:
if timeframe and (timeframe not in self.timeframes):
raise OperationalException(
f"Invalid ticker interval '{timeframe}'. This exchange supports: {self.timeframes}")
f"Invalid timeframe '{timeframe}'. This exchange supports: {self.timeframes}")
if timeframe and timeframe_to_minutes(timeframe) < 1:
raise OperationalException(
@@ -433,6 +452,17 @@ class Exchange:
price = ceil(big_price) / pow(10, symbol_prec)
return price
def price_get_one_pip(self, pair: str, price: float) -> float:
"""
Get's the "1 pip" value for this pair.
Used in PriceFilter to calculate the 1pip movements.
"""
precision = self.markets[pair]['precision']['price']
if self.precisionMode == TICK_SIZE:
return precision
else:
return 1 / pow(10, precision)
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{randint(0, 10**6)}'
@@ -580,7 +610,7 @@ class Exchange:
return self._api.fetch_tickers()
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching tickers in batch.'
f'Exchange {self._api.name} does not support fetching tickers in batch. '
f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
@@ -604,13 +634,13 @@ class Exchange:
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List:
"""
Gets candle history using asyncio and returns the list of candles.
Handles all async doing.
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
Get candle history using asyncio and returns the list of candles.
Handles all async work for this.
Async over one pair, assuming we get `self._ohlcv_candle_limit` candles per call.
:param pair: Pair to download
:param timeframe: Ticker Timeframe to get
:param timeframe: Timeframe to get data for
:param since_ms: Timestamp in milliseconds to get history from
:returns List of tickers
:returns List with candle (OHLCV) data
"""
return asyncio.get_event_loop().run_until_complete(
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
@@ -630,26 +660,27 @@ class Exchange:
pair, timeframe, since) for since in
range(since_ms, arrow.utcnow().timestamp * 1000, one_call)]
tickers = await asyncio.gather(*input_coroutines, return_exceptions=True)
results = await asyncio.gather(*input_coroutines, return_exceptions=True)
# Combine tickers
# Combine gathered results
data: List = []
for p, timeframe, ticker in tickers:
for p, timeframe, res in results:
if p == pair:
data.extend(ticker)
data.extend(res)
# Sort data again after extending the result - above calls return in "async order"
data = sorted(data, key=lambda x: x[0])
logger.info("downloaded %s with length %s.", pair, len(data))
logger.info("Downloaded data for %s with length %s.", pair, len(data))
return data
def refresh_latest_ohlcv(self, pair_list: List[Tuple[str, str]]) -> List[Tuple[str, List]]:
"""
Refresh in-memory ohlcv asynchronously and set `_klines` with the result
Refresh in-memory OHLCV asynchronously and set `_klines` with the result
Loops asynchronously over pair_list and downloads all pairs async (semi-parallel).
Only used in the dataprovider.refresh() method.
:param pair_list: List of 2 element tuples containing pair, interval to refresh
:return: Returns a List of ticker-dataframes.
:return: TODO: return value is only used in the tests, get rid of it
"""
logger.debug("Refreshing ohlcv data for %d pairs", len(pair_list))
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
input_coroutines = []
@@ -660,15 +691,15 @@ class Exchange:
input_coroutines.append(self._async_get_candle_history(pair, timeframe))
else:
logger.debug(
"Using cached ohlcv data for pair %s, timeframe %s ...",
"Using cached candle (OHLCV) data for pair %s, timeframe %s ...",
pair, timeframe
)
tickers = asyncio.get_event_loop().run_until_complete(
results = asyncio.get_event_loop().run_until_complete(
asyncio.gather(*input_coroutines, return_exceptions=True))
# handle caching
for res in tickers:
for res in results:
if isinstance(res, Exception):
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue
@@ -679,13 +710,14 @@ class Exchange:
if ticks:
self._pairs_last_refresh_time[(pair, timeframe)] = ticks[-1][0] // 1000
# keeping parsed dataframe in cache
self._klines[(pair, timeframe)] = parse_ticker_dataframe(
self._klines[(pair, timeframe)] = ohlcv_to_dataframe(
ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle)
return tickers
return results
def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool:
# Calculating ticker interval in seconds
# Timeframe in seconds
interval_in_sec = timeframe_to_seconds(timeframe)
return not ((self._pairs_last_refresh_time.get((pair, timeframe), 0)
@@ -695,11 +727,11 @@ class Exchange:
async def _async_get_candle_history(self, pair: str, timeframe: str,
since_ms: Optional[int] = None) -> Tuple[str, str, List]:
"""
Asynchronously gets candle histories using fetch_ohlcv
Asynchronously get candle history data using fetch_ohlcv
returns tuple: (pair, timeframe, ohlcv_list)
"""
try:
# fetch ohlcv asynchronously
# Fetch OHLCV asynchronously
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
logger.debug(
"Fetching pair %s, interval %s, since %s %s...",
@@ -709,9 +741,9 @@ class Exchange:
data = await self._api_async.fetch_ohlcv(pair, timeframe=timeframe,
since=since_ms)
# Because some exchange sort Tickers ASC and other DESC.
# Ex: Bittrex returns a list of tickers ASC (oldest first, newest last)
# when GDAX returns a list of tickers DESC (newest first, oldest last)
# Some exchanges sort OHLCV in ASC order and others in DESC.
# Ex: Bittrex returns the list of OHLCV in ASC order (oldest first, newest last)
# while GDAX returns the list of OHLCV in DESC order (newest first, oldest last)
# Only sort if necessary to save computing time
try:
if data and data[0][0] > data[-1][0]:
@@ -724,14 +756,15 @@ class Exchange:
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching historical candlestick data.'
f'Message: {e}') from e
f'Exchange {self._api.name} does not support fetching historical '
f'candle (OHLCV) data. Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(f'Could not load ticker history for pair {pair} due to '
f'{e.__class__.__name__}. Message: {e}') from e
raise TemporaryError(f'Could not fetch historical candle (OHLCV) data '
f'for pair {pair} due to {e.__class__.__name__}. '
f'Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(f'Could not fetch ticker data for pair {pair}. '
f'Msg: {e}') from e
raise OperationalException(f'Could not fetch historical candle (OHLCV) data '
f'for pair {pair}. Message: {e}') from e
@retrier_async
async def _async_fetch_trades(self, pair: str,
@@ -864,14 +897,14 @@ class Exchange:
until: Optional[int] = None,
from_id: Optional[str] = None) -> Tuple[str, List]:
"""
Gets candle history using asyncio and returns the list of candles.
Handles all async doing.
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
Get trade history data using asyncio.
Handles all async work and returns the list of candles.
Async over one pair, assuming we get `self._ohlcv_candle_limit` candles per call.
:param pair: Pair to download
:param since: Timestamp in milliseconds to get history from
:param until: Timestamp in milliseconds. Defaults to current timestamp if not defined.
:param from_id: Download data starting with ID (if id is known)
:returns List of tickers
:returns List of trade data
"""
if not self.exchange_has("fetchTrades"):
raise OperationalException("This exchange does not suport downloading Trades.")
@@ -880,10 +913,18 @@ class Exchange:
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
def check_order_canceled_empty(self, order: Dict) -> bool:
"""
Verify if an order has been cancelled without being partially filled
:param order: Order dict as returned from get_order()
:return: True if order has been cancelled without being filled, False otherwise.
"""
return order.get('status') in ('closed', 'canceled') and order.get('filled') == 0.0
@retrier
def cancel_order(self, order_id: str, pair: str) -> None:
def cancel_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
return
return {}
try:
return self._api.cancel_order(order_id, pair)
@@ -896,6 +937,37 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
def is_cancel_order_result_suitable(self, corder) -> bool:
if not isinstance(corder, dict):
return False
required = ('fee', 'status', 'amount')
return all(k in corder for k in required)
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
"""
Cancel order returning a result.
Creates a fake result if cancel order returns a non-usable result
and get_order does not work (certain exchanges don't return cancelled orders)
:param order_id: Orderid to cancel
:param pair: Pair corresponding to order_id
:param amount: Amount to use for fake response
:return: Result from either cancel_order if usable, or fetch_order
"""
try:
corder = self.cancel_order(order_id, pair)
if self.is_cancel_order_result_suitable(corder):
return corder
except InvalidOrderException:
logger.warning(f"Could not cancel order {order_id}.")
try:
order = self.get_order(order_id, pair)
except InvalidOrderException:
logger.warning(f"Could not fetch cancelled order {order_id}.")
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
return order
@retrier
def get_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
@@ -1005,7 +1077,7 @@ def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = Non
def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in ['bittrex', 'binance']
return exchange_name in ['bittrex', 'binance', 'kraken']
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:

View File

@@ -20,12 +20,14 @@ from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.exceptions import DependencyException, InvalidOrderException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
from freqtrade.misc import safe_value_fallback
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.state import State
from freqtrade.strategy.interface import IStrategy, SellType
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
@@ -143,6 +145,10 @@ class FreqtradeBot:
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
self.strategy.informative_pairs())
with self._sell_lock:
# Check and handle any timed out open orders
self.check_handle_timedout()
# Protect from collisions with forcesell.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while selling is in process, since telegram messages arrive in an different thread.
@@ -154,8 +160,6 @@ class FreqtradeBot:
if self.get_free_open_trades():
self.enter_positions()
# Check and handle any timed out open orders
self.check_handle_timedout()
Trade.session.flush()
def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
@@ -172,8 +176,8 @@ class FreqtradeBot:
_whitelist = self.edge.adjust(_whitelist)
if trades:
# Extend active-pair whitelist with pairs from open trades
# It ensures that tickers are downloaded for open trades
# Extend active-pair whitelist with pairs of open trades
# It ensures that candle (OHLCV) data are downloaded for open trades as well
_whitelist.extend([trade.pair for trade in trades if trade.pair not in _whitelist])
return _whitelist
@@ -242,25 +246,25 @@ class FreqtradeBot:
logger.info(f"Using cached buy rate for {pair}.")
return rate
config_bid_strategy = self.config.get('bid_strategy', {})
if 'use_order_book' in config_bid_strategy and\
config_bid_strategy.get('use_order_book', False):
logger.info('Getting price from order book')
order_book_top = config_bid_strategy.get('order_book_top', 1)
bid_strategy = self.config.get('bid_strategy', {})
if 'use_order_book' in bid_strategy and bid_strategy.get('use_order_book', False):
logger.info(
f"Getting price from order book {bid_strategy['price_side'].capitalize()} side."
)
order_book_top = bid_strategy.get('order_book_top', 1)
order_book = self.exchange.get_order_book(pair, order_book_top)
logger.debug('order_book %s', order_book)
# top 1 = index 0
order_book_rate = order_book['bids'][order_book_top - 1][0]
logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate)
order_book_rate = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
logger.info(f'...top {order_book_top} order book buy rate {order_book_rate:.8f}')
used_rate = order_book_rate
else:
logger.info('Using Last Ask / Last Price')
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
ticker = self.exchange.fetch_ticker(pair)
if ticker['ask'] < ticker['last']:
ticker_rate = ticker['ask']
else:
ticker_rate = ticker[bid_strategy['price_side']]
if ticker['last'] and ticker_rate > ticker['last']:
balance = self.config['bid_strategy']['ask_last_balance']
ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
used_rate = ticker_rate
self._buy_rate_cache[pair] = used_rate
@@ -394,16 +398,18 @@ class FreqtradeBot:
logger.info(f"Pair {pair} is currently locked.")
return False
# get_free_open_trades is checked before create_trade is called
# but it is still used here to prevent opening too many trades within one iteration
if not self.get_free_open_trades():
logger.debug(f"Can't open a new trade for {pair}: max number of trades is reached.")
return False
# running get_signal on historical data fetched
(buy, sell) = self.strategy.get_signal(
pair, self.strategy.ticker_interval,
self.dataprovider.ohlcv(pair, self.strategy.ticker_interval))
if buy and not sell:
if not self.get_free_open_trades():
logger.debug("Can't open a new trade: max number of trades is reached.")
return False
stake_amount = self.get_trade_stake_amount(pair)
if not stake_amount:
logger.debug(f"Stake amount is 0, ignoring possible trade for {pair}.")
@@ -598,7 +604,6 @@ class FreqtradeBot:
trades_closed = 0
for trade in trades:
try:
self.update_trade_state(trade)
if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)):
@@ -617,9 +622,18 @@ class FreqtradeBot:
return trades_closed
def _order_book_gen(self, pair: str, side: str, order_book_max: int = 1,
order_book_min: int = 1):
"""
Helper generator to query orderbook in loop (used for early sell-order placing)
"""
order_book = self.exchange.get_order_book(pair, order_book_max)
for i in range(order_book_min, order_book_max + 1):
yield order_book[side][i - 1][0]
def get_sell_rate(self, pair: str, refresh: bool) -> float:
"""
Get sell rate - either using get-ticker bid or first bid based on orderbook
Get sell rate - either using ticker bid or first bid based on orderbook
The orderbook portion is only used for rpc messaging, which would otherwise fail
for BitMex (has no bid/ask in fetch_ticker)
or remain static in any other case since it's not updating.
@@ -634,15 +648,16 @@ class FreqtradeBot:
logger.info(f"Using cached sell rate for {pair}.")
return rate
config_ask_strategy = self.config.get('ask_strategy', {})
if config_ask_strategy.get('use_order_book', False):
logger.debug('Using order book to get sell rate')
order_book = self.exchange.get_order_book(pair, 1)
rate = order_book['bids'][0][0]
ask_strategy = self.config.get('ask_strategy', {})
if ask_strategy.get('use_order_book', False):
# This code is only used for notifications, selling uses the generator directly
logger.info(
f"Getting price from order book {ask_strategy['price_side'].capitalize()} side."
)
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
else:
rate = self.exchange.fetch_ticker(pair)['bid']
rate = self.exchange.fetch_ticker(pair)[ask_strategy['price_side']]
self._sell_rate_cache[pair] = rate
return rate
@@ -661,7 +676,7 @@ class FreqtradeBot:
config_ask_strategy = self.config.get('ask_strategy', {})
if (config_ask_strategy.get('use_sell_signal', True) or
config_ask_strategy.get('ignore_roi_if_buy_signal')):
config_ask_strategy.get('ignore_roi_if_buy_signal', False)):
(buy, sell) = self.strategy.get_signal(
trade.pair, self.strategy.ticker_interval,
self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval))
@@ -672,12 +687,13 @@ class FreqtradeBot:
order_book_min = config_ask_strategy.get('order_book_min', 1)
order_book_max = config_ask_strategy.get('order_book_max', 1)
order_book = self.exchange.get_order_book(trade.pair, order_book_max)
order_book = self._order_book_gen(trade.pair, f"{config_ask_strategy['price_side']}s",
order_book_min=order_book_min,
order_book_max=order_book_max)
for i in range(order_book_min, order_book_max + 1):
order_book_rate = order_book['asks'][i - 1][0]
logger.debug(' order book asks top %s: %0.8f', i, order_book_rate)
sell_rate = order_book_rate
sell_rate = next(order_book)
logger.debug(f" order book {config_ask_strategy['price_side']} top {i}: "
f"{sell_rate:0.8f}")
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
return True
@@ -847,30 +863,35 @@ class FreqtradeBot:
continue
order = self.exchange.get_order(trade.open_order_id, trade.pair)
except (RequestException, DependencyException, InvalidOrderException):
logger.info(
'Cannot query order for %s due to %s',
trade,
traceback.format_exc())
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
continue
# Check if trade is still actually open
if float(order.get('remaining', 0.0)) == 0.0:
self.wallets.update()
continue
trade_state_update = self.update_trade_state(trade, order)
if (order['side'] == 'buy' and (
trade_state_update
or self._check_timed_out('buy', order)
or strategy_safe_wrapper(self.strategy.check_buy_timeout,
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
if ((order['side'] == 'buy' and order['status'] == 'canceled')
or (self._check_timed_out('buy', order))):
self.handle_timedout_limit_buy(trade, order)
self.wallets.update()
order_type = self.strategy.order_types['buy']
self._notify_buy_cancel(trade, order_type)
elif ((order['side'] == 'sell' and order['status'] == 'canceled')
or (self._check_timed_out('sell', order))):
self.handle_timedout_limit_sell(trade, order)
elif (order['side'] == 'sell' and (
trade_state_update
or self._check_timed_out('sell', order)
or strategy_safe_wrapper(self.strategy.check_sell_timeout,
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
reason = self.handle_timedout_limit_sell(trade, order)
self.wallets.update()
order_type = self.strategy.order_types['sell']
self._notify_sell_cancel(trade, order_type)
self._notify_sell_cancel(trade, order_type, reason)
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
"""
@@ -879,15 +900,17 @@ class FreqtradeBot:
"""
if order['status'] != 'canceled':
reason = "cancelled due to timeout"
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
logger.info('Buy order %s for %s.', reason, trade)
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
trade.amount)
else:
# Order was cancelled already, so we can reuse the existing dict
corder = order
reason = "cancelled on exchange"
logger.info('Buy order %s for %s.', reason, trade)
if corder.get('remaining', order['remaining']) == order['amount']:
logger.info('Buy order %s for %s.', reason, trade)
if safe_value_fallback(corder, order, 'remaining', 'remaining') == order['amount']:
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
# if trade is not partially completed, just delete the trade
Trade.session.delete(trade)
Trade.session.flush()
@@ -898,19 +921,10 @@ class FreqtradeBot:
# cancel_order may not contain the full order dict, so we need to fallback
# to the order dict aquired before cancelling.
# we need to fall back to the values from order if corder does not contain these keys.
trade.amount = order['amount'] - corder.get('remaining', order['remaining'])
trade.amount = order['amount'] - safe_value_fallback(corder, order,
'remaining', 'remaining')
trade.stake_amount = trade.amount * trade.open_rate
# verify if fees were taken from amount to avoid problems during selling
try:
new_amount = self.get_real_amount(trade, corder if 'fee' in corder else order,
trade.amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
trade.amount = new_amount
# Fee was applied, so set to 0
trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as e:
logger.warning("Could not update trade amount: %s", e)
self.update_trade_state(trade, corder, trade.amount)
trade.open_order_id = None
logger.info('Partial buy order timeout for %s.', trade)
@@ -920,14 +934,14 @@ class FreqtradeBot:
})
return False
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> str:
"""
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
:return: Reason for cancel
"""
# if trade is not partially completed, just cancel the trade
if order['remaining'] == order['amount']:
if order["status"] != "canceled":
if order['remaining'] == order['amount'] or order.get('filled') == 0.0:
if not self.exchange.check_order_canceled_empty(order):
reason = "cancelled due to timeout"
# if trade is not partially completed, just delete the trade
self.exchange.cancel_order(trade.open_order_id, trade.pair)
@@ -937,15 +951,17 @@ class FreqtradeBot:
logger.info('Sell order %s for %s.', reason, trade)
trade.close_rate = None
trade.close_rate_requested = None
trade.close_profit = None
trade.close_profit_abs = None
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
return True
return reason
# TODO: figure out how to handle partially complete sell orders
return False
return 'partially filled - keeping order open'
def _safe_sell_amount(self, pair: str, amount: float) -> float:
"""
@@ -960,8 +976,8 @@ class FreqtradeBot:
"""
# Update wallets to ensure amounts tied up in a stoploss is now free!
self.wallets.update()
wallet_amount = self.wallets.get_free(pair.split('/')[0])
trade_base_currency = self.exchange.get_pair_base_currency(pair)
wallet_amount = self.wallets.get_free(trade_base_currency)
logger.debug(f"{pair} - Wallet: {wallet_amount} - Trade-amount: {amount}")
if wallet_amount >= amount:
return amount
@@ -1032,10 +1048,10 @@ class FreqtradeBot:
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
# Use cached ticker here - it was updated seconds ago.
# Use cached rates here - it was updated seconds ago.
current_rate = self.get_sell_rate(trade.pair, False)
profit_percent = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_percent > 0 else "loss"
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
'type': RPCMessageType.SELL_NOTIFICATION,
@@ -1048,7 +1064,7 @@ class FreqtradeBot:
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_percent': profit_percent,
'profit_ratio': profit_ratio,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
@@ -1064,15 +1080,15 @@ class FreqtradeBot:
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a sell cancel occured.
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.get_sell_rate(trade.pair, False)
profit_percent = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_percent > 0 else "loss"
profit_ratio = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_ratio > 0 else "loss"
msg = {
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
@@ -1085,12 +1101,13 @@ class FreqtradeBot:
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_percent': profit_percent,
'profit_ratio': profit_ratio,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
}
if 'fiat_display_currency' in self.config:
@@ -1105,9 +1122,12 @@ class FreqtradeBot:
# Common update trade state methods
#
def update_trade_state(self, trade: Trade, action_order: dict = None) -> None:
def update_trade_state(self, trade: Trade, action_order: dict = None,
order_amount: float = None) -> bool:
"""
Checks trades with open orders and updates the amount if necessary
Handles closing both buy and sell orders.
:return: True if order has been cancelled without being filled partially, False otherwise
"""
# Get order details for actual price per unit
if trade.open_order_id:
@@ -1117,25 +1137,31 @@ class FreqtradeBot:
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
return
return False
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
new_amount = self.get_real_amount(trade, order, order_amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
order['amount'] = new_amount
order.pop('filled', None)
# Fee was applied, so set to 0
trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as exception:
logger.warning("Could not update trade amount: %s", exception)
if self.exchange.check_order_canceled_empty(order):
# Trade has been cancelled on exchange
# Handling of this will happen in check_handle_timeout.
return True
trade.update(order)
# Updating wallets when order is closed
if not trade.is_open:
self.wallets.update()
return False
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float:
"""
Get real amount for the trade
@@ -1147,12 +1173,13 @@ class FreqtradeBot:
if trade.fee_open == 0 or order['status'] == 'open':
return order_amount
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
# use fee from order-dict if possible
if ('fee' in order and order['fee'] is not None and
(order['fee'].keys() >= {'currency', 'cost'})):
if (order['fee']['currency'] is not None and
order['fee']['cost'] is not None and
trade.pair.startswith(order['fee']['currency'])):
trade_base_currency == order['fee']['currency']):
new_amount = order_amount - order['fee']['cost']
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
trade, order['amount'], new_amount)
@@ -1174,7 +1201,7 @@ class FreqtradeBot:
# only applies if fee is in quote currency!
if (exectrade['fee']['currency'] is not None and
exectrade['fee']['cost'] is not None and
trade.pair.startswith(exectrade['fee']['currency'])):
trade_base_currency == exectrade['fee']['currency']):
fee_abs += exectrade['fee']['cost']
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):

View File

@@ -18,13 +18,13 @@ def _set_loggers(verbosity: int = 0) -> None:
"""
logging.getLogger('requests').setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger("urllib3").setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger('ccxt.base.exchange').setLevel(
logging.INFO if verbosity <= 2 else logging.DEBUG
logging.INFO if verbosity <= 2 else logging.DEBUG
)
logging.getLogger('telegram').setLevel(logging.INFO)

View File

@@ -81,13 +81,13 @@ def file_load_json(file):
gzipfile = file
# Try gzip file first, otherwise regular json file.
if gzipfile.is_file():
logger.debug('Loading ticker data from file %s', gzipfile)
with gzip.open(gzipfile) as tickerdata:
pairdata = json_load(tickerdata)
logger.debug(f"Loading historical data from file {gzipfile}")
with gzip.open(gzipfile) as datafile:
pairdata = json_load(datafile)
elif file.is_file():
logger.debug('Loading ticker data from file %s', file)
with open(file) as tickerdata:
pairdata = json_load(tickerdata)
logger.debug(f"Loading historical data from file {file}")
with open(file) as datafile:
pairdata = json_load(datafile)
else:
return None
return pairdata
@@ -134,6 +134,21 @@ def round_dict(d, n):
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
"""
Search a value in dict1, return this if it's not None.
Fall back to dict2 - return key2 from dict2 if it's not None.
Else falls back to None.
"""
if key1 in dict1 and dict1[key1] is not None:
return dict1[key1]
else:
if key2 in dict2 and dict2[key2] is not None:
return dict2[key2]
return default_value
def plural(num: float, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'
@@ -148,3 +163,15 @@ def render_template(templatefile: str, arguments: dict = {}) -> str:
)
template = env.get_template(templatefile)
return template.render(**arguments)
def render_template_with_fallback(templatefile: str, templatefallbackfile: str,
arguments: dict = {}) -> str:
"""
Use templatefile if possible, otherwise fall back to templatefallbackfile
"""
from jinja2.exceptions import TemplateNotFound
try:
return render_template(templatefile, arguments)
except TemplateNotFound:
return render_template(templatefallbackfile, arguments)

View File

@@ -6,8 +6,7 @@ This module contains the backtesting logic
import logging
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
from pandas import DataFrame
@@ -19,10 +18,8 @@ from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import file_dump_json
from freqtrade.optimize.optimize_reports import (
generate_text_table, generate_text_table_sell_reason,
generate_text_table_strategy)
from freqtrade.optimize.optimize_reports import (show_backtest_results,
store_backtest_result)
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
@@ -88,8 +85,8 @@ class Backtesting:
validate_config_consistency(self.config)
if "ticker_interval" not in self.config:
raise OperationalException("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`")
raise OperationalException("Timeframe (ticker interval) needs to be set in either "
"configuration or as cli argument `--ticker-interval 5m`")
self.timeframe = str(self.config.get('ticker_interval'))
self.timeframe_min = timeframe_to_minutes(self.timeframe)
@@ -108,7 +105,7 @@ class Backtesting:
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
def load_bt_data(self):
def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]:
timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
@@ -134,49 +131,33 @@ class Backtesting:
return data, timerange
def _store_backtest_result(self, recordfilename: Path, results: DataFrame,
strategyname: Optional[str] = None) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
for index, t in results.iterrows()]
if records:
if strategyname:
# Inject strategyname to filename
recordfilename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{strategyname}').with_suffix(recordfilename.suffix)
logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records)
def _get_ticker_list(self, processed: Dict) -> Dict[str, DataFrame]:
def _get_ohlcv_as_lists(self, processed: Dict) -> Dict[str, DataFrame]:
"""
Helper function to convert a processed tickerlist into a list for performance reasons.
Helper function to convert a processed dataframes into lists for performance reasons.
Used by backtest() - so keep this optimized for performance.
"""
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
ticker: Dict = {}
# Create ticker dict
data: Dict = {}
# Create dict with data
for pair, pair_data in processed.items():
pair_data.loc[:, 'buy'] = 0 # cleanup from previous run
pair_data.loc[:, 'sell'] = 0 # cleanup from previous run
ticker_data = self.strategy.advise_sell(
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
ticker_data.drop(ticker_data.head(1).index, inplace=True)
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker
data[pair] = [x for x in df_analyzed.itertuples()]
return data
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
trade_dur: int) -> float:
@@ -220,7 +201,7 @@ class Backtesting:
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict,
partial_ohlcv: List, trade_count_lock: Dict,
stake_amount: float, max_open_trades: int) -> Optional[BacktestResult]:
trade = Trade(
@@ -235,7 +216,7 @@ class Backtesting:
)
logger.debug(f"{pair} - Backtesting emulates creation of new trade: {trade}.")
# calculate win/lose forwards from buy point
for sell_row in partial_ticker:
for sell_row in partial_ohlcv:
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
@@ -259,9 +240,9 @@ class Backtesting:
close_rate=closerate,
sell_reason=sell.sell_type
)
if partial_ticker:
if partial_ohlcv:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
sell_row = partial_ohlcv[-1]
bt_res = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
@@ -308,8 +289,9 @@ class Backtesting:
trades = []
trade_count_lock: Dict = {}
# Dict of ticker-lists for performance (looping lists is a lot faster than dataframes)
ticker: Dict = self._get_ticker_list(processed)
# Use dict of lists with data for performance
# (looping lists is a lot faster than pandas DataFrames)
data: Dict = self._get_ohlcv_as_lists(processed)
lock_pair_until: Dict = {}
# Indexes per pair, so some pairs are allowed to have a missing start.
@@ -319,12 +301,12 @@ class Backtesting:
# Loop timerange and get candle for each pair at that point in time
while tmp < end_date:
for i, pair in enumerate(ticker):
for i, pair in enumerate(data):
if pair not in indexes:
indexes[pair] = 0
try:
row = ticker[pair][indexes[pair]]
row = data[pair][indexes[pair]]
except IndexError:
# missing Data for one pair at the end.
# Warnings for this are shown during data loading
@@ -352,7 +334,7 @@ class Backtesting:
# since indexes has been incremented before, we need to go one step back to
# also check the buying candle for sell conditions.
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]-1:],
trade_entry = self._get_sell_trade_entry(pair, row, data[pair][indexes[pair]-1:],
trade_count_lock, stake_amount,
max_open_trades)
@@ -395,7 +377,7 @@ class Backtesting:
self._set_strategy(strat)
# need to reprocess data every time to populate signals
preprocessed = self.strategy.tickerdata_to_dataframe(data)
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
@@ -416,35 +398,7 @@ class Backtesting:
position_stacking=position_stacking,
)
for strategy, results in all_results.items():
if self.config.get('export', False):
self._store_backtest_result(Path(self.config['exportfilename']), results,
strategy if len(self.strategylist) > 1 else None)
print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(133, '='))
print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' SELL REASON STATS '.center(133, '='))
print(generate_text_table_sell_reason(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' LEFT OPEN TRADES REPORT '.center(133, '='))
print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results.loc[results.open_at_end], skip_nan=True))
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' STRATEGY SUMMARY '.center(133, '='))
print(generate_text_table_strategy(self.config['stake_currency'],
self.config['max_open_trades'],
all_results=all_results))
print('\nFor more details, please look at the detail tables above')
if self.config.get('export', False):
store_backtest_result(self.config['exportfilename'], all_results)
# Show backtest results
show_backtest_results(self.config, data, all_results)

View File

@@ -7,8 +7,8 @@ This module contains the hyperopt logic
import locale
import logging
import random
import sys
import warnings
from math import ceil
from collections import OrderedDict
from operator import itemgetter
from pathlib import Path
@@ -17,10 +17,13 @@ from typing import Any, Dict, List, Optional
import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame
from pandas import DataFrame, json_normalize, isna
import progressbar
import tabulate
from os import path
import io
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
@@ -39,7 +42,8 @@ with warnings.catch_warnings():
from skopt import Optimizer
from skopt.space import Dimension
progressbar.streams.wrap_stderr()
progressbar.streams.wrap_stdout()
logger = logging.getLogger(__name__)
@@ -73,8 +77,8 @@ class Hyperopt:
self.trials_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.tickerdata_pickle = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.data_pickle_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.total_epochs = config.get('epochs', 0)
self.current_best_loss = 100
@@ -115,6 +119,7 @@ class Hyperopt:
self.config['ask_strategy']['use_sell_signal'] = True
self.print_all = self.config.get('print_all', False)
self.hyperopt_table_header = 0
self.print_colorized = self.config.get('print_colorized', False)
self.print_json = self.config.get('print_json', False)
@@ -127,7 +132,7 @@ class Hyperopt:
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [self.tickerdata_pickle, self.trials_file]:
for f in [self.data_pickle_file, self.trials_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
@@ -152,7 +157,7 @@ class Hyperopt:
"""
num_trials = len(self.trials)
if num_trials > self.num_trials_saved:
logger.info(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
logger.debug(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
dump(self.trials, self.trials_file)
self.num_trials_saved = num_trials
if final:
@@ -261,33 +266,16 @@ class Hyperopt:
Log results if it is better than any previous evaluation
"""
is_best = results['is_best']
if not self.print_all:
# Print '\n' after each 100th epoch to separate dots from the log messages.
# Otherwise output is messy on a terminal.
print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
sys.stdout.flush()
if self.print_all or is_best:
if not self.print_all:
# Separate the results explanation string from dots
print("\n")
self.print_results_explanation(results, self.total_epochs, self.print_all,
self.print_colorized)
@staticmethod
def print_results_explanation(results, total_epochs, highlight_best: bool,
print_colorized: bool) -> None:
"""
Log results explanation string
"""
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
# Colorize output
if print_colorized:
if results['total_profit'] > 0:
explanation_str = Fore.GREEN + explanation_str
if highlight_best and results['is_best']:
explanation_str = Style.BRIGHT + explanation_str
print(explanation_str)
print(
self.get_result_table(
self.config, results, self.total_epochs,
self.print_all, self.print_colorized,
self.hyperopt_table_header
)
)
self.hyperopt_table_header = 2
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
@@ -296,6 +284,144 @@ class Hyperopt:
f"{results['results_explanation']} " +
f"Objective: {results['loss']:.5f}")
@staticmethod
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
print_colorized: bool, remove_header: int) -> str:
"""
Log result table
"""
if not results:
return ''
tabulate.PRESERVE_WHITESPACE = True
trials = json_normalize(results, max_level=1)
trials['Best'] = ''
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit',
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
trials['Epoch'] = trials['Epoch'].apply(
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: '{:,.2f}%'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: '{:,.1f} m'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
)
trials['Objective'] = trials['Objective'].apply(
lambda x: '{:,.5f}'.format(x).rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
)
trials['Profit'] = trials.apply(
lambda x: '{:,.8f} {} {}'.format(
x['Total profit'], config['stake_currency'],
'({:,.2f}%)'.format(x['Profit']).rjust(10, ' ')
).rjust(25+len(config['stake_currency']))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(config['stake_currency'])),
axis=1
)
trials = trials.drop(columns=['Total profit'])
if print_colorized:
for i in range(len(trials)):
if trials.loc[i]['is_profit']:
for j in range(len(trials.loc[i])-3):
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
str(trials.loc[i][j]), Fore.RESET)
if trials.loc[i]['is_best'] and highlight_best:
for j in range(len(trials.loc[i])-3):
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
str(trials.loc[i][j]), Style.RESET_ALL)
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
if remove_header > 0:
table = tabulate.tabulate(
trials.to_dict(orient='list'), tablefmt='orgtbl',
headers='keys', stralign="right"
)
table = table.split("\n", remove_header)[remove_header]
elif remove_header < 0:
table = tabulate.tabulate(
trials.to_dict(orient='list'), tablefmt='psql',
headers='keys', stralign="right"
)
table = "\n".join(table.split("\n")[0:remove_header])
else:
table = tabulate.tabulate(
trials.to_dict(orient='list'), tablefmt='psql',
headers='keys', stralign="right"
)
return table
@staticmethod
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
csv_file: str) -> None:
"""
Log result to csv-file
"""
if not results:
return
# Verification for overwrite
if path.isfile(csv_file):
logger.error("CSV-File already exists!")
return
try:
io.open(csv_file, 'w+').close()
except IOError:
logger.error("Filed to create CSV-File!")
return
trials = json_normalize(results, max_level=1)
trials['Best'] = ''
trials['Stake currency'] = config['stake_currency']
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit', 'Stake currency',
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '*'
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Epoch'] = trials['Epoch'].astype(str)
trials['Trades'] = trials['Trades'].astype(str)
trials['Total profit'] = trials['Total profit'].apply(
lambda x: '{:,.8f}'.format(x) if x != 0.0 else ""
)
trials['Profit'] = trials['Profit'].apply(
lambda x: '{:,.2f}'.format(x) if not isna(x) else ""
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: '{:,.2f}%'.format(x) if not isna(x) else ""
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: '{:,.1f} m'.format(x) if not isna(x) else ""
)
trials['Objective'] = trials['Objective'].apply(
lambda x: '{:,.5f}'.format(x) if x != 100000 else ""
)
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
trials.to_csv(csv_file, index=False, header=True, mode='w', encoding='UTF-8')
print("CSV-File created!")
def has_space(self, space: str) -> bool:
"""
Tell if the space value is contained in the configuration
@@ -369,7 +495,7 @@ class Hyperopt:
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
processed = load(self.tickerdata_pickle)
processed = load(self.data_pickle_file)
min_date, max_date = get_timerange(processed)
@@ -482,10 +608,10 @@ class Hyperopt:
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
self.hyperopt_table_header = -1
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
@@ -496,7 +622,7 @@ class Hyperopt:
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
dump(preprocessed, self.tickerdata_pickle)
dump(preprocessed, self.data_pickle_file)
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore
@@ -510,43 +636,75 @@ class Hyperopt:
self.dimensions: List[Dimension] = self.hyperopt_space()
self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.print_colorized:
colorama_init(autoreset=True)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_epochs // jobs, 1)
for i in range(EVALS):
asked = self.opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list()
for j in range(jobs):
# Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1
val = f_val[j]
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug(f"Optimizer epoch evaluated: {val}")
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
# Define progressbar
if self.print_colorized:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
else:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
with progressbar.ProgressBar(
maxval=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
widgets=widgets
) as pbar:
EVALS = ceil(self.total_epochs / jobs)
for i in range(EVALS):
# Correct the number of epochs to be processed for the last
# iteration (should not exceed self.total_epochs in total)
n_rest = (i + 1) * jobs - self.total_epochs
current_jobs = jobs - n_rest if n_rest > 0 else jobs
self.print_results(val)
asked = self.opt.ask(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list()
# Calculate progressbar outputs
for j, val in enumerate(f_val):
# Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug(f"Optimizer epoch evaluated: {val}")
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
pbar.update(current)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
except KeyboardInterrupt:
print('User interrupted..')

View File

@@ -36,7 +36,7 @@ class SharpeHyperOptLoss(IHyperOptLoss):
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if (np.std(total_profit) != 0.):
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.

View File

@@ -51,7 +51,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if (up_stdev != 0.):
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.

View File

@@ -0,0 +1,49 @@
"""
SortinoHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from pandas import DataFrame
import numpy as np
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sortino Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
"""
total_profit = results["profit_percent"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_percent']
down_stdev = np.std(results['downside_returns'])
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio

View File

@@ -0,0 +1,70 @@
"""
SortinoHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sortino Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sortino Ratio calculation.
Sortino Ratio calculated as described in
http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
minimum_acceptable_return = 0.0
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - minimum_acceptable_return
expected_returns_mean = total_profit.mean()
sum_daily['downside_returns'] = 0
sum_daily.loc[total_profit < 0, 'downside_returns'] = total_profit
total_downside = sum_daily['downside_returns']
# Here total_downside contains min(0, P - MAR) values,
# where P = sum_daily["profit_percent_after_slippage"]
down_stdev = math.sqrt((total_downside**2).sum() / len(total_downside))
if down_stdev != 0:
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(minimum_acceptable_return, expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio

View File

@@ -1,9 +1,38 @@
import logging
from datetime import timedelta
from pathlib import Path
from typing import Dict
from pandas import DataFrame
from tabulate import tabulate
from freqtrade.misc import file_dump_json
logger = logging.getLogger(__name__)
def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame]) -> None:
"""
Stores backtest results to file (one file per strategy)
:param recordfilename: Destination filename
:param all_results: Dict of Dataframes, one results dataframe per strategy
"""
for strategy, results in all_results.items():
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
for index, t in results.iterrows()]
if records:
filename = recordfilename
if len(all_results) > 1:
# Inject strategy to filename
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
logger.info(f'Dumping backtest results to {filename}')
file_dump_json(filename, records)
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
results: DataFrame, skip_nan: bool = False) -> str:
@@ -66,15 +95,15 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_text_table_sell_reason(
data: Dict[str, Dict], stake_currency: str, max_open_trades: int, results: DataFrame
) -> str:
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
results: DataFrame) -> str:
"""
Generate small table outlining Backtest results
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param stake_currency: Stakecurrency used
:param max_open_trades: Max_open_trades parameter
:param results: Dataframe containing the backtest results
:return: pretty printed table with tabulate as string
"""
@@ -112,7 +141,7 @@ def generate_text_table_sell_reason(
profit_percent_tot,
]
)
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
@@ -146,7 +175,7 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_edge_table(results: dict) -> str:
@@ -172,4 +201,44 @@ def generate_edge_table(results: dict) -> str:
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
all_results: Dict[str, DataFrame]):
for strategy, results in all_results.items():
print(f"Result for strategy {strategy}")
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results)
if isinstance(table, str):
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = generate_text_table(btdata,
stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results.loc[results.open_at_end], skip_nan=True)
if isinstance(table, str):
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str):
print('=' * len(table.splitlines()[0]))
print()
if len(all_results) > 1:
# Print Strategy summary table
table = generate_text_table_strategy(config['stake_currency'],
config['max_open_trades'],
all_results=all_results)
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)
print('=' * len(table.splitlines()[0]))
print('\nFor more details, please look at the detail tables above')

View File

@@ -9,6 +9,8 @@ from abc import ABC, abstractmethod, abstractproperty
from copy import deepcopy
from typing import Any, Dict, List
from cachetools import TTLCache, cached
from freqtrade.exchange import market_is_active
logger = logging.getLogger(__name__)
@@ -31,6 +33,9 @@ class IPairList(ABC):
self._config = config
self._pairlistconfig = pairlistconfig
self._pairlist_pos = pairlist_pos
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
self._last_refresh = 0
self._log_cache = TTLCache(maxsize=1024, ttl=self.refresh_period)
@property
def name(self) -> str:
@@ -40,6 +45,24 @@ class IPairList(ABC):
"""
return self.__class__.__name__
def log_on_refresh(self, logmethod, message: str) -> None:
"""
Logs message - not more often than "refresh_period" to avoid log spamming
Logs the log-message as debug as well to simplify debugging.
:param logmethod: Function that'll be called. Most likely `logger.info`.
:param message: String containing the message to be sent to the function.
:return: None.
"""
@cached(cache=self._log_cache)
def _log_on_refresh(message: str):
logmethod(message)
# Log as debug first
logger.debug(message)
# Call hidden function.
_log_on_refresh(message)
@abstractproperty
def needstickers(self) -> bool:
"""
@@ -67,21 +90,37 @@ class IPairList(ABC):
"""
@staticmethod
def verify_blacklist(pairlist: List[str], blacklist: List[str]) -> List[str]:
def verify_blacklist(pairlist: List[str], blacklist: List[str],
aswarning: bool) -> List[str]:
"""
Verify and remove items from pairlist - returning a filtered pairlist.
Logs a warning or info depending on `aswarning`.
Pairlists explicitly using this method shall use `aswarning=False`!
:param pairlist: Pairlist to validate
:param blacklist: Blacklist to validate pairlist against
:param aswarning: Log message as Warning or info
:return: pairlist - blacklisted pairs
"""
for pair in deepcopy(pairlist):
if pair in blacklist:
logger.warning(f"Pair {pair} in your blacklist. Removing it from whitelist...")
if aswarning:
logger.warning(f"Pair {pair} in your blacklist. Removing it from whitelist...")
else:
logger.info(f"Pair {pair} in your blacklist. Removing it from whitelist...")
pairlist.remove(pair)
return pairlist
def _verify_blacklist(self, pairlist: List[str]) -> List[str]:
def _verify_blacklist(self, pairlist: List[str], aswarning: bool = True) -> List[str]:
"""
Proxy method to verify_blacklist for easy access for child classes.
Logs a warning or info depending on `aswarning`.
Pairlists explicitly using this method shall use aswarning=False!
:param pairlist: Pairlist to validate
:param aswarning: Log message as Warning or info.
:return: pairlist - blacklisted pairs
"""
return IPairList.verify_blacklist(pairlist, self._pairlistmanager.blacklist)
return IPairList.verify_blacklist(pairlist, self._pairlistmanager.blacklist,
aswarning=aswarning)
def _whitelist_for_active_markets(self, pairlist: List[str]) -> List[str]:
"""
@@ -99,7 +138,8 @@ class IPairList(ABC):
logger.warning(f"Pair {pair} is not compatible with exchange "
f"{self._exchange.name}. Removing it from whitelist..")
continue
if not pair.endswith(self._config['stake_currency']):
if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']:
logger.warning(f"Pair {pair} is not compatible with your stake currency "
f"{self._config['stake_currency']}. Removing it from whitelist..")
continue
@@ -112,6 +152,5 @@ class IPairList(ABC):
if pair not in sanitized_whitelist:
sanitized_whitelist.append(pair)
sanitized_whitelist = self._verify_blacklist(sanitized_whitelist)
# We need to remove pairs that are unknown
return sanitized_whitelist

View File

@@ -39,8 +39,9 @@ class PrecisionFilter(IPairList):
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
if sp <= stop_gap_price:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
self.log_on_refresh(logger.info,
f"Removed {ticker['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
return False
return True

View File

@@ -35,21 +35,24 @@ class PriceFilter(IPairList):
"""
Check if if one price-step (pip) is > than a certain barrier.
:param ticker: ticker dict as returned from ccxt.load_markets()
:param precision: Precision
:return: True if the pair can stay, false if it should be removed
"""
precision = self._exchange.markets[ticker['symbol']]['precision']['price']
if ticker['last'] is None:
compare = ticker['last'] + 1 / pow(10, precision)
self.log_on_refresh(logger.info,
f"Removed {ticker['symbol']} from whitelist, because "
"ticker['last'] is empty (Usually no trade in the last 24h).")
return False
compare = ticker['last'] + self._exchange.price_get_one_pip(ticker['symbol'],
ticker['last'])
changeperc = (compare - ticker['last']) / ticker['last']
if changeperc > self._low_price_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because 1 unit is {changeperc * 100:.3f}%")
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
f"because 1 unit is {changeperc * 100:.3f}%")
return False
return True
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary

View File

@@ -49,9 +49,9 @@ class SpreadFilter(IPairList):
if 'bid' in ticker and 'ask' in ticker:
spread = 1 - ticker['bid'] / ticker['ask']
if not ticker or spread > self._max_spread_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
pairlist.remove(p)
else:
pairlist.remove(p)

View File

@@ -39,7 +39,6 @@ class VolumePairList(IPairList):
if not self._validate_keys(self._sort_key):
raise OperationalException(
f'key {self._sort_key} not in {SORT_VALUES}')
self._last_refresh = 0
@property
def needstickers(self) -> bool:
@@ -68,16 +67,18 @@ class VolumePairList(IPairList):
:return: new whitelist
"""
# Generate dynamic whitelist
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
# Must always run if this pairlist is not the first in the list.
if (self._pairlist_pos != 0 or
(self._last_refresh + self.refresh_period < datetime.now().timestamp())):
self._last_refresh = int(datetime.now().timestamp())
return self._gen_pair_whitelist(pairlist,
tickers,
self._config['stake_currency'],
self._sort_key,
self._min_value
)
pairs = self._gen_pair_whitelist(pairlist, tickers,
self._config['stake_currency'],
self._sort_key, self._min_value)
else:
return pairlist
pairs = pairlist
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
return pairs
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
base_currency: str, key: str, min_val: int) -> List[str]:
@@ -88,12 +89,11 @@ class VolumePairList(IPairList):
:param tickers: Tickers (from exchange.get_tickers()).
:return: List of pairs
"""
if self._pairlist_pos == 0:
# If VolumePairList is the first in the list, use fresh pairlist
# check length so that we make sure that '/' is actually in the string
# Check if pair quote currency equals to the stake currency.
filtered_tickers = [v for k, v in tickers.items()
if (len(k.split('/')) == 2 and k.split('/')[1] == base_currency
if (self._exchange.get_pair_quote_currency(k) == base_currency
and v[key] is not None)]
else:
# If other pairlist is in front, use the incomming pairlist.
@@ -106,9 +106,8 @@ class VolumePairList(IPairList):
# Validate whitelist to only have active market pairs
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
pairs = self._verify_blacklist(pairs)
pairs = self._verify_blacklist(pairs, aswarning=False)
# Limit to X number of pairs
pairs = pairs[:self._number_pairs]
logger.info(f"Searching {self._number_pairs} pairs: {pairs}")
return pairs

View File

@@ -91,6 +91,6 @@ class PairListManager():
pairlist = pl.filter_pairlist(pairlist, tickers)
# Validation against blacklist happens after the pairlists to ensure blacklist is respected.
pairlist = IPairList.verify_blacklist(pairlist, self.blacklist)
pairlist = IPairList.verify_blacklist(pairlist, self.blacklist, True)
self._whitelist = pairlist

View File

@@ -86,7 +86,7 @@ def check_migrate(engine) -> None:
logger.debug(f'trying {table_back_name}')
# Check for latest column
if not has_column(cols, 'open_trade_price'):
if not has_column(cols, 'close_profit_abs'):
logger.info(f'Running database migration - backup available as {table_back_name}')
fee_open = get_column_def(cols, 'fee_open', 'fee')
@@ -106,6 +106,9 @@ def check_migrate(engine) -> None:
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
open_trade_price = get_column_def(cols, 'open_trade_price',
f'amount * open_rate * (1 + {fee_open})')
close_profit_abs = get_column_def(
cols, 'close_profit_abs',
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_price}")
# Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}")
@@ -123,7 +126,7 @@ def check_migrate(engine) -> None:
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, strategy,
ticker_interval, open_trade_price
ticker_interval, open_trade_price, close_profit_abs
)
select id, lower(exchange),
case
@@ -143,7 +146,7 @@ def check_migrate(engine) -> None:
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{strategy} strategy, {ticker_interval} ticker_interval,
{open_trade_price} open_trade_price
{open_trade_price} open_trade_price, {close_profit_abs} close_profit_abs
from {table_back_name}
""")
@@ -185,11 +188,12 @@ class Trade(_DECL_BASE):
fee_close = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float)
open_rate_requested = Column(Float)
# open_trade_price - calcuated via _calc_open_trade_price
# open_trade_price - calculated via _calc_open_trade_price
open_trade_price = Column(Float)
close_rate = Column(Float)
close_rate_requested = Column(Float)
close_profit = Column(Float)
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
amount = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
@@ -229,6 +233,9 @@ class Trade(_DECL_BASE):
return {
'trade_id': self.id,
'pair': self.pair,
'is_open': self.is_open,
'fee_open': self.fee_open,
'fee_close': self.fee_close,
'open_date_hum': arrow.get(self.open_date).humanize(),
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'close_date_hum': (arrow.get(self.close_date).humanize()
@@ -236,14 +243,24 @@ class Trade(_DECL_BASE):
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
if self.close_date else None),
'open_rate': self.open_rate,
'open_rate_requested': self.open_rate_requested,
'open_trade_price': self.open_trade_price,
'close_rate': self.close_rate,
'close_rate_requested': self.close_rate_requested,
'amount': round(self.amount, 8),
'stake_amount': round(self.stake_amount, 8),
'close_profit': self.close_profit,
'sell_reason': self.sell_reason,
'stop_loss': self.stop_loss,
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
'initial_stop_loss': self.initial_stop_loss,
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
if self.initial_stop_loss_pct else None),
'min_rate': self.min_rate,
'max_rate': self.max_rate,
'strategy': self.strategy,
'ticker_interval': self.ticker_interval,
'open_order_id': self.open_order_id,
}
def adjust_min_max_rates(self, current_price: float) -> None:
@@ -311,7 +328,7 @@ class Trade(_DECL_BASE):
if order_type in ('market', 'limit') and order['side'] == 'buy':
# Update open rate and actual amount
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount'])
self.amount = Decimal(order.get('filled', order['amount']))
self.recalc_open_trade_price()
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
self.open_order_id = None
@@ -334,6 +351,7 @@ class Trade(_DECL_BASE):
"""
self.close_rate = Decimal(rate)
self.close_profit = self.calc_profit_ratio()
self.close_profit_abs = self.calc_profit()
self.close_date = datetime.utcnow()
self.is_open = False
self.open_order_id = None
@@ -405,8 +423,8 @@ class Trade(_DECL_BASE):
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
)
profit_percent = (close_trade_price / self.open_trade_price) - 1
return float(f"{profit_percent:.8f}")
profit_ratio = (close_trade_price / self.open_trade_price) - 1
return float(f"{profit_ratio:.8f}")
@staticmethod
def get_trades(trade_filter=None) -> Query:

View File

@@ -5,10 +5,12 @@ from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
from freqtrade.data.btanalysis import (calculate_max_drawdown,
combine_dataframes_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.exchange import timeframe_to_prev_date
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver
@@ -28,7 +30,7 @@ except ImportError:
def init_plotscript(config):
"""
Initialize objects needed for plotting
:return: Dict with tickers, trades and pairs
:return: Dict with candle (OHLCV) data, trades and pairs
"""
if "pairs" in config:
@@ -39,7 +41,7 @@ def init_plotscript(config):
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = load_data(
data = load_data(
datadir=config.get("datadir"),
pairs=pairs,
timeframe=config.get('ticker_interval', '5m'),
@@ -47,12 +49,22 @@ def init_plotscript(config):
data_format=config.get('dataformat_ohlcv', 'json'),
)
trades = load_trades(config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
)
no_trades = False
if config.get('no_trades', False):
no_trades = True
elif not config['exportfilename'].is_file() and config['trade_source'] == 'file':
logger.warning("Backtest file is missing skipping trades.")
no_trades = True
trades = load_trades(
config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
no_trades=no_trades
)
trades = trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers,
return {"ohlcv": data,
"trades": trades,
"pairs": pairs,
}
@@ -111,6 +123,37 @@ def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_sub
return fig
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
timeframe: str) -> make_subplots:
"""
Add scatter points indicating max drawdown
"""
try:
max_drawdown, highdate, lowdate = calculate_max_drawdown(trades)
drawdown = go.Scatter(
x=[highdate, lowdate],
y=[
df_comb.loc[timeframe_to_prev_date(timeframe, highdate), 'cum_profit'],
df_comb.loc[timeframe_to_prev_date(timeframe, lowdate), 'cum_profit'],
],
mode='markers',
name=f"Max drawdown {max_drawdown * 100:.2f}%",
text=f"Max drawdown {max_drawdown * 100:.2f}%",
marker=dict(
symbol='square-open',
size=9,
line=dict(width=2),
color='green'
)
)
fig.add_trace(drawdown, row, 1)
except ValueError:
logger.warning("No trades found - not plotting max drawdown.")
return fig
def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
Add trades to "fig"
@@ -337,10 +380,13 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
return fig
def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
trades: pd.DataFrame, timeframe: str) -> go.Figure:
# Combine close-values for all pairs, rename columns to "pair"
df_comb = combine_tickers_with_mean(tickers, "close")
df_comb = combine_dataframes_with_mean(data, "close")
# Trim trades to available OHLCV data
trades = extract_trades_of_period(df_comb, trades, date_index=True)
# Add combined cumulative profit
df_comb = create_cum_profit(df_comb, trades, 'cum_profit', timeframe)
@@ -364,6 +410,7 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
fig.add_trace(avgclose, 1, 1)
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
fig = add_max_drawdown(fig, 2, trades, df_comb, timeframe)
for pair in pairs:
profit_col = f'cum_profit_{pair}'
@@ -407,7 +454,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
"""
From configuration provided
- Initializes plot-script
- Get tickers data
- Get candle (OHLCV) data
- Generate Dafaframes populated with indicators and signals based on configured strategy
- Load trades excecuted during the selected period
- Generate Plotly plot objects
@@ -419,19 +466,17 @@ def load_and_plot_trades(config: Dict[str, Any]):
plot_elements = init_plotscript(config)
trades = plot_elements['trades']
pair_counter = 0
for pair, data in plot_elements["tickers"].items():
for pair, data in plot_elements["ohlcv"].items():
pair_counter += 1
logger.info("analyse pair %s", pair)
tickers = {}
tickers[pair] = data
dataframe = strategy.analyze_ticker(tickers[pair], {'pair': pair})
df_analyzed = strategy.analyze_ticker(data, {'pair': pair})
trades_pair = trades.loc[trades['pair'] == pair]
trades_pair = extract_trades_of_period(dataframe, trades_pair)
trades_pair = extract_trades_of_period(df_analyzed, trades_pair)
fig = generate_candlestick_graph(
pair=pair,
data=dataframe,
data=df_analyzed,
trades=trades_pair,
indicators1=config.get("indicators1", []),
indicators2=config.get("indicators2", []),
@@ -462,7 +507,7 @@ def plot_profit(config: Dict[str, Any]) -> None:
# Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"],
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["ohlcv"],
trades, config.get('ticker_interval', '5m'))
store_plot_file(fig, filename='freqtrade-profit-plot.html',
directory=config['user_data_dir'] / "plot", auto_open=True)

View File

@@ -173,7 +173,8 @@ class ApiServer(RPC):
view_func=self._show_config, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/ping', 'ping',
view_func=self._ping, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/trades', 'trades',
view_func=self._trades, methods=['GET'])
# Combined actions and infos
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
methods=['GET', 'POST'])
@@ -358,6 +359,18 @@ class ApiServer(RPC):
self._config.get('fiat_display_currency', ''))
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _trades(self):
"""
Handler for /trades.
Returns the X last trades in json format
"""
limit = int(request.args.get('limit', 0))
results = self._rpc_trade_history(limit)
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _whitelist(self):

View File

@@ -7,7 +7,7 @@ import logging
import time
from typing import Dict, List
from coinmarketcap import Market
from pycoingecko import CoinGeckoAPI
from freqtrade.constants import SUPPORTED_FIAT
@@ -38,8 +38,8 @@ class CryptoFiat:
# Private attributes
self._expiration = 0.0
self.crypto_symbol = crypto_symbol.upper()
self.fiat_symbol = fiat_symbol.upper()
self.crypto_symbol = crypto_symbol.lower()
self.fiat_symbol = fiat_symbol.lower()
self.set_price(price=price)
def set_price(self, price: float) -> None:
@@ -67,17 +67,20 @@ class CryptoToFiatConverter:
This object is also a Singleton
"""
__instance = None
_coinmarketcap: Market = None
_coingekko: CoinGeckoAPI = None
_cryptomap: Dict = {}
def __new__(cls):
"""
This class is a singleton - cannot be instantiated twice.
"""
if CryptoToFiatConverter.__instance is None:
CryptoToFiatConverter.__instance = object.__new__(cls)
try:
CryptoToFiatConverter._coinmarketcap = Market()
CryptoToFiatConverter._coingekko = CoinGeckoAPI()
except BaseException:
CryptoToFiatConverter._coinmarketcap = None
CryptoToFiatConverter._coingekko = None
return CryptoToFiatConverter.__instance
def __init__(self) -> None:
@@ -86,14 +89,12 @@ class CryptoToFiatConverter:
def _load_cryptomap(self) -> None:
try:
coinlistings = self._coinmarketcap.listings()
self._cryptomap = dict(map(lambda coin: (coin["symbol"], str(coin["id"])),
coinlistings["data"]))
except (BaseException) as exception:
coinlistings = self._coingekko.get_coins_list()
# Create mapping table from synbol to coingekko_id
self._cryptomap = {x['symbol']: x['id'] for x in coinlistings}
except (Exception) as exception:
logger.error(
"Could not load FIAT Cryptocurrency map for the following problem: %s",
type(exception).__name__
)
f"Could not load FIAT Cryptocurrency map for the following problem: {exception}")
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
"""
@@ -115,8 +116,8 @@ class CryptoToFiatConverter:
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
:return: Price in FIAT
"""
crypto_symbol = crypto_symbol.upper()
fiat_symbol = fiat_symbol.upper()
crypto_symbol = crypto_symbol.lower()
fiat_symbol = fiat_symbol.lower()
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
@@ -170,15 +171,13 @@ class CryptoToFiatConverter:
:return: bool, True supported, False not supported
"""
fiat = fiat.upper()
return fiat in SUPPORTED_FIAT
return fiat.upper() in SUPPORTED_FIAT
def _find_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Call CoinMarketCap API to retrieve the price in the FIAT
:param crypto_symbol: Crypto-currency you want to convert (e.g BTC)
:param fiat_symbol: FIAT currency you want to convert to (e.g USD)
Call CoinGekko API to retrieve the price in the FIAT
:param crypto_symbol: Crypto-currency you want to convert (e.g btc)
:param fiat_symbol: FIAT currency you want to convert to (e.g usd)
:return: float, price of the crypto-currency in Fiat
"""
# Check if the fiat convertion you want is supported
@@ -195,12 +194,13 @@ class CryptoToFiatConverter:
return 0.0
try:
_gekko_id = self._cryptomap[crypto_symbol]
return float(
self._coinmarketcap.ticker(
currency=self._cryptomap[crypto_symbol],
convert=fiat_symbol
)['data']['quotes'][fiat_symbol.upper()]['price']
self._coingekko.get_price(
ids=_gekko_id,
vs_currencies=fiat_symbol
)[_gekko_id][fiat_symbol]
)
except BaseException as exception:
except Exception as exception:
logger.error("Error in _find_price: %s", exception)
return 0.0

View File

@@ -155,9 +155,9 @@ class RPC:
current_rate = self._freqtrade.get_sell_rate(trade.pair, False)
except DependencyException:
current_rate = NAN
trade_perc = (100 * trade.calc_profit_ratio(current_rate))
trade_percent = (100 * trade.calc_profit_ratio(current_rate))
trade_profit = trade.calc_profit(current_rate)
profit_str = f'{trade_perc:.2f}%'
profit_str = f'{trade_percent:.2f}%'
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
trade_profit,
@@ -197,7 +197,7 @@ class RPC:
Trade.close_date >= profitday,
Trade.close_date < (profitday + timedelta(days=1))
]).order_by(Trade.close_date).all()
curdayprofit = sum(trade.calc_profit() for trade in trades)
curdayprofit = sum(trade.close_profit_abs for trade in trades)
profit_days[profitday] = {
'amount': f'{curdayprofit:.8f}',
'trades': len(trades)
@@ -226,15 +226,29 @@ class RPC:
for key, value in profit_days.items()
]
def _rpc_trade_history(self, limit: int) -> Dict:
""" Returns the X last trades """
if limit > 0:
trades = Trade.get_trades().order_by(Trade.id.desc()).limit(limit)
else:
trades = Trade.get_trades().order_by(Trade.id.desc()).all()
output = [trade.to_json() for trade in trades]
return {
"trades": output,
"trades_count": len(output)
}
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]:
""" Returns cumulative profit statistics """
trades = Trade.get_trades().order_by(Trade.id).all()
profit_all_coin = []
profit_all_perc = []
profit_all_ratio = []
profit_closed_coin = []
profit_closed_perc = []
profit_closed_ratio = []
durations = []
for trade in trades:
@@ -246,21 +260,21 @@ class RPC:
durations.append((trade.close_date - trade.open_date).total_seconds())
if not trade.is_open:
profit_percent = trade.calc_profit_ratio()
profit_closed_coin.append(trade.calc_profit())
profit_closed_perc.append(profit_percent)
profit_ratio = trade.close_profit
profit_closed_coin.append(trade.close_profit_abs)
profit_closed_ratio.append(profit_ratio)
else:
# Get current rate
try:
current_rate = self._freqtrade.get_sell_rate(trade.pair, False)
except DependencyException:
current_rate = NAN
profit_percent = trade.calc_profit_ratio(rate=current_rate)
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
profit_all_coin.append(
trade.calc_profit(rate=trade.close_rate or current_rate)
)
profit_all_perc.append(profit_percent)
profit_all_ratio.append(profit_ratio)
best_pair = Trade.get_best_pair()
@@ -271,7 +285,7 @@ class RPC:
# Prepare data to display
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
profit_closed_percent = (round(mean(profit_closed_perc) * 100, 2) if profit_closed_perc
profit_closed_percent = (round(mean(profit_closed_ratio) * 100, 2) if profit_closed_ratio
else 0.0)
profit_closed_fiat = self._fiat_converter.convert_amount(
profit_closed_coin_sum,
@@ -280,7 +294,7 @@ class RPC:
) if self._fiat_converter else 0
profit_all_coin_sum = round(sum(profit_all_coin), 8)
profit_all_percent = round(mean(profit_all_perc) * 100, 2) if profit_all_perc else 0.0
profit_all_percent = round(mean(profit_all_ratio) * 100, 2) if profit_all_ratio else 0.0
profit_all_fiat = self._fiat_converter.convert_amount(
profit_all_coin_sum,
stake_currency,
@@ -460,9 +474,9 @@ class RPC:
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
# Check pair is in stake currency
# Check if pair quote currency equals to the stake currency.
stake_currency = self._freqtrade.config.get('stake_currency')
if not pair.endswith(stake_currency):
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
raise RPCException(
f'Wrong pair selected. Please pairs with stake {stake_currency} pairs only')
# check if valid pair
@@ -517,7 +531,7 @@ class RPC:
if add:
stake_currency = self._freqtrade.config.get('stake_currency')
for pair in add:
if (pair.endswith(stake_currency)
if (self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency
and pair not in self._freqtrade.pairlists.blacklist):
self._freqtrade.pairlists.blacklist.append(pair)

View File

@@ -148,7 +148,7 @@ class Telegram(RPC):
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
msg['amount'] = round(msg['amount'], 8)
msg['profit_percent'] = round(msg['profit_percent'] * 100, 2)
msg['profit_percent'] = round(msg['profit_ratio'] * 100, 2)
msg['duration'] = msg['close_date'].replace(
microsecond=0) - msg['open_date'].replace(microsecond=0)
msg['duration_min'] = msg['duration'].total_seconds() / 60
@@ -172,7 +172,8 @@ class Telegram(RPC):
' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Sell Order for {pair}".format(**msg)
message = ("*{exchange}:* Cancelling Open Sell Order "
"for {pair}. Reason: {reason}").format(**msg)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
message = '*Status:* `{status}`'.format(**msg)

View File

@@ -3,21 +3,22 @@ IStrategy interface
This module defines the interface to apply for strategies
"""
import logging
import warnings
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from enum import Enum
from typing import Dict, List, NamedTuple, Optional, Tuple
import warnings
import arrow
from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import StrategyError
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.persistence import Trade
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
@@ -59,7 +60,7 @@ class IStrategy(ABC):
Attributes you can use:
minimal_roi -> Dict: Minimal ROI designed for the strategy
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> str: value of the ticker interval to use for the strategy
ticker_interval -> str: value of the timeframe (ticker interval) to use with the strategy
"""
# Strategy interface version
# Default to version 2
@@ -125,7 +126,7 @@ class IStrategy(ABC):
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param dataframe: DataFrame with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
@@ -148,6 +149,42 @@ class IStrategy(ABC):
:return: DataFrame with sell column
"""
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
"""
return False
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
"""
return False
def informative_pairs(self) -> List[Tuple[str, str]]:
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
@@ -200,11 +237,11 @@ class IStrategy(ABC):
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
Parses the given candle (OHLCV) data and returns a populated DataFrame
add several TA indicators and buy signal to it
:param dataframe: Dataframe containing ticker data
:param dataframe: Dataframe containing data from exchange
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame with ticker data and indicator data
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
"""
logger.debug("TA Analysis Launched")
dataframe = self.advise_indicators(dataframe, metadata)
@@ -214,12 +251,12 @@ class IStrategy(ABC):
def _analyze_ticker_internal(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
Parses the given candle (OHLCV) data and returns a populated DataFrame
add several TA indicators and buy signal to it
WARNING: Used internally only, may skip analysis if `process_only_new_candles` is set.
:param dataframe: Dataframe containing ticker data
:param dataframe: Dataframe containing data from exchange
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame with ticker data and indicator data
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
"""
pair = str(metadata.get('pair'))
@@ -241,8 +278,25 @@ class IStrategy(ABC):
return dataframe
def get_signal(self, pair: str, interval: str,
dataframe: DataFrame) -> Tuple[bool, bool]:
@staticmethod
def preserve_df(dataframe: DataFrame) -> Tuple[int, float, datetime]:
""" keep some data for dataframes """
return len(dataframe), dataframe["close"].iloc[-1], dataframe["date"].iloc[-1]
@staticmethod
def assert_df(dataframe: DataFrame, df_len: int, df_close: float, df_date: datetime):
""" make sure data is unmodified """
message = ""
if df_len != len(dataframe):
message = "length"
elif df_close != dataframe["close"].iloc[-1]:
message = "last close price"
elif df_date != dataframe["date"].iloc[-1]:
message = "last date"
if message:
raise StrategyError(f"Dataframe returned from strategy has mismatching {message}.")
def get_signal(self, pair: str, interval: str, dataframe: DataFrame) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format ANT/BTC
@@ -251,31 +305,26 @@ class IStrategy(ABC):
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
"""
if not isinstance(dataframe, DataFrame) or dataframe.empty:
logger.warning('Empty ticker history for pair %s', pair)
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
return False, False
latest_date = dataframe['date'].max()
try:
dataframe = self._analyze_ticker_internal(dataframe, {'pair': pair})
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing ticker for pair %s: %s',
pair,
str(error)
)
df_len, df_close, df_date = self.preserve_df(dataframe)
dataframe = strategy_safe_wrapper(
self._analyze_ticker_internal, message=""
)(dataframe, {'pair': pair})
self.assert_df(dataframe, df_len, df_close, df_date)
except StrategyError as error:
logger.warning(f"Unable to analyze candle (OHLCV) data for pair {pair}: {error}")
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
@@ -364,7 +413,7 @@ class IStrategy(ABC):
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
:param current_profit: current profit in percent
:param current_profit: current profit as ratio
"""
stop_loss_value = force_stoploss if force_stoploss else self.stoploss
@@ -427,8 +476,9 @@ class IStrategy(ABC):
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
"""
Based on trade duration, current price and ROI configuration, decides whether bot should
sell. Requires current_profit to be in percent!!
Based on trade duration, current profit of the trade and ROI configuration,
decides whether bot should sell.
:param current_profit: current profit as ratio
:return: True if bot should sell at current rate
"""
# Check if time matches and current rate is above threshold
@@ -439,19 +489,22 @@ class IStrategy(ABC):
else:
return current_profit > roi
def tickerdata_to_dataframe(self, tickerdata: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
Creates a dataframe and populates indicators for given candle (OHLCV) data
Used by optimize operations only, not during dry / live runs.
Using .copy() to get a fresh copy of the dataframe for every strategy run.
Has positive effects on memory usage for whatever reason - also when
using only one strategy.
"""
return {pair: self.advise_indicators(pair_data, {'pair': pair})
for pair, pair_data in tickerdata.items()}
return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair})
for pair, pair_data in data.items()}
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
This method should not be overridden.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""

View File

@@ -0,0 +1,35 @@
import logging
from freqtrade.exceptions import StrategyError
logger = logging.getLogger(__name__)
def strategy_safe_wrapper(f, message: str = "", default_retval=None):
"""
Wrapper around user-provided methods and functions.
Caches all exceptions and returns either the default_retval (if it's not None) or raises
a StrategyError exception, which then needs to be handled by the calling method.
"""
def wrapper(*args, **kwargs):
try:
return f(*args, **kwargs)
except ValueError as error:
logger.warning(
f"{message}"
f"Strategy caused the following exception: {error}"
f"{f}"
)
if default_retval is None:
raise StrategyError(str(error)) from error
return default_retval
except Exception as error:
logger.exception(
f"{message}"
f"Unexpected error {error} calling {f}"
)
if default_retval is None:
raise StrategyError(str(error)) from error
return default_retval
return wrapper

View File

@@ -11,6 +11,7 @@
"sell": 30
},
"bid_strategy": {
"price_side": "bid",
"ask_last_balance": 0.0,
"use_order_book": false,
"order_book_top": 1,
@@ -20,9 +21,10 @@
}
},
"ask_strategy": {
"price_side": "ask",
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"order_book_max": 1,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false

View File

@@ -21,7 +21,7 @@ class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Add any lib you need to build your hyperopt.
@@ -29,11 +29,14 @@ class {{ hyperopt }}(IHyperOpt):
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
@@ -63,6 +66,9 @@ class {{ hyperopt }}(IHyperOpt):
dataframe['close'], dataframe['sar']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -108,6 +114,9 @@ class {{ hyperopt }}(IHyperOpt):
dataframe['sar'], dataframe['close']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),

View File

@@ -99,7 +99,7 @@ class {{ strategy }}(IStrategy):
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
@@ -137,3 +137,4 @@ class {{ strategy }}(IStrategy):
),
'sell'] = 1
return dataframe
{{ additional_methods | indent(4) }}

View File

@@ -20,23 +20,28 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
class SampleHyperOpt(IHyperOpt):
"""
This is a sample Hyperopt to inspire you.
Feel free to customize it.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
An easier way to get a new hyperopt file is by using
`freqtrade new-hyperopt --hyperopt MyCoolHyperopt`.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
@@ -73,6 +78,9 @@ class SampleHyperOpt(IHyperOpt):
dataframe['close'], dataframe['sar']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -133,6 +141,9 @@ class SampleHyperOpt(IHyperOpt):
dataframe['sar'], dataframe['close']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),

View File

@@ -22,7 +22,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
This is a sample hyperopt to inspire you.
Feel free to customize it.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
@@ -32,8 +32,9 @@ class AdvancedSampleHyperOpt(IHyperOpt):
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
This sample illustrates how to override these methods.
@@ -92,6 +93,9 @@ class AdvancedSampleHyperOpt(IHyperOpt):
dataframe['close'], dataframe['sar']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -152,6 +156,9 @@ class AdvancedSampleHyperOpt(IHyperOpt):
dataframe['sar'], dataframe['close']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),

View File

@@ -116,7 +116,7 @@ class SampleStrategy(IStrategy):
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""

View File

@@ -190,7 +190,6 @@
"# Analyze the above\n",
"parallel_trades = analyze_trade_parallelism(trades, '5m')\n",
"\n",
"\n",
"parallel_trades.plot()"
]
},
@@ -212,11 +211,14 @@
"from freqtrade.plot.plotting import generate_candlestick_graph\n",
"# Limit graph period to keep plotly quick and reactive\n",
"\n",
"# Filter trades to one pair\n",
"trades_red = trades.loc[trades['pair'] == pair]\n",
"\n",
"data_red = data['2019-06-01':'2019-06-10']\n",
"# Generate candlestick graph\n",
"graph = generate_candlestick_graph(pair=pair,\n",
" data=data_red,\n",
" trades=trades,\n",
" trades=trades_red,\n",
" indicators1=['sma20', 'ema50', 'ema55'],\n",
" indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']\n",
" )\n",

View File

@@ -0,0 +1,40 @@
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
"""
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
"""
return False

View File

@@ -74,7 +74,7 @@ class Wallets:
)
for trade in open_trades:
curr = trade.pair.split('/')[0]
curr = self._exchange.get_pair_base_currency(trade.pair)
_wallets[curr] = Wallet(
curr,
trade.amount,

View File

@@ -24,6 +24,7 @@ nav:
- Plotting: plotting.md
- SQL Cheatsheet: sql_cheatsheet.md
- Advanced Post-installation Tasks: advanced-setup.md
- Advanced Strategy: strategy-advanced.md
- Advanced Hyperopt: advanced-hyperopt.md
- Sandbox Testing: sandbox-testing.md
- Deprecated Features: deprecated.md

View File

@@ -1,18 +1,18 @@
# requirements without requirements installable via conda
# mainly used for Raspberry pi installs
ccxt==1.22.95
SQLAlchemy==1.3.13
python-telegram-bot==12.4.2
ccxt==1.27.1
SQLAlchemy==1.3.16
python-telegram-bot==12.6.1
arrow==0.15.5
cachetools==4.0.0
cachetools==4.1.0
requests==2.23.0
urllib3==1.25.8
wrapt==1.12.0
urllib3==1.25.9
wrapt==1.12.1
jsonschema==3.2.0
TA-Lib==0.4.17
tabulate==0.8.6
coinmarketcap==5.0.3
jinja2==2.11.1
tabulate==0.8.7
pycoingecko==1.2.0
jinja2==2.11.2
# find first, C search in arrays
py_find_1st==1.1.4
@@ -24,10 +24,10 @@ python-rapidjson==0.9.1
sdnotify==0.3.2
# Api server
flask==1.1.1
flask==1.1.2
# Support for colorized terminal output
colorama==0.4.3
# Building config files interactively
questionary==1.5.1
prompt-toolkit==3.0.3
questionary==1.5.2
prompt-toolkit==3.0.5

View File

@@ -3,15 +3,15 @@
-r requirements-plot.txt
-r requirements-hyperopt.txt
coveralls==1.11.1
coveralls==2.0.0
flake8==3.7.9
flake8-type-annotations==0.1.0
flake8-tidy-imports==4.0.0
mypy==0.761
pytest==5.3.5
pytest-asyncio==0.10.0
flake8-tidy-imports==4.1.0
mypy==0.770
pytest==5.4.1
pytest-asyncio==0.11.0
pytest-cov==2.8.1
pytest-mock==2.0.0
pytest-mock==3.1.0
pytest-random-order==1.0.4
# Convert jupyter notebooks to markdown documents

View File

@@ -3,7 +3,8 @@
# Required for hyperopt
scipy==1.4.1
scikit-learn==0.22.1
scikit-learn==0.22.2.post1
scikit-optimize==0.7.4
filelock==3.0.12
joblib==0.14.1
progressbar2==3.51.0

View File

@@ -1,5 +1,5 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==4.5.1
plotly==4.6.0

View File

@@ -1,5 +1,5 @@
# Load common requirements
-r requirements-common.txt
numpy==1.18.1
pandas==1.0.1
numpy==1.18.3
pandas==1.0.3

View File

@@ -156,6 +156,14 @@ class FtRestClient():
"""
return self._get("show_config")
def trades(self, limit=None):
"""Return trades history.
:param limit: Limits trades to the X last trades. No limit to get all the trades.
:return: json object
"""
return self._get("trades", params={"limit": limit} if limit else 0)
def whitelist(self):
"""Show the current whitelist.

View File

@@ -24,6 +24,7 @@ hyperopt = [
'scikit-optimize',
'filelock',
'joblib',
'progressbar2',
]
develop = [
@@ -73,7 +74,7 @@ setup(name='freqtrade',
'jsonschema',
'TA-Lib',
'tabulate',
'coinmarketcap',
'pycoingecko',
'py_find_1st',
'python-rapidjson',
'sdnotify',

View File

@@ -252,7 +252,9 @@ function install() {
echo "-------------------------"
echo "Run the bot !"
echo "-------------------------"
echo "You can now use the bot by executing 'source .env/bin/activate; freqtrade trade'."
echo "You can now use the bot by executing 'source .env/bin/activate; freqtrade <subcommand>'."
echo "You can see the list of available bot subcommands by executing 'source .env/bin/activate; freqtrade --help'."
echo "You verify that freqtrade is installed successfully by running 'source .env/bin/activate; freqtrade --version'."
}
function plot() {

View File

@@ -217,8 +217,9 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 9 active markets: "
"BLK/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/USD, NEO/BTC, TKN/BTC, XLTCUSDT, XRP/BTC.\n"
assert ("Exchange Bittrex has 10 active markets: "
"BLK/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/ETH, LTC/USD, NEO/BTC, "
"TKN/BTC, XLTCUSDT, XRP/BTC.\n"
in captured.out)
patch_exchange(mocker, api_mock=api_mock, id="binance")
@@ -231,7 +232,7 @@ def test_list_markets(mocker, markets, capsys):
pargs['config'] = None
start_list_markets(pargs, False)
captured = capsys.readouterr()
assert re.match("\nExchange Binance has 9 active markets:\n",
assert re.match("\nExchange Binance has 10 active markets:\n",
captured.out)
patch_exchange(mocker, api_mock=api_mock, id="bittrex")
@@ -243,8 +244,8 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 11 markets: "
"BLK/BTC, BTT/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/USD, LTC/USDT, NEO/BTC, "
assert ("Exchange Bittrex has 12 markets: "
"BLK/BTC, BTT/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/ETH, LTC/USD, LTC/USDT, NEO/BTC, "
"TKN/BTC, XLTCUSDT, XRP/BTC.\n"
in captured.out)
@@ -256,8 +257,8 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), True)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 8 active pairs: "
"BLK/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/USD, NEO/BTC, TKN/BTC, XRP/BTC.\n"
assert ("Exchange Bittrex has 9 active pairs: "
"BLK/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/ETH, LTC/USD, NEO/BTC, TKN/BTC, XRP/BTC.\n"
in captured.out)
# Test list-pairs subcommand with --all: all pairs
@@ -268,8 +269,8 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), True)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 10 pairs: "
"BLK/BTC, BTT/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/USD, LTC/USDT, NEO/BTC, "
assert ("Exchange Bittrex has 11 pairs: "
"BLK/BTC, BTT/BTC, ETH/BTC, ETH/USDT, LTC/BTC, LTC/ETH, LTC/USD, LTC/USDT, NEO/BTC, "
"TKN/BTC, XRP/BTC.\n"
in captured.out)
@@ -282,8 +283,8 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 5 active markets with ETH, LTC as base currencies: "
"ETH/BTC, ETH/USDT, LTC/BTC, LTC/USD, XLTCUSDT.\n"
assert ("Exchange Bittrex has 6 active markets with ETH, LTC as base currencies: "
"ETH/BTC, ETH/USDT, LTC/BTC, LTC/ETH, LTC/USD, XLTCUSDT.\n"
in captured.out)
# active markets, base=LTC
@@ -295,8 +296,8 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 3 active markets with LTC as base currency: "
"LTC/BTC, LTC/USD, XLTCUSDT.\n"
assert ("Exchange Bittrex has 4 active markets with LTC as base currency: "
"LTC/BTC, LTC/ETH, LTC/USD, XLTCUSDT.\n"
in captured.out)
# active markets, quote=USDT, USD
@@ -384,7 +385,7 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ("Exchange Bittrex has 9 active markets:\n"
assert ("Exchange Bittrex has 10 active markets:\n"
in captured.out)
# Test tabular output, no markets found
@@ -407,7 +408,7 @@ def test_list_markets(mocker, markets, capsys):
]
start_list_markets(get_args(args), False)
captured = capsys.readouterr()
assert ('["BLK/BTC","ETH/BTC","ETH/USDT","LTC/BTC","LTC/USD","NEO/BTC",'
assert ('["BLK/BTC","ETH/BTC","ETH/USDT","LTC/BTC","LTC/ETH","LTC/USD","NEO/BTC",'
'"TKN/BTC","XLTCUSDT","XRP/BTC"]'
in captured.out)
@@ -446,11 +447,6 @@ def test_create_datadir_failed(caplog):
def test_create_datadir(caplog, mocker):
# Ensure that caplog is empty before starting ...
# Should prevent random failures.
caplog.clear()
# Added assert here to analyze random test-failures ...
assert len(caplog.record_tuples) == 0
cud = mocker.patch("freqtrade.commands.deploy_commands.create_userdata_dir", MagicMock())
csf = mocker.patch("freqtrade.commands.deploy_commands.copy_sample_files", MagicMock())
@@ -463,7 +459,6 @@ def test_create_datadir(caplog, mocker):
assert cud.call_count == 1
assert csf.call_count == 1
assert len(caplog.record_tuples) == 0
def test_start_new_strategy(mocker, caplog):
@@ -778,6 +773,20 @@ def test_hyperopt_list(mocker, capsys, hyperopt_results):
assert all(x not in captured.out
for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12",
" 11/12", " 12/12"])
args = [
"hyperopt-list",
"--profitable"
]
pargs = get_args(args)
pargs['config'] = None
start_hyperopt_list(pargs)
captured = capsys.readouterr()
assert all(x in captured.out
for x in [" 2/12", " 10/12", "Best result:", "Buy hyperspace params",
"Sell hyperspace params", "ROI table", "Stoploss"])
assert all(x not in captured.out
for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12",
" 11/12", " 12/12"])
args = [
"hyperopt-list",
"--no-details",
@@ -893,6 +902,21 @@ def test_hyperopt_list(mocker, capsys, hyperopt_results):
assert all(x not in captured.out
for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 7/12", " 8/12"
" 9/12", " 10/12", " 11/12", " 12/12"])
args = [
"hyperopt-list",
"--no-details",
"--export-csv", "test_file.csv"
]
pargs = get_args(args)
pargs['config'] = None
start_hyperopt_list(pargs)
captured = capsys.readouterr()
assert all(x in captured.out
for x in ["CSV-File created!"])
f = Path("test_file.csv")
assert 'Best,1,2,-1.25%,-0.00125625,,-2.51,"3,930.0 m",0.43662' in f.read_text()
assert f.is_file()
f.unlink()
def test_hyperopt_show(mocker, capsys, hyperopt_results):

View File

@@ -15,7 +15,7 @@ from telegram import Chat, Message, Update
from freqtrade import constants, persistence
from freqtrade.commands import Arguments
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.converter import ohlcv_to_dataframe
from freqtrade.edge import Edge, PairInfo
from freqtrade.exchange import Exchange
from freqtrade.freqtradebot import FreqtradeBot
@@ -166,24 +166,70 @@ def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
@pytest.fixture(autouse=True)
def patch_coinmarketcap(mocker) -> None:
def create_mock_trades(fee):
"""
Mocker to coinmarketcap to speed up tests
:param mocker: mocker to patch coinmarketcap class
Create some fake trades ...
"""
# Simulate dry_run entries
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
close_rate=0.128,
close_profit=0.005,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
@pytest.fixture(autouse=True)
def patch_coingekko(mocker) -> None:
"""
Mocker to coingekko to speed up tests
:param mocker: mocker to patch coingekko class
:return: None
"""
tickermock = MagicMock(return_value={'price_usd': 12345.0})
listmock = MagicMock(return_value={'data': [{'id': 1, 'name': 'Bitcoin', 'symbol': 'BTC',
'website_slug': 'bitcoin'},
{'id': 1027, 'name': 'Ethereum', 'symbol': 'ETH',
'website_slug': 'ethereum'}
]})
tickermock = MagicMock(return_value={'bitcoin': {'usd': 12345.0}, 'ethereum': {'usd': 12345.0}})
listmock = MagicMock(return_value=[{'id': 'bitcoin', 'name': 'Bitcoin', 'symbol': 'btc',
'website_slug': 'bitcoin'},
{'id': 'ethereum', 'name': 'Ethereum', 'symbol': 'eth',
'website_slug': 'ethereum'}
])
mocker.patch.multiple(
'freqtrade.rpc.fiat_convert.Market',
ticker=tickermock,
listings=listmock,
'freqtrade.rpc.fiat_convert.CoinGeckoAPI',
get_price=tickermock,
get_coins_list=listmock,
)
@@ -575,7 +621,34 @@ def get_markets():
}
},
'info': {},
}
},
'LTC/ETH': {
'id': 'LTCETH',
'symbol': 'LTC/ETH',
'base': 'LTC',
'quote': 'ETH',
'active': True,
'precision': {
'base': 8,
'quote': 8,
'amount': 3,
'price': 5
},
'limits': {
'amount': {
'min': 0.001,
'max': 10000000.0
},
'price': {
'min': 1e-05,
'max': 1000.0
},
'cost': {
'min': 0.01,
'max': None
}
},
},
}
@@ -666,6 +739,31 @@ def shitcoinmarkets(markets):
"future": False,
"active": True
},
'ADAHALF/USDT': {
"percentage": True,
"tierBased": False,
"taker": 0.001,
"maker": 0.001,
"precision": {
"base": 8,
"quote": 8,
"amount": 2,
"price": 4
},
"limits": {
},
"id": "ADAHALFUSDT",
"symbol": "ADAHALF/USDT",
"base": "ADAHALF",
"quote": "USDT",
"baseId": "ADAHALF",
"quoteId": "USDT",
"info": {},
"type": "spot",
"spot": True,
"future": False,
"active": True
},
})
return shitmarkets
@@ -685,6 +783,7 @@ def limit_buy_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 90.99181073,
'remaining': 0.0,
'status': 'closed'
}
@@ -700,6 +799,7 @@ def market_buy_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00004099,
'amount': 91.99181073,
'filled': 91.99181073,
'remaining': 0.0,
'status': 'closed'
}
@@ -715,6 +815,7 @@ def market_sell_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00004173,
'amount': 91.99181073,
'filled': 91.99181073,
'remaining': 0.0,
'status': 'closed'
}
@@ -730,6 +831,7 @@ def limit_buy_order_old():
'datetime': str(arrow.utcnow().shift(minutes=-601).datetime),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 0.0,
'remaining': 90.99181073,
'status': 'open'
}
@@ -745,6 +847,7 @@ def limit_sell_order_old():
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 0.0,
'remaining': 90.99181073,
'status': 'open'
}
@@ -760,6 +863,7 @@ def limit_buy_order_old_partial():
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'filled': 23.0,
'remaining': 67.99181073,
'status': 'open'
}
@@ -783,6 +887,7 @@ def limit_sell_order():
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001173,
'amount': 90.99181073,
'filled': 90.99181073,
'remaining': 0.0,
'status': 'closed'
}
@@ -822,15 +927,15 @@ def order_book_l2():
@pytest.fixture
def ticker_history_list():
def ohlcv_history_list():
return [
[
1511686200000, # unix timestamp ms
8.794e-05, # open
8.948e-05, # high
8.794e-05, # low
8.88e-05, # close
0.0877869, # volume (in quote currency)
8.794e-05, # open
8.948e-05, # high
8.794e-05, # low
8.88e-05, # close
0.0877869, # volume (in quote currency)
],
[
1511686500000,
@@ -852,8 +957,9 @@ def ticker_history_list():
@pytest.fixture
def ticker_history(ticker_history_list):
return parse_ticker_dataframe(ticker_history_list, "5m", pair="UNITTEST/BTC", fill_missing=True)
def ohlcv_history(ohlcv_history_list):
return ohlcv_to_dataframe(ohlcv_history_list, "5m", pair="UNITTEST/BTC",
fill_missing=True)
@pytest.fixture
@@ -1162,14 +1268,37 @@ def tickers():
"quoteVolume": 323652.075405,
"info": {}
},
# Example of leveraged pair with incomplete info
"ADAHALF/USDT": {
"symbol": "ADAHALF/USDT",
"timestamp": 1580469388244,
"datetime": "2020-01-31T11:16:28.244Z",
"high": None,
"low": None,
"bid": 0.7305,
"bidVolume": None,
"ask": 0.7342,
"askVolume": None,
"vwap": None,
"open": None,
"close": None,
"last": None,
"previousClose": None,
"change": None,
"percentage": 2.628,
"average": None,
"baseVolume": 0.0,
"quoteVolume": 0.0,
"info": {}
},
})
@pytest.fixture
def result(testdatadir):
with (testdatadir / 'UNITTEST_BTC-1m.json').open('r') as data_file:
return parse_ticker_dataframe(json.load(data_file), '1m', pair="UNITTEST/BTC",
fill_missing=True)
return ohlcv_to_dataframe(json.load(data_file), '1m', pair="UNITTEST/BTC",
fill_missing=True)
@pytest.fixture(scope="function")

Some files were not shown because too many files have changed in this diff Show More