Merge branch 'develop' into no-percent-1
This commit is contained in:
commit
34093d1208
5
.github/workflows/ci.yml
vendored
5
.github/workflows/ci.yml
vendored
@ -115,7 +115,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ windows-latest ]
|
||||
python-version: [3.7]
|
||||
python-version: [3.7, 3.8]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
@ -130,8 +130,7 @@ jobs:
|
||||
if: startsWith(runner.os, 'Windows')
|
||||
with:
|
||||
path: ~\AppData\Local\pip\Cache
|
||||
key: ${{ runner.os }}-pip
|
||||
restore-keys: ${{ runner.os }}-pip
|
||||
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
|
||||
- name: Installation
|
||||
run: |
|
||||
|
@ -25,7 +25,8 @@ hesitate to read the source code and understand the mechanism of this bot.
|
||||
## Exchange marketplaces supported
|
||||
|
||||
- [X] [Bittrex](https://bittrex.com/)
|
||||
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](#a-note-on-binance))
|
||||
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#blacklists))
|
||||
- [X] [Kraken](https://kraken.com/)
|
||||
- [ ] [113 others to tests](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
|
||||
## Documentation
|
||||
|
BIN
build_helpers/TA_Lib-0.4.17-cp38-cp38-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.17-cp38-cp38-win_amd64.whl
Normal file
Binary file not shown.
@ -3,7 +3,15 @@
|
||||
# Invoke-WebRequest -Uri "https://download.lfd.uci.edu/pythonlibs/xxxxxxx/TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl" -OutFile "TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl"
|
||||
|
||||
python -m pip install --upgrade pip
|
||||
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
|
||||
|
||||
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
|
||||
|
||||
if ($pyv -eq '3.7') {
|
||||
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
|
||||
}
|
||||
if ($pyv -eq '3.8') {
|
||||
pip install build_helpers\TA_Lib-0.4.17-cp38-cp38-win_amd64.whl
|
||||
}
|
||||
|
||||
pip install -r requirements-dev.txt
|
||||
pip install -e .
|
||||
|
@ -25,6 +25,7 @@
|
||||
"sell": 30
|
||||
},
|
||||
"bid_strategy": {
|
||||
"price_side": "bid",
|
||||
"use_order_book": false,
|
||||
"ask_last_balance": 0.0,
|
||||
"order_book_top": 1,
|
||||
@ -34,6 +35,7 @@
|
||||
}
|
||||
},
|
||||
"ask_strategy":{
|
||||
"price_side": "ask",
|
||||
"use_order_book": false,
|
||||
"order_book_min": 1,
|
||||
"order_book_max": 9,
|
||||
|
@ -275,7 +275,7 @@ Check the corresponding [Data Downloading](data-download.md) section for more de
|
||||
## Hyperopt commands
|
||||
|
||||
To optimize your strategy, you can use hyperopt parameter hyperoptimization
|
||||
to find optimal parameter values for your stategy.
|
||||
to find optimal parameter values for your strategy.
|
||||
|
||||
```
|
||||
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
@ -323,7 +323,7 @@ optional arguments:
|
||||
--print-all Print all results, not only the best ones.
|
||||
--no-color Disable colorization of hyperopt results. May be
|
||||
useful if you are redirecting output to a file.
|
||||
--print-json Print best result detailization in JSON format.
|
||||
--print-json Print best results in JSON format.
|
||||
-j JOBS, --job-workers JOBS
|
||||
The number of concurrently running jobs for
|
||||
hyperoptimization (hyperopt worker processes). If -1
|
||||
@ -341,10 +341,11 @@ optional arguments:
|
||||
class (IHyperOptLoss). Different functions can
|
||||
generate completely different results, since the
|
||||
target for optimization is different. Built-in
|
||||
Hyperopt-loss-functions are: DefaultHyperOptLoss,
|
||||
OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
|
||||
SharpeHyperOptLossDaily.(default:
|
||||
`DefaultHyperOptLoss`).
|
||||
Hyperopt-loss-functions are:
|
||||
DefaultHyperOptLoss, OnlyProfitHyperOptLoss,
|
||||
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
|
||||
SortinoHyperOptLoss, SortinoHyperOptLossDaily.
|
||||
(default: `DefaultHyperOptLoss`).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@ -60,11 +60,13 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook).
|
||||
| `bid_strategy.price_side` | Select the side of the spread the bot should look at to get the buy rate. [More information below](#buy-price-side).<br> *Defaults to `bid`.* <br> **Datatype:** String (either `ask` or `bid`).
|
||||
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook-enabled).
|
||||
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
|
||||
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
|
||||
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
|
||||
| `ask_strategy.price_side` | Select the side of the spread the bot should look at to get the sell rate. [More information below](#sell-price-side).<br> *Defaults to `ask`.* <br> **Datatype:** String (either `ask` or `bid`).
|
||||
| `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> **Datatype:** Boolean
|
||||
| `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
|
||||
| `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
|
||||
@ -370,16 +372,18 @@ The possible values are: `gtc` (default), `fok` or `ioc`.
|
||||
|
||||
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports over 100 cryptocurrency
|
||||
exchange markets and trading APIs. The complete up-to-date list can be found in the
|
||||
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python). However, the bot was tested
|
||||
with only Bittrex and Binance.
|
||||
|
||||
The bot was tested with the following exchanges:
|
||||
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python).
|
||||
However, the bot was tested by the development team with only Bittrex, Binance and Kraken,
|
||||
so the these are the only officially supported exhanges:
|
||||
|
||||
- [Bittrex](https://bittrex.com/): "bittrex"
|
||||
- [Binance](https://www.binance.com/): "binance"
|
||||
- [Kraken](https://kraken.com/): "kraken"
|
||||
|
||||
Feel free to test other exchanges and submit your PR to improve the bot.
|
||||
|
||||
Some exchanges require special configuration, which can be found on the [Exchange-specific Notes](exchanges.md) documentation page.
|
||||
|
||||
#### Sample exchange configuration
|
||||
|
||||
A exchange configuration for "binance" would look as follows:
|
||||
@ -461,23 +465,72 @@ Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) s
|
||||
!!! Note
|
||||
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
|
||||
|
||||
#### Buy price side
|
||||
|
||||
The configuration setting `bid_strategy.price_side` defines the side of the spread the bot looks for when buying.
|
||||
|
||||
The following displays an orderbook.
|
||||
|
||||
``` explanation
|
||||
...
|
||||
103
|
||||
102
|
||||
101 # ask
|
||||
-------------Current spread
|
||||
99 # bid
|
||||
98
|
||||
97
|
||||
...
|
||||
```
|
||||
|
||||
If `bid_strategy.price_side` is set to `"bid"`, then the bot will use 99 as buying price.
|
||||
In line with that, if `bid_strategy.price_side` is set to `"ask"`, then the bot will use 101 as buying price.
|
||||
|
||||
Using `ask` price often guarantees quicker filled orders, but the bot can also end up paying more than what would have been necessary.
|
||||
Taker fees instead of maker fees will most likely apply even when using limit buy orders.
|
||||
Also, prices at the "ask" side of the spread are higher than prices at the "bid" side in the orderbook, so the order behaves similar to a market order (however with a maximum price).
|
||||
|
||||
#### Buy price with Orderbook enabled
|
||||
|
||||
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the `bid` (buy) side of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
|
||||
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the configured side (`bid_strategy.price_side`) of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
|
||||
|
||||
#### Buy price without Orderbook enabled
|
||||
|
||||
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `ask` (sell) price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `ask` price is not below the `last` price), it calculates a rate between `ask` and `last` price.
|
||||
The following section uses `side` as the configured `bid_strategy.price_side`.
|
||||
|
||||
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `ask` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
|
||||
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `side` price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `side` price is above the `last` price), it calculates a rate between `side` and `last` price.
|
||||
|
||||
Using `ask` price often guarantees quicker success in the bid, but the bot can also end up paying more than what would have been necessary.
|
||||
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `side` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
|
||||
|
||||
### Sell price
|
||||
|
||||
#### Sell price side
|
||||
|
||||
The configuration setting `ask_strategy.price_side` defines the side of the spread the bot looks for when selling.
|
||||
|
||||
The following displays an orderbook:
|
||||
|
||||
``` explanation
|
||||
...
|
||||
103
|
||||
102
|
||||
101 # ask
|
||||
-------------Current spread
|
||||
99 # bid
|
||||
98
|
||||
97
|
||||
...
|
||||
```
|
||||
|
||||
If `ask_strategy.price_side` is set to `"ask"`, then the bot will use 101 as selling price.
|
||||
In line with that, if `ask_strategy.price_side` is set to `"bid"`, then the bot will use 99 as selling price.
|
||||
|
||||
#### Sell price with Orderbook enabled
|
||||
|
||||
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the `ask` orderbook side are validated for a profitable sell-possibility based on the strategy configuration and the sell order is placed at the first profitable spot.
|
||||
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the configured orderbook side are validated for a profitable sell-possibility based on the strategy configuration (`minimal_roi` conditions) and the sell order is placed at the first profitable spot.
|
||||
|
||||
!!! Note
|
||||
Using `order_book_max` higher than `order_book_min` only makes sense when ask_strategy.price_side is set to `"ask"`.
|
||||
|
||||
The idea here is to place the sell order early, to be ahead in the queue.
|
||||
|
||||
@ -488,7 +541,7 @@ A fixed slot (mirroring `bid_strategy.order_book_top`) can be defined by setting
|
||||
|
||||
#### Sell price without Orderbook enabled
|
||||
|
||||
When not using orderbook (`ask_strategy.use_order_book=False`), the `bid` price from the ticker will be used as the sell price.
|
||||
When not using orderbook (`ask_strategy.use_order_book=False`), the price at the `ask_strategy.price_side` side (defaults to `"ask"`) from the ticker will be used as the sell price.
|
||||
|
||||
## Pairlists
|
||||
|
||||
|
@ -234,7 +234,7 @@ git checkout -b new_release <commitid>
|
||||
|
||||
Determine if crucial bugfixes have been made between this commit and the current state, and eventually cherry-pick these.
|
||||
|
||||
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7-1` should we need to do a second release that month.
|
||||
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7.1` should we need to do a second release that month. Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
|
||||
* Commit this part
|
||||
* push that branch to the remote and create a PR against the master branch
|
||||
|
||||
@ -268,11 +268,6 @@ Once the PR against master is merged (best right after merging):
|
||||
* Use "master" as reference (this step comes after the above PR is merged).
|
||||
* Use the above changelog as release comment (as codeblock)
|
||||
|
||||
### After-release
|
||||
|
||||
* Update version in develop by postfixing that with `-dev` (`2019.6 -> 2019.6-dev`).
|
||||
* Create a PR against develop to update that branch.
|
||||
|
||||
## Releases
|
||||
|
||||
### pypi
|
||||
|
@ -62,6 +62,11 @@ res = [ f"{x['MarketCurrency']}/{x['BaseCurrency']}" for x in ct.publicGetMarket
|
||||
print(res)
|
||||
```
|
||||
|
||||
## All exchanges
|
||||
|
||||
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
||||
|
||||
|
||||
## Random notes for other exchanges
|
||||
|
||||
* The Ocean (exchange id: `theocean`) exchange uses Web3 functionality and requires `web3` python package to be installed:
|
||||
|
@ -31,9 +31,9 @@ This will create a new hyperopt file from a template, which will be located unde
|
||||
Depending on the space you want to optimize, only some of the below are required:
|
||||
|
||||
* fill `buy_strategy_generator` - for buy signal optimization
|
||||
* fill `indicator_space` - for buy signal optimzation
|
||||
* fill `indicator_space` - for buy signal optimization
|
||||
* fill `sell_strategy_generator` - for sell signal optimization
|
||||
* fill `sell_indicator_space` - for sell signal optimzation
|
||||
* fill `sell_indicator_space` - for sell signal optimization
|
||||
|
||||
!!! Note
|
||||
`populate_indicators` needs to create all indicators any of thee spaces may use, otherwise hyperopt will not work.
|
||||
@ -81,11 +81,11 @@ There are two places you need to change in your hyperopt file to add a new buy h
|
||||
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
|
||||
1. Guards are conditions like "never buy if ADX < 10", or never buy if current price is over EMA10.
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like "buy when EMA5 crosses over EMA10" or "buy when close price touches lower bollinger band".
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like "buy when EMA5 crosses over EMA10" or "buy when close price touches lower Bollinger band".
|
||||
|
||||
Hyperoptimization will, for each eval round, pick one trigger and possibly
|
||||
multiple guards. The constructed strategy will be something like
|
||||
"*buy exactly when close price touches lower bollinger band, BUT only if
|
||||
"*buy exactly when close price touches lower Bollinger band, BUT only if
|
||||
ADX > 10*".
|
||||
|
||||
If you have updated the buy strategy, i.e. changed the contents of
|
||||
@ -172,7 +172,7 @@ So let's write the buy strategy using these values:
|
||||
Hyperopting will now call this `populate_buy_trend` as many times you ask it (`epochs`)
|
||||
with different value combinations. It will then use the given historical data and make
|
||||
buys based on the buy signals generated with the above function and based on the results
|
||||
it will end with telling you which paramter combination produced the best profits.
|
||||
it will end with telling you which parameter combination produced the best profits.
|
||||
|
||||
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
|
||||
When you want to test an indicator that isn't used by the bot currently, remember to
|
||||
@ -191,8 +191,10 @@ Currently, the following loss functions are builtin:
|
||||
|
||||
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
|
||||
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
|
||||
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
|
||||
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on daily trade returns)
|
||||
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on trade returns relative to standard deviation)
|
||||
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation)
|
||||
* `SortinoHyperOptLoss` (optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation)
|
||||
* `SortinoHyperOptLossDaily` (optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation)
|
||||
|
||||
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
|
||||
|
||||
@ -272,7 +274,7 @@ In some situations, you may need to run Hyperopt (and Backtesting) with the
|
||||
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
|
||||
open trade is allowed for every traded pair. The total number of trades open for all pairs
|
||||
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
|
||||
some potential trades to be hidden (or masked) by previosly open trades.
|
||||
some potential trades to be hidden (or masked) by previously open trades.
|
||||
|
||||
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
|
||||
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
|
||||
|
@ -196,6 +196,7 @@ The first graph is good to get a grip of how the overall market progresses.
|
||||
|
||||
The second graph will show if your algorithm works or doesn't.
|
||||
Perhaps you want an algorithm that steadily makes small profits, or one that acts less often, but makes big swings.
|
||||
This graph will also highlight the start (and end) of the Max drawdown period.
|
||||
|
||||
The third graph can be useful to spot outliers, events in pairs that cause profit spikes.
|
||||
|
||||
|
@ -121,7 +121,6 @@ from freqtrade.data.btanalysis import analyze_trade_parallelism
|
||||
# Analyze the above
|
||||
parallel_trades = analyze_trade_parallelism(trades, '5m')
|
||||
|
||||
|
||||
parallel_trades.plot()
|
||||
```
|
||||
|
||||
@ -134,11 +133,14 @@ Freqtrade offers interactive plotting capabilities based on plotly.
|
||||
from freqtrade.plot.plotting import generate_candlestick_graph
|
||||
# Limit graph period to keep plotly quick and reactive
|
||||
|
||||
# Filter trades to one pair
|
||||
trades_red = trades.loc[trades['pair'] == pair]
|
||||
|
||||
data_red = data['2019-06-01':'2019-06-10']
|
||||
# Generate candlestick graph
|
||||
graph = generate_candlestick_graph(pair=pair,
|
||||
data=data_red,
|
||||
trades=trades,
|
||||
trades=trades_red,
|
||||
indicators1=['sma20', 'ema50', 'ema55'],
|
||||
indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']
|
||||
)
|
||||
|
@ -257,7 +257,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
|
||||
'Different functions can generate completely different results, '
|
||||
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily, '
|
||||
'SortinoHyperOptLoss, SortinoHyperOptLossDaily.'
|
||||
'(default: `%(default)s`).',
|
||||
metavar='NAME',
|
||||
default=constants.DEFAULT_HYPEROPT_LOSS,
|
||||
|
@ -51,7 +51,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
|
||||
try:
|
||||
Hyperopt.print_result_table(config, trials, total_epochs,
|
||||
not filteroptions['only_best'], print_colorized)
|
||||
not filteroptions['only_best'], print_colorized, 0)
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
@ -97,10 +97,10 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
if n > trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
if n < -trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
|
||||
# Translate epoch index from human-readable format to pythonic
|
||||
if n > 0:
|
||||
@ -122,52 +122,52 @@ def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
|
||||
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
|
||||
]
|
||||
if filteroptions['filter_max_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
|
||||
]
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
if filteroptions['filter_max_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
> filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
> filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_max_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
< filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
< filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_min_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
|
||||
]
|
||||
if filteroptions['filter_max_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
x for x in trials
|
||||
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
|
||||
logger.info(f"{len(trials)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
|
@ -15,6 +15,7 @@ UNLIMITED_STAKE_AMOUNT = 'unlimited'
|
||||
DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05
|
||||
REQUIRED_ORDERTIF = ['buy', 'sell']
|
||||
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
|
||||
ORDERBOOK_SIDES = ['ask', 'bid']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
@ -113,15 +114,16 @@ CONF_SCHEMA = {
|
||||
'minimum': 0,
|
||||
'maximum': 1,
|
||||
'exclusiveMaximum': False,
|
||||
'use_order_book': {'type': 'boolean'},
|
||||
'order_book_top': {'type': 'integer', 'maximum': 20, 'minimum': 1},
|
||||
'check_depth_of_market': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'enabled': {'type': 'boolean'},
|
||||
'bids_to_ask_delta': {'type': 'number', 'minimum': 0},
|
||||
}
|
||||
},
|
||||
},
|
||||
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'bid'},
|
||||
'use_order_book': {'type': 'boolean'},
|
||||
'order_book_top': {'type': 'integer', 'maximum': 20, 'minimum': 1},
|
||||
'check_depth_of_market': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'enabled': {'type': 'boolean'},
|
||||
'bids_to_ask_delta': {'type': 'number', 'minimum': 0},
|
||||
}
|
||||
},
|
||||
},
|
||||
'required': ['ask_last_balance']
|
||||
@ -129,6 +131,7 @@ CONF_SCHEMA = {
|
||||
'ask_strategy': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'ask'},
|
||||
'use_order_book': {'type': 'boolean'},
|
||||
'order_book_min': {'type': 'integer', 'minimum': 1},
|
||||
'order_book_max': {'type': 'integer', 'minimum': 1, 'maximum': 50},
|
||||
@ -299,6 +302,7 @@ SCHEMA_TRADE_REQUIRED = [
|
||||
'last_stake_amount_min_ratio',
|
||||
'dry_run',
|
||||
'dry_run_wallet',
|
||||
'ask_strategy',
|
||||
'bid_strategy',
|
||||
'unfilledtimeout',
|
||||
'stoploss',
|
||||
|
@ -3,7 +3,7 @@ Helpers when analyzing backtest data
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Union
|
||||
from typing import Dict, Union, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -188,3 +188,28 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
# FFill to get continuous
|
||||
df[col_name] = df[col_name].ffill()
|
||||
return df
|
||||
|
||||
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
|
||||
value_col: str = 'profitperc'
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
|
||||
"""
|
||||
Calculate max drawdown and the corresponding close dates
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
|
||||
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
profit_results = trades.sort_values(date_col)
|
||||
max_drawdown_df = pd.DataFrame()
|
||||
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
||||
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
||||
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
||||
|
||||
high_date = profit_results.loc[max_drawdown_df['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[max_drawdown_df['drawdown'].idxmin(), date_col]
|
||||
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date
|
||||
|
@ -332,7 +332,8 @@ class Exchange:
|
||||
logger.warning(f"Pair {pair} is restricted for some users on this exchange."
|
||||
f"Please check if you are impacted by this restriction "
|
||||
f"on the exchange and eventually remove {pair} from your whitelist.")
|
||||
if not self.get_pair_quote_currency(pair) == self._config['stake_currency']:
|
||||
if (self._config['stake_currency'] and
|
||||
self.get_pair_quote_currency(pair) != self._config['stake_currency']):
|
||||
invalid_pairs.append(pair)
|
||||
if invalid_pairs:
|
||||
raise OperationalException(
|
||||
@ -1023,7 +1024,7 @@ def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = Non
|
||||
|
||||
|
||||
def is_exchange_officially_supported(exchange_name: str) -> bool:
|
||||
return exchange_name in ['bittrex', 'binance']
|
||||
return exchange_name in ['bittrex', 'binance', 'kraken']
|
||||
|
||||
|
||||
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
|
||||
|
@ -242,25 +242,25 @@ class FreqtradeBot:
|
||||
logger.info(f"Using cached buy rate for {pair}.")
|
||||
return rate
|
||||
|
||||
config_bid_strategy = self.config.get('bid_strategy', {})
|
||||
if 'use_order_book' in config_bid_strategy and\
|
||||
config_bid_strategy.get('use_order_book', False):
|
||||
logger.info('Getting price from order book')
|
||||
order_book_top = config_bid_strategy.get('order_book_top', 1)
|
||||
bid_strategy = self.config.get('bid_strategy', {})
|
||||
if 'use_order_book' in bid_strategy and bid_strategy.get('use_order_book', False):
|
||||
logger.info(
|
||||
f"Getting price from order book {bid_strategy['price_side'].capitalize()} side."
|
||||
)
|
||||
order_book_top = bid_strategy.get('order_book_top', 1)
|
||||
order_book = self.exchange.get_order_book(pair, order_book_top)
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
order_book_rate = order_book['bids'][order_book_top - 1][0]
|
||||
logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate)
|
||||
order_book_rate = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
|
||||
logger.info(f'...top {order_book_top} order book buy rate {order_book_rate:.8f}')
|
||||
used_rate = order_book_rate
|
||||
else:
|
||||
logger.info('Using Last Ask / Last Price')
|
||||
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
|
||||
ticker = self.exchange.fetch_ticker(pair)
|
||||
if ticker['ask'] < ticker['last']:
|
||||
ticker_rate = ticker['ask']
|
||||
else:
|
||||
ticker_rate = ticker[bid_strategy['price_side']]
|
||||
if ticker['last'] and ticker_rate > ticker['last']:
|
||||
balance = self.config['bid_strategy']['ask_last_balance']
|
||||
ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
|
||||
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
|
||||
used_rate = ticker_rate
|
||||
|
||||
self._buy_rate_cache[pair] = used_rate
|
||||
@ -617,6 +617,15 @@ class FreqtradeBot:
|
||||
|
||||
return trades_closed
|
||||
|
||||
def _order_book_gen(self, pair: str, side: str, order_book_max: int = 1,
|
||||
order_book_min: int = 1):
|
||||
"""
|
||||
Helper generator to query orderbook in loop (used for early sell-order placing)
|
||||
"""
|
||||
order_book = self.exchange.get_order_book(pair, order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
yield order_book[side][i - 1][0]
|
||||
|
||||
def get_sell_rate(self, pair: str, refresh: bool) -> float:
|
||||
"""
|
||||
Get sell rate - either using get-ticker bid or first bid based on orderbook
|
||||
@ -636,13 +645,12 @@ class FreqtradeBot:
|
||||
|
||||
config_ask_strategy = self.config.get('ask_strategy', {})
|
||||
if config_ask_strategy.get('use_order_book', False):
|
||||
# This code is only used for notifications, selling uses the generator directly
|
||||
logger.debug('Using order book to get sell rate')
|
||||
|
||||
order_book = self.exchange.get_order_book(pair, 1)
|
||||
rate = order_book['bids'][0][0]
|
||||
rate = next(self._order_book_gen(pair, f"{config_ask_strategy['price_side']}s"))
|
||||
|
||||
else:
|
||||
rate = self.exchange.fetch_ticker(pair)['bid']
|
||||
rate = self.exchange.fetch_ticker(pair)[config_ask_strategy['price_side']]
|
||||
self._sell_rate_cache[pair] = rate
|
||||
return rate
|
||||
|
||||
@ -672,12 +680,13 @@ class FreqtradeBot:
|
||||
order_book_min = config_ask_strategy.get('order_book_min', 1)
|
||||
order_book_max = config_ask_strategy.get('order_book_max', 1)
|
||||
|
||||
order_book = self.exchange.get_order_book(trade.pair, order_book_max)
|
||||
|
||||
order_book = self._order_book_gen(trade.pair, f"{config_ask_strategy['price_side']}s",
|
||||
order_book_min=order_book_min,
|
||||
order_book_max=order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
order_book_rate = order_book['asks'][i - 1][0]
|
||||
logger.debug(' order book asks top %s: %0.8f', i, order_book_rate)
|
||||
sell_rate = order_book_rate
|
||||
sell_rate = next(order_book)
|
||||
logger.debug(f" order book {config_ask_strategy['price_side']} top {i}: "
|
||||
f"{sell_rate:0.8f}")
|
||||
|
||||
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
|
||||
return True
|
||||
|
@ -423,28 +423,37 @@ class Backtesting:
|
||||
strategy if len(self.strategylist) > 1 else None)
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
print(' BACKTESTING REPORT '.center(133, '='))
|
||||
print(generate_text_table(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results))
|
||||
table = generate_text_table(data, stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
print(' SELL REASON STATS '.center(133, '='))
|
||||
print(generate_text_table_sell_reason(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results))
|
||||
table = generate_text_table_sell_reason(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
print(' LEFT OPEN TRADES REPORT '.center(133, '='))
|
||||
print(generate_text_table(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True))
|
||||
table = generate_text_table(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
if isinstance(table, str):
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
print(' STRATEGY SUMMARY '.center(133, '='))
|
||||
print(generate_text_table_strategy(self.config['stake_currency'],
|
||||
self.config['max_open_trades'],
|
||||
all_results=all_results))
|
||||
table = generate_text_table_strategy(self.config['stake_currency'],
|
||||
self.config['max_open_trades'],
|
||||
all_results=all_results)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
@ -9,6 +9,7 @@ import logging
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from math import ceil
|
||||
from collections import OrderedDict
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
@ -21,7 +22,7 @@ from colorama import init as colorama_init
|
||||
from joblib import (Parallel, cpu_count, delayed, dump, load,
|
||||
wrap_non_picklable_objects)
|
||||
from pandas import DataFrame, json_normalize, isna
|
||||
from tabulate import tabulate
|
||||
import tabulate
|
||||
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.history import get_timerange
|
||||
@ -116,6 +117,7 @@ class Hyperopt:
|
||||
self.config['ask_strategy']['use_sell_signal'] = True
|
||||
|
||||
self.print_all = self.config.get('print_all', False)
|
||||
self.hyperopt_table_header = 0
|
||||
self.print_colorized = self.config.get('print_colorized', False)
|
||||
self.print_json = self.config.get('print_json', False)
|
||||
|
||||
@ -153,7 +155,7 @@ class Hyperopt:
|
||||
"""
|
||||
num_trials = len(self.trials)
|
||||
if num_trials > self.num_trials_saved:
|
||||
logger.info(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
|
||||
logger.debug(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
|
||||
dump(self.trials, self.trials_file)
|
||||
self.num_trials_saved = num_trials
|
||||
if final:
|
||||
@ -272,8 +274,10 @@ class Hyperopt:
|
||||
if not self.print_all:
|
||||
# Separate the results explanation string from dots
|
||||
print("\n")
|
||||
self.print_results_explanation(results, self.total_epochs, self.print_all,
|
||||
self.print_colorized)
|
||||
self.print_result_table(self.config, results, self.total_epochs,
|
||||
self.print_all, self.print_colorized,
|
||||
self.hyperopt_table_header)
|
||||
self.hyperopt_table_header = 2
|
||||
|
||||
@staticmethod
|
||||
def print_results_explanation(results, total_epochs, highlight_best: bool,
|
||||
@ -299,13 +303,15 @@ class Hyperopt:
|
||||
|
||||
@staticmethod
|
||||
def print_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool) -> None:
|
||||
print_colorized: bool, remove_header: int) -> None:
|
||||
"""
|
||||
Log result table
|
||||
"""
|
||||
if not results:
|
||||
return
|
||||
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
|
||||
trials = json_normalize(results, max_level=1)
|
||||
trials['Best'] = ''
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
@ -317,35 +323,63 @@ class Hyperopt:
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '*'
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
trials['Objective'] = trials['Objective'].astype(str)
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
|
||||
trials['Epoch'] = trials['Epoch'].apply(
|
||||
lambda x: "{}/{}".format(x, total_epochs))
|
||||
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
|
||||
)
|
||||
trials['Avg profit'] = trials['Avg profit'].apply(
|
||||
lambda x: '{:,.2f}%'.format(x) if not isna(x) else x)
|
||||
trials['Profit'] = trials['Profit'].apply(
|
||||
lambda x: '{:,.2f}%'.format(x) if not isna(x) else x)
|
||||
trials['Total profit'] = trials['Total profit'].apply(
|
||||
lambda x: '{: 11.8f} '.format(x) + config['stake_currency'] if not isna(x) else x)
|
||||
lambda x: ('{:,.2f}%'.format(x)).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
)
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: '{:,.1f}m'.format(x) if not isna(x) else x)
|
||||
lambda x: ('{:,.1f} m'.format(x)).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
)
|
||||
trials['Objective'] = trials['Objective'].apply(
|
||||
lambda x: '{:,.5f}'.format(x).rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
|
||||
)
|
||||
|
||||
trials['Profit'] = trials.apply(
|
||||
lambda x: '{:,.8f} {} {}'.format(
|
||||
x['Total profit'], config['stake_currency'],
|
||||
'({:,.2f}%)'.format(x['Profit']).rjust(10, ' ')
|
||||
).rjust(25+len(config['stake_currency']))
|
||||
if x['Total profit'] != 0.0 else '--'.rjust(25+len(config['stake_currency'])),
|
||||
axis=1
|
||||
)
|
||||
trials = trials.drop(columns=['Total profit'])
|
||||
|
||||
if print_colorized:
|
||||
for i in range(len(trials)):
|
||||
if trials.loc[i]['is_profit']:
|
||||
for z in range(len(trials.loc[i])-3):
|
||||
trials.iat[i, z] = "{}{}{}".format(Fore.GREEN,
|
||||
str(trials.loc[i][z]), Fore.RESET)
|
||||
for j in range(len(trials.loc[i])-3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
|
||||
str(trials.loc[i][j]), Fore.RESET)
|
||||
if trials.loc[i]['is_best'] and highlight_best:
|
||||
for z in range(len(trials.loc[i])-3):
|
||||
trials.iat[i, z] = "{}{}{}".format(Style.BRIGHT,
|
||||
str(trials.loc[i][z]), Style.RESET_ALL)
|
||||
for j in range(len(trials.loc[i])-3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
|
||||
str(trials.loc[i][j]), Style.RESET_ALL)
|
||||
|
||||
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
|
||||
if remove_header > 0:
|
||||
table = tabulate.tabulate(
|
||||
trials.to_dict(orient='list'), tablefmt='orgtbl',
|
||||
headers='keys', stralign="right"
|
||||
)
|
||||
|
||||
print(tabulate(trials.to_dict(orient='list'), headers='keys', tablefmt='psql',
|
||||
stralign="right"))
|
||||
table = table.split("\n", remove_header)[remove_header]
|
||||
elif remove_header < 0:
|
||||
table = tabulate.tabulate(
|
||||
trials.to_dict(orient='list'), tablefmt='psql',
|
||||
headers='keys', stralign="right"
|
||||
)
|
||||
table = "\n".join(table.split("\n")[0:remove_header])
|
||||
else:
|
||||
table = tabulate.tabulate(
|
||||
trials.to_dict(orient='list'), tablefmt='psql',
|
||||
headers='keys', stralign="right"
|
||||
)
|
||||
print(table)
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
@ -533,7 +567,7 @@ class Hyperopt:
|
||||
def start(self) -> None:
|
||||
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
|
||||
logger.info(f"Using optimizer random state: {self.random_state}")
|
||||
|
||||
self.hyperopt_table_header = -1
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
|
||||
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
@ -569,16 +603,21 @@ class Hyperopt:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f'Effective number of parallel workers used: {jobs}')
|
||||
EVALS = max(self.total_epochs // jobs, 1)
|
||||
EVALS = ceil(self.total_epochs / jobs)
|
||||
for i in range(EVALS):
|
||||
asked = self.opt.ask(n_points=jobs)
|
||||
# Correct the number of epochs to be processed for the last
|
||||
# iteration (should not exceed self.total_epochs in total)
|
||||
n_rest = (i + 1) * jobs - self.total_epochs
|
||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||
|
||||
asked = self.opt.ask(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
||||
self.opt.tell(asked, [v['loss'] for v in f_val])
|
||||
self.fix_optimizer_models_list()
|
||||
for j in range(jobs):
|
||||
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1
|
||||
val = f_val[j]
|
||||
val['current_epoch'] = current
|
||||
val['is_initial_point'] = current <= INITIAL_POINTS
|
||||
logger.debug(f"Optimizer epoch evaluated: {val}")
|
||||
|
49
freqtrade/optimize/hyperopt_loss_sortino.py
Normal file
49
freqtrade/optimize/hyperopt_loss_sortino.py
Normal file
@ -0,0 +1,49 @@
|
||||
"""
|
||||
SortinoHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SortinoHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sortino Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sortino Ratio calculation.
|
||||
"""
|
||||
total_profit = results["profit_percent"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
|
||||
results['downside_returns'] = 0
|
||||
results.loc[total_profit < 0, 'downside_returns'] = results['profit_percent']
|
||||
down_stdev = np.std(results['downside_returns'])
|
||||
|
||||
if np.std(total_profit) != 0.0:
|
||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||
sortino_ratio = -20.
|
||||
|
||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return -sortino_ratio
|
70
freqtrade/optimize/hyperopt_loss_sortino_daily.py
Normal file
70
freqtrade/optimize/hyperopt_loss_sortino_daily.py
Normal file
@ -0,0 +1,70 @@
|
||||
"""
|
||||
SortinoHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
import math
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SortinoHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sortino Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sortino Ratio calculation.
|
||||
|
||||
Sortino Ratio calculated as described in
|
||||
http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
|
||||
"""
|
||||
resample_freq = '1D'
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
minimum_acceptable_return = 0.0
|
||||
|
||||
# apply slippage per trade to profit_percent
|
||||
results.loc[:, 'profit_percent_after_slippage'] = \
|
||||
results['profit_percent'] - slippage_per_trade_ratio
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
|
||||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_percent_after_slippage"] - minimum_acceptable_return
|
||||
expected_returns_mean = total_profit.mean()
|
||||
|
||||
sum_daily['downside_returns'] = 0
|
||||
sum_daily.loc[total_profit < 0, 'downside_returns'] = total_profit
|
||||
total_downside = sum_daily['downside_returns']
|
||||
# Here total_downside contains min(0, P - MAR) values,
|
||||
# where P = sum_daily["profit_percent_after_slippage"]
|
||||
down_stdev = math.sqrt((total_downside**2).sum() / len(total_downside))
|
||||
|
||||
if (down_stdev != 0.):
|
||||
sortino_ratio = expected_returns_mean / down_stdev * math.sqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
||||
sortino_ratio = -20.
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(minimum_acceptable_return, expected_returns_mean, down_stdev, sortino_ratio)
|
||||
return -sortino_ratio
|
@ -66,7 +66,7 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def generate_text_table_sell_reason(
|
||||
@ -112,7 +112,7 @@ def generate_text_table_sell_reason(
|
||||
profit_percent_tot,
|
||||
]
|
||||
)
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
@ -146,7 +146,7 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
@ -172,4 +172,4 @@ def generate_edge_table(results: dict) -> str:
|
||||
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
@ -5,7 +5,8 @@ from typing import Any, Dict, List
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
|
||||
from freqtrade.data.btanalysis import (calculate_max_drawdown,
|
||||
combine_tickers_with_mean,
|
||||
create_cum_profit,
|
||||
extract_trades_of_period, load_trades)
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
@ -111,6 +112,36 @@ def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_sub
|
||||
return fig
|
||||
|
||||
|
||||
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> make_subplots:
|
||||
"""
|
||||
Add scatter points indicating max drawdown
|
||||
"""
|
||||
try:
|
||||
max_drawdown, highdate, lowdate = calculate_max_drawdown(trades)
|
||||
|
||||
drawdown = go.Scatter(
|
||||
x=[highdate, lowdate],
|
||||
y=[
|
||||
df_comb.loc[highdate, 'cum_profit'],
|
||||
df_comb.loc[lowdate, 'cum_profit'],
|
||||
],
|
||||
mode='markers',
|
||||
name=f"Max drawdown {max_drawdown:.2f}%",
|
||||
text=f"Max drawdown {max_drawdown:.2f}%",
|
||||
marker=dict(
|
||||
symbol='square-open',
|
||||
size=9,
|
||||
line=dict(width=2),
|
||||
color='green'
|
||||
|
||||
)
|
||||
)
|
||||
fig.add_trace(drawdown, row, 1)
|
||||
except ValueError:
|
||||
logger.warning("No trades found - not plotting max drawdown.")
|
||||
return fig
|
||||
|
||||
|
||||
def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
||||
"""
|
||||
Add trades to "fig"
|
||||
@ -364,6 +395,7 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
|
||||
|
||||
fig.add_trace(avgclose, 1, 1)
|
||||
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
|
||||
fig = add_max_drawdown(fig, 2, trades, df_comb)
|
||||
|
||||
for pair in pairs:
|
||||
profit_col = f'cum_profit_{pair}'
|
||||
|
@ -11,6 +11,7 @@
|
||||
"sell": 30
|
||||
},
|
||||
"bid_strategy": {
|
||||
"price_side": "bid",
|
||||
"ask_last_balance": 0.0,
|
||||
"use_order_book": false,
|
||||
"order_book_top": 1,
|
||||
@ -20,6 +21,7 @@
|
||||
}
|
||||
},
|
||||
"ask_strategy": {
|
||||
"price_side": "ask",
|
||||
"use_order_book": false,
|
||||
"order_book_min": 1,
|
||||
"order_book_max": 9,
|
||||
|
@ -190,7 +190,6 @@
|
||||
"# Analyze the above\n",
|
||||
"parallel_trades = analyze_trade_parallelism(trades, '5m')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"parallel_trades.plot()"
|
||||
]
|
||||
},
|
||||
@ -212,11 +211,14 @@
|
||||
"from freqtrade.plot.plotting import generate_candlestick_graph\n",
|
||||
"# Limit graph period to keep plotly quick and reactive\n",
|
||||
"\n",
|
||||
"# Filter trades to one pair\n",
|
||||
"trades_red = trades.loc[trades['pair'] == pair]\n",
|
||||
"\n",
|
||||
"data_red = data['2019-06-01':'2019-06-10']\n",
|
||||
"# Generate candlestick graph\n",
|
||||
"graph = generate_candlestick_graph(pair=pair,\n",
|
||||
" data=data_red,\n",
|
||||
" trades=trades,\n",
|
||||
" trades=trades_red,\n",
|
||||
" indicators1=['sma20', 'ema50', 'ema55'],\n",
|
||||
" indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']\n",
|
||||
" )\n",
|
||||
|
@ -1,6 +1,6 @@
|
||||
# requirements without requirements installable via conda
|
||||
# mainly used for Raspberry pi installs
|
||||
ccxt==1.22.95
|
||||
ccxt==1.23.30
|
||||
SQLAlchemy==1.3.13
|
||||
python-telegram-bot==12.4.2
|
||||
arrow==0.15.5
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
# Required for hyperopt
|
||||
scipy==1.4.1
|
||||
scikit-learn==0.22.1
|
||||
scikit-learn==0.22.2
|
||||
scikit-optimize==0.7.4
|
||||
filelock==3.0.12
|
||||
joblib==0.14.1
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Include all requirements to run the bot.
|
||||
-r requirements.txt
|
||||
|
||||
plotly==4.5.1
|
||||
plotly==4.5.2
|
||||
|
||||
|
@ -447,11 +447,6 @@ def test_create_datadir_failed(caplog):
|
||||
|
||||
|
||||
def test_create_datadir(caplog, mocker):
|
||||
# Ensure that caplog is empty before starting ...
|
||||
# Should prevent random failures.
|
||||
caplog.clear()
|
||||
# Added assert here to analyze random test-failures ...
|
||||
assert len(caplog.record_tuples) == 0
|
||||
|
||||
cud = mocker.patch("freqtrade.commands.deploy_commands.create_userdata_dir", MagicMock())
|
||||
csf = mocker.patch("freqtrade.commands.deploy_commands.copy_sample_files", MagicMock())
|
||||
@ -464,7 +459,6 @@ def test_create_datadir(caplog, mocker):
|
||||
|
||||
assert cud.call_count == 1
|
||||
assert csf.call_count == 1
|
||||
assert len(caplog.record_tuples) == 0
|
||||
|
||||
|
||||
def test_start_new_strategy(mocker, caplog):
|
||||
|
@ -2,15 +2,17 @@ from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
from pandas import DataFrame, DateOffset, to_datetime
|
||||
from pandas import DataFrame, DateOffset, to_datetime, Timestamp
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
|
||||
analyze_trade_parallelism,
|
||||
calculate_max_drawdown,
|
||||
combine_tickers_with_mean,
|
||||
create_cum_profit,
|
||||
extract_trades_of_period,
|
||||
load_backtest_data, load_trades,
|
||||
load_trades_from_db, analyze_trade_parallelism)
|
||||
load_trades_from_db)
|
||||
from freqtrade.data.history import load_data, load_pair_history
|
||||
from tests.test_persistence import create_mock_trades
|
||||
|
||||
@ -163,3 +165,17 @@ def test_create_cum_profit1(testdatadir):
|
||||
assert "cum_profits" in cum_profits.columns
|
||||
assert cum_profits.iloc[0]['cum_profits'] == 0
|
||||
assert cum_profits.iloc[-1]['cum_profits'] == 0.0798005
|
||||
|
||||
|
||||
def test_calculate_max_drawdown(testdatadir):
|
||||
filename = testdatadir / "backtest-result_test.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
drawdown, h, low = calculate_max_drawdown(bt_data)
|
||||
assert isinstance(drawdown, float)
|
||||
assert pytest.approx(drawdown) == 0.21142322
|
||||
assert isinstance(h, Timestamp)
|
||||
assert isinstance(low, Timestamp)
|
||||
assert h == Timestamp('2018-01-24 14:25:00', tz='UTC')
|
||||
assert low == Timestamp('2018-01-30 04:45:00', tz='UTC')
|
||||
with pytest.raises(ValueError, match='Trade dataframe empty.'):
|
||||
drawdown, h, low = calculate_max_drawdown(DataFrame())
|
||||
|
@ -511,6 +511,22 @@ def test_validate_pairs_stakecompatibility(default_conf, mocker, caplog):
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_pairs_stakecompatibility_downloaddata(default_conf, mocker, caplog):
|
||||
api_mock = MagicMock()
|
||||
default_conf['stake_currency'] = ''
|
||||
type(api_mock).markets = PropertyMock(return_value={
|
||||
'ETH/BTC': {'quote': 'BTC'}, 'LTC/BTC': {'quote': 'BTC'},
|
||||
'XRP/BTC': {'quote': 'BTC'}, 'NEO/BTC': {'quote': 'BTC'},
|
||||
'HELLO-WORLD': {'quote': 'BTC'},
|
||||
})
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes')
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_async_markets')
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_stakecurrency')
|
||||
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_pairs_stakecompatibility_fail(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'].append('HELLO-WORLD')
|
||||
api_mock = MagicMock()
|
||||
|
@ -369,6 +369,42 @@ def test_sharpe_loss_daily_prefers_higher_profits(default_conf, hyperopt_results
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
@ -390,17 +426,27 @@ def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results)
|
||||
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
||||
hyperopt.current_best_loss = 2
|
||||
hyperopt.total_epochs = 2
|
||||
|
||||
hyperopt.print_results(
|
||||
{
|
||||
'is_best': True,
|
||||
'loss': 1,
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
},
|
||||
'total_profit': 0,
|
||||
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
|
||||
'results_explanation': 'foo.',
|
||||
'is_initial_point': False
|
||||
'is_initial_point': False,
|
||||
'is_best': True
|
||||
}
|
||||
)
|
||||
out, err = capsys.readouterr()
|
||||
assert ' 2/2: foo. Objective: 1.00000' in out
|
||||
assert all(x in out
|
||||
for x in ["Best", "2/2", " 1", "0.10%", "0.00100000 BTC (1.00%)", "20.0 m"])
|
||||
|
||||
|
||||
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
|
||||
@ -422,13 +468,11 @@ def test_save_trials_saves_trials(mocker, hyperopt, testdatadir, caplog) -> None
|
||||
|
||||
hyperopt.trials = trials
|
||||
hyperopt.save_trials(final=True)
|
||||
assert log_has("Saving 1 epoch.", caplog)
|
||||
assert log_has(f"1 epoch saved to '{trials_file}'.", caplog)
|
||||
mock_dump.assert_called_once()
|
||||
|
||||
hyperopt.trials = trials + trials
|
||||
hyperopt.save_trials(final=True)
|
||||
assert log_has("Saving 2 epochs.", caplog)
|
||||
assert log_has(f"2 epochs saved to '{trials_file}'.", caplog)
|
||||
|
||||
|
||||
@ -466,8 +510,18 @@ def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result',
|
||||
'params': {'buy': {}, 'sell': {}, 'roi': {}, 'stoploss': 0.0}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result',
|
||||
'params': {'buy': {}, 'sell': {}, 'roi': {}, 'stoploss': 0.0},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
},
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
# Co-test loading ticker-interval from strategy
|
||||
@ -761,11 +815,23 @@ def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {'buy': {'mfi-value': None},
|
||||
'sell': {'sell-mfi-value': None},
|
||||
'roi': {}, 'stoploss': {'stoploss': None},
|
||||
'trailing': {'trailing_stop': None}}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {
|
||||
'buy': {'mfi-value': None},
|
||||
'sell': {'sell-mfi-value': None},
|
||||
'roi': {}, 'stoploss': {'stoploss': None},
|
||||
'trailing': {'trailing_stop': None}
|
||||
},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
@ -787,7 +853,11 @@ def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert '{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi":{},"stoploss":null,"trailing_stop":null}' in out # noqa: E501
|
||||
result_str = (
|
||||
'{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi"'
|
||||
':{},"stoploss":null,"trailing_stop":null}'
|
||||
)
|
||||
assert result_str in out # noqa: E501
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
@ -804,10 +874,22 @@ def test_print_json_spaces_default(mocker, default_conf, caplog, capsys) -> None
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {'buy': {'mfi-value': None},
|
||||
'sell': {'sell-mfi-value': None},
|
||||
'roi': {}, 'stoploss': {'stoploss': None}}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {
|
||||
'buy': {'mfi-value': None},
|
||||
'sell': {'sell-mfi-value': None},
|
||||
'roi': {}, 'stoploss': {'stoploss': None}
|
||||
},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
@ -846,8 +928,18 @@ def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) ->
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {'roi': {}, 'stoploss': {'stoploss': None}}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'params_details': {'roi': {}, 'stoploss': {'stoploss': None}},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
@ -887,7 +979,16 @@ def test_simplified_interface_roi_stoploss(mocker, default_conf, caplog, capsys)
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {'stoploss': 0.0}}])
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {'stoploss': 0.0},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
@ -965,7 +1066,17 @@ def test_simplified_interface_buy(mocker, default_conf, caplog, capsys) -> None:
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
@ -1012,7 +1123,17 @@ def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {},
|
||||
'results_metrics':
|
||||
{
|
||||
'trade_count': 1,
|
||||
'avg_profit': 0.1,
|
||||
'total_profit': 0.001,
|
||||
'profit': 1.0,
|
||||
'duration': 20.0
|
||||
}
|
||||
}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
|
@ -22,14 +22,14 @@ def test_generate_text_table(default_conf, mocker):
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC |'
|
||||
' Tot Profit % | Avg Duration | Wins | Draws | Losses |\n'
|
||||
'|:--------|-------:|---------------:|---------------:|-----------------:|'
|
||||
'---------------:|:---------------|-------:|--------:|---------:|\n'
|
||||
'| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC |'
|
||||
' Tot Profit % | Avg Duration | Wins | Draws | Losses |\n'
|
||||
'|---------+--------+----------------+----------------+------------------+'
|
||||
'----------------+----------------+--------+---------+----------|\n'
|
||||
'| ETH/BTC | 2 | 15.00 | 30.00 | 0.60000000 |'
|
||||
' 15.00 | 0:20:00 | 2 | 0 | 0 |\n'
|
||||
'| TOTAL | 2 | 15.00 | 30.00 | 0.60000000 |'
|
||||
' 15.00 | 0:20:00 | 2 | 0 | 0 |'
|
||||
' 15.00 | 0:20:00 | 2 | 0 | 0 |\n'
|
||||
'| TOTAL | 2 | 15.00 | 30.00 | 0.60000000 |'
|
||||
' 15.00 | 0:20:00 | 2 | 0 | 0 |'
|
||||
)
|
||||
assert generate_text_table(data={'ETH/BTC': {}},
|
||||
stake_currency='BTC', max_open_trades=2,
|
||||
@ -52,13 +52,13 @@ def test_generate_text_table_sell_reason(default_conf, mocker):
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Sell Reason | Sells | Wins | Draws | Losses |'
|
||||
'| Sell Reason | Sells | Wins | Draws | Losses |'
|
||||
' Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % |\n'
|
||||
'|:--------------|--------:|-------:|--------:|---------:|'
|
||||
'---------------:|---------------:|-----------------:|---------------:|\n'
|
||||
'| roi | 2 | 2 | 0 | 0 |'
|
||||
'|---------------+---------+--------+---------+----------+'
|
||||
'----------------+----------------+------------------+----------------|\n'
|
||||
'| roi | 2 | 2 | 0 | 0 |'
|
||||
' 15 | 30 | 0.6 | 15 |\n'
|
||||
'| stop_loss | 1 | 0 | 0 | 1 |'
|
||||
'| stop_loss | 1 | 0 | 0 | 1 |'
|
||||
' -10 | -10 | -0.2 | -5 |'
|
||||
)
|
||||
assert generate_text_table_sell_reason(
|
||||
@ -95,14 +95,14 @@ def test_generate_text_table_strategy(default_conf, mocker):
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Strategy | Buys | Avg Profit % | Cum Profit % | Tot'
|
||||
' Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |\n'
|
||||
'|:--------------|-------:|---------------:|---------------:|------'
|
||||
'-----------:|---------------:|:---------------|-------:|--------:|---------:|\n'
|
||||
'| TestStrategy1 | 3 | 20.00 | 60.00 | '
|
||||
' 1.10000000 | 30.00 | 0:17:00 | 3 | 0 | 0 |\n'
|
||||
'| TestStrategy2 | 3 | 30.00 | 90.00 | '
|
||||
' 1.30000000 | 45.00 | 0:20:00 | 3 | 0 | 0 |'
|
||||
'| Strategy | Buys | Avg Profit % | Cum Profit % | Tot'
|
||||
' Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |\n'
|
||||
'|---------------+--------+----------------+----------------+------------------+'
|
||||
'----------------+----------------+--------+---------+----------|\n'
|
||||
'| TestStrategy1 | 3 | 20.00 | 60.00 | 1.10000000 |'
|
||||
' 30.00 | 0:17:00 | 3 | 0 | 0 |\n'
|
||||
'| TestStrategy2 | 3 | 30.00 | 90.00 | 1.30000000 |'
|
||||
' 45.00 | 0:20:00 | 3 | 0 | 0 |'
|
||||
)
|
||||
assert generate_text_table_strategy('BTC', 2, all_results=results) == result_str
|
||||
|
||||
@ -111,8 +111,7 @@ def test_generate_edge_table(edge_conf, mocker):
|
||||
|
||||
results = {}
|
||||
results['ETH/BTC'] = PairInfo(-0.01, 0.60, 2, 1, 3, 10, 60)
|
||||
|
||||
assert generate_edge_table(results).count(':|') == 7
|
||||
assert generate_edge_table(results).count('+') == 7
|
||||
assert generate_edge_table(results).count('| ETH/BTC |') == 1
|
||||
assert generate_edge_table(results).count(
|
||||
'| Risk Reward Ratio | Required Risk Reward | Expectancy |') == 1
|
||||
|
@ -51,13 +51,13 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
|
||||
'open_date_hum': ANY,
|
||||
'close_date': None,
|
||||
'close_date_hum': None,
|
||||
'open_rate': 1.099e-05,
|
||||
'open_rate': 1.098e-05,
|
||||
'close_rate': None,
|
||||
'current_rate': 1.098e-05,
|
||||
'amount': 90.99181074,
|
||||
'current_rate': 1.099e-05,
|
||||
'amount': 91.07468124,
|
||||
'stake_amount': 0.001,
|
||||
'close_profit': None,
|
||||
'current_profit': -0.59,
|
||||
'current_profit': -0.41,
|
||||
'stop_loss': 0.0,
|
||||
'initial_stop_loss': 0.0,
|
||||
'initial_stop_loss_pct': None,
|
||||
@ -78,10 +78,10 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
|
||||
'open_date_hum': ANY,
|
||||
'close_date': None,
|
||||
'close_date_hum': None,
|
||||
'open_rate': 1.099e-05,
|
||||
'open_rate': 1.098e-05,
|
||||
'close_rate': None,
|
||||
'current_rate': ANY,
|
||||
'amount': 90.99181074,
|
||||
'amount': 91.07468124,
|
||||
'stake_amount': 0.001,
|
||||
'close_profit': None,
|
||||
'current_profit': ANY,
|
||||
@ -121,7 +121,7 @@ def test_rpc_status_table(default_conf, ticker, fee, mocker) -> None:
|
||||
assert "Pair" in headers
|
||||
assert 'instantly' == result[0][2]
|
||||
assert 'ETH/BTC' in result[0][1]
|
||||
assert '-0.59%' == result[0][3]
|
||||
assert '-0.41%' == result[0][3]
|
||||
# Test with fiatconvert
|
||||
|
||||
rpc._fiat_converter = CryptoToFiatConverter()
|
||||
@ -130,7 +130,7 @@ def test_rpc_status_table(default_conf, ticker, fee, mocker) -> None:
|
||||
assert "Pair" in headers
|
||||
assert 'instantly' == result[0][2]
|
||||
assert 'ETH/BTC' in result[0][1]
|
||||
assert '-0.59% (-0.09)' == result[0][3]
|
||||
assert '-0.41% (-0.06)' == result[0][3]
|
||||
|
||||
mocker.patch('freqtrade.freqtradebot.FreqtradeBot.get_sell_rate',
|
||||
MagicMock(side_effect=DependencyException(f"Pair 'ETH/BTC' not available")))
|
||||
@ -245,9 +245,9 @@ def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
|
||||
assert prec_satoshi(stats['profit_closed_coin'], 6.217e-05)
|
||||
assert prec_satoshi(stats['profit_closed_percent'], 6.2)
|
||||
assert prec_satoshi(stats['profit_closed_fiat'], 0.93255)
|
||||
assert prec_satoshi(stats['profit_all_coin'], 5.632e-05)
|
||||
assert prec_satoshi(stats['profit_all_percent'], 2.81)
|
||||
assert prec_satoshi(stats['profit_all_fiat'], 0.8448)
|
||||
assert prec_satoshi(stats['profit_all_coin'], 5.802e-05)
|
||||
assert prec_satoshi(stats['profit_all_percent'], 2.89)
|
||||
assert prec_satoshi(stats['profit_all_fiat'], 0.8703)
|
||||
assert stats['trade_count'] == 2
|
||||
assert stats['first_trade_date'] == 'just now'
|
||||
assert stats['latest_trade_date'] == 'just now'
|
||||
@ -668,7 +668,7 @@ def test_rpcforcebuy(mocker, default_conf, ticker, fee, limit_buy_order) -> None
|
||||
trade = rpc._rpc_forcebuy(pair, None)
|
||||
assert isinstance(trade, Trade)
|
||||
assert trade.pair == pair
|
||||
assert trade.open_rate == ticker()['ask']
|
||||
assert trade.open_rate == ticker()['bid']
|
||||
|
||||
# Test buy duplicate
|
||||
with pytest.raises(RPCException, match=r'position for ETH/BTC already open - id: 1'):
|
||||
|
@ -426,20 +426,20 @@ def test_api_status(botclient, mocker, ticker, fee, markets):
|
||||
rc = client_get(client, f"{BASE_URI}/status")
|
||||
assert_response(rc)
|
||||
assert len(rc.json) == 1
|
||||
assert rc.json == [{'amount': 90.99181074,
|
||||
assert rc.json == [{'amount': 91.07468124,
|
||||
'base_currency': 'BTC',
|
||||
'close_date': None,
|
||||
'close_date_hum': None,
|
||||
'close_profit': None,
|
||||
'close_rate': None,
|
||||
'current_profit': -0.59,
|
||||
'current_rate': 1.098e-05,
|
||||
'current_profit': -0.41,
|
||||
'current_rate': 1.099e-05,
|
||||
'initial_stop_loss': 0.0,
|
||||
'initial_stop_loss_pct': None,
|
||||
'open_date': ANY,
|
||||
'open_date_hum': 'just now',
|
||||
'open_order': '(limit buy rem=0.00000000)',
|
||||
'open_rate': 1.099e-05,
|
||||
'open_rate': 1.098e-05,
|
||||
'pair': 'ETH/BTC',
|
||||
'stake_amount': 0.001,
|
||||
'stop_loss': 0.0,
|
||||
|
@ -720,13 +720,13 @@ def test_forcesell_handle(default_conf, update, ticker, fee,
|
||||
'exchange': 'Bittrex',
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'profit',
|
||||
'limit': 1.172e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'limit': 1.173e-05,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.172e-05,
|
||||
'profit_amount': 6.126e-05,
|
||||
'profit_ratio': 0.0611052,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.173e-05,
|
||||
'profit_amount': 6.314e-05,
|
||||
'profit_ratio': 0.0629778,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.FORCE_SELL.value,
|
||||
@ -779,13 +779,13 @@ def test_forcesell_down_handle(default_conf, update, ticker, fee,
|
||||
'exchange': 'Bittrex',
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'loss',
|
||||
'limit': 1.044e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'limit': 1.043e-05,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.044e-05,
|
||||
'profit_amount': -5.492e-05,
|
||||
'profit_ratio': -0.05478342,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.043e-05,
|
||||
'profit_amount': -5.497e-05,
|
||||
'profit_ratio': -0.05482878,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.FORCE_SELL.value,
|
||||
@ -827,13 +827,13 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, mocker) -> None
|
||||
'exchange': 'Bittrex',
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'loss',
|
||||
'limit': 1.098e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'limit': 1.099e-05,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.098e-05,
|
||||
'profit_amount': -5.91e-06,
|
||||
'profit_ratio': -0.00589291,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.099e-05,
|
||||
'profit_amount': -4.09e-06,
|
||||
'profit_ratio': -0.00408133,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.FORCE_SELL.value,
|
||||
|
@ -761,8 +761,8 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
|
||||
assert trade.is_open
|
||||
assert trade.open_date is not None
|
||||
assert trade.exchange == 'bittrex'
|
||||
assert trade.open_rate == 0.00001099
|
||||
assert trade.amount == 90.99181073703367
|
||||
assert trade.open_rate == 0.00001098
|
||||
assert trade.amount == 91.07468123861567
|
||||
|
||||
assert log_has(
|
||||
'Buy signal found: about create a new trade with stake_amount: 0.001 ...', caplog
|
||||
@ -906,20 +906,37 @@ def test_process_informative_pairs_added(default_conf, ticker, mocker) -> None:
|
||||
assert ("ETH/BTC", default_conf["ticker_interval"]) in refresh_mock.call_args[0][0]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ask,last,last_ab,expected", [
|
||||
(20, 10, 0.0, 20), # Full ask side
|
||||
(20, 10, 1.0, 10), # Full last side
|
||||
(20, 10, 0.5, 15), # Between ask and last
|
||||
(20, 10, 0.7, 13), # Between ask and last
|
||||
(20, 10, 0.3, 17), # Between ask and last
|
||||
(5, 10, 1.0, 5), # last bigger than ask
|
||||
(5, 10, 0.5, 5), # last bigger than ask
|
||||
@pytest.mark.parametrize("side,ask,bid,last,last_ab,expected", [
|
||||
('ask', 20, 19, 10, 0.0, 20), # Full ask side
|
||||
('ask', 20, 19, 10, 1.0, 10), # Full last side
|
||||
('ask', 20, 19, 10, 0.5, 15), # Between ask and last
|
||||
('ask', 20, 19, 10, 0.7, 13), # Between ask and last
|
||||
('ask', 20, 19, 10, 0.3, 17), # Between ask and last
|
||||
('ask', 5, 6, 10, 1.0, 5), # last bigger than ask
|
||||
('ask', 5, 6, 10, 0.5, 5), # last bigger than ask
|
||||
('ask', 10, 20, None, 0.5, 10), # last not available - uses ask
|
||||
('ask', 4, 5, None, 0.5, 4), # last not available - uses ask
|
||||
('ask', 4, 5, None, 1, 4), # last not available - uses ask
|
||||
('ask', 4, 5, None, 0, 4), # last not available - uses ask
|
||||
('bid', 10, 20, 10, 0.0, 20), # Full bid side
|
||||
('bid', 10, 20, 10, 1.0, 10), # Full last side
|
||||
('bid', 10, 20, 10, 0.5, 15), # Between bid and last
|
||||
('bid', 10, 20, 10, 0.7, 13), # Between bid and last
|
||||
('bid', 10, 20, 10, 0.3, 17), # Between bid and last
|
||||
('bid', 4, 5, 10, 1.0, 5), # last bigger than bid
|
||||
('bid', 4, 5, 10, 0.5, 5), # last bigger than bid
|
||||
('bid', 10, 20, None, 0.5, 20), # last not available - uses bid
|
||||
('bid', 4, 5, None, 0.5, 5), # last not available - uses bid
|
||||
('bid', 4, 5, None, 1, 5), # last not available - uses bid
|
||||
('bid', 4, 5, None, 0, 5), # last not available - uses bid
|
||||
])
|
||||
def test_get_buy_rate(mocker, default_conf, caplog, ask, last, last_ab, expected) -> None:
|
||||
def test_get_buy_rate(mocker, default_conf, caplog, side, ask, bid,
|
||||
last, last_ab, expected) -> None:
|
||||
default_conf['bid_strategy']['ask_last_balance'] = last_ab
|
||||
default_conf['bid_strategy']['price_side'] = side
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker',
|
||||
MagicMock(return_value={'ask': ask, 'last': last}))
|
||||
MagicMock(return_value={'ask': ask, 'last': last, 'bid': bid}))
|
||||
|
||||
assert freqtrade.get_buy_rate('ETH/BTC', True) == expected
|
||||
assert not log_has("Using cached buy rate for ETH/BTC.", caplog)
|
||||
@ -1317,7 +1334,7 @@ def test_handle_stoploss_on_exchange_trailing(mocker, default_conf, fee, caplog,
|
||||
stoploss_order_mock.assert_not_called()
|
||||
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
assert trade.stop_loss == 0.00002344 * 0.95
|
||||
assert trade.stop_loss == 0.00002346 * 0.95
|
||||
|
||||
# setting stoploss_on_exchange_interval to 0 seconds
|
||||
freqtrade.strategy.order_types['stoploss_on_exchange_interval'] = 0
|
||||
@ -1325,10 +1342,10 @@ def test_handle_stoploss_on_exchange_trailing(mocker, default_conf, fee, caplog,
|
||||
assert freqtrade.handle_stoploss_on_exchange(trade) is False
|
||||
|
||||
cancel_order_mock.assert_called_once_with(100, 'ETH/BTC')
|
||||
stoploss_order_mock.assert_called_once_with(amount=85.25149190110828,
|
||||
stoploss_order_mock.assert_called_once_with(amount=85.32423208191126,
|
||||
pair='ETH/BTC',
|
||||
order_types=freqtrade.strategy.order_types,
|
||||
stop_price=0.00002344 * 0.95)
|
||||
stop_price=0.00002346 * 0.95)
|
||||
|
||||
# price fell below stoploss, so dry-run sells trade.
|
||||
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker', MagicMock(return_value={
|
||||
@ -1510,12 +1527,12 @@ def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog,
|
||||
assert freqtrade.handle_stoploss_on_exchange(trade) is False
|
||||
|
||||
# stoploss should be set to 1% as trailing is on
|
||||
assert trade.stop_loss == 0.00002344 * 0.99
|
||||
assert trade.stop_loss == 0.00002346 * 0.99
|
||||
cancel_order_mock.assert_called_once_with(100, 'NEO/BTC')
|
||||
stoploss_order_mock.assert_called_once_with(amount=2131074.168797954,
|
||||
stoploss_order_mock.assert_called_once_with(amount=2132892.491467577,
|
||||
pair='NEO/BTC',
|
||||
order_types=freqtrade.strategy.order_types,
|
||||
stop_price=0.00002344 * 0.99)
|
||||
stop_price=0.00002346 * 0.99)
|
||||
|
||||
|
||||
def test_enter_positions(mocker, default_conf, caplog) -> None:
|
||||
@ -2292,12 +2309,12 @@ def test_execute_sell_up(default_conf, ticker, fee, ticker_sell_up, mocker) -> N
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'profit',
|
||||
'limit': 1.172e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.172e-05,
|
||||
'profit_amount': 6.126e-05,
|
||||
'profit_ratio': 0.0611052,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.173e-05,
|
||||
'profit_amount': 6.223e-05,
|
||||
'profit_ratio': 0.0620716,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.ROI.value,
|
||||
@ -2341,12 +2358,12 @@ def test_execute_sell_down(default_conf, ticker, fee, ticker_sell_down, mocker)
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'loss',
|
||||
'limit': 1.044e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.044e-05,
|
||||
'profit_amount': -5.492e-05,
|
||||
'profit_ratio': -0.05478342,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.043e-05,
|
||||
'profit_amount': -5.406e-05,
|
||||
'profit_ratio': -0.05392257,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.STOP_LOSS.value,
|
||||
@ -2397,12 +2414,12 @@ def test_execute_sell_down_stoploss_on_exchange_dry_run(default_conf, ticker, fe
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'loss',
|
||||
'limit': 1.08801e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'limit',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.044e-05,
|
||||
'profit_amount': -1.498e-05,
|
||||
'profit_ratio': -0.01493766,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.043e-05,
|
||||
'profit_amount': -1.408e-05,
|
||||
'profit_ratio': -0.01404051,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.STOP_LOSS.value,
|
||||
@ -2587,7 +2604,7 @@ def test_execute_sell_market_order(default_conf, ticker, fee,
|
||||
freqtrade.execute_sell(trade=trade, limit=ticker_sell_up()['bid'], sell_reason=SellType.ROI)
|
||||
|
||||
assert not trade.is_open
|
||||
assert trade.close_profit == 0.0611052
|
||||
assert trade.close_profit == 0.0620716
|
||||
|
||||
assert rpc_mock.call_count == 2
|
||||
last_msg = rpc_mock.call_args_list[-1][0][0]
|
||||
@ -2597,12 +2614,12 @@ def test_execute_sell_market_order(default_conf, ticker, fee,
|
||||
'pair': 'ETH/BTC',
|
||||
'gain': 'profit',
|
||||
'limit': 1.172e-05,
|
||||
'amount': 90.99181073703367,
|
||||
'amount': 91.07468123861567,
|
||||
'order_type': 'market',
|
||||
'open_rate': 1.099e-05,
|
||||
'current_rate': 1.172e-05,
|
||||
'profit_amount': 6.126e-05,
|
||||
'profit_ratio': 0.0611052,
|
||||
'open_rate': 1.098e-05,
|
||||
'current_rate': 1.173e-05,
|
||||
'profit_amount': 6.223e-05,
|
||||
'profit_ratio': 0.0620716,
|
||||
'stake_currency': 'BTC',
|
||||
'fiat_currency': 'USD',
|
||||
'sell_reason': SellType.ROI.value,
|
||||
@ -3624,13 +3641,20 @@ def test_order_book_ask_strategy(default_conf, limit_buy_order, limit_sell_order
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
|
||||
|
||||
def test_get_sell_rate(default_conf, mocker, caplog, ticker, order_book_l2) -> None:
|
||||
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_order_book=order_book_l2,
|
||||
fetch_ticker=ticker,
|
||||
)
|
||||
@pytest.mark.parametrize('side,ask,bid,expected', [
|
||||
('bid', 10.0, 11.0, 11.0),
|
||||
('bid', 10.0, 11.2, 11.2),
|
||||
('bid', 10.0, 11.0, 11.0),
|
||||
('bid', 9.8, 11.0, 11.0),
|
||||
('bid', 0.0001, 0.002, 0.002),
|
||||
('ask', 10.0, 11.0, 10.0),
|
||||
('ask', 10.11, 11.2, 10.11),
|
||||
('ask', 0.001, 0.002, 0.001),
|
||||
('ask', 0.006, 1.0, 0.006),
|
||||
])
|
||||
def test_get_sell_rate(default_conf, mocker, caplog, side, bid, ask, expected) -> None:
|
||||
default_conf['ask_strategy']['price_side'] = side
|
||||
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker', return_value={'ask': ask, 'bid': bid})
|
||||
pair = "ETH/BTC"
|
||||
|
||||
# Test regular mode
|
||||
@ -3638,25 +3662,33 @@ def test_get_sell_rate(default_conf, mocker, caplog, ticker, order_book_l2) -> N
|
||||
rate = ft.get_sell_rate(pair, True)
|
||||
assert not log_has("Using cached sell rate for ETH/BTC.", caplog)
|
||||
assert isinstance(rate, float)
|
||||
assert rate == 0.00001098
|
||||
assert rate == expected
|
||||
# Use caching
|
||||
rate = ft.get_sell_rate(pair, False)
|
||||
assert rate == 0.00001098
|
||||
assert rate == expected
|
||||
assert log_has("Using cached sell rate for ETH/BTC.", caplog)
|
||||
|
||||
caplog.clear()
|
||||
|
||||
@pytest.mark.parametrize('side,expected', [
|
||||
('bid', 0.043936), # Value from order_book_l2 fiture - bids side
|
||||
('ask', 0.043949), # Value from order_book_l2 fiture - asks side
|
||||
])
|
||||
def test_get_sell_rate_orderbook(default_conf, mocker, caplog, side, expected, order_book_l2):
|
||||
# Test orderbook mode
|
||||
default_conf['ask_strategy']['price_side'] = side
|
||||
default_conf['ask_strategy']['use_order_book'] = True
|
||||
default_conf['ask_strategy']['order_book_min'] = 1
|
||||
default_conf['ask_strategy']['order_book_max'] = 2
|
||||
# TODO: min/max is irrelevant for this test until refactoring
|
||||
pair = "ETH/BTC"
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_order_book', order_book_l2)
|
||||
ft = get_patched_freqtradebot(mocker, default_conf)
|
||||
rate = ft.get_sell_rate(pair, True)
|
||||
assert not log_has("Using cached sell rate for ETH/BTC.", caplog)
|
||||
assert isinstance(rate, float)
|
||||
assert rate == 0.043936
|
||||
assert rate == expected
|
||||
rate = ft.get_sell_rate(pair, False)
|
||||
assert rate == 0.043936
|
||||
assert rate == expected
|
||||
assert log_has("Using cached sell rate for ETH/BTC.", caplog)
|
||||
|
||||
|
||||
|
@ -3,15 +3,16 @@ from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
import pytest
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
from freqtrade.commands import start_plot_dataframe, start_plot_profit
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import create_cum_profit, load_backtest_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.commands import start_plot_dataframe, start_plot_profit
|
||||
from freqtrade.plot.plotting import (add_indicators, add_profit,
|
||||
create_plotconfig,
|
||||
generate_candlestick_graph,
|
||||
@ -266,6 +267,7 @@ def test_generate_profit_graph(testdatadir):
|
||||
trades = load_backtest_data(filename)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180112")
|
||||
pairs = ["TRX/BTC", "ADA/BTC"]
|
||||
trades = trades[trades['close_time'] < pd.Timestamp('2018-01-12', tz='UTC')]
|
||||
|
||||
tickers = history.load_data(datadir=testdatadir,
|
||||
pairs=pairs,
|
||||
@ -283,13 +285,15 @@ def test_generate_profit_graph(testdatadir):
|
||||
assert fig.layout.yaxis3.title.text == "Profit"
|
||||
|
||||
figure = fig.layout.figure
|
||||
assert len(figure.data) == 4
|
||||
assert len(figure.data) == 5
|
||||
|
||||
avgclose = find_trace_in_fig_data(figure.data, "Avg close price")
|
||||
assert isinstance(avgclose, go.Scatter)
|
||||
|
||||
profit = find_trace_in_fig_data(figure.data, "Profit")
|
||||
assert isinstance(profit, go.Scatter)
|
||||
profit = find_trace_in_fig_data(figure.data, "Max drawdown 0.00%")
|
||||
assert isinstance(profit, go.Scatter)
|
||||
|
||||
for pair in pairs:
|
||||
profit_pair = find_trace_in_fig_data(figure.data, f"Profit {pair}")
|
||||
|
@ -60,7 +60,7 @@ def test_throttle(mocker, default_conf, caplog) -> None:
|
||||
|
||||
assert result == 42
|
||||
assert end - start > 0.1
|
||||
assert log_has_re(r"Throttling with 'throttled_func\(\)': sleep for 0\.10 s.*", caplog)
|
||||
assert log_has_re(r"Throttling with 'throttled_func\(\)': sleep for \d\.\d{2} s.*", caplog)
|
||||
|
||||
result = worker._throttle(throttled_func, throttle_secs=-1)
|
||||
assert result == 42
|
||||
|
Loading…
Reference in New Issue
Block a user