Compare commits

...

1174 Commits

Author SHA1 Message Date
Samuel Husso
aa10c6e6fe master to RELEASE 0.17.1 2018-08-16 08:12:36 +03:00
Samuel Husso
e02f964e3a Merge pull request #1152 from freqtrade/pyup-scheduled-update-2018-08-15
Scheduled daily dependency update on wednesday
2018-08-15 15:46:24 +03:00
pyup-bot
be373e7563 Update ccxt from 1.17.122 to 1.17.126 2018-08-15 14:27:06 +02:00
Janne Sinivirta
6e2a2abe80 Merge pull request #1151 from freqtrade/version-bump
Push develop as 0.17.2
2018-08-15 08:26:43 +03:00
Samuel Husso
dd7f540e5a Push develop as 0.17.2 2018-08-15 08:25:04 +03:00
Samuel Husso
78d1a677d7 Merge pull request #1140 from freqtrade/update_plotly
update plotly dependency
2018-08-15 08:18:06 +03:00
Matthias
2999588ea7 Merge pull request #1150 from nullart2/informative_startup
Informative startup
2018-08-15 06:43:51 +02:00
Nullart2
1edbc494ee refactor 2018-08-15 12:37:30 +08:00
Nullart2
b34aa46181 additional tests 2018-08-15 12:05:56 +08:00
Nullart2
48e218d6c0 test_talib fix 2018-08-15 11:01:59 +08:00
Nullart2
2bc7a668a3 informative startup 2018-08-15 10:39:32 +08:00
nullart2
8b9f1cadaa Merge pull request #2 from freqtrade/develop
dev update
2018-08-15 09:59:42 +08:00
Matthias
05cfbde8fc Merge pull request #1146 from freqtrade/pyup-scheduled-update-2018-08-14
Scheduled daily dependency update on tuesday
2018-08-14 14:40:58 +02:00
pyup-bot
04878da66b Update ccxt from 1.17.118 to 1.17.122 2018-08-14 14:27:07 +02:00
Matthias
50494858f1 Merge pull request #1144 from freqtrade/pyup-scheduled-update-2018-08-13
Scheduled daily dependency update on monday
2018-08-13 14:42:09 +02:00
pyup-bot
eca8682528 Update ccxt from 1.17.113 to 1.17.118 2018-08-13 14:26:06 +02:00
Matthias
a488734efa Merge pull request #1143 from freqtrade/pyup-scheduled-update-2018-08-12
Scheduled daily dependency update on sunday
2018-08-12 19:03:17 +02:00
pyup-bot
2e7837976d Update ccxt from 1.17.106 to 1.17.113 2018-08-12 14:26:06 +02:00
Matthias
7f6f5791ea update plotly dependency 2018-08-12 10:25:19 +02:00
Matthias
e73331b9b6 Merge pull request #1124 from berlinguyinca/database_tuning
Database tuning
2018-08-12 09:45:48 +02:00
Matthias
ffa47151ee Flake8 fix 2018-08-12 09:30:12 +02:00
Matthias
5f8ec82319 Revert "updated dockerfile and requirements"
This reverts commit 2cfa3b7607.
2018-08-12 09:18:30 +02:00
Matthias
3ad6ee6b2c Merge pull request #1139 from freqtrade/pyup-scheduled-update-2018-08-11
Scheduled daily dependency update on saturday
2018-08-11 19:27:52 +02:00
pyup-bot
5bec389e85 Update ccxt from 1.17.94 to 1.17.106 2018-08-11 14:26:06 +02:00
Matthias
853374d156 Merge pull request #1136 from freqtrade/pyup-scheduled-update-2018-08-09
Scheduled daily dependency update on thursday
2018-08-09 19:15:47 +02:00
pyup-bot
1bcd4333fc Update ccxt from 1.17.86 to 1.17.94 2018-08-09 14:26:06 +02:00
Matthias
ed4771bf6e Merge pull request #1130 from freqtrade/fix_metadatatests
Fix failing tests when metadata in `analyze_ticker` is actually used
2018-08-09 12:46:35 +02:00
Matthias
636ae1dcd8 Merge pull request #1134 from freqtrade/pyup-scheduled-update-2018-08-08
Scheduled daily dependency update on wednesday
2018-08-08 19:19:39 +02:00
pyup-bot
4d03fc213f Update ccxt from 1.17.84 to 1.17.86 2018-08-08 14:26:07 +02:00
Samuel Husso
863110422a Merge pull request #1132 from freqtrade/pyup-scheduled-update-2018-08-07
Scheduled daily dependency update on tuesday
2018-08-07 17:54:11 +03:00
pyup-bot
3d94720be9 Update ccxt from 1.17.81 to 1.17.84 2018-08-07 14:26:07 +02:00
Matthias
131d268721 Fix failing tests when metadata in analyze_ticker is actually used 2018-08-06 19:15:30 +02:00
Matthias
eca5c6f389 Merge pull request #1129 from freqtrade/pyup-scheduled-update-2018-08-06
Scheduled daily dependency update on monday
2018-08-06 15:29:56 +02:00
pyup-bot
bc62f626c5 Update ccxt from 1.17.78 to 1.17.81 2018-08-06 14:26:06 +02:00
Samuel Husso
199bd7bc50 Merge pull request #1123 from freqtrade/fix-db_migration
Fix db migration
2018-08-06 12:00:22 +03:00
Janne Sinivirta
8fc0f6ecec Merge pull request #1128 from Axel-CH/fix-talib-prescision
fix talib bug on bollinger bands and other indicators
2018-08-06 08:35:35 +03:00
Axel Cherubin
65f7b75c34 fix flake8 issue 2018-08-05 17:52:06 -04:00
Axel Cherubin
848ecb91bb remove unnecessary seb command 2018-08-05 17:28:53 -04:00
Axel Cherubin
a5554604e0 add sed command in doc, fix travis error 2018-08-05 16:59:18 -04:00
Axel Cherubin
0b825e96aa fix talib bug on bollinger bands and other indicators when working on small assets, rise talib prescision and add test associated 2018-08-05 16:08:49 -04:00
Matthias
a2730cd86e Merge pull request #1126 from freqtrade/pyup-scheduled-update-2018-08-05
Scheduled daily dependency update on sunday
2018-08-05 19:18:11 +02:00
pyup-bot
ba4de4137e Update pandas from 0.23.3 to 0.23.4 2018-08-05 14:26:08 +02:00
pyup-bot
be9436b2a6 Update ccxt from 1.17.73 to 1.17.78 2018-08-05 14:26:07 +02:00
Matthias
d73d0a5253 Fix database migration 2018-08-04 20:22:45 +02:00
Matthias
ea506b05c6 Add test for failing database migration 2018-08-04 20:22:16 +02:00
Samuel Husso
6ef14677de Merge pull request #1122 from freqtrade/pyup-scheduled-update-2018-08-04
Scheduled daily dependency update on saturday
2018-08-04 19:55:20 +03:00
pyup-bot
721341e412 Update ccxt from 1.17.66 to 1.17.73 2018-08-04 14:26:05 +02:00
Samuel Husso
a586a7526e Merge pull request #1120 from freqtrade/pyup-scheduled-update-2018-08-03
Scheduled daily dependency update on friday
2018-08-03 16:11:14 +03:00
pyup-bot
b963b95ee9 Update pytest from 3.7.0 to 3.7.1 2018-08-03 14:26:07 +02:00
pyup-bot
3037d85529 Update ccxt from 1.17.63 to 1.17.66 2018-08-03 14:26:06 +02:00
Gert Wohlgemuth
2cfa3b7607 updated dockerfile and requirements 2018-08-02 17:08:14 -07:00
Gert
85c73ea850 added index 2018-08-02 16:39:13 -07:00
Matthias
80a1c6ea64 Merge pull request #1106 from creslinux/xbt
XBT missing as a market symbol for BTC in constants
2018-08-02 20:07:25 +02:00
Matthias
ea72af7ce4 Merge pull request #1118 from freqtrade/pyup-scheduled-update-2018-08-02
Scheduled daily dependency update on thursday
2018-08-02 14:44:53 +02:00
pyup-bot
145008421f Update ccxt from 1.17.60 to 1.17.63 2018-08-02 14:26:07 +02:00
Samuel Husso
398c61786a Merge pull request #1116 from creslinux/script_get_market_pairs
Script to get market pairs
2018-08-02 13:29:42 +03:00
Matthias
00b81e3f0d fix readme.md spelling 2018-08-02 13:27:37 +03:00
Matthias
0fc4a7910d Add note to readme for binance users 2018-08-02 13:27:37 +03:00
creslin
7f4472ad77 As requested in issue #1111
A python script to return

 - all exchanges supported by CCXT
 - all markets on a exchange

 Invoked as `python get_market_pairs.py` it will list exchanges
 Invoked as `python get_market_pairs binance` it will list all markets on binance
2018-08-02 10:10:44 +00:00
Janne Sinivirta
e282d57a91 fix broken test 2018-08-02 12:57:47 +03:00
Janne Sinivirta
3a5b435dfa Merge pull request #1089 from freqtrade/feat/backtest_multi_strat
Allow multi strategy backtest without data reload
2018-08-02 12:35:47 +03:00
Janne Sinivirta
17d78b7807 Merge pull request #1115 from creslinux/candlesnottickers
renamed/refactored get_ticker_history to get_candle_history to stop confusion
2018-08-02 12:33:09 +03:00
creslin
1f97d0d78b fix 2018-08-02 09:15:02 +00:00
creslin
a741f1144a missing __init__.py 2018-08-02 08:58:04 +00:00
creslin
f619cd1d2a renamed/refactored get_ticker_history to get_candle_history
as it does not fetch any ticker data only candles
and is causing confusion when developer are talking about candles /tickers
incorreclty.

OHLCV < candles and Tickers are two seperate datafeeds from the exchange
2018-08-02 08:45:28 +00:00
Matthias
29dcd2ea43 Merge pull request #1108 from freqtrade/pyup-scheduled-update-2018-08-01
Scheduled daily dependency update on wednesday
2018-08-01 15:38:23 +02:00
pyup-bot
f7f75b4b04 Update ccxt from 1.17.56 to 1.17.60 2018-08-01 14:26:05 +02:00
Matthias
7458aa438c Merge pull request #982 from berlinguyinca/BASE64
integrated BASE64 encoded strategy loading
2018-08-01 09:00:12 +02:00
creslin
36f91fcdf5 XBT missing as a market symbol for BTC in constants 2018-08-01 06:03:34 +00:00
Matthias
5b8ee214f9 Adapt to pair_to_strat methology 2018-08-01 07:28:12 +02:00
Matthias
038e97667f Merge branch 'develop' into BASE64 2018-08-01 07:26:13 +02:00
Matthias
40ee86b357 Adapt after rebase 2018-07-31 21:08:03 +02:00
Matthias
76fbb89a03 use print for backtest results to avoid odd newline-handling 2018-07-31 21:04:03 +02:00
Matthias
c648e2acfc Adjust documentation to strategy table 2018-07-31 21:04:03 +02:00
Matthias
765d1c769c Add test for stratgy summary table 2018-07-31 21:04:03 +02:00
Matthias
028589abd2 Add strategy summary table 2018-07-31 21:04:03 +02:00
Matthias
5125076f5d Fix typo 2018-07-31 21:04:03 +02:00
Matthias
4ea6780153 Update documentation with --strategy-list 2018-07-31 21:04:03 +02:00
Matthias
a8b55b8989 Add test for strategy-name injection 2018-07-31 21:04:03 +02:00
Matthias
a57a2f4a75 Store backtest-result in different vars 2018-07-31 21:04:03 +02:00
Matthias
bd3563df67 Add test for new functionality 2018-07-31 21:04:03 +02:00
Matthias
644f729aea Refactor strategy loading to __init__ 2018-07-31 21:04:03 +02:00
Matthias
5f2e92ec5c Refactor backtesting 2018-07-31 21:04:03 +02:00
Matthias
65aaa3dffd Extract backtest strategy setting 2018-07-31 21:04:03 +02:00
Matthias
9a42aac0f2 Add testcase for --strategylist 2018-07-31 21:04:03 +02:00
Matthias
56046b3cb3 Add strategylist option to backtesting 2018-07-31 21:04:03 +02:00
Matthias
e7d0439741 Add new arguments 2018-07-31 21:03:17 +02:00
Matthias
e38e0e60e1 Merge pull request #1103 from misaghshakeri/ccxt_ratelimit_configurable
Initializing CCXT with rate_limit parameter optional (default to true) [EDITED]
2018-07-31 19:46:28 +02:00
misagh
74fa4ddca4 CCXT rate limit config default to => true
+ adding config to config_full.json.example
2018-07-31 16:54:02 +02:00
Matthias
66a0986496 Merge pull request #1102 from freqtrade/pyup-scheduled-update-2018-07-31
Scheduled daily dependency update on tuesday
2018-07-31 14:39:48 +02:00
pyup-bot
72480188b7 Update pytest from 3.6.4 to 3.7.0 2018-07-31 14:25:07 +02:00
pyup-bot
ab4343b7c0 Update ccxt from 1.17.49 to 1.17.56 2018-07-31 14:25:06 +02:00
misagh
be1298dbd2 Initializing CCXT with rate_limit parameter optional (default to false) 2018-07-31 14:19:16 +02:00
Janne Sinivirta
1044d15b17 Merge pull request #1096 from freqtrade/cleaner-tests
Cleaning unit tests, first set
2018-07-31 08:22:33 +03:00
Janne Sinivirta
2d7ef30185 Merge pull request #1093 from freqtrade/fix/talib-install
install numpy before ta-lib to fix build errors
2018-07-31 08:19:35 +03:00
Gert
b83487cc36 added required changes 2018-07-30 13:00:08 -07:00
Matthias
d048f3ce6d Merge pull request #1078 from creslinux/sandbox2
Allow sandbox API use on exchanges
2018-07-30 20:23:28 +02:00
Matthias
5a55cd25ff Merge branch 'develop' into sandbox2 2018-07-30 20:18:48 +02:00
Janne Sinivirta
f85cc422a3 Merge branch 'develop' into cleaner-tests 2018-07-30 21:08:55 +03:00
Janne Sinivirta
155e134f50 Merge pull request #1097 from creslinux/gdax3
Enable GDAX support by rounding amount/rate (with unit tests)
2018-07-30 21:04:26 +03:00
Janne Sinivirta
81cf7229be Merge pull request #1044 from freqtrade/pair_to_strat
pair to strategy enhancement
2018-07-30 20:18:46 +03:00
creslin
fe27ca63b4 Update test_exchange.py 2018-07-30 17:08:33 +00:00
creslinux
012fe94333 Recommitted as new branch with unit tests - GIT screwd me on the last PR 2018-07-30 16:49:58 +00:00
Matthias
075a42d615 Merge pull request #1095 from freqtrade/pyup-scheduled-update-2018-07-30
Scheduled daily dependency update on monday
2018-07-30 14:53:24 +02:00
Janne Sinivirta
8b8d3f3b75 default_conf is function-scoped fixture, no need to deepcopy it 2018-07-30 15:41:02 +03:00
pyup-bot
3ecc502d86 Update ccxt from 1.17.45 to 1.17.49 2018-07-30 14:24:06 +02:00
Janne Sinivirta
67d1693901 avoid validating default_conf hundreds of times 2018-07-30 14:57:51 +03:00
Janne Sinivirta
3083e5d2be use pytest fixture properly in test_hyperopt 2018-07-30 13:26:54 +03:00
Janne Sinivirta
affdeb8fd8 rename func to throttled_func 2018-07-30 12:58:29 +03:00
Janne Sinivirta
fb80964b69 freqtradebot tests don't need to mock coinmarketcap anymore 2018-07-30 12:58:29 +03:00
Janne Sinivirta
1c20ef873d remove parens 2018-07-30 12:09:07 +03:00
Janne Sinivirta
df53e912f0 fix one more test that was missing mock and needed internet 2018-07-30 12:09:07 +03:00
Janne Sinivirta
e242842805 remove more useless docstrings from tests 2018-07-30 12:09:07 +03:00
Matthias
2401fa15d2 Change missed calls to advise_* functions 2018-07-29 21:07:21 +02:00
Matthias
787d6042de Switch from pair(str) to metadata(dict) 2018-07-29 20:56:23 +02:00
Matthias
941879dc19 revert docs to use populate_* functions 2018-07-29 20:55:40 +02:00
Matthias
82680ac6aa improve docstrings for strategy 2018-07-29 20:55:40 +02:00
Matthias
5fbce13830 update hyperopt to use new methods 2018-07-29 20:55:40 +02:00
Matthias
39cf0decce don't use __annotate__
it is only present when typehints are used which cannot be guaranteed
for userdefined classes
2018-07-29 20:55:40 +02:00
Matthias
f286ba6b87 overload populate_indicators to work with and without pair argumen
all while not breaking users strategies
2018-07-29 20:55:40 +02:00
Matthias
98665dcef4 revert inadvertent wihtespace changes 2018-07-29 20:55:37 +02:00
Matthias
cf83416d69 update script to use new method 2018-07-29 20:55:37 +02:00
Matthias
791c5ff071 update comments to explain what advise methods do 2018-07-29 20:55:37 +02:00
Matthias
8a9c54ed61 use new methods 2018-07-29 20:55:37 +02:00
Matthias
18b8f20f1c fix small test bug 2018-07-29 20:55:37 +02:00
Matthias
f12167f0dc Fix backtesting test 2018-07-29 20:55:37 +02:00
Matthias
df8700ead0 Adapt after merge from develop 2018-07-29 20:55:37 +02:00
Matthias
0eff6719c2 improve tests for legacy-strategy loading 2018-07-29 20:55:37 +02:00
Matthias
aa772c28ad Add tests for advise_indicator methods 2018-07-29 20:55:37 +02:00
Matthias
4ebd706cb8 improve comments 2018-07-29 20:55:32 +02:00
Matthias
fa48b8a535 Update documentation with advise-* methods 2018-07-29 20:55:32 +02:00
Matthias
c9a97bccb7 Add tests for deprecation 2018-07-29 20:55:32 +02:00
Matthias
2f905cb696 Update test-strategy with new methods 2018-07-29 20:55:06 +02:00
Matthias
7300c0a0fe remove @abstractmethod as this method may not be present in new
strategies
2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
921f645623 fixing tests... 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
0dcaa82c3b fixed test? 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
3dd7d209e9 more test fixes 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
abc55a6e6b fixing? hyperopt 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
5871488858 fixed errors and making flake pass 2018-07-29 20:55:06 +02:00
xmatthias
2e6e5029ba fix mypy and tests 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
19b9966417 satisfied flake8 again 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
57f683697d revised code 2018-07-29 20:55:06 +02:00
Gert Wohlgemuth
296d3d8bbe working on refacturing of the strategy class 2018-07-29 20:55:06 +02:00
Matthias
336cd524a3 Merge pull request #1094 from freqtrade/pyup-scheduled-update-2018-07-29
Scheduled daily dependency update on sunday
2018-07-29 19:02:17 +02:00
Janne Sinivirta
f832edf5bc remove useless docstrings from tests 2018-07-29 17:09:44 +03:00
Janne Sinivirta
1bbb86c621 remove nonsense asserts 2018-07-29 16:23:17 +03:00
pyup-bot
2ef35400c9 Update pytest from 3.6.3 to 3.6.4 2018-07-29 14:24:08 +02:00
pyup-bot
9c7f53d90d Update ccxt from 1.17.39 to 1.17.45 2018-07-29 14:24:06 +02:00
Matthias
ebfcc0fc13 install numpy before ta-lib to fix build errors 2018-07-29 14:01:50 +02:00
Matthias
42024134ec Merge pull request #1092 from freqtrade/revert-1090-ujson-loader
Revert "backtesting: try to load data with ujson if it exists"
2018-07-29 12:23:25 +01:00
Matthias
7f27beff4b Revert "backtesting: try to load data with ujson if it exists" 2018-07-29 13:23:11 +02:00
creslinux
dd71071740 Added logger.info when Sandbox is enabled. 2018-07-29 09:15:13 +00:00
creslinux
c85c7a3a77 Documentation fixes. 2018-07-29 09:12:05 +00:00
creslinux
1e804c0df5 flake 8 2018-07-29 08:10:55 +00:00
creslinux
fc06d028b8 Unit tests for sandbox pass / fail scenarios
Big Wave of appreciation to xmatthias for the guidence on how
Mocker works
2018-07-29 08:02:04 +00:00
Matthias
618784d060 Merge pull request #1090 from freqtrade/ujson-loader
backtesting: try to load data with ujson if it exists
2018-07-29 08:54:02 +01:00
Samuel Husso
cfcc2e61e5 Merge pull request #1088 from freqtrade/fix/unpatched_mock
fix rpc test going to network
2018-07-29 09:53:52 +03:00
Samuel Husso
187e039a58 Merge pull request #1034 from freqtrade/feat/positive_sl_limit
add offset for positive trailing stop loss
2018-07-29 08:30:29 +03:00
Gert
b3df1b1ba7 added documentation: 2018-07-28 21:31:20 -07:00
creslinux
0a059662b3 Submitting with unit test for the working scenario.
Strongly recommend core team check the unit test is even targetting the
correct code in exchange/__init__.py

I have a real knowledge gap on mocker, in so far as how tests map to
what they're targeting.
2018-07-28 20:32:10 +00:00
Samuel Husso
cb2fff8909 mypy doesn't handle common idiomacy so disable the line (see the open issue more details) 2018-07-28 22:06:26 +03:00
Samuel Husso
cdd8cc551c backtesting: try to load data with ujson if it exists 2018-07-28 21:56:11 +03:00
creslinux
8648ac9da2 Update documentation with hot to sandbox test.
Allowing end-to-end GDAX API use without risking real money.
2018-07-28 17:42:56 +00:00
Samuel Husso
083befaafc Merge pull request #1087 from freqtrade/pyup-scheduled-update-2018-07-28
Scheduled daily dependency update on saturday
2018-07-28 16:26:38 +03:00
pyup-bot
099e7020c8 Update ccxt from 1.17.29 to 1.17.39 2018-07-28 14:24:06 +02:00
Samuel Husso
6ab8fa8c71 Merge pull request #1079 from creslinux/apiAuthPass
add Password option to API login, GDAX as example requires.
2018-07-28 13:53:39 +03:00
creslinux
b2b81c8b2d Update documentation with hot to sandbox test.
Allowing end-to-end GDAX API use without risking real money.
2018-07-27 20:18:12 +00:00
Matthias
243b63e39c fix rpc test going to network (unsuitable for flights...) 2018-07-27 21:14:41 +01:00
Janne Sinivirta
a3d870ad3e Merge pull request #1075 from freqtrade/extract_get_history
Extract get history from get_signal call
2018-07-27 20:54:20 +03:00
Matthias
1ceaa2200a Merge pull request #1080 from freqtrade/pyup-scheduled-update-2018-07-27
Scheduled daily dependency update on friday
2018-07-27 16:06:07 +01:00
Matthias
c8ac98501c Merge pull request #1081 from sandoche/patch-1
Error fixed in the quickstart documentation
2018-07-27 16:05:51 +01:00
Sandoche ADITTANE
ca0d658f15 Error fixed in the quickstart documentation 2018-07-27 15:28:06 +02:00
pyup-bot
4547ae930a Update ccxt from 1.17.20 to 1.17.29 2018-07-27 14:24:06 +02:00
creslin
40ae250193 Update constants.py
Adding UID also, as itll get ran into in future on an exchange that needs it.
2018-07-27 12:19:01 +00:00
creslinux
c47253133a have to begin before we can stop 2018-07-27 12:07:07 +00:00
creslinux
7efa81073a Removed ; at line end. 2018-07-27 09:10:09 +00:00
creslinux
d23b3ccc5e odd cut and paste error fixed. 2018-07-27 08:55:36 +00:00
Matthias
48cd468b6c Don't do all network calls at once without async 2018-07-27 07:40:27 +01:00
Matthias
df3e76a65d Remove legacy code, fix missed call 2018-07-26 19:11:51 +01:00
Matthias
f2a9be3684 Adjust tests and remove legacy variable 2018-07-26 19:06:25 +01:00
Matthias
3324cdfcbe add mock for get_history in patch_get_signal 2018-07-26 18:58:49 +01:00
Matthias
484103b957 extract get_history_data from get_signal 2018-07-26 18:23:42 +01:00
Samuel Husso
6e437a7290 Merge pull request #1074 from freqtrade/pyup-scheduled-update-2018-07-26
Scheduled daily dependency update on thursday
2018-07-26 15:48:41 +03:00
pyup-bot
0c7ceadb27 Update ccxt from 1.17.11 to 1.17.20 2018-07-26 14:24:05 +02:00
Janne Sinivirta
726b94b077 Merge pull request #1069 from freqtrade/feat/movefiatconverttorpc
Feat/movefiatconverttorpc
2018-07-26 14:25:58 +03:00
Matthias
452a1cad9d don't default fiat_convert to None for outputs 2018-07-26 07:26:23 +01:00
Matthias
7b49f746d1 remove #FIX which was fixed 2018-07-25 22:47:20 +01:00
Matthias
78f8c6566e Merge pull request #1072 from freqtrade/datesorting-backtest-fix
Use pandas own min and max
2018-07-25 22:45:24 +01:00
Janne Sinivirta
4b38c8b11d use pandas own min and max for column sorting 2018-07-25 17:04:25 +03:00
Samuel Husso
3fa1c5b19f Merge pull request #1070 from freqtrade/pyup-scheduled-update-2018-07-25
Scheduled daily dependency update on wednesday
2018-07-25 07:33:00 -05:00
pyup-bot
4f4daf4071 Update ccxt from 1.16.89 to 1.17.11 2018-07-25 14:24:07 +02:00
Matthias
dc1ad3cbf6 whitespace issues 2018-07-24 23:08:40 +01:00
Matthias
ff6435948e Fix random test failure 2018-07-24 22:53:10 +01:00
Matthias
23c2a75fc4 Merge pull request #1066 from freqtrade/pyup-scheduled-update-2018-07-24
Scheduled daily dependency update on tuesday
2018-07-24 13:53:35 +01:00
pyup-bot
7feea8c7a6 Update numpy from 1.14.5 to 1.15.0 2018-07-24 14:24:08 +02:00
pyup-bot
cf6e229729 Update ccxt from 1.16.88 to 1.16.89 2018-07-24 14:24:06 +02:00
Matthias
4928686af9 Remove currency from daily table 2018-07-24 09:37:25 +01:00
Matthias
30b72ad98a don't show fiat-currency if not set 2018-07-24 08:20:32 +01:00
Matthias
1a9ead45eb fix missed fiat_display_currency config value 2018-07-24 08:00:56 +01:00
Janne Sinivirta
0b3190552e Merge pull request #1018 from freqtrade/feat/sell_reason
Record sell reason
2018-07-24 09:09:45 +03:00
Matthias
456e49fe35 default fiat_currency to none 2018-07-24 00:01:51 +01:00
Janne Sinivirta
ab67822af2 Merge pull request #1062 from freqtrade/fix/migratescript
fix a bug in the database migration script
2018-07-23 16:48:12 +03:00
Janne Sinivirta
7f877aed6f Merge pull request #1063 from freqtrade/pyup-scheduled-update-2018-07-23
Scheduled daily dependency update on monday
2018-07-23 16:47:19 +03:00
pyup-bot
4575919d78 Update ccxt from 1.16.86 to 1.16.88 2018-07-23 14:24:05 +02:00
Matthias
10fc2c67c7 Fix bug causing a database-migration to fail from aspecific state 2018-07-23 09:10:37 +01:00
Matthias
643de58c4d Add test to check for a mid-migrated database (not old but not new) 2018-07-23 09:09:56 +01:00
Janne Sinivirta
aba3c69765 Merge pull request #1061 from freqtrade/fix_networkcall
Add missing mock
2018-07-23 07:19:37 +03:00
Matthias
0775a371fe rename sellreason to sell_Reason, fix typos 2018-07-23 00:54:20 +01:00
Matthias
23fe0db2df Add missing mock 2018-07-22 17:06:42 +01:00
Matthias
f54ac5a8de revert bugfix done in it's own branch 2018-07-22 17:05:22 +01:00
Matthias
4c8411537f Don't require fiat-currency 2018-07-22 14:53:46 +02:00
Matthias
bd2771b8f9 use correct property 2018-07-22 14:52:58 +02:00
Matthias
4d864df59e Add tests for no_fiat functionality 2018-07-22 14:49:07 +02:00
Matthias
fae4c3a4e3 only init if stake_currency is set 2018-07-22 14:48:06 +02:00
Matthias
2b297869a1 adjust checks to fit new functionality 2018-07-22 14:35:59 +02:00
Matthias
6cc0a72bca ADd optional to class _fiat_convert 2018-07-22 14:35:37 +02:00
Samuel Husso
f53e03767c Merge pull request #1060 from freqtrade/pyup-scheduled-update-2018-07-22
Scheduled daily dependency update on sunday
2018-07-22 07:34:40 -05:00
pyup-bot
5ab1e66978 Update ccxt from 1.16.80 to 1.16.86 2018-07-22 14:24:05 +02:00
Samuel Husso
849ded7772 Merge pull request #1057 from freqtrade/fix/fiatconvert_error
Catch all exceptions from fiat-convert api calls
2018-07-21 23:12:56 -05:00
Matthias
f297d22edb fix some tests in rpc_telegram 2018-07-21 20:49:57 +02:00
Matthias
0681a806cc move cryptofiatconvert to rpc 2018-07-21 20:44:38 +02:00
Matthias
be3f04775a remove unnecessary mocks - add mocks which went to exchange 2018-07-21 20:21:00 +02:00
Matthias
9467461160 only init FIATConvert when telegram is enabled 2018-07-21 20:13:32 +02:00
Matthias
66af41192a Catch all exceptions from fiat-convert api calls 2018-07-21 19:50:38 +02:00
Matthias
6f7898809a Merge pull request #1055 from freqtrade/pyup-scheduled-update-2018-07-21
Scheduled daily dependency update on saturday
2018-07-21 14:40:26 +02:00
pyup-bot
ab3478a742 Update ccxt from 1.16.75 to 1.16.80 2018-07-21 14:24:05 +02:00
Matthias
00fa41d63f Merge pull request #1051 from freqtrade/pyup-scheduled-update-2018-07-20
Scheduled daily dependency update on friday
2018-07-20 15:52:32 +02:00
pyup-bot
7f6c79eb76 Update ccxt from 1.16.68 to 1.16.75 2018-07-20 14:24:06 +02:00
Janne Sinivirta
b45128f53d Merge pull request #1050 from freqtrade/xmatt_verbosity2
Add multiple verbosity levels
2018-07-20 11:42:42 +03:00
Matthias
dd1290e38e Add multiple verbosity levels 2018-07-19 21:12:27 +02:00
Janne Sinivirta
62701888c9 Merge pull request #1049 from freqtrade/revert-1045-xmatt_verbosity
Revert "Add more verbosity levels"
2018-07-19 21:50:46 +03:00
Matthias
90915b6b2f Revert "Add more verbosity levels" 2018-07-19 20:43:41 +02:00
Matthias
1b2bfad348 Fix wrong test 2018-07-19 20:36:49 +02:00
Matthias
060469fefc Add stuff after rebase 2018-07-19 20:12:20 +02:00
Matthias
4fb9823cfb fix rebase problem 2018-07-19 19:50:06 +02:00
Matthias
760c79c5e9 Use .center() to output trades header line 2018-07-19 19:39:08 +02:00
Matthias
a452864b41 Use namedtuple for sell_return 2018-07-19 19:39:08 +02:00
Matthias
ad98c62329 update backtest anlaysis cheatsheet 2018-07-19 19:34:14 +02:00
Matthias
506aa0e3d3 Add print_sales table and test 2018-07-19 19:34:14 +02:00
Matthias
426c25f631 record ticker_interval and strategyname 2018-07-19 19:34:14 +02:00
Matthias
4059871c28 Add get_strategy_name 2018-07-19 19:34:14 +02:00
Matthias
2a61629014 Export sell_reason from backtest 2018-07-19 19:29:31 +02:00
Matthias
8c0b19f80c Check sell-reason for sell-reason-specific tests 2018-07-19 19:29:31 +02:00
Matthias
838b0e7b76 Remove unused import 2018-07-19 19:29:31 +02:00
Matthias
cbffd3650b add sell_reason to backtesting 2018-07-19 19:29:31 +02:00
Matthias
0147b1631a remove optional from selltype 2018-07-19 19:27:33 +02:00
Matthias
49a7c7f08e fix tests 2018-07-19 19:27:33 +02:00
Janne Sinivirta
1af24af391 Merge pull request #1047 from freqtrade/pyup-scheduled-update-2018-07-19
Scheduled daily dependency update on thursday
2018-07-19 17:34:02 +03:00
Janne Sinivirta
0cc1b66ae7 Merge pull request #1037 from freqtrade/fix/backtest-comment
replace --realistic with 2 separate flags
2018-07-19 17:33:19 +03:00
Janne Sinivirta
6070d819b8 Merge pull request #1040 from freqtrade/xmatthias_backtest_duration
Fix backtest duration calculation
2018-07-19 17:32:11 +03:00
pyup-bot
f2bfc9ccc2 Update ccxt from 1.16.57 to 1.16.68 2018-07-19 14:24:07 +02:00
Matthias
f991109b0a Add sell-reason to sell-tree 2018-07-19 13:29:42 +02:00
Matthias
6bb7167b56 Add sellType enum 2018-07-19 13:25:48 +02:00
Matthias
365ba98131 add option to full_json example 2018-07-19 13:22:44 +02:00
Matthias
6a3c8e3933 update docs for trailing stoploss offset 2018-07-19 13:22:44 +02:00
Matthias
c0a7725c1f Add stoploss offset 2018-07-19 13:22:44 +02:00
Matthias
71100a67c9 update documentation with new options 2018-07-19 13:20:15 +02:00
Matthias
8f254031c6 Add short form for parameters, change default for hyperopt 2018-07-19 13:19:36 +02:00
Matthias
aa69177436 Properly check emptyness and adjust floatfmt 2018-07-19 13:14:21 +02:00
Matthias
64f933477d Merge pull request #1007 from freqtrade/remove-analyze
Remove Analyze
2018-07-19 10:12:36 +02:00
Janne Sinivirta
aaa58a956d Merge pull request #1045 from freqtrade/xmatt_verbosity
Add more verbosity levels
2018-07-19 08:11:32 +03:00
Matthias
75c0a476f8 Test setting verbosity in commandline 2018-07-18 23:40:04 +02:00
Matthias
1ab7f5fb6d add tests for more debug levels 2018-07-18 22:53:44 +02:00
Matthias
789b98015f Allow different loglevels 2018-07-18 22:52:57 +02:00
Matthias
7134c15e86 Merge pull request #1024 from freqtrade/feature/webhook
Feature/webhook
2018-07-18 20:39:57 +02:00
Matthias
79b1030435 output duration in a more readable way 2018-07-18 20:08:55 +02:00
Matthias
ac6955fd3b Merge pull request #1041 from freqtrade/pyup-scheduled-update-2018-07-18
Scheduled daily dependency update on wednesday
2018-07-18 14:39:57 +02:00
pyup-bot
a374f95687 Update ccxt from 1.16.50 to 1.16.57 2018-07-18 14:24:07 +02:00
Matthias
f9f6a3bd04 cast to int to keep exports constant 2018-07-18 09:29:51 +02:00
Matthias
8e4d2abd4e Fix typo 2018-07-18 09:10:17 +02:00
Matthias
08237abe20 Fix wrong backtest duration
identified in #1038
2018-07-18 09:06:12 +02:00
Matthias
5b3fa3c635 Merge pull request #1039 from Lufedi/develop
Add docs to get_trade_stake_amount function
2018-07-18 08:57:56 +02:00
Luis Felipe Diaz Chica
ee8e890f50 Add docs to get_trade_stake_amount function 2018-07-18 01:36:39 -05:00
Matthias
3df79b8542 fix hanging intend 2018-07-17 21:12:05 +02:00
Matthias
a290286fef update documentation 2018-07-17 21:05:31 +02:00
Matthias
c82276ecbe add --disable-max-market-positions 2018-07-17 21:05:03 +02:00
Matthias
b29eed32ca update documentation 2018-07-17 20:29:53 +02:00
Matthias
e17618407b Rename --realistic-simulation to --enable-position-stacking 2018-07-17 20:26:59 +02:00
Janne Sinivirta
85fd4dd3ff rename analyze.py to exchange_helpers.py 2018-07-17 21:26:52 +03:00
Matthias
78205da4f0 Merge pull request #1036 from freqtrade/pyup-scheduled-update-2018-07-17
Scheduled daily dependency update on tuesday
2018-07-17 14:40:25 +02:00
pyup-bot
e021d22c7f Update ccxt from 1.16.36 to 1.16.50 2018-07-17 14:24:09 +02:00
Janne Sinivirta
4a26eb34ea fix plot_profit to use strategy instead of Analyze 2018-07-17 11:47:09 +03:00
Janne Sinivirta
50b15b8052 fix plot_dataframe to use strategy instead of Analyze 2018-07-17 11:41:21 +03:00
Janne Sinivirta
e11ec28962 remove leftover commented-out code 2018-07-17 11:13:35 +03:00
Janne Sinivirta
06d024cc46 make pytest ignore this file 2018-07-17 11:07:27 +03:00
Janne Sinivirta
084264669f fix the last failing unit test 2018-07-17 11:02:07 +03:00
Janne Sinivirta
dbc3874b4f __init__ must return None to please mypy 2018-07-17 10:47:15 +03:00
Janne Sinivirta
78af4bc785 move and fix tests from Analyze to interface of strategy 2018-07-17 10:23:04 +03:00
Matthias
2795db3ea0 Merge pull request #1033 from freqtrade/pyup-scheduled-update-2018-07-16
Scheduled daily dependency update on monday
2018-07-16 15:02:44 +02:00
pyup-bot
4f957728bf Update scikit-learn from 0.19.1 to 0.19.2 2018-07-16 14:24:07 +02:00
pyup-bot
62f4d734b9 Update ccxt from 1.16.33 to 1.16.36 2018-07-16 14:24:06 +02:00
Samuel Husso
a3466f4b42 Merge pull request #1031 from freqtrade/feat/update_configdict
Update config dict with attributes loaded from strategy
2018-07-16 10:00:46 +03:00
Samuel Husso
050afe2bc0 Merge pull request #979 from creslinux/Check_timeframes
Handle if ticker_interval in config.json is not supported on exchange.
2018-07-16 09:57:46 +03:00
Janne Sinivirta
5c87c420c7 restore one analyze test 2018-07-16 08:59:14 +03:00
Janne Sinivirta
aeb4102bcb refactor Analyze class methods to base Strategy class 2018-07-16 08:23:39 +03:00
Janne Sinivirta
f6b8c2b40f move parse_ticker_dataframe outside Analyze class 2018-07-16 08:23:39 +03:00
Janne Sinivirta
85e6c9585a remove pass-through methods from Analyze 2018-07-16 08:23:39 +03:00
Janne Sinivirta
a74147c472 move strategy initialization outside Analyze 2018-07-16 08:23:39 +03:00
Matthias
727f569e3a Merge pull request #1032 from freqtrade/pyup-scheduled-update-2018-07-15
Scheduled daily dependency update on sunday
2018-07-15 14:42:35 +02:00
pyup-bot
8f59759e97 Update ccxt from 1.16.16 to 1.16.33 2018-07-15 14:24:05 +02:00
Matthias
158226012a consistent use of the config dict within the test 2018-07-15 09:08:14 +02:00
Matthias
b4ba641131 Update config dict with attributes loaded from strategy 2018-07-15 09:01:08 +02:00
Matthias
682f4c1ade Merge pull request #1030 from freqtrade/pyup-scheduled-update-2018-07-14
Scheduled daily dependency update on saturday
2018-07-14 19:39:13 +02:00
pyup-bot
e1de988f85 Update sqlalchemy from 1.2.9 to 1.2.10 2018-07-14 14:24:09 +02:00
pyup-bot
bc83c34118 Update ccxt from 1.16.12 to 1.16.16 2018-07-14 14:24:07 +02:00
Matthias
278e7159bc adjust webhook tests 2018-07-14 13:32:35 +02:00
Matthias
1284627219 move url to private class level 2018-07-14 13:32:35 +02:00
Matthias
120fc29643 use dict comprehension 2018-07-14 13:32:35 +02:00
Matthias
6336d8a0e2 remove copy leftover 2018-07-14 13:32:35 +02:00
Matthias
ee2f6ccbe9 Add test for enable_webhook 2018-07-14 13:32:35 +02:00
Matthias
144d308e5e Allow enabling of webhook 2018-07-14 13:32:35 +02:00
Matthias
3ca161f196 Add webhook config 2018-07-14 13:32:35 +02:00
Matthias
f55df7ba63 improve README.md formatting (styling only) 2018-07-14 13:32:35 +02:00
Matthias
71df41c4eb add documentation for rpc_webhook 2018-07-14 13:32:35 +02:00
Matthias
a4643066a8 allow more flexibility in webhook 2018-07-14 13:32:35 +02:00
Matthias
25250f7c10 don't hardcode post parameters 2018-07-14 13:32:35 +02:00
Matthias
fa8512789f add tests for webhook 2018-07-14 13:32:35 +02:00
Matthias
ae22af1ea3 fix typo 2018-07-14 13:32:35 +02:00
Matthias
6e16c1d80d add webhook test file 2018-07-14 13:32:35 +02:00
Matthias
266092a05d Merge pull request #1029 from freqtrade/mypy-fix
rpc: dont re-use variables with different types
2018-07-14 13:15:39 +02:00
Samuel Husso
fa8b349200 rpc: dont re-use variables with different types 2018-07-14 08:02:39 +03:00
Samuel Husso
04bed3e53e Merge pull request #1027 from peterkorodi/patch-2
Update plotting.md
2018-07-13 22:50:10 -05:00
peterkorodi
68ddd1b951 Update plotting.md
Fix pairs and db-url in the doc
2018-07-14 00:07:38 +02:00
Samuel Husso
b6e1020f39 Merge pull request #1026 from freqtrade/pyup-scheduled-update-2018-07-13
Scheduled daily dependency update on friday
2018-07-13 08:56:51 -05:00
pyup-bot
5b02b87735 Update ccxt from 1.16.6 to 1.16.12 2018-07-13 14:24:06 +02:00
Matthias
c17e8d6abb Merge pull request #972 from freqtrade/feature/rewrite-rpc
Rewrite RPC module
2018-07-12 19:38:01 +02:00
gcarq
cb8cd21e22 add tests for telegram.send_msg 2018-07-12 17:50:11 +02:00
gcarq
a559e22f16 remove duplicate send_msg invocation 2018-07-12 17:29:02 +02:00
gcarq
7eaeb8d146 status: return arrow object instead humanized str 2018-07-12 17:27:40 +02:00
gcarq
0920fb6120 use more granular msg dict for buy/sell notifications 2018-07-12 17:16:31 +02:00
gcarq
4cb1aa1d97 use dict as argument for rpc.send_msg 2018-07-12 17:12:42 +02:00
gcarq
96a405feb7 implement name property in abstract class 2018-07-12 17:11:31 +02:00
gcarq
112998c205 refactor _rpc_balance 2018-07-12 17:11:31 +02:00
gcarq
f1a370b3b9 return dict from _rpc_status and handle rendering in module impl 2018-07-12 17:10:04 +02:00
gcarq
29670b9814 remove markdown formatting from exception string 2018-07-12 17:07:19 +02:00
gcarq
df8ba28ce5 convert start, stop and reload_conf to return a dict 2018-07-12 17:07:19 +02:00
Matthias
5288e18f2f Merge pull request #1022 from freqtrade/pyup-scheduled-update-2018-07-12
Scheduled daily dependency update on thursday
2018-07-12 14:33:14 +02:00
pyup-bot
ddfc4722b9 Update ccxt from 1.15.42 to 1.16.6 2018-07-12 14:23:06 +02:00
Janne Sinivirta
bd46b4faf3 Merge pull request #1015 from freqtrade/xmatthias-patch-1
add missing s to Backtest cum results
2018-07-11 16:18:07 +03:00
Matthias
46708e7d29 Merge pull request #1014 from freqtrade/pyup-scheduled-update-2018-07-11
Scheduled daily dependency update on wednesday
2018-07-11 14:50:09 +02:00
Matthias
06c9494a46 add missing s to Backtest cum results 2018-07-11 14:50:04 +02:00
pyup-bot
8f6252b312 Update ccxt from 1.15.35 to 1.15.42 2018-07-11 14:23:06 +02:00
Janne Sinivirta
1f16ff268f Merge pull request #1010 from jblestang/refactoring_create_trade_function
Refactoring Create Trade
2018-07-11 07:23:03 +03:00
Janne Sinivirta
aa2366346a Merge pull request #1001 from xmatthias/feat/backtest_cum_profit
Add cumulative profit to backtest result table
2018-07-11 07:21:28 +03:00
Janne Sinivirta
8b72560eba Merge pull request #1006 from freqtrade/update_plotly
Update plotly
2018-07-11 07:20:33 +03:00
Jean-Baptiste LE STANG
773fb5953b Reafcotring Create Trade 2018-07-10 15:10:56 +02:00
Matthias
3540ba3712 Merge pull request #1009 from freqtrade/pyup-scheduled-update-2018-07-10
Scheduled daily dependency update on tuesday
2018-07-10 14:35:33 +02:00
pyup-bot
d546a4b29f Update ccxt from 1.15.28 to 1.15.35 2018-07-10 14:23:08 +02:00
Janne Sinivirta
b4be3c2499 Merge pull request #1002 from xmatthias/test/use_open_backtest
Use open-rates for backtesting
2018-07-10 09:20:32 +03:00
Matthias
85c60519b0 Fix test crash 2018-07-09 22:11:12 +02:00
Matthias
6be6448334 replace "transparent" with rgb to fix exception in plotly 3.0.0 2018-07-09 21:56:29 +02:00
Matthias
f5bc65b877 update plotly 2018-07-09 21:56:24 +02:00
Matthias
a7a82635b4 Merge pull request #1004 from berlinguyinca/patch-2
Fixing database issues
2018-07-09 21:54:21 +02:00
Samuel Husso
b9916b60f9 Merge pull request #1005 from freqtrade/pyup-scheduled-update-2018-07-09
Scheduled daily dependency update on monday
2018-07-09 08:26:54 -05:00
pyup-bot
b773e3472a Update ccxt from 1.15.27 to 1.15.28 2018-07-09 14:23:06 +02:00
Gert Wohlgemuth
4654792784 Fixing database issues
1. if database is defined in config file, it currently tosses an exception that only export file or db is defined
2. if trades are loaded from databases, plot crashes with an exception 'cannot compare tz-naive and tz-aware datetime-like objects'
3. if Trade is not closed, crashes with exception that NoneType has no field timestamp

all should be fixed
2018-07-08 22:43:34 -07:00
Matthias
750d737b7d Add tests for change to open_rate 2018-07-08 20:18:34 +02:00
Matthias
0bd9674b5c Merge pull request #1000 from pan-long/fix-doc
Update doc for manually fix trade
2018-07-08 20:07:25 +02:00
Matthias
8b06000f0f Use open-rates for backtesting 2018-07-08 20:03:11 +02:00
Matthias
efaa8f16e7 Improve formattiong of table 2018-07-08 20:01:33 +02:00
Matthias
38487644f0 fix tests for backtest-result output table 2018-07-08 19:55:16 +02:00
Matthias
1a24afef77 add cumsum to backtest-results 2018-07-08 19:55:04 +02:00
Janne Sinivirta
8fb146ba6a Merge pull request #992 from freqtrade/backtest_optimize
reduce calculation effort by removing a call to calc_profit_percent
2018-07-08 17:41:50 +03:00
Janne Sinivirta
05b078b8dd Merge pull request #999 from freqtrade/pyup-scheduled-update-2018-07-08
Scheduled daily dependency update on sunday
2018-07-08 17:40:42 +03:00
Janne Sinivirta
6926e468a4 Merge pull request #984 from freqtrade/test_backtest_results
Test backtest results
2018-07-08 17:40:12 +03:00
Janne Sinivirta
34764108cc Merge pull request #997 from freqtrade/fix/timedout_candle
don't flag data as outdated which isn't
2018-07-08 17:36:03 +03:00
pyup-bot
17c9c183f5 Update pandas from 0.23.2 to 0.23.3 2018-07-08 14:23:07 +02:00
pyup-bot
cc107bb3cc Update ccxt from 1.15.25 to 1.15.27 2018-07-08 14:23:05 +02:00
Matthias
8dd6e29426 don't flag data as outdated which isn't 2018-07-08 13:34:47 +02:00
Matthias
3e03a208f1 reduce calculation effort (slightly!) 2018-07-07 20:17:53 +02:00
Matthias
570d27a0c4 Add testcase where ticker_interval is not in the configuration 2018-07-07 15:30:29 +02:00
Samuel Husso
7c8c8e83d3 Merge pull request #990 from freqtrade/update_dockerfile
Update Dockerfile to 3.6.6
2018-07-07 08:15:20 -05:00
Matthias
2b488d1da2 Update Dockerfile to 3.6.6 2018-07-07 14:52:39 +02:00
Matthias
e98efe3a35 Merge pull request #989 from freqtrade/pyup-scheduled-update-2018-07-07
Scheduled daily dependency update on saturday
2018-07-07 14:43:32 +02:00
Matthias
3f6e9cd28f Add tests for validate_timeframes 2018-07-07 14:42:53 +02:00
Matthias
af17cef002 fix existing tests to work with validate_timeframes 2018-07-07 14:41:42 +02:00
pyup-bot
742fefa786 Update pandas from 0.23.1 to 0.23.2 2018-07-07 14:23:08 +02:00
pyup-bot
08fe10e302 Update ccxt from 1.15.21 to 1.15.25 2018-07-07 14:23:06 +02:00
Matthias
9906da46f6 move comment to correct place 2018-07-06 20:00:54 +02:00
Matthias
54976fa103 Add more tests to validate buy/sell rows 2018-07-06 19:56:16 +02:00
Samuel Husso
e1d7c72bb8 Merge pull request #983 from freqtrade/pyup-scheduled-update-2018-07-06
Scheduled daily dependency update on friday
2018-07-06 09:41:10 -05:00
pyup-bot
af03c17209 Update ccxt from 1.15.13 to 1.15.21 2018-07-06 14:23:06 +02:00
Gert Wohlgemuth
1897a1cb6a fixed mypy issues, seriosuly... 2018-07-05 16:10:38 -07:00
Gert Wohlgemuth
58879ff012 fixed braket 2018-07-05 15:01:53 -07:00
Gert Wohlgemuth
e1f5745f59 Update resolver.py 2018-07-05 14:50:23 -07:00
Gert Wohlgemuth
1c48902e64 Merge branch 'develop' into BASE64 2018-07-05 14:40:04 -07:00
Gert Wohlgemuth
8bbee4038b integrated BASE64 encoded strategy loading 2018-07-05 14:30:24 -07:00
Matthias
c35d1b9c9d Add test which checks the backtest result 2018-07-05 23:22:35 +02:00
Matthias
4f642b769c Merge pull request #981 from freqtrade/fstrings-in-use
Fstrings in use
2018-07-05 22:18:15 +02:00
Samuel Husso
e808b3a2a1 rpc: get rid of extra else and fix mypy warning 2018-07-05 10:47:08 -05:00
Samuel Husso
df68b0990f rpc: fstrings 2018-07-05 10:11:29 -05:00
Samuel Husso
adbffc69e1 telegram: fstrings in use 2018-07-05 10:11:29 -05:00
Samuel Husso
21fc933678 convert_backtesting: fstrings in use 2018-07-05 10:11:29 -05:00
Samuel Husso
a2063ede55 persistence: fstrings in use 2018-07-05 10:11:29 -05:00
Samuel Husso
7dca3c6d03 freqtradebot,main,hyperopt: fstrings in use 2018-07-05 10:11:29 -05:00
Samuel Husso
03c112a601 config, optimize: fstrings in use 2018-07-05 10:11:29 -05:00
Matthias
c77686c7a7 Merge pull request #980 from freqtrade/pyup-scheduled-update-2018-07-05
Scheduled daily dependency update on thursday
2018-07-05 15:39:57 +02:00
pyup-bot
239f8606e1 Update pytest from 3.6.2 to 3.6.3 2018-07-05 14:23:12 +02:00
pyup-bot
bfd1e90154 Update ccxt from 1.15.8 to 1.15.13 2018-07-05 14:23:11 +02:00
creslinux
5ab644dea6 flake 8 fix 2018-07-05 12:05:31 +00:00
creslinux
966668f48a Handle if ticker_interval in config.json is not supported on exchange.
Returns.

Tested positive and negative data.
The ticker list in constants.py may be obsolete now, im not sure.

 raise OperationalException(f'Invalid ticker {timeframe}, this Exchange supports {timeframes}')
freqtrade.OperationalException: Invalid ticker 14m, this Exchange supports {'1m': '1m', '3m': '3m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '2h': '2h', '4h': '4h', '6h': '6h', '8h': '8h', '12h': '12h', '1d': '1d', '3d': '3d', '1w': '1w', '1M': '1M'}
2018-07-05 11:57:59 +00:00
Samuel Husso
d8d0579c5a Merge pull request #930 from freqtrade/skopt
Replace Hyperopt with scikit-optimize
2018-07-04 13:51:14 -05:00
Michael Egger
64c68d93c3 Merge pull request #976 from freqtrade/sort-imports
sort imports
2018-07-04 16:59:42 +02:00
Matthias
700f02dde8 Merge pull request #977 from freqtrade/pyup-scheduled-update-2018-07-04
Scheduled daily dependency update on wednesday
2018-07-04 15:26:32 +02:00
pyup-bot
ac20bf31df Update ccxt from 1.15.7 to 1.15.8 2018-07-04 14:23:06 +02:00
Janne Sinivirta
bf4d0a9b70 sort imports 2018-07-04 10:31:35 +03:00
Janne Sinivirta
96bb2efe69 use joblib.dump and load for trials 2018-07-03 23:08:29 +03:00
Janne Sinivirta
c4a8435e00 change pickle file name to better suit it's current purpose 2018-07-03 22:17:43 +03:00
Janne Sinivirta
9dbe0f50a3 fix tests after changing the dumping and pickling dataframe in hyperopt 2018-07-03 22:09:59 +03:00
Janne Sinivirta
3a7056ea1b run at least one epoch 2018-07-03 21:55:22 +03:00
Janne Sinivirta
2cde540645 remove dead code 2018-07-03 21:50:45 +03:00
Janne Sinivirta
ef59f9ad24 sort imports in hyperopt.py 2018-07-03 21:50:24 +03:00
Matthias
e91cfbfeeb Merge pull request #975 from freqtrade/pyup-scheduled-update-2018-07-03
Scheduled daily dependency update on tuesday
2018-07-03 14:35:45 +02:00
pyup-bot
2c0e950486 Update ccxt from 1.15.3 to 1.15.7 2018-07-03 14:23:05 +02:00
Janne Sinivirta
ee4754cfb9 avoid re-serialization of whole dataframe 2018-07-03 14:49:58 +03:00
Janne Sinivirta
4a26b88a17 improve documentation 2018-07-03 12:51:02 +03:00
Janne Sinivirta
2713fdb860 use cpu count explicitly in job count 2018-07-03 11:46:56 +03:00
Janne Sinivirta
79aab4cce2 use fstring 2018-07-03 11:44:54 +03:00
Samuel Husso
2b34d10973 Merge pull request #973 from freqtrade/pyup-scheduled-update-2018-07-02
Scheduled daily dependency update on monday
2018-07-02 08:57:27 -05:00
pyup-bot
76343ecb77 Update ccxt from 1.14.301 to 1.15.3 2018-07-02 14:23:06 +02:00
Janne Sinivirta
fa8fc3e4ce handle the case where we have zero buys 2018-07-02 11:46:55 +03:00
Janne Sinivirta
aec3f582e1 Merge branch 'develop' into skopt 2018-07-02 11:27:27 +03:00
Janne Sinivirta
a58d51ded0 update hyperopt documentation 2018-07-02 09:56:58 +03:00
Michael Egger
5e4a6ba7ba Merge pull request #963 from freqtrade/feat/stop_loss
Feat/stop loss
2018-07-01 20:50:13 +02:00
xmatthias
3c5be55eb9 remove unnecessary variable 2018-07-01 20:17:30 +02:00
xmatthias
782570e71e Address PR comment 2018-07-01 20:03:07 +02:00
Matthias
ed2a1becef Merge branch 'develop' into feat/stop_loss 2018-07-01 20:01:02 +02:00
xmatthias
937644a04b change while-loop to enumerate - add intensified test for this scenario 2018-07-01 19:55:51 +02:00
xmatthias
e39d88ef65 Address some PR comments 2018-07-01 19:54:26 +02:00
Michael Egger
f91263c8ef Merge pull request #966 from freqtrade/feat/revamp_exchangetest
Rewrite standard ccxt exception handling
2018-07-01 19:47:57 +02:00
Michael Egger
e2127f5af1 Merge pull request #969 from xmatthias/split_unfilled
separating unfulfilled timeouts for buy and sell
2018-07-01 19:47:24 +02:00
xmatthias
2dc881558d address PR comments 2018-07-01 19:41:19 +02:00
xmatthias
c66f858b98 rename innerfun to mock_ccxt_fun 2018-07-01 19:37:55 +02:00
Michael Egger
8023fdf923 Merge pull request #971 from freqtrade/fix/nonmocked_markets
Add get_markets mock to new tests
2018-07-01 15:11:22 +02:00
Michael Egger
2cee8e52c1 Merge pull request #965 from freqtrade/fix/fix_959
catch crash with cobinhood
2018-07-01 14:28:01 +02:00
Nullart
8f49d5eb10 documentation updates 2018-06-30 19:32:56 +02:00
xmatthias
9e3e900f78 Add get_markets mock to new tests 2018-06-30 17:49:46 +02:00
xmatthias
14e12bd3c0 Fix missing comma in example.json 2018-06-30 17:37:34 +02:00
Samuel Husso
c29163a51c Merge pull request #970 from freqtrade/pyup-scheduled-update-2018-06-30
Scheduled daily dependency update on saturday
2018-06-30 09:37:38 -05:00
pyup-bot
5a591e01c0 Update sqlalchemy from 1.2.8 to 1.2.9 2018-06-30 14:23:07 +02:00
pyup-bot
c447644fd1 Update ccxt from 1.14.295 to 1.14.301 2018-06-30 14:23:06 +02:00
Nullart
98108a78f1 separating unfulfilled timeouts for buy and sell 2018-06-30 13:44:42 +02:00
Janne Sinivirta
0ce08932ed mypy fixes 2018-06-30 09:54:31 +03:00
Michael Egger
6dd5f85fb6 Merge pull request #954 from freqtrade/feat/allow_backtest_plot
allow backtest ploting
2018-06-29 19:44:06 +02:00
Samuel Husso
d8f2a683c6 Merge pull request #967 from freqtrade/pyup-scheduled-update-2018-06-29
Scheduled daily dependency update on friday
2018-06-29 08:32:34 -05:00
pyup-bot
8a941f3aa8 Update ccxt from 1.14.289 to 1.14.295 2018-06-29 14:23:06 +02:00
xmatthias
cf6b1a637a increase exchange code coverage 2018-06-28 22:32:28 +02:00
xmatthias
dcdc18a338 rename test-function 2018-06-28 22:18:38 +02:00
xmatthias
15c7854e7f add test for exchange_has 2018-06-28 22:11:45 +02:00
xmatthias
fe8a21681e add test for Not supported 2018-06-28 21:56:37 +02:00
xmatthias
ebbfc720b2 increase test coverage 2018-06-28 21:51:59 +02:00
xmatthias
8ec9a09749 Standardize retrier exception testing 2018-06-28 21:22:43 +02:00
xmatthias
2d4ce593b5 catch crash with cobinhood
fixes #959
2018-06-28 19:53:51 +02:00
Matthias
c5a00b4d45 Merge pull request #964 from freqtrade/pyup-scheduled-update-2018-06-28
Scheduled daily dependency update on thursday
2018-06-28 14:42:55 +02:00
pyup-bot
7cecae5279 Update ccxt from 1.14.288 to 1.14.289 2018-06-28 14:23:07 +02:00
xmatthias
d5ad066f8d support multiple db transitions by keeping the backup-table dynamic 2018-06-27 20:15:25 +02:00
xmatthias
860b270e30 update db migrate script to work for more changes 2018-06-27 19:49:08 +02:00
Samuel Husso
35e07bf11e Merge pull request #962 from freqtrade/pyup-scheduled-update-2018-06-27
Scheduled daily dependency update on wednesday
2018-06-27 08:40:39 -05:00
pyup-bot
19beb0941f Update ccxt from 1.14.272 to 1.14.288 2018-06-27 14:23:07 +02:00
xmatthias
8ecdae67e1 add mypy ignore (and comment as to why) 2018-06-27 06:57:41 +02:00
xmatthias
e6e868a03c remove markdown code type as it is not valid json 2018-06-27 06:54:29 +02:00
xmatthias
78e6c9fdf6 add tests for trailing stoploss 2018-06-27 06:52:31 +02:00
xmatthias
c997aa9864 move initial logic to persistence 2018-06-27 06:38:49 +02:00
xmatthias
a91d75b3b2 Add test for adjust_stop-loss 2018-06-27 06:23:49 +02:00
xmatthias
e9d5bceeb9 cleanly check if stop_loss is initialized 2018-06-27 00:18:50 +02:00
xmatthias
88b898cce4 add test for moving stoploss 2018-06-27 00:18:30 +02:00
xmatthias
8bec505bbe add test for trailing_stoploss 2018-06-26 23:40:36 +02:00
xmatthias
a3708bc56e add missing test 2018-06-26 23:40:20 +02:00
xmatthias
03005bc0f1 update documentation 2018-06-26 23:14:12 +02:00
xmatthias
da5be9fbd0 add stop_loss based on work from @berlinguyinca 2018-06-26 23:06:27 +02:00
xmatthias
3e167e1170 update sample configs 2018-06-26 22:41:38 +02:00
xmatthias
5015bc9bb0 slight update to persistence 2018-06-26 22:41:28 +02:00
xmatthias
243c36b39b get persistence.py for stop_loss 2018-06-26 20:49:07 +02:00
xmatthias
9ac3c559b6 fix some stoploss documentation 2018-06-26 20:30:16 +02:00
peterkorodi
257e1847b1 Update stoploss.md 2018-06-26 20:30:10 +02:00
Gert Wohlgemuth
54f52fb366 Create stoploss.md 2018-06-26 20:30:03 +02:00
Matthias
e1d8a59b69 Merge pull request #960 from freqtrade/pyup-scheduled-update-2018-06-26
Scheduled daily dependency update on tuesday
2018-06-26 14:43:31 +02:00
pyup-bot
7c2a50cef9 Update ccxt from 1.14.267 to 1.14.272 2018-06-26 14:23:06 +02:00
Samuel Husso
4c7d1c90db Merge pull request #957 from freqtrade/pyup-scheduled-update-2018-06-25
Scheduled daily dependency update on monday
2018-06-25 08:15:30 -05:00
pyup-bot
4f1fa28658 Update ccxt from 1.14.257 to 1.14.267 2018-06-25 14:23:06 +02:00
Janne Sinivirta
2b6407e598 remove unused tests from hyperopt 2018-06-25 11:38:42 +03:00
Janne Sinivirta
0bddc58ec4 extract loading previous results to a method 2018-06-25 11:38:14 +03:00
Janne Sinivirta
17ee7f8be5 fix typo in requirements.txt 2018-06-25 11:15:11 +03:00
Michael Egger
375ea940f4 Merge pull request #956 from freqtrade/fix/download_backtest
slight rework of download script
2018-06-24 21:44:09 +02:00
xmatthias
43f1a1d264 rework download_backtest script 2018-06-24 19:52:12 +02:00
xmatthias
e70cb963f7 document what to do with exported backtest results 2018-06-24 17:00:00 +02:00
Samuel Husso
a8cb0b0321 Merge pull request #955 from freqtrade/pyup-scheduled-update-2018-06-24
Scheduled daily dependency update on sunday
2018-06-24 08:01:04 -05:00
Janne Sinivirta
118a43cbb8 fixing tests for hyperopt 2018-06-24 15:27:53 +03:00
pyup-bot
5e7e977ffa Update ccxt from 1.14.256 to 1.14.257 2018-06-24 14:23:05 +02:00
xmatthias
660ec6f443 fix parameter type 2018-06-24 13:43:27 +02:00
gcarq
e98f22ef2f Merge branch 'master' of https://github.com/freqtrade/freqtrade into develop 2018-06-24 00:39:11 +02:00
Samuel Husso
2bb63ba33d Merge pull request #953 from freqtrade/release-0.17.0
Release 0.17.0
2018-06-23 16:22:51 -05:00
Samuel Husso
1529ce8bdb Merge pull request #952 from freqtrade/bump-version
bump develop to 0.17.1
2018-06-23 16:21:56 -05:00
xmatthias
d8cb63efdd extract load_trades 2018-06-23 20:19:07 +02:00
xmatthias
5055563458 add --plot-limit 2018-06-23 20:14:15 +02:00
xmatthias
f506ebcd62 use Pathlib in the whole script 2018-06-23 19:58:28 +02:00
xmatthias
3cedace2f6 add plotting for backtested trades 2018-06-23 19:54:27 +02:00
Samuel Husso
3384679bad bump develop to 0.17.1 2018-06-23 09:38:20 -05:00
Samuel Husso
46a062d5fb Drafting freqtrade 0.17.0 release 2018-06-23 09:35:52 -05:00
Samuel Husso
8b7183cdbc Merge pull request #951 from freqtrade/readme-update
README: note to open an issue before starting major feature work
2018-06-23 09:32:56 -05:00
Michael Egger
beb15532f7 Merge pull request #950 from freqtrade/fix-filenotfounderror
StrategyResolver: Don't fail if user_data isn't present
2018-06-23 16:07:52 +02:00
Michael Egger
107f3ed35b Merge pull request #760 from arudov/feature-unlimited-stake_amount
Feature unlimited stake amount
2018-06-23 16:07:38 +02:00
Anton
f82b809fcf Merge with develop 2018-06-23 16:50:27 +03:00
Samuel Husso
9bad75f37d README: note to open an issue before starting major feature work 2018-06-23 08:36:32 -05:00
Samuel Husso
864bbc441a Merge pull request #882 from freqtrade/feature/revamp_readme
Update the README structure
2018-06-23 08:21:56 -05:00
Michael Egger
e2df908304 Merge pull request #949 from freqtrade/pyup-scheduled-update-2018-06-23
Scheduled daily dependency update on saturday
2018-06-23 14:56:52 +02:00
Janne Sinivirta
642ad02316 remove unused import 2018-06-23 15:56:38 +03:00
Janne Sinivirta
ab9e2fcea0 fix guard names to match search space 2018-06-23 15:47:19 +03:00
Janne Sinivirta
136456afc0 add three triggers to hyperopting 2018-06-23 15:44:51 +03:00
gcarq
4ea5fcc661 resolver: don't fail if user_data can't be found 2018-06-23 14:42:22 +02:00
gcarq
9c66c25890 resolver: use current folder instead of script folder to find user_data 2018-06-23 14:34:36 +02:00
pyup-bot
925b9b0c19 Update ccxt from 1.14.253 to 1.14.256 2018-06-23 14:23:07 +02:00
Janne Sinivirta
09261b11af remove hyperopt and networkx from dependencies 2018-06-23 15:22:14 +03:00
Matthias
e25d8f9435 Merge pull request #947 from freqtrade/code-cleanup
Remove global config from persistence module
2018-06-23 14:21:42 +02:00
xmatthias
0440a19171 export open/close rate for backtesting too
preparation to allow plotting of backtest results
2018-06-23 14:19:50 +02:00
gcarq
0b3e4f6bcd remove dead code 2018-06-23 13:50:49 +02:00
gcarq
295dfe2652 persistence: remove obsolete global _CONF variable 2018-06-23 13:50:22 +02:00
Michael Egger
df9015a7f1 Merge pull request #942 from xmatthias/feat/buy_on_sell_first
Introduce ignore_roi_if_buy_signal parameter to avoid sell/buy scenarios
2018-06-23 13:42:03 +02:00
Janne Sinivirta
e8f2e6956d to avoid pickle problems, get rid of reference to exchange after initialization 2018-06-23 14:37:36 +03:00
Janne Sinivirta
dde7df7fd3 add scikit-optimize to dependencies 2018-06-23 14:37:36 +03:00
Janne Sinivirta
a525cba8e9 switch signal handler to try catch. fix pickling and formatting output 2018-06-23 14:37:36 +03:00
Janne Sinivirta
8272120c3a convert stoploss and ROI search spaces to skopt format 2018-06-23 14:37:36 +03:00
Janne Sinivirta
8fee2e2409 move result logging out from optimizer 2018-06-23 14:37:36 +03:00
Janne Sinivirta
c415014153 use multiple jobs in acq 2018-06-23 14:37:36 +03:00
Janne Sinivirta
964cbdc262 increase initial sampling points 2018-06-23 14:37:36 +03:00
Janne Sinivirta
a46badd5c0 reuse pool workers 2018-06-23 14:37:36 +03:00
Janne Sinivirta
0cb1aedf5b problem with pickling 2018-06-23 14:37:36 +03:00
Janne Sinivirta
b485e6e0ba start small 2018-06-23 14:37:36 +03:00
gcarq
810d7de869 tests: add dir() assertion 2018-06-23 14:37:36 +03:00
gcarq
398b21a11d implement test for import_strategy 2018-06-23 14:37:36 +03:00
gcarq
78f50a1471 move logic from hyperopt to freqtrade.strategy 2018-06-23 14:37:36 +03:00
gcarq
5aae215c94 wrap strategies with HyperoptStrategy for module lookups with pickle 2018-06-23 14:37:36 +03:00
xmatthias
2738d3aed8 update plotly 2018-06-23 14:37:36 +03:00
Janne Sinivirta
01d45bee76 fix flake8 2018-06-23 14:37:36 +03:00
Janne Sinivirta
c1691f21f3 check that we set fee on backtesting init 2018-06-23 14:37:36 +03:00
Janne Sinivirta
a68c90c512 avoid calling exchange.get_fee inside loop 2018-06-23 14:37:36 +03:00
Janne Sinivirta
90caa09ae0 Merge pull request #944 from freqtrade/improve-strategy-handling
Improve strategy handling
2018-06-23 14:32:39 +03:00
Michael Egger
909fd39b80 Merge pull request #945 from freqtrade/update_plotly
update plotly
2018-06-23 13:15:15 +02:00
xmatthias
d23cd73ba8 update plotly 2018-06-23 13:12:36 +02:00
xmatthias
fc219b4e94 move experimental eval below stop_loss_reached to improve performance 2018-06-23 13:10:08 +02:00
gcarq
818a6b12ed tests: add dir() assertion 2018-06-23 11:57:26 +02:00
gcarq
4bd61df3a7 implement test for import_strategy 2018-06-23 11:14:31 +02:00
gcarq
c40e6a12d1 move logic from hyperopt to freqtrade.strategy 2018-06-23 11:13:49 +02:00
gcarq
3360bf4001 wrap strategies with HyperoptStrategy for module lookups with pickle 2018-06-23 10:42:33 +02:00
Michael Egger
168ed91fe1 Merge pull request #941 from freqtrade/avoid-fee-calls-backtesting
avoid calling exchange.get_fee inside loop
2018-06-23 08:17:25 +02:00
Janne Sinivirta
9a07d57ed7 fix flake8 2018-06-23 07:58:25 +03:00
xmatthias
2be7b3d9eb fix mocked bid-value to match limt_buy_order config 2018-06-22 21:24:21 +02:00
xmatthias
e2a2a0be9b extract stop_loss_reached to allow check before ignore_roi_if_buy_signal 2018-06-22 21:21:34 +02:00
Janne Sinivirta
f7e5d2c3a5 check that we set fee on backtesting init 2018-06-22 21:55:09 +03:00
xmatthias
cbfee51f32 introduce experimental variable and fix test naming 2018-06-22 20:51:21 +02:00
xmatthias
8a44dff595 don't sell if buy is still active 2018-06-22 20:23:23 +02:00
Janne Sinivirta
c73b9f5c77 avoid calling exchange.get_fee inside loop 2018-06-22 21:04:07 +03:00
Pan Long
e759a90b2d Update doc for manually fix trade
The profit should be close_rate/open_rate-1   not close_rate/open_rate
2018-06-22 19:16:48 +05:30
Samuel Husso
c413e94f83 Merge pull request #940 from freqtrade/pyup-scheduled-update-2018-06-22
Scheduled daily dependency update on friday
2018-06-22 16:14:20 +03:00
pyup-bot
98cd8970f9 Update ccxt from 1.14.242 to 1.14.253 2018-06-22 14:24:06 +02:00
Janne Sinivirta
5fcdd3831c Merge pull request #928 from freqtrade/feat/objectify_exchange
Objectify exchange
2018-06-22 06:36:14 +03:00
xmatthias
7f927b4d7a Squashed commit of the following:
commit 435f299bcf
Author: Gert Wohlgemuth <berlinguyinca@gmail.com>
Date:   Wed Jun 20 01:57:28 2018 -0700

    improve readability of outdated history code
2018-06-21 20:47:53 +02:00
Matthias
99e3c6e526 Merge pull request #936 from freqtrade/pyup-scheduled-update-2018-06-21
Scheduled daily dependency update on thursday
2018-06-21 15:20:22 +02:00
pyup-bot
c7976f51e2 Update ccxt from 1.14.230 to 1.14.242 2018-06-21 14:24:06 +02:00
Michael Egger
2c43590268 Merge pull request #933 from freqtrade/pyup-scheduled-update-2018-06-20
Scheduled daily dependency update on wednesday
2018-06-20 14:36:44 +02:00
pyup-bot
36cfea3d0f Update pytest from 3.6.1 to 3.6.2 2018-06-20 14:23:08 +02:00
pyup-bot
a493a2ceef Update ccxt from 1.14.224 to 1.14.230 2018-06-20 14:23:06 +02:00
Michael Egger
96b7273b8f Merge pull request #931 from freqtrade/pyup-scheduled-update-2018-06-19
Scheduled daily dependency update on tuesday
2018-06-19 16:27:30 +02:00
pyup-bot
e66b861c9e Update ccxt from 1.14.211 to 1.14.224 2018-06-19 14:23:05 +02:00
Michael Egger
e0db31e9db Merge pull request #929 from freqtrade/backtest_docker
Update Documentation to include backtesting with docker
2018-06-18 22:54:18 +02:00
xmatthias
a7be15d72f Update Documentation to include backtesting with docker 2018-06-18 22:42:14 +02:00
xmatthias
f7b46d5404 update docstring 2018-06-18 22:34:28 +02:00
xmatthias
488f1717a1 update plot_dataframe script to objectify exchange 2018-06-18 22:32:29 +02:00
xmatthias
2b0ef54595 update download_script for exchange objectify 2018-06-18 22:28:51 +02:00
xmatthias
896afe7118 convert get_name and get_id to properties 2018-06-18 22:20:50 +02:00
xmatthias
ef53134499 lowercase variables 2018-06-18 22:09:46 +02:00
xmatthias
c31519fdb2 lowercase _api object 2018-06-18 22:07:15 +02:00
xmatthias
162f948729 add test for non-configured exchange 2018-06-18 19:56:23 +02:00
xmatthias
ae4c4e77bf standardize exception tests - add one more 2018-06-18 19:46:42 +02:00
xmatthias
695beecf14 add test for get_markets 2018-06-18 19:36:36 +02:00
Samuel Husso
cb015dec7b Merge pull request #927 from freqtrade/pyup-scheduled-update-2018-06-18
Scheduled daily dependency update on monday
2018-06-18 15:47:43 +03:00
pyup-bot
9bc8331667 Update ccxt from 1.14.202 to 1.14.211 2018-06-18 14:23:05 +02:00
xmatthias
520c7feeab Add test for fetch_tickers 2018-06-17 23:38:07 +02:00
xmatthias
1e3d722bc2 add test for get_trades 2018-06-17 23:38:07 +02:00
xmatthias
c9f8dfc6c5 increase get_fee coverage 2018-06-17 23:38:07 +02:00
xmatthias
d156de39f1 Increase test-coverage 2018-06-17 23:38:07 +02:00
xmatthias
2b099a89e4 fix styling issues 2018-06-17 23:38:07 +02:00
xmatthias
6e6ec969eb cleanup mockings 2018-06-17 23:38:07 +02:00
xmatthias
e194af8d25 Streamline validate_pair patching 2018-06-17 23:38:07 +02:00
xmatthias
ace5198475 fix optimize tests 2018-06-17 23:38:07 +02:00
xmatthias
52d36c33cf fix optimie test 2018-06-17 23:38:07 +02:00
xmatthias
251f7db3ca require exchange object to delete pairs 2018-06-17 23:38:07 +02:00
xmatthias
c83e8b7cb5 fix rpc_test 2018-06-17 23:38:07 +02:00
xmatthias
64e09f74a1 fix rpc tests 2018-06-17 23:38:07 +02:00
xmatthias
63b568989a Fix rpc for exchange objectify 2018-06-17 23:38:07 +02:00
xmatthias
975b42caa3 fix tests for exchange objectify 2018-06-17 23:38:07 +02:00
xmatthias
75d02df60d add exchange to call get_singal 2018-06-17 23:38:07 +02:00
xmatthias
082b6077e9 Fix tests analyze 2018-06-17 23:38:07 +02:00
xmatthias
e8ab76f55b fix small in tests 2018-06-17 23:38:07 +02:00
xmatthias
495f15f13c fix exchange tests 2018-06-17 23:38:07 +02:00
xmatthias
68f6423d39 fix most tests 2018-06-17 23:38:07 +02:00
xmatthias
67d345bc08 fix tests for objectify exchange 2018-06-17 23:38:07 +02:00
xmatthias
a159db6863 get_exchange 2018-06-17 23:38:07 +02:00
xmatthias
dea26fadfe move init_ccxt to class 2018-06-17 23:38:07 +02:00
xmatthias
21edcbdc27 Refactor exchange to class 2018-06-17 23:38:07 +02:00
Janne Sinivirta
e3c91df081 Merge pull request #926 from freqtrade/pyup-scheduled-update-2018-06-17
Scheduled daily dependency update on sunday
2018-06-17 16:08:54 +03:00
Janne Sinivirta
c608f1e21e Merge pull request #923 from freqtrade/fix_test_hyperopt
fix hyperopt test when no config.json exists
2018-06-17 16:07:57 +03:00
pyup-bot
fef267a0dc Update ccxt from 1.14.201 to 1.14.202 2018-06-17 14:23:05 +02:00
Michael Egger
5ce2071279 Merge pull request #925 from freqtrade/increase_test_cov_configuration
increase test-coverate for configuration
2018-06-17 13:19:16 +02:00
xmatthias
ad0549414b Revert "also unit tests now need config.json"
This reverts commit 7e2e7946c5.
2018-06-17 11:34:12 +02:00
Janne Sinivirta
c6cc9ae29d Merge pull request #922 from freqtrade/fix_fiat_test
Fix fiat_convert missing mockups
2018-06-17 08:52:03 +03:00
Anton
ae94ab17f4 Merge branch 'develop' into feature-unlimited-stake_amount 2018-06-17 02:23:40 +03:00
Anton
eb909068c5 Add minimal pair stake amount check 2018-06-17 02:23:12 +03:00
xmatthias
90a7fb603d fix typo in coverage-omit 2018-06-16 21:28:41 +02:00
xmatthias
7cfd99d17f exclude __main__.py from coveralls -
if __name__ == '__main__' is close to untestable - and should do nothing
other than calling another function.
2018-06-16 21:00:45 +02:00
xmatthias
972736f0ab increase test-coverate for configureation 2018-06-16 20:55:35 +02:00
Matthias
934974a547 Merge pull request #924 from freqtrade/pyup-scheduled-update-2018-06-16
Scheduled daily dependency update on saturday
2018-06-16 16:14:34 +02:00
pyup-bot
17801871b1 Update ccxt from 1.14.198 to 1.14.201 2018-06-16 14:23:06 +02:00
xmatthias
7564f7e526 fix hyperopt test when no config.json exists 2018-06-16 13:49:03 +02:00
xmatthias
fa00157d12 Fix fiat_convert missing mockups 2018-06-16 13:42:25 +02:00
Matthias
a5511e2e30 Merge pull request #894 from freqtrade/feature/force_close_backtest
Display open trades after backtest period
2018-06-16 12:49:08 +02:00
Janne Sinivirta
0347ce21fd Merge pull request #920 from freqtrade/hyperopt-strip
Remove mongodb from Hyperopt
2018-06-16 10:33:44 +03:00
Janne Sinivirta
7e2e7946c5 also unit tests now need config.json 2018-06-16 09:09:28 +03:00
Janne Sinivirta
0c85febe76 remove all mongodb related code 2018-06-16 09:09:28 +03:00
Janne Sinivirta
c1f8f641e6 remove use of hyperopt_conf.py 2018-06-16 09:09:28 +03:00
pyup-bot
af16830a38 Update requests from 2.19.0 to 2.19.1 2018-06-16 09:09:28 +03:00
pyup-bot
a8d25266f9 Update ccxt from 1.14.196 to 1.14.198 2018-06-16 09:09:28 +03:00
Matthias
b78b9dccc8 Merge pull request #919 from freqtrade/pyup-scheduled-update-2018-06-15
Scheduled daily dependency update on friday
2018-06-15 14:51:54 +02:00
pyup-bot
e8fd11d6ce Update requests from 2.19.0 to 2.19.1 2018-06-15 14:23:08 +02:00
pyup-bot
1e208e39b0 Update ccxt from 1.14.196 to 1.14.198 2018-06-15 14:23:07 +02:00
xmatthias
5c3e37412e update docs 2018-06-14 21:20:16 +02:00
Janne Sinivirta
c731f7dd29 Merge pull request #917 from freqtrade/pyup-scheduled-update-2018-06-14
Scheduled daily dependency update on thursday
2018-06-14 15:42:52 +03:00
pyup-bot
ea805a8fb7 Update ccxt from 1.14.186 to 1.14.196 2018-06-14 14:22:06 +02:00
xmatthias
c0289ad844 use list comprehension to build list 2018-06-13 19:53:12 +02:00
xmatthias
e600be4f56 Reduce force-sell verbosity 2018-06-13 19:44:00 +02:00
Matthias
d7e7ef11f9 Merge pull request #913 from freqtrade/apply-qtpylib-updates
Apply qtpylib upstream changes
2018-06-13 19:34:02 +02:00
gcarq
d684ff5715 drop zlma implementation 2018-06-13 16:20:13 +02:00
ran
6edb25f5c2 fixed heikenashi calculation 2018-06-13 16:17:42 +02:00
ran
e6e5c5daf0 added zlma 2018-06-13 16:16:02 +02:00
ran
61f92b7460 bugfix 2018-06-13 16:13:36 +02:00
Michael Egger
2b74982a1d Merge pull request #877 from freqtrade/feature/improve-rpc
Simplify RPCManager and RPC module to implement other clients
2018-06-13 15:49:49 +02:00
gcarq
46080f5168 define _rpc_reload_conf as private method 2018-06-13 15:29:27 +02:00
Janne Sinivirta
1dcc2de776 Merge pull request #912 from freqtrade/pyup-scheduled-update-2018-06-13
Scheduled daily dependency update on wednesday
2018-06-13 15:44:00 +03:00
pyup-bot
875408215b Update numpy from 1.14.4 to 1.14.5 2018-06-13 14:22:11 +02:00
pyup-bot
038acd3f5e Update pandas from 0.23.0 to 0.23.1 2018-06-13 14:22:09 +02:00
pyup-bot
f404e0f5b3 Update requests from 2.18.4 to 2.19.0 2018-06-13 14:22:08 +02:00
pyup-bot
92b0cbdc19 Update ccxt from 1.14.177 to 1.14.186 2018-06-13 14:22:07 +02:00
gcarq
e14c9e2090 fix potential cleanup issue 2018-06-13 12:21:54 +02:00
gcarq
83eb7a0a9d adjust logging a bit and add some comments 2018-06-13 12:21:54 +02:00
gcarq
6c1bb7983b rpc: make freqtrade a private variable 2018-06-13 12:21:54 +02:00
gcarq
34e10a145c remove Telegram.is_enabled() because RPCManager manages lifecycles 2018-06-13 12:21:54 +02:00
gcarq
3787dad212 don't import python-telegram-bot at runtime if disabled in config 2018-06-13 12:21:54 +02:00
gcarq
4048859912 rpc: remove tuple return madness 2018-06-13 12:21:54 +02:00
gcarq
cddb062db5 save rpc instances only in registered_modules, add some abstract methods 2018-06-13 12:21:54 +02:00
Samuel Husso
13ba68acc6 Merge pull request #908 from freqtrade/fix/plotprofit
fix default datadir not working in plot-script
2018-06-13 08:10:28 +03:00
xmatthias
e22da45474 update documentation with forcesell at the end of the backtest period 2018-06-13 07:00:39 +02:00
xmatthias
6357812743 fix backtest report able 2018-06-13 06:57:49 +02:00
xmatthias
6e68c3b230 fix backtesting.md formatting 2018-06-13 06:52:17 +02:00
xmatthias
0f117d480e improve backtesting-tests
* assert length of result specifically
* add assert for "open_at_end"
2018-06-13 06:42:24 +02:00
xmatthias
8d8e6dcffc Add test for extracted backtest_results test 2018-06-13 06:31:42 +02:00
xmatthias
e3ced7c15e extract export from backtest function 2018-06-12 22:29:30 +02:00
xmatthias
182f4c603b fix plot-script datadir not working 2018-06-12 21:43:14 +02:00
xmatthias
1f6b9c332b fix default datadir not working in plot-script 2018-06-12 21:38:14 +02:00
xmatthias
bfde33c945 Use timestamp() instead of strftime
this will avoid a bug shifting epoch time by 1 hour:
https://stackoverflow.com/questions/11743019/convert-python-datetime-to-epoch-with-strftime
2018-06-12 21:12:55 +02:00
Matthias
bd6ed3ada4 Merge pull request #906 from freqtrade/pyup-scheduled-update-2018-06-12
Scheduled daily dependency update on tuesday
2018-06-12 14:45:24 +02:00
pyup-bot
aa6e276cf9 Update ccxt from 1.14.172 to 1.14.177 2018-06-12 14:22:06 +02:00
Gérald LONLAS
3694499a6a Merge pull request #905 from freqtrade/issue_template
update issue template to include ccxt version
2018-06-11 22:38:58 -07:00
xmatthias
06b71d713c update issue template to include ccxt version 2018-06-12 07:00:58 +02:00
Michael Egger
7141060a2d Merge pull request #903 from freqtrade/fix/downloadscript_noavailable_pair
fix downloadscript crash if a pair is not available
2018-06-12 02:56:19 +02:00
Michael Egger
59a4dffc56 Merge pull request #901 from freqtrade/fix/backtest_abort_no_data
Check if no backtest data is found and fail gracefully
2018-06-12 02:54:58 +02:00
Anton
708320318c Check minimal amount 2018-06-12 01:05:43 +03:00
xmatthias
40746c3fcb fix downloadscript crash if a pair is not available 2018-06-11 21:10:57 +02:00
xmatthias
a0f735d4f2 reduce test-noise 2018-06-11 21:02:24 +02:00
xmatthias
335d1fbbbc Check if no backtest data is found and fail gracefully 2018-06-11 19:50:43 +02:00
Anton
90025d0ac4 Fix check 2018-06-11 16:38:10 +03:00
Anton
ce663f6af5 Merge with develop 2018-06-11 16:25:05 +03:00
Anton
3676015184 Fix check 2018-06-11 16:21:57 +03:00
Samuel Husso
3aff67605e Merge pull request #900 from freqtrade/pyup-scheduled-update-2018-06-11
Scheduled daily dependency update on monday
2018-06-11 15:31:32 +03:00
Samuel Husso
7801688c6e Merge pull request #899 from freqtrade/precommithook
Add note about flake8 pre-commit hooks
2018-06-11 15:24:22 +03:00
pyup-bot
17f3b217de Update ccxt from 1.14.169 to 1.14.172 2018-06-11 14:22:07 +02:00
Janne Sinivirta
d02af07d35 Add not about flake8 pre-commit hooks 2018-06-11 14:55:39 +03:00
Janne Sinivirta
c46e50864b Merge pull request #886 from freqtrade/feature/reload-conf
Reload bot config without restarting
2018-06-11 10:47:00 +03:00
Michael Egger
6c361c190b Merge pull request #897 from freqtrade/fix_backtest_tests
fix backtest tests
2018-06-10 23:13:46 +02:00
xmatthias
12e455cbf5 add buy/sell index to backtest result 2018-06-10 20:52:42 +02:00
xmatthias
a9f3744f1b fix backtest test 2018-06-10 19:46:52 +02:00
Janne Sinivirta
53e1b8c0d5 Merge pull request #895 from freqtrade/pyup-scheduled-update-2018-06-10
Scheduled daily dependency update on sunday
2018-06-10 16:39:07 +03:00
pyup-bot
2ba363684d Update ccxt from 1.14.165 to 1.14.169 2018-06-10 14:22:07 +02:00
xmatthias
9cc087c788 update hyperopt tests to support new structure 2018-06-10 13:56:23 +02:00
xmatthias
4710210cff fix hyperopt to use new backtesting result tuple 2018-06-10 13:56:10 +02:00
xmatthias
27ee8f7360 make flake happy 2018-06-10 13:55:48 +02:00
xmatthias
1cd7ac55a8 Added "left open trades" report 2018-06-10 13:45:16 +02:00
xmatthias
b81588307f Add "open_at_end" parameter 2018-06-10 13:37:53 +02:00
xmatthias
31025216f9 fix type of open/close timestmap 2018-06-10 13:32:07 +02:00
xmatthias
aff1ede46b Fix last backtesting test 2018-06-10 13:25:52 +02:00
xmatthias
322a528c12 fix bug with backtestResult 2018-06-10 13:25:16 +02:00
xmatthias
17c0ceec04 adjust tests for backtestresult type 2018-06-10 13:22:24 +02:00
xmatthias
c9476fade8 adjust tests for forcesell 2018-06-10 13:20:41 +02:00
xmatthias
7b5a2946e5 adjust for forcesell backtesting 2018-06-10 13:19:32 +02:00
xmatthias
9c57d3aa8b add BacktestresultTuple 2018-06-10 13:15:46 +02:00
xmatthias
c1b2e06eda simplify return from _get_sell_trade_entry 2018-06-10 09:07:04 +02:00
xmatthias
3094acc7fb update comment 2018-06-10 08:58:28 +02:00
xmatthias
24a875ed46 remove experimental parameters - they are read by analyze.py anyway 2018-06-09 21:44:57 +02:00
xmatthias
5623ea3ac6 Add forcesell at end of backtest period 2018-06-09 21:44:20 +02:00
Matthias
655155bbab Merge pull request #890 from freqtrade/coveralls-single-execution
avoid running coveralls 4 times
2018-06-09 17:59:04 +02:00
Janne Sinivirta
28e8840456 avoid running coveralls 4 times 2018-06-09 18:52:57 +03:00
Janne Sinivirta
8c73fd6e59 Merge pull request #887 from freqtrade/pyup-scheduled-update-2018-06-09
Scheduled daily dependency update on saturday
2018-06-09 16:02:48 +03:00
pyup-bot
eb58e7cb82 Update ccxt from 1.14.160 to 1.14.165 2018-06-09 14:22:07 +02:00
Janne Sinivirta
8db3dfa8c6 Merge pull request #880 from freqtrade/fix/636
Fixes issue 636
2018-06-09 08:59:12 +03:00
Janne Sinivirta
efd69b2cd5 Merge pull request #883 from freqtrade/fstrings-in-use
fstrings in use
2018-06-09 08:53:54 +03:00
Samuel Husso
38c32f0e10 flake8 fix 2018-06-09 08:40:32 +03:00
Samuel Husso
62b4efb881 freqtradebot: fstrings in use 2018-06-09 08:27:39 +03:00
Samuel Husso
b5c200f6c4 Fiat_converter: fstrings into use 2018-06-09 08:27:39 +03:00
Samuel Husso
18e3090379 Exchange: f-strings into use 2018-06-09 08:27:39 +03:00
Samuel Husso
1e1be6bc3f arguments,configuration: fstring in use 2018-06-09 08:24:45 +03:00
Gerald Lonlas
f0456bb802 Update the README structure 2018-06-08 20:15:52 -07:00
gcarq
61da7f63b2 Merge branch 'develop' of freqtrade into feature/reload-conf 2018-06-09 04:30:23 +02:00
gcarq
0b5d21f32a implement bot reconfiguration and expose it to telegram 2018-06-09 04:29:48 +02:00
gcarq
74db82d759 main: don't touch freqbot state in cleanup()
cleanup() should be only called after the main loop has been exited.
At that point the state shouldn't be modified.
2018-06-09 01:19:42 +02:00
gcarq
5851cc70a7 Merge branch 'develop' of freqtrade into fix/636 2018-06-09 00:37:46 +02:00
Michael Egger
faeda0e70c Merge pull request #878 from freqtrade/fix_timeframe_issue
fix windows-specific init issue with named tuple
2018-06-08 22:44:06 +02:00
Michael Egger
73c5f0ec90 Merge pull request #872 from freqtrade/feature/improve-error-handling
improve error handling
2018-06-08 22:43:37 +02:00
Michael Egger
66f6e71e7e Merge pull request #827 from freqtrade/fix/pylint_and_coverage
Increase code coverage and improve Pylint
2018-06-08 22:32:04 +02:00
xmatthias
cc4b2eef13 mypy - ignore tests folder 2018-06-08 19:58:01 +02:00
xmatthias
8effc5f929 fix windows-specific init issue with named tuple 2018-06-08 19:46:07 +02:00
Samuel Husso
5f93c5e789 Merge pull request #876 from freqtrade/pyup-scheduled-update-2018-06-08
Scheduled daily dependency update on friday
2018-06-08 18:14:43 +03:00
Samuel Husso
980172a55a Merge pull request #865 from freqtrade/partial_candle_removal
Partial candle removal
2018-06-08 18:10:21 +03:00
pyup-bot
760e878dd8 Update ccxt from 1.14.155 to 1.14.160 2018-06-08 14:22:07 +02:00
Samuel Husso
4dbc7abd0f Merge pull request #875 from freqtrade/feat/windows_doc
update windows install documentation
2018-06-08 12:58:26 +03:00
Janne Sinivirta
867faf1c30 Merge pull request #873 from freqtrade/feature/strat_repo_ref
add reference to strategy repository
2018-06-08 12:53:40 +03:00
Matthias
43d19790ae update windows install documentation 2018-06-08 11:23:00 +02:00
Matthias
0bc86e72b3 Add slack reference, fix spelling 2018-06-08 10:57:52 +02:00
Gerald Lonlas
5ca84acb6d Fix Flake8 2018-06-07 23:12:03 -07:00
Samuel Husso
c4af66e312 Merge pull request #874 from freqtrade/local-talib
store ta-lib locally in a zip for Travis
2018-06-08 08:51:39 +03:00
Janne Sinivirta
c37792dbc4 store ta-lib locally in a zip for Travis 2018-06-08 08:15:04 +03:00
Gerald Lonlas
50852136ef Increase FreqtradeBot.get_real_amount() coverage 2018-06-07 22:13:50 -07:00
Gerald Lonlas
20082f52a2 Increase code coverage for FreqtradeBot.process_maybe_execute_sell() 2018-06-07 22:13:50 -07:00
Gerald Lonlas
5ec3eb76eb Cover a edge case of CryptoToFiatConverter::_find_price() 2018-06-07 22:13:50 -07:00
Gerald Lonlas
dfbc94c05b Add missing test for CryptoToFiatConverter::convert_amount() 2018-06-07 22:13:50 -07:00
Gerald Lonlas
81ce7d720d Add missing unit test for Arguments::testdata_dl_options() 2018-06-07 22:13:50 -07:00
Gerald Lonlas
1db0f2bd55 Increase pylint to 10 for freqtrade/arguments.py 2018-06-07 22:13:50 -07:00
xmatthias
9292eb664a add reference to strategy repository
fix markdown to have markdownlint not complain that much
2018-06-08 06:44:59 +02:00
Matthias
8f91eeb195 Merge pull request #870 from freqtrade/feature/increase-main-coverage
add and fix tests for main.py
2018-06-08 06:35:36 +02:00
gcarq
10e12ec1b9 fix flake8 warning 2018-06-08 02:37:12 +02:00
gcarq
61b2373dd1 flush db connection after forcesell 2018-06-08 02:35:10 +02:00
gcarq
7f881cce85 add additional None check for trade.open_order_id 2018-06-08 02:34:44 +02:00
gcarq
bea9a3304e use correct return code on error 2018-06-08 02:01:46 +02:00
gcarq
95d6c9c678 adapt tests 2018-06-08 02:01:38 +02:00
gcarq
a2a1a517da fix flake8 warning 2018-06-08 02:01:18 +02:00
gcarq
27f83b511f raise OperationalException if config is missing 2018-06-08 02:00:42 +02:00
Anton
b1b87731b1 Support case when _get_trade_stake_amount returns None 2018-06-08 00:54:46 +03:00
Anton
b4138f29c8 Merge with develop 2018-06-08 00:29:44 +03:00
gcarq
dd3a53fb5f fix tests for main.py 2018-06-07 22:28:21 +02:00
Matthias
d23bcc435a Merge pull request #864 from freqtrade/feature/overhaul-db-handling
Allow custom sqlite database path
2018-06-07 22:18:10 +02:00
Michael Egger
45eb1b4f0a Merge pull request #869 from freqtrade/feature/profit_rpc
fix /profit percentage calculation
2018-06-07 21:41:32 +02:00
gcarq
d41f71bc34 handle sqlalchemy NoSuchModuleError 2018-06-07 21:35:57 +02:00
xmatthias
f5fe9a4b1c fix rpc tests (add a test with multiple trades
without this, sum/percentage cannot be properly tested.
2018-06-07 20:52:03 +02:00
xmatthias
0e699b87af don't sum percentage, but use mean instead (aligned to backtesting) 2018-06-07 20:43:28 +02:00
gcarq
3f5efef6e5 tests: add proper asserts 2018-06-07 20:41:52 +02:00
gcarq
d4f8704a4c arguments: implement tests for db_url 2018-06-07 20:30:13 +02:00
gcarq
526cb1ea20 fix db-url handling if passed via CLI args 2018-06-07 20:15:31 +02:00
Janne Sinivirta
f5b47fbd86 flake8 fixes 2018-06-07 20:23:09 +03:00
Janne Sinivirta
3cee04fb8c bot should not repaint: do not include last partial candle in analysis 2018-06-07 20:23:09 +03:00
gcarq
ac602ed5a9 persistence: adapt checks to detect in-memory db 2018-06-07 19:10:26 +02:00
Samuel Husso
ad510b8b5f Merge pull request #855 from freqtrade/fix-look-ahead
Avoid look-ahead in backtesting
2018-06-07 20:00:46 +03:00
Samuel Husso
3436af3931 Merge pull request #868 from creslinux/patch-1
plotting.md update.
2018-06-07 19:32:12 +03:00
gcarq
01675f50bf adapt scripts/plot_dataframe to use freqtrade db_url 2018-06-07 18:06:27 +02:00
gcarq
17742df591 Merge branch 'develop' of freqtrade into feature/overhaul-db-handling 2018-06-07 17:33:37 +02:00
gcarq
5b1ff6675f define constants.DEFAULT_DB_DRYRUN_URL and fix StaticPool conditions 2018-06-07 17:29:43 +02:00
creslin
7bcac064c0 Update plotting.md
typo fixed.
2018-06-07 15:18:19 +00:00
Michael Egger
867145cd09 Merge pull request #859 from freqtrade/readd_ticker_caching
Re-add ticker caching for rpc operations
2018-06-07 17:15:59 +02:00
creslin
959a03a6b0 plotting.md update.
include an example or plotting a strategy buy/sell output.
2018-06-07 15:13:55 +00:00
Janne Sinivirta
b4ae5a36a8 use .copy() to avoid Pandas mistake. drop first row because of shifting 2018-06-07 17:29:40 +03:00
Janne Sinivirta
7f8e0ba25f use buy/sell signal from previous candle, not current to avoid seeing to the future 2018-06-07 17:28:40 +03:00
Michael Egger
c75b70463b Merge pull request #852 from freqtrade/timeframe_class
Refactor Timeframe fake-type into NamedTuple
2018-06-07 16:19:44 +02:00
Janne Sinivirta
f9788afbfb Merge pull request #867 from freqtrade/pyup-scheduled-update-2018-06-07
Scheduled daily dependency update on thursday
2018-06-07 17:04:39 +03:00
pyup-bot
7b0a5644a3 Update pytest from 3.6.0 to 3.6.1 2018-06-07 14:22:10 +02:00
pyup-bot
34b5203760 Update numpy from 1.14.3 to 1.14.4 2018-06-07 14:22:08 +02:00
pyup-bot
a2fd70417c Update ccxt from 1.14.121 to 1.14.155 2018-06-07 14:22:07 +02:00
gcarq
c3d0980763 test_persistence: fix reference before assignment 2018-06-07 06:06:21 +02:00
gcarq
4ee5271de7 fix failing dynamic-whitelist test 2018-06-07 05:50:07 +02:00
gcarq
f6ef466876 adapt docs 2018-06-07 05:47:14 +02:00
gcarq
00b646158c update docs 2018-06-07 05:36:39 +02:00
gcarq
c8a43bad67 add db_url to full example config 2018-06-07 05:28:05 +02:00
gcarq
a29ac44d64 adapt tests 2018-06-07 05:27:55 +02:00
gcarq
e2aa78c11b remove obsolete param 2018-06-07 05:27:27 +02:00
gcarq
58a6f21705 remove dry_run_db and replace it with db_url in config 2018-06-07 05:26:39 +02:00
gcarq
8583e89550 persistence: simplify init and pass db_url via config dict 2018-06-07 05:25:53 +02:00
Gérald LONLAS
e8ab754646 Merge pull request #863 from freqtrade/fix/pyup-pin-networkx
exclude networkx from pyup
2018-06-06 18:43:54 -07:00
Michael Egger
5c1ee52815 Merge pull request #861 from freqtrade/pyup-config
Config file for pyup.io
2018-06-07 01:19:21 +02:00
gcarq
02671a7e10 pin networkx with pyup ignore filter 2018-06-07 01:12:46 +02:00
pyup-bot
2ba5e2053a create pyup.io config file 2018-06-07 00:55:09 +02:00
xmatthias
7714490530 Test keyerror exception 2018-06-06 21:24:57 +02:00
xmatthias
4a17671f45 improve log message 2018-06-06 20:30:42 +02:00
xmatthias
a901f21bcd test ticker caching 2018-06-06 20:24:47 +02:00
xmatthias
e690003621 reinstate caching for get_ticker 2018-06-06 20:18:16 +02:00
Matthias
fb49d706d0 Merge pull request #851 from jblestang/update_doc_process_throttle
Update doc process throttle
2018-06-06 00:11:44 +02:00
xmatthias
cac6e0d715 Add docstring to TimeRange class 2018-06-06 00:10:18 +02:00
xmatthias
f37c5b70ba Fix tests - read optional argument 2018-06-05 23:53:49 +02:00
xmatthias
270ccbb0da fix args test 2018-06-05 23:41:50 +02:00
xmatthias
7a34578b4d refactor timerange to named tuple 2018-06-05 23:34:26 +02:00
Anton
12d8a8b1a3 Fix review comments 2018-06-06 00:14:28 +03:00
Janne Sinivirta
7d3eefa97a Merge pull request #838 from freqtrade/fix/plot-scripts
Fix/Improve plot scripts
2018-06-05 15:32:04 +03:00
Jean-Baptiste LE STANG
608fc170d9 fix doc 2018-06-05 13:51:30 +02:00
Jean-Baptiste LE STANG
456d0a050f update doc for process_throttle_secs 2018-06-05 13:49:59 +02:00
Janne Sinivirta
399dd7df95 Merge pull request #849 from freqtrade/readme/fix-links
Docs: point links to freqtrade org
2018-06-05 13:45:54 +03:00
Samuel Husso
7cc36eee0f Docs: point links to freqtrade org 2018-06-05 13:27:24 +03:00
Gerald Lonlas
5024cd52af Update docstring for generate_graph() 2018-06-04 23:49:16 -07:00
Gerald Lonlas
c29c13dfd7 Fix a typo in Arguments() comment 2018-06-04 22:42:24 -07:00
Gerald Lonlas
947462e134 Add back 'import os' in Arguments() 2018-06-04 21:29:53 -07:00
Gerald Lonlas
3778bcda24 Ok! you won Flake8 2018-06-04 21:18:03 -07:00
Gerald Lonlas
1b071b1f4a Add example on how to start the script 2018-06-04 21:18:03 -07:00
Gerald Lonlas
8edcef6d32 Add two params to select what indicators to display 2018-06-04 21:18:03 -07:00
Gerald Lonlas
662436acd2 Fix typo in Argument() 2018-06-04 21:18:03 -07:00
Gerald Lonlas
e16fb45d84 Fix typo, remove Bittrex mention 2018-06-04 21:17:20 -07:00
Gerald Lonlas
1c75bfdddd Add more indicators 2018-06-04 21:17:20 -07:00
Gerald Lonlas
64504e6777 Add support of --refresh-pairs-cached param 2018-06-04 21:17:20 -07:00
Gerald Lonlas
af76d5f0e0 Breakdown the script in functions the improve maintainability 2018-06-04 21:17:20 -07:00
Gerald Lonlas
5683f9e10e Remove hardcoded backtest-result.json in Plot scripts 2018-06-04 21:17:20 -07:00
Matthias
15fb81da92 Merge pull request #844 from creslinux/Constants_usdt
To be able to start with USDT in fiat_display_currency in config.json
2018-06-04 21:56:34 +02:00
creslin
e52ec14588 Update configuration.md
typo, form to from.
2018-06-04 22:19:25 +03:00
creslinux
b13658b319 Updated configuration doc with new fiat values accepted. 2018-06-04 22:17:10 +03:00
creslinux
a44978a068 Per steer from project core member, add other valid coinmarketcap
listed crypto base currencies that are valid during conversion lookup

Here is the test of USDT working:
https://api.coinmarketcap.com/v2/ticker/1027/?convert=USDT&limit=10

CMK page lists: "BTC", "ETH" "XRP", "LTC", and "BCH" as valid.
2018-06-04 21:48:15 +03:00
Matthias
bee2541bd8 Merge pull request #843 from freqtrade/more_timeframes
Add support for more timeframes
2018-06-04 16:23:19 +02:00
creslinux
7c8bf95f8f To be able to start bot with USDT in fiat_display_currency in config.json
There are use case that build the base pair to consider price of whitelist pairs.
On Binance this is USDT not USD.
2018-06-04 16:45:47 +03:00
Janne Sinivirta
7df77b1b28 match timeframes to arguments 2018-06-04 16:35:34 +03:00
Matthias
b995e04daa Merge pull request #841 from freqtrade/choose_tickers_to_download
Choose tickers to download
2018-06-04 14:13:35 +02:00
Janne Sinivirta
0f3dc821f2 add missing timeframes to allowed values 2018-06-04 15:08:45 +03:00
Janne Sinivirta
5ff405b0b0 allow defining of timeframes to download 2018-06-04 15:08:45 +03:00
Samuel Husso
86ae9d25f0 Merge pull request #840 from freqtrade/improve_downloader
Improve ticker downloader
2018-06-04 14:51:02 +03:00
Janne Sinivirta
3321e4cafd travis should run hyperopt and backtesting using tests/testdata tickers 2018-06-04 14:27:42 +03:00
Janne Sinivirta
639b6bc4f6 set and create default datadir based on used exchange 2018-06-04 14:27:42 +03:00
Janne Sinivirta
af1ba1e191 split ugly ternary to regular if 2018-06-04 12:58:35 +03:00
Janne Sinivirta
5c7899ae98 flake8 fix 2018-06-04 12:45:23 +03:00
Janne Sinivirta
d4b431a335 update documentation about download_backtesting_data.py script 2018-06-04 12:37:06 +03:00
Janne Sinivirta
6891054b84 use folder user_data/data/exchangename by default and pick pairs.json from that folder by default 2018-06-04 12:37:06 +03:00
Janne Sinivirta
e10279b7b4 show default exchange in download_backtest_data.py 2018-06-04 11:50:33 +03:00
Janne Sinivirta
a0c79bd727 make --pairs-file required 2018-06-04 11:47:27 +03:00
Janne Sinivirta
4b8f382cfd Merge pull request #839 from freqtrade/fix/incorrect_folder_name_userdata
Fix folder names in custom datadir documentation
2018-06-04 11:24:09 +03:00
Janne Sinivirta
eeda93a359 Fix folder names in custom datadir documentation 2018-06-04 10:04:26 +03:00
Gérald LONLAS
7b79ca3e8f Merge pull request #837 from xmatthias/fix_doc_links
Fix links to point to new repository in owner github account
2018-06-03 18:59:57 -07:00
Anton
3030bf9778 Fix types 2018-06-04 01:52:54 +03:00
Anton
87f750da35 Merge with develop 2018-06-04 01:50:10 +03:00
Anton
daa9c0c026 Fix review comments 2018-06-04 01:48:26 +03:00
xmatthias
5ef2654eb4 replace references to old url
replace garq with freqtrade
2018-06-03 23:07:00 +02:00
xmatthias
26120ff675 remove unnecessary .gitkeep 2018-06-03 23:06:37 +02:00
Gérald LONLAS
e453dab4a3 Merge pull request #831 from xmatthias/backtest_export_filename
allow export of backtesting-results to different files
2018-06-03 13:12:38 -07:00
xmatthias
482d063638 update documentation for --export-filename 2018-06-03 19:41:34 +02:00
Janne Sinivirta
2f3b0cd422 Merge pull request #835 from gcarq/pyup-update-ccxt-1.14.120-to-1.14.121
Update ccxt to 1.14.121
2018-06-03 20:40:22 +03:00
xmatthias
e3227a741c add --export-filename for backtesting 2018-06-03 19:36:53 +02:00
pyup-bot
4eb8295955 Update ccxt from 1.14.120 to 1.14.121 2018-06-03 19:27:08 +02:00
Samuel Husso
bdb25bbcbc Merge pull request #834 from gcarq/feature/__main__
Add __main__.py to improve how to launch the bot
2018-06-03 19:28:23 +03:00
Gerald Lonlas
43696eff5c Add __main__.py to improve how to launch the bot 2018-06-03 08:57:13 -07:00
Michael Egger
c6b93f8fe5 Merge pull request #833 from gcarq/fix/backtesting_doc
Update Backtesting/Hyperopt usage documentation
2018-06-03 17:43:41 +02:00
Gerald Lonlas
d3d62e90d3 Update Backtesting/Hyperopt usage documentation 2018-06-03 08:36:01 -07:00
Janne Sinivirta
20815771ab Merge pull request #817 from gcarq/feature/gdax
Enable Backtesting with GDAX and allow trading with EUR/USD
2018-06-03 17:49:20 +03:00
Janne Sinivirta
b6754601ef Merge pull request #832 from xmatthias/contrib_document
update contributing document to include mypy
2018-06-03 17:43:59 +03:00
xmatthias
0f352a4b5c update contributing document to include mypy 2018-06-03 15:14:51 +02:00
Samuel Husso
7d6b11cb10 Merge pull request #830 from xmatthias/refactor_fiat_list
Refactor fiat-list to constants
2018-06-03 15:57:23 +03:00
xmatthias
3a158faa30 Refactor fiat-list to constants 2018-06-03 13:47:36 +02:00
Matthias
fff7ec1dab Merge pull request #808 from xmatthias/mypy_typecheck
add mypy typechecking
2018-06-03 10:43:55 +02:00
xmatthias
50fc5f91ca Merge branch 'develop' into mypy_typecheck 2018-06-03 10:35:56 +02:00
Samuel Husso
ec7c11513e Merge pull request #829 from gcarq/pyup-update-ccxt-1.14.119-to-1.14.120
Update ccxt to 1.14.120
2018-06-03 11:31:50 +03:00
pyup-bot
cfb06ceb58 Update ccxt from 1.14.119 to 1.14.120 2018-06-03 10:12:07 +02:00
Gerald Lonlas
e8a59f4c20 Add a test to check the behavior when converting two FIAT 2018-06-03 00:13:48 -07:00
Gerald Lonlas
638d98735f Allow fiat_convert to use same symbol for Crypto and FIAT 2018-06-03 00:13:48 -07:00
Gerald Lonlas
c9e49ed7b4 Sort ticker_history
CCXT does not sort the ticker history from exchanges.
Bittrex and Binance are sorted ASC (oldest first, newest last) when
GDAX is sorted DESC (newest first, oldest last).

Because of that the get_ticker_history() fall in a very long loop
when the tickers are sorted DESC. Means it downloads more than
needed.

This commit enable exhanges like GDAX and unify the ticker_history
list across all exchanges.
2018-06-03 00:13:48 -07:00
Gerald Lonlas
acbfe91f13 Allow EUR / USD as stake_currency
It will enable to trade with FIAT on exhanges like GDAX or Kraken.
2018-06-03 00:13:48 -07:00
Janne Sinivirta
7edafbb772 Merge pull request #823 from creslinux/timerange_unixtime_argument
Timerange unixtime argument
2018-06-03 07:22:41 +03:00
Janne Sinivirta
a657e3d24a Merge pull request #826 from gcarq/fix/hyperopt-stake_currency
Fix stake_currency returned by Hyperopt  …
2018-06-03 07:19:24 +03:00
Janne Sinivirta
2cd8782a88 Merge pull request #825 from gcarq/fix/hyperopt-in-progress
Fix the in-progress dot that does not show up during a Hyperopt run
2018-06-03 07:16:39 +03:00
Gerald Lonlas
fe8ff1b929 Fix stake_currency return by Hyperopt
Hyperopt had BTC hard coded in the result. This commit  will display
the real stake_currency used.

If you used `"stake_currency": "USDT",` in your config file.
Before this commit you saw a message like:
"2 trades. Avg profit  0.13%. Total profit  0.00002651 BTC (0.0027Σ%). Avg duration 142.5 mins."

Now with the commit, we fix the wrong BTC currency:
"2 trades. Avg profit  0.13%. Total profit  0.00002651 USDT (0.0027Σ%). Avg duration 142.5 mins."
2018-06-02 14:07:31 -07:00
Gerald Lonlas
127cf5d619 Backtesting: Add the Interval required when data is missing
Change the message:
"No data for pair ETH/BTC, use --refresh-pairs-cached to download the data"
for:
"No data for pair: "ETH/BTC", Interval: 5m. Use --refresh-pairs-cached to download the data"

The message structure is unified with the download message:
"Download the pair: "ETH/BTC", Interval: 5m"
2018-06-02 13:55:05 -07:00
Gérald LONLAS
5e99df1759 Merge pull request #824 from xmatthias/rymdluo-patch-1
Make backtesting report markdown shareable (resubmit)
2018-06-02 13:05:11 -07:00
creslinux
94e586c049 Added unit test to check posix time arguments passed to timerange
Here is the pass report:
freqtrade_new creslin$ pytest freqtrade/tests/test_arguments.py
==================================================================== test session starts =====================================================================
platform darwin -- Python 3.6.5, pytest-3.6.0, py-1.5.3, pluggy-0.6.0
rootdir: /Users/creslin/PycharmProjects/freqtrade_new, inifile:
plugins: mock-1.10.0, cov-2.5.1
collected 19 items

freqtrade/tests/test_arguments.py ...................                                                                                                  [100%]

================================================================= 19 passed in 2.37 seconds ==================================================================
2018-06-02 22:46:54 +03:00
Gerald Lonlas
dc65753a64 Fix the in-progress dot that does not show up during a Hyperopt run 2018-06-02 12:35:07 -07:00
creslin
43ba02afc6 Per feed back, kept the stype as date.
Use a tuple to keep as epoch int or process via arrow to timestamp.

I'll look at the test file also.
2018-06-02 21:59:18 +03:00
xmatthias
9537f17dd4 Fix test 2018-06-02 20:06:29 +02:00
Raymond Luo
2791d543ea Make backtesting report markdown shareable
Small tweak to make the backtesting report markdown ready and much easier to share reports on many markdown publishing tools and editors that already support Markdown Extra with just a copy and paste

Example:
![Example](https://i.imgur.com/HXlNkfm.png)
2018-06-02 19:52:16 +02:00
creslin
9dbe5fdb85 Update back testing document to include example using Posix timestamps
as timerange

e.g
--timerange=1527595200-1527618600
2018-06-02 19:49:23 +03:00
creslin
6ca375a397 Extend timerange to accept unix timestamps.
This gives greater granularity over backtest, parsing tickerfiles.

Example runs using date and unix time below.

/usr/local/Cellar/python3/3.6.2/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/creslin/PycharmProjects/freqtrade/scripts/report_correlation.py --timerange=20180528-20180529
2018-06-02 18:44:58,829 - freqtrade.configuration - INFO - Log level set to INFO
2018-06-02 18:44:58,830 - freqtrade.configuration - INFO - Using max_open_trades: 200 ...
2018-06-02 18:44:58,831 - freqtrade.configuration - INFO - Parameter --timerange detected: 20180528-20180529 ...
2018-06-02 18:44:58,831 - freqtrade.configuration - INFO - Parameter --datadir detected: freqtrade/tests/testdata ...
   BasePair      Pair  Correlation  BTC % Change  Pair % USD Ch  Pair % BTC Ch  Gain % on BTC        Start         Stop  BTC Volume
1  BTC_USDT   ETC_USD        0.965        -2.942         -4.070         -1.163      -1.128585  05-28 00:00  05-29 00:00      335.19
0  BTC_USDT   SNT_USD        0.943        -2.942         -5.857         -3.004      -2.915585  05-28 00:00  05-29 00:00      496.01
3  BTC_USDT  DASH_USD        0.902        -2.942         -9.034         -6.277      -6.092432  05-28 00:00  05-29 00:00      751.41
2  BTC_USDT   MTH_USD        0.954        -2.942         -9.290         -6.541      -6.348708  05-28 00:00  05-29 00:00       23.00
4  BTC_USDT   TRX_USD        0.951        -2.942        -13.647        -11.029     -10.704957  05-28 00:00  05-29 00:00    14544.57

Process finished with exit code 0

/usr/local/Cellar/python3/3.6.2/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/creslin/PycharmProjects/freqtrade/scripts/report_correlation.py --timerange=1527595200-1527618600
2018-06-02 18:47:40,382 - freqtrade.configuration - INFO - Log level set to INFO
2018-06-02 18:47:40,382 - freqtrade.configuration - INFO - Using max_open_trades: 200 ...
2018-06-02 18:47:40,383 - freqtrade.configuration - INFO - Parameter --timerange detected: 1527595200-1527618600 ...
2018-06-02 18:47:40,383 - freqtrade.configuration - INFO - Parameter --datadir detected: freqtrade/tests/testdata ...
   BasePair      Pair  Correlation  BTC % Change  Pair % USD Ch  Pair % BTC Ch  Gain % on BTC        Start         Stop  BTC Volume
0  BTC_USDT   SNT_USD        0.680           NaN            NaN            NaN            NaN  05-29 12:00  05-29 18:30    68866.30
1  BTC_USDT   ETC_USD        0.857           NaN            NaN            NaN            NaN  05-29 12:00  05-29 18:30   227514.17
2  BTC_USDT   MTH_USD        0.790           NaN            NaN            NaN            NaN  05-29 12:00  05-29 18:30    12103.96
3  BTC_USDT  DASH_USD        0.862           NaN            NaN            NaN            NaN  05-29 12:00  05-29 18:30    72982.78
4  BTC_USDT   TRX_USD        0.178           NaN            NaN            NaN            NaN  05-29 12:00  05-29 18:30  1258316.95

Process finished with exit code 0
2018-06-02 19:45:08 +03:00
Matthias
81bb128cf7 Merge pull request #822 from gcarq/fix/misleading_log
change misleading logging for datadir
2018-06-02 14:50:27 +02:00
xmatthias
a8bf5092e8 add ignore explanation 2018-06-02 14:18:57 +02:00
xmatthias
f88729f0e8 add ignore comment 2018-06-02 14:14:28 +02:00
xmatthias
3447e4bb97 comment on ignore hint 2018-06-02 14:13:17 +02:00
xmatthias
884395415f remove type:ignore 2018-06-02 14:10:15 +02:00
xmatthias
0007002c80 fix test failure 2018-06-02 14:07:54 +02:00
xmatthias
0a595190a3 fix last typechecks 2018-06-02 13:59:35 +02:00
xmatthias
32300f6d5f don't initialize with None where it's not necessary 2018-06-02 13:55:06 +02:00
xmatthias
d9e951447f remove _init function in backtesting (and according test) 2018-06-02 13:54:22 +02:00
xmatthias
6fc21e30e5 remove unused import 2018-06-02 13:52:55 +02:00
xmatthias
6106822d10 typing 2018-06-02 13:44:41 +02:00
xmatthias
4a322abd4d Typecheck improvements 2018-06-02 13:44:05 +02:00
Janne Sinivirta
52309cc292 Merge pull request #819 from gcarq/pyup-update-ccxt-1.14.96-to-1.14.119
Update ccxt to 1.14.119
2018-06-02 11:57:58 +03:00
Janne Sinivirta
b5c41ca0fc Merge pull request #820 from gcarq/fix/backtesting_hint
Fix wrong hint '--update-pairs-cached' from Backtesting/Hyperopt
2018-06-02 11:39:09 +03:00
Janne Sinivirta
a82a31341b change misleading logging for datadir 2018-06-02 11:32:05 +03:00
Gérald LONLAS
0980e7e82d Merge pull request #766 from pan-long/forcesell-amount
Sell filled amount or an open limit buy order in forcesell.
2018-06-01 19:51:38 -07:00
Gérald LONLAS
41efe99770 Merge pull request #786 from gcarq/fix/setup_script
Update setup.sh
2018-06-01 19:48:29 -07:00
Gerald Lonlas
792dd556a1 Fix wrong hint '--update-pairs-cached' from Backtesting/Hyperopt 2018-06-01 19:46:53 -07:00
pyup-bot
b731a65c75 Update ccxt from 1.14.96 to 1.14.119 2018-06-02 04:27:04 +02:00
xmatthias
e28973c50a fix flake8 2018-05-31 22:17:46 +02:00
xmatthias
633620a5e9 exclude .mypy_cache 2018-05-31 22:15:18 +02:00
xmatthias
41a47df93f setup travis to check mypy 2018-05-31 22:09:31 +02:00
xmatthias
3fb1dd02f1 add typehints and type: ignores 2018-05-31 22:00:46 +02:00
xmatthias
cf34b84cf1 add attributes with typehints 2018-05-31 21:59:22 +02:00
xmatthias
f4f821e88e add typehints 2018-05-31 21:44:18 +02:00
xmatthias
c0cef7250d typing - avoid variable reuse with differen ttype 2018-05-31 21:22:46 +02:00
xmatthias
2976a50c58 fix typing 2018-05-31 21:10:15 +02:00
xmatthias
69006b8fe8 flake8 2018-05-31 21:08:26 +02:00
xmatthias
4eb55acdbc fix typing 2018-05-31 21:04:10 +02:00
xmatthias
1352f135d0 typing 2018-05-31 20:55:45 +02:00
xmatthias
0d251cbfdd rpc type hints 2018-05-31 20:55:26 +02:00
xmatthias
4733aad7ff mypy_typing 2018-05-31 20:54:37 +02:00
xmatthias
48516e6e1e Add typehint 2018-05-31 20:41:05 +02:00
xmatthias
45909af7e0 type anotation fixes 2018-05-30 22:38:09 +02:00
xmatthias
88755fcded fix typing 2018-05-30 22:09:20 +02:00
xmatthias
0d6dffdc7e fix typehinting 2018-05-30 22:09:03 +02:00
xmatthias
9aa468adda fix for typehint 2018-05-30 22:01:29 +02:00
Janne Sinivirta
52386d8153 Merge pull request #793 from gcarq/pyup-update-ccxt-1.14.73-to-1.14.96
Update ccxt to 1.14.96
2018-05-30 21:40:32 +03:00
pyup-bot
b7e0466d7c Update ccxt from 1.14.73 to 1.14.96 2018-05-30 18:42:00 +02:00
Samuel Husso
f91de3c10e Merge pull request #788 from gcarq/fix/doc_configuration
Update Readme and documentation
2018-05-30 08:53:57 +03:00
Gerald Lonlas
4329c15a9b Doc: Add Buzz/trendy word 2018-05-29 22:38:48 -07:00
Gerald Lonlas
963d2a8368 Doc: update bot usage 2018-05-29 22:24:13 -07:00
Gerald Lonlas
d9eddfb1ee Doc: Update the exchanges supported 2018-05-29 22:21:29 -07:00
Gerald Lonlas
f59f534c64 Setup.sh: fix Python3.6 when broken on macOS 2018-05-29 20:49:37 -07:00
Gerald Lonlas
5a4eb2cbf2 Setup.sh: make message format consistent 2018-05-29 20:48:34 -07:00
Samuel Husso
c471ccb2db Merge pull request #734 from arudov/fix/pair-downloads
Do not download pairs if --refresh-pairs-cached isn't set
2018-05-29 08:05:10 +03:00
Samuel Husso
656be523bc Merge pull request #779 from gcarq/pyup-update-sqlalchemy-1.2.7-to-1.2.8
Update sqlalchemy to 1.2.8
2018-05-29 08:03:58 +03:00
pyup-bot
9cd7749867 Update sqlalchemy from 1.2.7 to 1.2.8 2018-05-28 22:14:50 +02:00
Samuel Husso
1845e5d7ca Merge pull request #772 from gcarq/pyup-update-ccxt-1.14.62-to-1.14.73
Update ccxt to 1.14.73
2018-05-27 10:23:42 +03:00
Samuel Husso
9639a3805d Merge pull request #771 from creslinux/develop
Correct instructions in backtesting.md
2018-05-27 10:23:29 +03:00
Samuel Husso
bc88fbf948 Merge pull request #767 from xmatthias/ccxt_loglevel
set ccxt loglevel to info
2018-05-27 10:22:20 +03:00
pyup-bot
94c1a6f2a6 Update ccxt from 1.14.62 to 1.14.73 2018-05-26 23:41:52 +02:00
creslin
280e8b3208 Update backtesting.md - correct instructions
Correct instructions for calling a custom strategy file
To paraphrase the change:

Prior - to call a custom strategy -s the strategy file name within users_data/strategies/ directory
After - to call a custom strategy -s the class name within the strategy within users_data/strategies/ directory
2018-05-26 20:14:33 +03:00
creslin
607c895065 Update backtesting.md: how to call a custom strat
Corrected instructions, to paraphrase the PR 
prior - to call a custom strategy -s the custom strategy file name in user_data/strategies 
after - to call a custom strategy -s the class name within the custom strategy file name in user_data/strategies
2018-05-26 20:09:20 +03:00
Pan Long
a98fcee4f9 Sell filled amount or an open limit buy order in forcesell.
Currently forcesell only cancels an open limit buy order and doesn't sell the filled amount.

After this change, forcesell will also update trade's amount to filled amount and sell the filled amount.
2018-05-26 09:55:31 +08:00
xmatthias
1ba5c5d9c6 set ccxt loglevel to info 2018-05-25 21:23:15 +02:00
Anton
3427c7eb54 Use constants 2018-05-25 17:04:08 +03:00
Anton
cf5d691950 Clean the tests 2018-05-25 00:46:08 +03:00
Janne Sinivirta
4e0b095f2b Merge pull request #756 from gcarq/pyup-update-ccxt-1.14.27-to-1.14.62
Update ccxt to 1.14.62
2018-05-24 10:59:40 +03:00
Janne Sinivirta
0837f3f9f3 Merge pull request #733 from xmatthias/fix_fiat_init
Fix fiat initialization
2018-05-24 10:54:31 +03:00
pyup-bot
bad5d57d71 Update ccxt from 1.14.27 to 1.14.62 2018-05-24 08:26:46 +02:00
Samuel Husso
620c7e8312 Merge pull request #748 from gcarq/pyup-update-pytest-3.5.1-to-3.6.0
Update pytest to 3.6.0
2018-05-24 09:01:31 +03:00
pyup-bot
af0b1e806f Update pytest from 3.5.1 to 3.6.0 2018-05-23 15:06:26 +02:00
Samuel Husso
cf522d1df2 Merge pull request #747 from creslinux/patch-1
OSX docker start cmd updated
2018-05-23 16:06:18 +03:00
creslin
318c973461 Update to installation.md
Added link to Docker issue  on OSX with greater detail of the problem and work-around.
2018-05-23 15:20:16 +03:00
creslin
34e78a7400 OSX docker start cmd updated
New versions of Docker will not start in OSX using the cmd in these instructions as /etc/localtime cannot be mounted. 
The change provides an alternate command that does work. 
`docker run --rm -e TZ=`ls -la /etc/localtime | cut -d/ -f8-9` -v `pwd`/config.json:/freqtrade/config.json -it freqtrade`

More info is in this thread: 
https://github.com/docker/for-mac/issues/2396
2018-05-23 13:17:35 +03:00
Anton
9be98cd8f7 Add ability to set unlimited stake_amount 2018-05-23 13:15:03 +03:00
Samuel Husso
e267b84510 Merge pull request #741 from pan-long/setup-defaults
Auto apply default values in setup.
2018-05-23 10:24:22 +03:00
Pan Long
c7ef69f4eb Auto apply default values in setup.
Before this commit, during setup, even a default value is displayed for some config, if user doesn't enter anything, an empty value is applied.

After this commit, if user doesn't enter anything for a config with default value, the default value will be applied.
2018-05-22 22:09:52 +08:00
Anton
8c22cfce37 Fix tests; fix codestyle 2018-05-21 23:15:01 +03:00
Anton
e1cb0dbf28 Do not try to redownload pair data if --refresh-pairs-cached is not set 2018-05-21 22:31:08 +03:00
xmatthias
e2efd7c6ec add test to verify network exception is cought on init of coinmarketcap 2018-05-21 20:03:25 +02:00
xmatthias
56e697acf5 Fix error initializing coinmarketcap 2018-05-21 20:01:41 +02:00
Michael Egger
13d6297b9f Merge pull request #711 from gcarq/pyup-update-ccxt-1.14.24-to-1.14.27
Update ccxt to 1.14.27
2018-05-20 10:31:27 +02:00
pyup-bot
65c069dd9f Update ccxt from 1.14.24 to 1.14.27 2018-05-20 06:41:38 +02:00
Samuel Husso
b0536dba0b Merge pull request #709 from gcarq/pyup-update-ccxt-1.14.10-to-1.14.24
Update ccxt to 1.14.24
2018-05-19 09:15:02 +03:00
peterkorodi
0c051b1b7a Make plot_dataframe able to show trades stored in database. (#692)
* Show trades stored in db on the graph
2018-05-19 09:14:42 +03:00
pyup-bot
16eb793081 Update ccxt from 1.14.10 to 1.14.24 2018-05-19 06:56:37 +02:00
Samuel Husso
1cc132afe2 Merge pull request #695 from gcarq/pyup-update-ccxt-1.13.148-to-1.14.10
Update ccxt to 1.14.10
2018-05-17 08:23:32 +03:00
Samuel Husso
d985405fe7 Merge pull request #683 from xmatthias/fix_get_real_amount
Fix get real amount
2018-05-17 08:22:34 +03:00
pyup-bot
e88fabe1d6 Update ccxt from 1.13.148 to 1.14.10 2018-05-17 00:26:32 +02:00
Samuel Husso
7f1f1ec1ad Merge pull request #688 from gcarq/pyup-update-pandas-0.22.0-to-0.23.0
Update pandas to 0.23.0
2018-05-16 08:37:38 +03:00
pyup-bot
8094f84efe Update pandas from 0.22.0 to 0.23.0 2018-05-16 05:16:24 +02:00
Matthias Voppichler
ef78f2f03a Add test for invalid order_fee dict 2018-05-15 20:13:43 +02:00
Matthias Voppichler
a1fa688da0 Add tests for the new scenario 2018-05-15 19:49:47 +02:00
Matthias Voppichler
263bf918b1 Fix bug pointed out in #679 2018-05-15 19:49:28 +02:00
Samuel Husso
58a2af8d80 Merge pull request #678 from arudov/fix/get-balance
Fixed bot crash while requesting the current balance
2018-05-15 18:10:02 +03:00
Samuel Husso
594b541f34 Merge pull request #680 from gcarq/pyup-update-ccxt-1.13.147-to-1.13.148
Update ccxt to 1.13.148
2018-05-15 18:07:16 +03:00
pyup-bot
cc3e4e9aa7 Update ccxt from 1.13.147 to 1.13.148 2018-05-15 16:41:31 +02:00
Janne Sinivirta
d74a0f0526 Merge pull request #677 from gcarq/pyup-update-coinmarketcap-5.0.1-to-5.0.3
Update coinmarketcap to 5.0.3
2018-05-15 17:39:37 +03:00
Anton
d112d90e8e Make telegram message beautiful 2018-05-15 13:37:34 +03:00
Michael Egger
2383a83c2d Merge pull request #675 from gcarq/pyup-update-ccxt-1.13.142-to-1.13.147
Update ccxt to 1.13.147
2018-05-15 12:36:27 +02:00
pyup-bot
c2245362da Update coinmarketcap from 5.0.1 to 5.0.3 2018-05-15 08:41:22 +02:00
pyup-bot
c96f912043 Update ccxt from 1.13.142 to 1.13.147 2018-05-15 01:11:29 +02:00
Anton
f175f48418 Fix get balance functionality 2018-05-15 00:31:56 +03:00
Janne Sinivirta
6cc8017943 Merge pull request #670 from gcarq/flakify-scripts
Scripts: fix syntax errors and flake8ify
2018-05-14 08:42:11 +03:00
Samuel Husso
e0bd45efab Scripts: fix syntax errors and flake8ify 2018-05-14 08:08:40 +03:00
Samuel Husso
f80864b5bc Merge pull request #668 from gcarq/pyup-update-ccxt-1.13.138-to-1.13.142
Update ccxt to 1.13.142
2018-05-14 07:14:18 +03:00
pyup-bot
9a09e6b815 Update ccxt from 1.13.138 to 1.13.142 2018-05-14 03:26:26 +02:00
Michael Egger
91f90920c2 Merge pull request #665 from xmatthias/fix_fiat_convert
Fix fiat convert
2018-05-13 22:37:01 +02:00
Matthias Voppichler
8549201502 add test for new fiat_convert logic 2018-05-13 20:46:02 +02:00
Samuel Husso
0665a23b0f Merge pull request #663 from gcarq/pyup-update-ccxt-1.13.136-to-1.13.138
Update ccxt to 1.13.138
2018-05-13 21:27:01 +03:00
Matthias Voppichler
b1c53ec656 refactor "patch_coinmarketcap" to conftest"
add patch_coinmarketcap to get_patched_freqtradebot
2018-05-13 20:04:40 +02:00
Matthias Voppichler
790f35a5c8 fix test which resets singleton without reinstating it 2018-05-13 20:03:54 +02:00
Matthias Voppichler
3246c60472 Fix coinmarketcap ticker 2018-05-13 20:00:38 +02:00
Matthias Voppichler
57fc9df5f3 Fix typo 2018-05-13 19:54:19 +02:00
Matthias Voppichler
144be37a9a Convert ID to string 2018-05-13 19:53:23 +02:00
Matthias Voppichler
9b8f90dc9f log error in find_price 2018-05-13 19:50:04 +02:00
Matthias Voppichler
d07491ceb2 Dynamically load cryptomap 2018-05-13 19:46:08 +02:00
pyup-bot
14c140d242 Update ccxt from 1.13.136 to 1.13.138 2018-05-13 16:26:25 +02:00
Michael Egger
263d34ae82 Merge pull request #660 from xmatthias/fix_hyperopt_testfluke
Fix testfluke in hyperopt
2018-05-13 14:51:27 +02:00
Matthias Voppichler
8f17b11610 Fix testfluke in hyperopt 2018-05-13 13:38:29 +02:00
Samuel Husso
177962fa05 Merge pull request #657 from gcarq/pyup-update-ccxt-1.13.133-to-1.13.136
Update ccxt to 1.13.136
2018-05-13 10:23:34 +03:00
pyup-bot
d51ac94662 Update ccxt from 1.13.133 to 1.13.136 2018-05-13 05:41:24 +02:00
Samuel Husso
40dfe4b3a9 Merge pull request #655 from xmatthias/dev_reduce_verbosity
Reduce verbosity of get_ticker_history
2018-05-12 22:20:08 +03:00
Matthias Voppichler
8b098859f4 Reduce verbosity of get_ticker_history 2018-05-12 20:15:59 +02:00
Samuel Husso
72a2c37769 Merge pull request #654 from gcarq/pyup-update-cachetools-2.0.1-to-2.1.0
Update cachetools to 2.1.0
2018-05-12 20:42:15 +03:00
pyup-bot
bc25007fef Update cachetools from 2.0.1 to 2.1.0 2018-05-12 18:45:18 +02:00
Michael Egger
1e119013c8 Merge pull request #653 from gcarq/pyup-update-ccxt-1.11.149-to-1.13.133
Update ccxt to 1.13.133
2018-05-12 14:40:34 +02:00
pyup-bot
189873f9d4 Update ccxt from 1.11.149 to 1.13.133 2018-05-12 14:04:16 +02:00
Michael Egger
5b25ed99ac Merge pull request #652 from gcarq/feat/objectify-ccxt
CCXT into use
2018-05-12 14:04:06 +02:00
Michael Egger
edd840ac35 Merge pull request #640 from xmatthias/ccxt-obj-slippage
[cxxt][2/2] Add columns for slippage detection
2018-05-12 13:56:15 +02:00
Matthias Voppichler
58425993da Adapt tests to verify pair-conversion and exchange conversion 2018-05-12 13:39:29 +02:00
Matthias Voppichler
e3ae1c6c2f Convert exchange-name to new format 2018-05-12 13:39:16 +02:00
Matthias Voppichler
40c581e5a8 Convert pair-format to new format 2018-05-12 13:37:42 +02:00
Matthias Voppichler
631081a2b2 Add additional tests 2018-05-12 10:37:17 +02:00
Matthias Voppichler
8e3ff8235f add explaining comments 2018-05-12 10:31:24 +02:00
Matthias Voppichler
ada98abfee fix flake 2018-05-12 10:30:30 +02:00
Matthias Voppichler
49266fc4b8 Add migration test 2018-05-12 10:29:26 +02:00
Matthias Voppichler
f5ff6ceead Rename instead of drop/create 2018-05-12 10:29:10 +02:00
Matthias Voppichler
81ee6f8265 Update sql docs to new schema 2018-05-12 10:19:52 +02:00
Matthias Voppichler
ab4e2bd5a9 Fix migrate script 2018-05-12 10:04:41 +02:00
Samuel Husso
01b6a0eb53 Freqtrade: ccxt release shall be called 0.17.0 2018-05-12 09:57:10 +03:00
Samuel Husso
b55822ad30 telegram: document proxy usage without code changes per gcarq's
comment in #609
2018-05-09 09:22:01 +03:00
Samuel Husso
7552c912a2 config.json.example: add ticker_interval 2018-05-09 09:15:09 +03:00
Michael Egger
1dbdb880e6 Merge pull request #637 from arudov/fix/dl-testdata-period2
Time-range download of backtesting data
2018-05-07 17:19:54 +02:00
Matthias Voppichler
ccf1c894b4 Inital try mirate 2018-05-06 09:09:53 +02:00
Matthias Voppichler
d3fb2e4516 Add open_rate_requested and close_rate_requested for slippage detection 2018-05-05 12:57:07 +02:00
Anton
932b65da27 Fix test_optimize.py 2018-05-04 13:59:50 +03:00
Anton
2bfce64e6a Fix conflicts 2018-05-04 13:38:51 +03:00
gcarq
43fd9b37df fix 'max_open_trades must be greater than 0' regression 2018-05-03 10:48:25 +02:00
Anton
ceeb98dda9 Fix conflicts 2018-05-03 11:16:29 +03:00
gcarq
a5c1547251 user_data: change ticker_interval to new format 2018-05-02 22:56:29 +02:00
gcarq
306885e174 Merge branch 'develop' into feat/objectify-ccxt 2018-05-02 22:49:55 +02:00
Michael Egger
90a107393a Merge pull request #622 from gcarq/fix/dl-testdata
fix download testdata
2018-05-02 22:06:43 +02:00
Michael Egger
c72d4665a1 Merge pull request #619 from gcarq/feature/catch-exchange-errors
granular exception handling and retrying mechanism for ccxt
2018-05-02 20:13:16 +02:00
gcarq
a76ed88496 Merge branch 'feat/objectify-ccxt' into feature/catch-exchange-errors 2018-05-02 20:03:13 +02:00
Anton
24ab1b5be5 Fix review comments, documenation update 2018-05-01 00:27:05 +03:00
Samuel Husso
842b0c2270 Exchange: fix missing comma and typehinting per PR comments 2018-04-29 18:55:43 +03:00
Anton
a127e1db07 Fix case with empty dict 2018-04-28 01:40:48 +03:00
Anton
2267a420a4 Fix codestyle 2018-04-28 00:30:42 +03:00
Anton
82ea56c8fd Fix review comments. Add support of datetime timeganges 2018-04-28 00:16:34 +03:00
Michael Egger
ecaf6b763c Merge pull request #623 from xmatthias/cxxt_obj_sellfix
[cxxt][1/2] fix fee calculation in binance
2018-04-26 19:58:24 +02:00
Matthias Voppichler
0987af910e remove indicator name from comment 2018-04-25 20:03:32 +02:00
Matthias Voppichler
2e1124af1a remove unnecessary .keys() 2018-04-25 14:00:25 +02:00
Anton
2fe7812e20 Fix codestyle 2018-04-25 10:32:58 +03:00
Matthias Voppichler
8bd9ed1543 fix flake8 2018-04-25 09:13:56 +02:00
Matthias Voppichler
72c17e29c0 Add test for "no trades found" case 2018-04-25 09:08:02 +02:00
Matthias Voppichler
483415cd65 Add fee entry to DRY_ORDER dict as defined by ccxt 2018-04-25 09:03:32 +02:00
Matthias Voppichler
98669a3d62 remove duplicate log entry, fix key-error 2018-04-25 09:01:21 +02:00
Matthias Voppichler
9c2115c917 refactor get_real_amount 2018-04-25 08:52:08 +02:00
Matthias Voppichler
f6ecd8e514 Add pytest fixture for real_amount test 2018-04-25 08:51:31 +02:00
Anton
6675120324 Add time range support to download_backtest_data 2018-04-25 02:11:07 +03:00
Matthias Voppichler
ab6589d573 Fix comment and improve log message 2018-04-24 19:43:08 +02:00
Matthias Voppichler
9e94778fd7 simplify check for presence of list 2018-04-24 19:42:41 +02:00
Matthias Voppichler
2968347062 fix flake8 2018-04-23 20:32:46 +02:00
Matthias Voppichler
9450b76414 improve style of import in test 2018-04-23 20:08:58 +02:00
Matthias Voppichler
d2608cbf13 improve check when not to run 2018-04-23 20:06:00 +02:00
Matthias Voppichler
f580fbb91d remove maybe_update_amount and tests 2018-04-23 20:03:10 +02:00
gcarq
9b0fbbdc14 cancel_order: pass all positional arguments 2018-04-23 16:58:52 +02:00
gcarq
aa213a3640 cancel_order: handle InvalidOrder exception 2018-04-23 16:58:32 +02:00
gcarq
baeeaa777d get_balance: handle case if currency is not in response 2018-04-23 16:57:18 +02:00
gcarq
20af4bae7c retrier: raise initial exception instead of OperationalException 2018-04-23 16:56:35 +02:00
gcarq
5baab91bb5 catch TemporaryError for buy/sell in _process() 2018-04-22 20:28:39 +02:00
gcarq
4c49229b77 catch DependencyExceptions while selling 2018-04-22 20:27:34 +02:00
Matthias Voppichler
93a7c46977 optimize to only do network calls if necessary 2018-04-22 19:37:24 +02:00
gcarq
bc2bd7fe1e add retrier decorator to all exchange functions except buy/sell 2018-04-22 17:28:49 +02:00
Matthias Voppichler
a70958da41 test modify-logic 2018-04-22 11:05:23 +02:00
Samuel Husso
9f1544978d tests: use only coins that most likely are going to be in bittrex 2018-04-22 11:29:21 +03:00
Matthias Voppichler
f838ba2a9b remove fee column from bot 2018-04-22 10:04:30 +02:00
Samuel Husso
53e76a89ac convert_backtestdata: flake8 fixes 2018-04-22 11:00:51 +03:00
Samuel Husso
de8db9293c exchange: extract ccxt init to its own function (so that we can init ccxt from the scripts) 2018-04-22 10:57:48 +03:00
Samuel Husso
fded8e5117 move download_backtest_data to scripts 2018-04-22 10:56:49 +03:00
Matthias Voppichler
be95d699d2 only update if open_fee is set 2018-04-22 09:13:02 +02:00
gcarq
c43ceb2045 add config*.json to .gitignore 2018-04-22 00:35:04 +02:00
gcarq
9ab4953472 fix backtesting testsuite 2018-04-22 00:21:03 +02:00
gcarq
bbe3bc4423 catch ccxt.ExchangeError and retry 2018-04-22 00:20:15 +02:00
Matthias
acb1b50924 [ccxt] fix unsupported fiat failures (#620)
* prepare to support FIAT/Crypto trading

* Don't fail fiat-convert for unsupported stake currencies

* remove commented code

* Add BNB to cryptomap

* Fix test-failure

* related to random execution as fee was not properly mocked if this is
one of the first tests
2018-04-21 23:20:12 +02:00
Matthias Voppichler
a140748b5a Merge branch 'feat/objectify-ccxt' into cxxt_obj_sellfix 2018-04-21 22:39:22 +02:00
Matthias Voppichler
573b6b8e15 Remove unused line 2018-04-21 22:35:17 +02:00
Matthias
23e989d31f Fix tests run in random order (#599)
* allow tests to run in random mode

* Fix random test mode for fiat-convert

* allow random test execution in persistence

* fix pep8 styling

* use "usefixtures" to prevent pylint "unused parameter" message

* add pytest-random-order to travis
2018-04-21 21:21:50 +02:00
Matthias Voppichler
990f8a996b log in case of error 2018-04-21 21:01:53 +02:00
gcarq
f4077a51c1 log hyperopt progress to stdout instead to the logger 2018-04-21 20:52:01 +02:00
gcarq
403f59ef45 use native python logger 2018-04-21 20:47:06 +02:00
Samuel Husso
001d7443da Merge pull request #618 from gcarq/feature/add-get_fee-mocks
add mocks for exchange.get_fee
2018-04-21 21:26:22 +03:00
Samuel Husso
4eb66aa9ce Merge pull request #617 from gcarq/feature/ccxt-enable-ratelimit
let ccxt handle rate limits internally
2018-04-21 21:25:19 +03:00
Matthias Voppichler
ce90ee4ac2 have backtesting use fee_open and fee_close 2018-04-21 20:05:49 +02:00
Matthias Voppichler
06d230279c Fix tests 2018-04-21 20:05:39 +02:00
Matthias Voppichler
47748bc6f7 adjust tests for fee_open and fee_close 2018-04-21 19:55:48 +02:00
Matthias Voppichler
a620aa8352 add columns fee_open and fee_close, update value 2018-04-21 19:47:08 +02:00
gcarq
09fb4ea584 add mocks for exchange.get_fee 2018-04-21 19:39:18 +02:00
gcarq
3997b6038d let cctx handle rate limits 2018-04-21 19:11:29 +02:00
Matthias Voppichler
7f4c70827a Test get_amount_lots 2018-04-21 13:33:29 +02:00
Matthias Voppichler
f69e8458f4 Add tests for update_real_amount 2018-04-21 13:33:29 +02:00
Matthias Voppichler
02f0f22621 fix comment 2018-04-21 13:33:29 +02:00
Matthias Voppichler
1d43dc229b refactor tests of get_real_amount 2018-04-21 13:33:29 +02:00
Matthias Voppichler
c7d1a767f7 add get_trades_for_order 2018-04-21 13:33:29 +02:00
Matthias Voppichler
11d8f7d522 add get_real_amount and tests 2018-04-21 13:33:29 +02:00
gcarq
1332ab397f fix reference before assignment 2018-04-21 10:19:12 +03:00
Samuel Husso
78bafee39d download_backtest: fix imports and travis 2018-04-19 09:44:45 +03:00
Samuel Husso
66866ff260 fix travis 2018-04-19 09:06:56 +03:00
Samuel Husso
1dcd7e747e partial fix for download testdate 2018-04-19 09:01:34 +03:00
Samuel Husso
42c0d7c7c3 Merge pull request #603 from enenn/ccxt-objectify-pr3_1
[3/3] Add support for multiple exchanges with ccxt (objectified version)
2018-04-18 15:23:33 +03:00
enenn
488210915a Flak8 fixes... 2018-04-15 13:11:17 +02:00
enenn
f1d406b1e6 Fix possible race condition during testing
Order would sometimes fail to sell during tests,
probably because time between current time and creation was 0
2018-04-15 12:50:47 +02:00
enenn
89ed2e0127 Get mocked exhange buy return value from existing fixture 2018-04-15 12:48:02 +02:00
enenn
53b1f8d3a4 Add a 4th pair to testing dynamic whitelist generation 2018-04-15 12:20:49 +02:00
enenn
cc5991d269 Fixturize fee MagicMock object in tests 2018-04-15 12:09:12 +02:00
Michael Egger
b8184e4fdd Merge pull request #602 from xmatthias/obj_ccxt_test_formatms
Add test for format_ms_time
2018-04-13 00:44:25 +02:00
Matthias Voppichler
37dee02e1c Add comment and extract magic number to variable 2018-04-12 19:32:14 +02:00
enenn
2765a065a7 Use UNITTEST/BTC pair instead of ETH/BTC pair for load_data tests 2018-04-12 19:21:40 +02:00
Matthias Voppichler
bb7b2cdfd5 Disable dynamic whitelist
Revert regression introduced in refactoring for objectify

(cherry picked from commit 5bd7954)
2018-04-12 18:35:35 +02:00
enenn
94287d66a8 Flake8 fixes 2018-04-12 18:16:27 +02:00
enenn
1cfa0a3c0e Add exchange name to default hyperopt config 2018-04-12 18:16:26 +02:00
enenn
1678518cd4 Add dry_run=True to config during backtesting 2018-04-12 18:16:26 +02:00
enenn
838bd5824e Mock validate_pairs 2018-04-12 18:16:26 +02:00
enenn
a650072fe0 Edit signal handler tests to work on windows as well 2018-04-12 18:16:26 +02:00
enenn
6115fb08c0 Remove get_fee_maker/taker and add argument to get_fee instead 2018-04-12 18:16:25 +02:00
enenn
91b2092d55 Remove ticker_history_api and ticker_history_without_bv from conftest.py 2018-04-12 18:16:25 +02:00
enenn
cba8745164 Update exchange validate_pairs and related tests 2018-04-12 18:16:19 +02:00
enenn
c3d00a8825 Change ticker format to ccxt in backtesting and optimize tests 2018-04-12 18:14:33 +02:00
enenn
261522446e Change to ccxt ticker format in test_analyze.py 2018-04-12 18:07:45 +02:00
enenn
a86104d0fe Update backtesting and hyperopt tests to use default_config and mock validate_pairs
Use default_config from conftest.py instead of user supplied config in user_data/hyperopt_conf
Mock validate pairs so tests don't fail if pairs don't exist/are removed from exchanges
2018-04-12 18:07:45 +02:00
enenn
4ac2afacfa Use global backtest instance for backtesting tests 2018-04-12 18:07:45 +02:00
enenn
07c655cf41 Use os.path.join for file paths 2018-04-12 18:07:45 +02:00
enenn
a9ba0981c7 Use exchange id for Trade and exchange name for RPC 2018-04-12 18:07:44 +02:00
enenn
7a074f21bd Remove duplicate result pytest fixture 2018-04-12 18:07:44 +02:00
enenn
fef8a4c978 Update tests related to whitelist 2018-04-12 18:07:44 +02:00
enenn
0c8ecf2b1f Add 'get_tickers' function to exchange and use it for dynamic whitelists 2018-04-12 18:07:44 +02:00
enenn
5fc8250ee4 Add 'exchange_has' function to check if exchange supports specific API call
Catch ccxt.NotSupported exception instead of checking beforehand
2018-04-12 18:07:44 +02:00
enenn
e42403fecc Change date to timestamp conversion method in backtesting 2018-04-12 18:07:44 +02:00
enenn
12a84cc30b Mock fee during testing as 0.0025
Ensures profit calculations does not vary if exchange fees change, which can cause tests to fail
2018-04-12 18:07:44 +02:00
enenn
0ae5b75f33 Update order structure to ccxt generic structure instead of bittrex specific 2018-04-12 18:07:43 +02:00
enenn
4810d87044 Change buy/sell return value in tests 2018-04-12 18:07:43 +02:00
enenn
0b71f7186c Replace 'get_wallet_health' and 'get_markets_summaries'
Both are now covered by 'get_markets'
2018-04-12 18:07:43 +02:00
Samuel Husso
eac3c4b72c Merge pull request #600 from enenn/ccxt-obecjtify-pr2_1
[2/3] Add support for multiple exchanges with ccxt (objectified version)
2018-04-12 07:36:18 +03:00
Matthias Voppichler
d03f58417b Fix timezone dependency in test 2018-04-11 20:19:13 +02:00
Matthias Voppichler
7123985325 Add test for format_ms_time 2018-04-10 20:10:20 +02:00
enenn
7eb5138276 Update 8m historical unittest data.
8m.json.gz should be a copy of 1m.json, 8m.json should be empty
2018-04-09 20:25:26 +02:00
enenn
d50445108e Fix issue where datetime string was converted to timestamp with timezone dependent offset 2018-04-08 13:12:55 +02:00
enenn
65c5a0b308 Remove comment from donwload_backtest_data.py 2018-04-08 13:11:36 +02:00
enenn
bfe1eaadcf Adapt convert_backtestdata.py to new format
Also fix timezone issue and integer overflow
2018-04-08 13:11:12 +02:00
enenn
ce3603f84f Change ticker_interval from 5 to 5m in default strategy 2018-04-07 21:31:52 +02:00
enenn
21468d72d3 Fix pair order in test_rpc.py 2018-04-07 20:01:06 +02:00
enenn
4f4cb3698e Revert editing health in conftest.py 2018-04-07 17:05:44 +02:00
enenn
21c5282eb1 Change backtest data from bittrex format to ccxt format 2018-04-07 16:58:26 +02:00
enenn
db46ad6502 Change ticker interval from minutes as integer to string (1m, 5m, 1h,...) 2018-04-07 16:57:47 +02:00
enenn
616006caf8 Replace 'ETH/BTC' with 'UNITTEST/BTC' to fix adx not generating if ETH/BTC ticker history is too short 2018-04-07 16:55:18 +02:00
enenn
cbc0b81d2e Rename ticker history files from "BTC_XXX-1.json" to "XXX_BTC-1m.json" 2018-04-07 16:52:09 +02:00
enenn
c1c6ed6ed7 Replace 'BTC_XXX' with 'XXX/BTC' for pairs and 'XXX_BTC' for files 2018-04-07 16:51:50 +02:00
enenn
1f75636e56 [1/3] Add support for multiple exchanges with ccxt (objectified version) (#585)
* remove obsolete helper functions and make _state a public member.

* remove function assertions

* revert worker() changes

* Update pytest from 3.4.2 to 3.5.0

* Adapt exchange functions to ccxt API
Remove get_market_summaries and get_wallet_health, add exception handling

* Add NetworkException

* Change pair format in constants.py

* Add tests for exchange functions that comply with ccxt

* Remove bittrex tests

* Remove Bittrex and Interface classes

* Add retrier decorator

* Remove cache from get_ticker

* Remove unused and duplicate imports

* Add keyword arguments for get_fee

* Implement 'get_pair_detail_url'

* Change get_ticker_history format to ccxt format

* Fix exchange urls dict, don't need to initialize exchanges

* Add "Using Exchange ..." logging line
2018-04-06 10:57:08 +03:00
Samuel Husso
f3847a3a9a Merge pull request #597 from xmatthias/obj_ccxt_fix_nullref
use local config-object for check_exchange (fixes Nonetype Attribute error when starting the bot)
2018-04-05 08:05:38 +03:00
Matthias Voppichler
0203a48f3e use local config-object for check_exchange
fix AttributeError: 'NoneType' object has no attribute 'get' when
starting the bot.
2018-04-04 22:05:17 +02:00
Michael Egger
5420bb9f6d Merge pull request #594 from xmatthias/obj_ccxt_conv
Conversion script for Ticker history data
2018-03-31 17:58:00 +02:00
Matthias Voppichler
4ac591b076 rename logging to freqtrade 2018-03-31 17:30:11 +02:00
Matthias Voppichler
18f8686cdb fix returncode for convert_file 2018-03-31 17:29:52 +02:00
Matthias Voppichler
2f40e23dcc don't check negated if both trees are handled 2018-03-31 17:28:54 +02:00
Matthias Voppichler
8a83e050d0 use path to handle filenames 2018-03-31 17:24:25 +02:00
Matthias Voppichler
a972b8768d Improve errorhandling for json files which are not ticker data 2018-03-30 23:34:22 +02:00
Matthias Voppichler
a4906c477e Add handling for gzip files 2018-03-30 23:30:23 +02:00
Gerald Lonlas
7cafd1f17e Update exchange unit tests 2018-03-30 13:52:25 -07:00
Gerald Lonlas
3d2c6a22a3 Fix test_validate_pairs() 2018-03-30 13:31:13 -07:00
Gerald Lonlas
052404ffbd Check if the exchange is supported 2018-03-30 13:14:35 -07:00
Gerald Lonlas
96b2210c0f Change deprecated logger.warn by warning 2018-03-30 12:11:06 -07:00
Matthias Voppichler
756bd63e1d whitespace fix 2018-03-26 23:16:41 +02:00
Matthias Voppichler
9d2b7c1fc0 Add convert script 2018-03-26 20:18:14 +02:00
Samuel Husso
0a32d38ad9 exchange: fix get_ticker_history test 2018-03-26 09:24:50 +03:00
Samuel Husso
3069a422e9 Conftest: use coins that we know are in bittrex, added a new conf for ccxt unittest 2018-03-26 09:24:22 +03:00
Samuel Husso
1b4c1980c2 exchange: capitalize class name 2018-03-26 09:23:42 +03:00
Samuel Husso
aba09b8107 Merge pull request #576 from xmatthias/obj-ccxt-ticker
objectify ccxt fix backtesting and some tests
2018-03-26 08:28:40 +03:00
Matthias Voppichler
f51ef1a791 refactor format_ms_time to misc.py 2018-03-25 13:38:50 +02:00
Matthias Voppichler
016232a8e9 Revert OHLVC dataformat to ccxt format
* Also fixes backtesting - but data must be refreshed for now as no
conversation is happening yet
2018-03-25 13:32:46 +02:00
Matthias Voppichler
dbb0a6261f don't raise exceptions from get_ticker_history 2018-03-25 13:03:21 +02:00
Matthias Voppichler
b07ee26e08 Revert testing exchange to bittrex 2018-03-25 12:57:59 +02:00
Matthias Voppichler
ae803474f9 switch rpc_telgram to new style and make it pass 2018-03-24 20:59:25 +01:00
Matthias Voppichler
0a068db285 Switch rpc_test to new currency style 2018-03-24 20:59:09 +01:00
Matthias Voppichler
32222ae6ef Fix tests in acl_pair 2018-03-24 20:42:51 +01:00
Matthias Voppichler
82a2144296 change format of health fixture and get_market_summaries fixture 2018-03-24 20:36:33 +01:00
Matthias Voppichler
22ef860312 Change freqbottest currencies 2018-03-24 20:32:15 +01:00
Matthias Voppichler
a6587b209f freqtradebot_tests - change currency to new format 2018-03-24 20:11:42 +01:00
Matthias Voppichler
4dc1d7538e switch currencies to new format 2018-03-24 20:07:04 +01:00
Matthias Voppichler
609c1eee55 fix persistance tests 2018-03-24 20:03:31 +01:00
Matthias Voppichler
ab6e32f6bb have backtest and dry-mode working
partially revert d20e3f79be - Changing the
OHLVC format should not be done at this time
2018-03-24 19:51:40 +01:00
Matthias Voppichler
85af68d807 ccxt - make backtesting work 2018-03-24 19:45:23 +01:00
Samuel Husso
eb4ac73b78 remove last bittrex references so that bot is runnable 2018-03-22 08:29:52 +02:00
Samuel Husso
d20e3f79be analyze to use the ccxt OHLCV format
setup: remove bittrex and add requirement to ccxt

freqtradebot: update market summaries to ccxt format
2018-03-21 19:57:58 +02:00
Samuel Husso
40a0689183 exhcange now uses ccxt in dry_run, update config 2018-03-21 19:40:16 +02:00
Samuel Husso
14d16d573c Remove bittrex related interface code and tests 2018-03-21 19:31:15 +02:00
Samuel Husso
556533f160 requirements add ccxt, remove bittrex 2018-03-21 19:02:04 +02:00
152 changed files with 10424 additions and 6398 deletions

View File

@@ -3,3 +3,4 @@ omit =
scripts/*
freqtrade/tests/*
freqtrade/vendor/*
freqtrade/__main__.py

View File

@@ -1,15 +1,17 @@
## Step 1: Have you search for this issue before posting it?
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue).
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
If it hasn't been reported, please create a new issue.
## Step 2: Describe your environment
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Branch: Master | Develop
* Last Commit ID: _____ (`git log --format="%H" -n 1`)
## Step 3: Describe the problem:
*Explain the problem you have encountered*
### Steps to reproduce:

View File

@@ -1,5 +1,5 @@
Thank you for sending your pull request. But first, have you included
unit tests, and is your code PEP8 conformant? [More details](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
unit tests, and is your code PEP8 conformant? [More details](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
## Summary
Explain in one sentence the goal of this PR

4
.gitignore vendored
View File

@@ -1,13 +1,14 @@
# Freqtrade rules
freqtrade/tests/testdata/*.json
hyperopt_conf.py
config.json
config*.json
*.sqlite
.hyperopt
logfile.txt
hyperopt_trials.pickle
user_data/
freqtrade-plot.html
freqtrade-profit-plot.html
# Byte-compiled / optimized / DLL files
__pycache__/
@@ -90,3 +91,4 @@ target/
.vscode
.pytest_cache/
.mypy_cache/

4
.pyup.yml Normal file
View File

@@ -0,0 +1,4 @@
# autogenerated pyup.io config file
# see https://pyup.io/docs/configuration/ for all available options
schedule: every day

View File

@@ -13,21 +13,22 @@ addons:
install:
- ./install_ta-lib.sh
- export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
- pip install --upgrade flake8 coveralls pytest-random-order
- pip install --upgrade flake8 coveralls pytest-random-order mypy
- pip install -r requirements.txt
- pip install -e .
jobs:
include:
- script: pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- script:
- pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- coveralls
- script:
- cp config.json.example config.json
- python freqtrade/main.py backtesting
- python freqtrade/main.py --datadir freqtrade/tests/testdata backtesting
- script:
- cp config.json.example config.json
- python freqtrade/main.py hyperopt -e 5
- python freqtrade/main.py --datadir freqtrade/tests/testdata hyperopt -e 5
- script: flake8 freqtrade
after_success:
- coveralls
- script: mypy freqtrade
notifications:
slack:
secure: bKLXmOrx8e2aPZl7W8DA5BdPAXWGpI5UzST33oc1G/thegXcDVmHBTJrBs4sZak6bgAclQQrdZIsRd2eFYzHLalJEaw6pk7hoAw8SvLnZO0ZurWboz7qg2+aZZXfK4eKl/VUe4sM9M4e/qxjkK+yWG7Marg69c4v1ypF7ezUi1fPYILYw8u0paaiX0N5UX8XNlXy+PBlga2MxDjUY70MuajSZhPsY2pDUvYnMY1D/7XN3cFW0g+3O8zXjF0IF4q1Z/1ASQe+eYjKwPQacE+O8KDD+ZJYoTOFBAPllrtpO1jnOPFjNGf3JIbVMZw4bFjIL0mSQaiSUaUErbU3sFZ5Or79rF93XZ81V7uEZ55vD8KMfR2CB1cQJcZcj0v50BxLo0InkFqa0Y8Nra3sbpV4fV5Oe8pDmomPJrNFJnX6ULQhQ1gTCe0M5beKgVms5SITEpt4/Y0CmLUr6iHDT0CUiyMIRWAXdIgbGh1jfaWOMksybeRevlgDsIsNBjXmYI1Sw2ZZR2Eo2u4R6zyfyjOMLwYJ3vgq9IrACv2w5nmf0+oguMWHf6iWi2hiOqhlAN1W74+3HsYQcqnuM3LGOmuCnPprV1oGBqkPXjIFGpy21gNx4vHfO1noLUyJnMnlu2L7SSuN1CdLsnjJ1hVjpJjPfqB4nn8g12x87TqM1bOm+3Q=

View File

@@ -7,7 +7,7 @@ Feel like our bot is missing a feature? We welcome your pull requests! Few point
conformant (max-line-length = 100).
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
or in a [issue](https://github.com/gcarq/freqtrade/issues) before a PR.
or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
**Before sending the PR:**
@@ -42,4 +42,21 @@ pip3.6 install flake8 coveralls
flake8 freqtrade
```
We receive a lot of code that fails the `flake8` checks.
To help with that, we encourage you to install the git pre-commit
hook that will warn you when you try to commit code that fails these checks.
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
## 3. Test if all type-hints are correct
**Install packages** (If not already installed)
``` bash
pip3.6 install mypy
```
**Run mypy**
``` bash
mypy freqtrade
```

View File

@@ -1,10 +1,11 @@
FROM python:3.6.5-slim-stretch
FROM python:3.6.6-slim-stretch
# Install TA-lib
RUN apt-get update && apt-get -y install curl build-essential && apt-get clean
RUN curl -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz | \
tar xzvf - && \
cd ta-lib && \
sed -i "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h && \
./configure && make && make install && \
cd .. && rm -rf ta-lib
ENV LD_LIBRARY_PATH /usr/local/lib
@@ -15,7 +16,8 @@ WORKDIR /freqtrade
# Install dependencies
COPY requirements.txt /freqtrade/
RUN pip install -r requirements.txt
RUN pip install numpy \
&& pip install -r requirements.txt
# Install and execute
COPY . /freqtrade/

245
README.md
View File

@@ -1,16 +1,15 @@
# freqtrade
[![Build Status](https://travis-ci.org/gcarq/freqtrade.svg?branch=develop)](https://travis-ci.org/gcarq/freqtrade)
[![Coverage Status](https://coveralls.io/repos/github/gcarq/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/gcarq/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/gcarq/freqtrade/maintainability)
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
Simple High frequency trading bot for crypto currencies designed to support multi exchanges and be controlled via Telegram.
Simple High frequency trading bot for crypto currencies designed to
support multi exchanges and be controlled via Telegram.
![freqtrade](https://raw.githubusercontent.com/gcarq/freqtrade/develop/docs/assets/freqtrade-screenshot.png)
![freqtrade](https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docs/assets/freqtrade-screenshot.png)
## Disclaimer
This software is for educational purposes only. Do not risk money which
you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS
AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
@@ -22,130 +21,85 @@ expect.
We strongly recommend you to have coding and Python knowledge. Do not
hesitate to read the source code and understand the mechanism of this bot.
## Exchange marketplaces supported
- [X] [Bittrex](https://bittrex.com/)
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](#a-note-on-binance))
- [ ] [113 others to tests](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
## Features
- [x] **Based on Python 3.6+**: For botting on any operating system - Windows, macOS and Linux
- [x] **Persistence**: Persistence is achieved through sqlite
- [x] **Dry-run**: Run the bot without playing money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
- [x] **Strategy Optimization by machine learning**: Use machine learning to optimize your buy/sell strategy parameters with real exchange data.
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you want to trade.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you want to avoid.
- [x] **Manageable via Telegram**: Manage the bot with Telegram
- [x] **Display profit/loss in fiat**: Display your profit/loss in 33 fiat.
- [x] **Daily summary of profit/loss**: Provide a daily summary of your profit/loss.
- [x] **Performance status report**: Provide a performance status of your current trades.
## Table of Contents
- [Features](#features)
- [Quick start](#quick-start)
- [Documentations](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Strategy Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Documentations](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)
- [Strategy Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
- [Sandbox Testing](https://github.com/freqtrade/freqtrade/blob/develop/docs/sandbox-testing.md)
- [Basic Usage](#basic-usage)
- [Bot commands](#bot-commands)
- [Telegram RPC commands](#telegram-rpc-commands)
- [Support](#support)
- [Help](#help--slack)
- [Bugs](#bugs--issues)
- [Feature Requests](#feature-requests)
- [Pull Requests](#pull-requests)
- [Basic Usage](#basic-usage)
- [Bot commands](#bot-commands)
- [Telegram RPC commands](#telegram-rpc-commands)
- [Requirements](#requirements)
- [Min hardware required](#min-hardware-required)
- [Software requirements](#software-requirements)
## Branches
The project is currently setup in two main branches:
- `develop` - This branch has often new features, but might also cause
breaking changes.
- `master` - This branch contains the latest stable release. The bot
'should' be stable on this branch, and is generally well tested.
## Features
- [x] **Based on Python 3.6+**: For botting on any operating system -
Windows, macOS and Linux
- [x] **Persistence**: Persistence is achieved through sqlite
- [x] **Dry-run**: Run the bot without playing money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
- [x] **Strategy Optimization**: Optimize your buy/sell strategy
parameters with Hyperopts.
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you
want to trade.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you
want to avoid.
- [x] **Manageable via Telegram**: Manage the bot with Telegram
- [x] **Display profit/loss in fiat**: Display your profit/loss in
33 fiat.
- [x] **Daily summary of profit/loss**: Provide a daily summary
of your profit/loss.
- [x] **Performance status report**: Provide a performance status of
your current trades.
### Exchange supported
- [x] Bittrex
- [ ] Binance
- [ ] Others
## Quick start
This quick start section is a very short explanation on how to test the
bot in dry-run. We invite you to read the
[bot documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
to ensure you understand how the bot is working.
### Easy installation
The script below will install all dependencies and help you to configure the bot.
Freqtrade provides a Linux/macOS script to install all dependencies and help you to configure the bot.
```bash
git clone git@github.com:freqtrade/freqtrade.git
cd freqtrade
git checkout develop
./setup.sh --install
```
### Manual installation
The following steps are made for Linux/MacOS environment
_Windows installation is explained in [Installation doc](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)_
**1. Clone the repo**
```bash
git clone git@github.com:gcarq/freqtrade.git
git checkout develop
cd freqtrade
```
**2. Create the config file**
Switch `"dry_run": true,`
```bash
cp config.json.example config.json
vi config.json
```
**3. Build your docker image and run it**
```bash
docker build -t freqtrade .
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
## Documentation
We invite you to read the bot documentation to ensure you understand how the bot is working.
### Help / Slack
For any questions not covered by the documentation or for further
information about the bot, we encourage you to join our slack channel.
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
### [Bugs / Issues](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/gcarq/freqtrade/issues/new) and
ensure you follow the template guide so that our team can assist you as
quickly as possible.
### [Feature Requests](https://github.com/gcarq/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,
first search if this feature was not [already discussed](https://github.com/gcarq/freqtrade/labels/enhancement).
If it hasn't been requested, please
[create a new request](https://github.com/gcarq/freqtrade/issues/new)
and ensure you follow the template guide so that it does not get lost
in the bug reports.
### [Pull Requests](https://github.com/gcarq/freqtrade/pulls)
Feel like our bot is missing a feature? We welcome your pull requests!
Please read our
[Contributing document](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
to understand the requirements before sending your pull-requests.
**Important:** Always create your PR against the `develop` branch, not
`master`.
- [Index](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md)
- [How to run the bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [How to use Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [How to use Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Strategy Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
## Basic Usage
### Bot commands
```bash
usage: main.py [-h] [-v] [--version] [-c PATH] [--dry-run-db] [--datadir PATH]
[--dynamic-whitelist [INT]]
usage: main.py [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
[--strategy-path PATH] [--dynamic-whitelist [INT]]
[--dry-run-db]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
@@ -161,44 +115,99 @@ optional arguments:
--version show program's version number and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH path to backtest data (default freqdata/tests/testdata
-d PATH, --datadir PATH
path to backtest data (default:
freqtrade/tests/testdata
-s NAME, --strategy NAME
specify strategy class name (default: DefaultStrategy)
--strategy-path PATH specify additional strategy lookup path
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
```
More details on:
- [How to run the bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [How to use Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [How to use Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
### Telegram RPC commands
Telegram is not mandatory. However, this is a great way to control your
bot. More details on our
[documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
Telegram is not mandatory. However, this is a great way to control your bot. More details on our [documentation](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
- `/start`: Starts the trader
- `/stop`: Stops the trader
- `/status [table]`: Lists all open trades
- `/count`: Displays number of open trades
- `/profit`: Lists cumulative profit from all finished trades
- `/forcesell <trade_id>|all`: Instantly sells the given trade
(Ignoring `minimum_roi`).
- `/forcesell <trade_id>|all`: Instantly sells the given trade (Ignoring `minimum_roi`).
- `/performance`: Show performance of each finished trade grouped by pair
- `/balance`: Show account balance per currency
- `/daily <n>`: Shows profit or loss per day, over the last n days
- `/help`: Show help message
- `/version`: Show version
## Development branches
The project is currently setup in two main branches:
- `develop` - This branch has often new features, but might also cause breaking changes.
- `master` - This branch contains the latest stable release. The bot 'should' be stable on this branch, and is generally well tested.
- `feat/*` - These are feature branches, which are beeing worked on heavily. Please don't use these unless you want to test a specific feature.
## A note on Binance
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB order unsellable as the expected amount is not there anymore.
## Support
### Help / Slack
For any questions not covered by the documentation or for further
information about the bot, we encourage you to join our slack channel.
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
### [Bugs / Issues](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/freqtrade/freqtrade/issues/new) and
ensure you follow the template guide so that our team can assist you as
quickly as possible.
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,
first search if this feature was not [already discussed](https://github.com/freqtrade/freqtrade/labels/enhancement).
If it hasn't been requested, please
[create a new request](https://github.com/freqtrade/freqtrade/issues/new)
and ensure you follow the template guide so that it does not get lost
in the bug reports.
### [Pull Requests](https://github.com/freqtrade/freqtrade/pulls)
Feel like our bot is missing a feature? We welcome your pull requests!
Please read our
[Contributing document](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
to understand the requirements before sending your pull-requests.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
**Important:** Always create your PR against the `develop` branch, not `master`.
## Requirements
### Min hardware required
To run this bot we recommend you a cloud instance with a minimum of:
* Minimal (advised) system requirements: 2GB RAM, 1GB disk space, 2vCPU
- Minimal (advised) system requirements: 2GB RAM, 1GB disk space, 2vCPU
### Software requirements
- [Python 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/)
- [pip](https://pip.pypa.io/en/stable/installing/)
- [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)

View File

@@ -3,8 +3,13 @@
"stake_currency": "BTC",
"stake_amount": 0.05,
"fiat_display_currency": "USD",
"ticker_interval" : "5m",
"dry_run": false,
"unfilledtimeout": 600,
"trailing_stop": false,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0
},
@@ -12,25 +17,27 @@
"name": "bittrex",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"ccxt_rate_limit": true,
"pair_whitelist": [
"BTC_ETH",
"BTC_LTC",
"BTC_ETC",
"BTC_DASH",
"BTC_ZEC",
"BTC_XLM",
"BTC_NXT",
"BTC_POWR",
"BTC_ADA",
"BTC_XMR"
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"NXT/BTC",
"POWR/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
"BTC_DOGE"
"DOGE/BTC"
]
},
"experimental": {
"use_sell_signal": false,
"sell_profit_only": false
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false
},
"telegram": {
"enabled": true,

View File

@@ -4,7 +4,10 @@
"stake_amount": 0.05,
"fiat_display_currency": "USD",
"dry_run": false,
"ticker_interval": 5,
"ticker_interval": "5m",
"trailing_stop": false,
"trailing_stop_positive": 0.005,
"trailing_stop_positive_offset": 0.0051,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
@@ -12,7 +15,10 @@
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": 600,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0
},
@@ -20,31 +26,34 @@
"name": "bittrex",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"ccxt_rate_limit": true,
"pair_whitelist": [
"BTC_ETH",
"BTC_LTC",
"BTC_ETC",
"BTC_DASH",
"BTC_ZEC",
"BTC_XLM",
"BTC_NXT",
"BTC_POWR",
"BTC_ADA",
"BTC_XMR"
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"NXT/BTC",
"POWR/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
"BTC_DOGE"
"DOGE/BTC"
]
},
"experimental": {
"use_sell_signal": false,
"sell_profit_only": false
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false
},
"telegram": {
"enabled": true,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"db_url": "sqlite:///tradesv3.sqlite",
"initial_state": "running",
"internals": {
"process_throttle_secs": 5

View File

@@ -1,137 +1,216 @@
# Backtesting
This page explains how to validate your strategy performance by using
Backtesting.
## Table of Contents
- [Test your strategy with Backtesting](#test-your-strategy-with-backtesting)
- [Understand the backtesting result](#understand-the-backtesting-result)
## Test your strategy with Backtesting
Now you have good Buy and Sell strategies, you want to test it against
real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pair) from your config file
and load static tickers located in
[/freqtrade/tests/testdata](https://github.com/gcarq/freqtrade/tree/develop/freqtrade/tests/testdata).
[/freqtrade/tests/testdata](https://github.com/freqtrade/freqtrade/tree/develop/freqtrade/tests/testdata).
If the 5 min and 1 min ticker for the crypto-currencies to test is not
already in the `testdata` folder, backtesting will download them
automatically. Testdata files will not be updated until you specify it.
The result of backtesting will confirm you if your bot as more chance to
make a profit than a loss.
The result of backtesting will confirm you if your bot has better odds of making a profit than a loss.
The backtesting is very easy with freqtrade.
### Run a backtesting against the currencies listed in your config file
**With 5 min tickers (Per default)**
#### With 5 min tickers (Per default)
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation
python3 ./freqtrade/main.py backtesting
```
**With 1 min tickers**
#### With 1 min tickers
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --ticker-interval 1
python3 ./freqtrade/main.py backtesting --ticker-interval 1m
```
**Reload your testdata files**
#### Update cached pairs with the latest data
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --refresh-pairs-cached
python3 ./freqtrade/main.py backtesting --refresh-pairs-cached
```
**With live data (do not alter your testdata files)**
#### With live data (do not alter your testdata files)
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --live
python3 ./freqtrade/main.py backtesting --live
```
**Using a different on-disk ticker-data source**
#### Using a different on-disk ticker-data source
```bash
python3 ./freqtrade/main.py backtesting --datadir freqtrade/tests/testdata-20180101
```
**With a (custom) strategy file**
```bash
python3 ./freqtrade/main.py -s currentstrategy backtesting
```
Where `-s currentstrategy` refers to a filename `currentstrategy.py` in `freqtrade/user_data/strategies`
#### With a (custom) strategy file
```bash
python3 ./freqtrade/main.py -s TestStrategy backtesting
```
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory
#### Exporting trades to file
**Exporting trades to file**
```bash
python3 ./freqtrade/main.py backtesting --export trades
```
**Running backtest with smaller testset**
The exported trades can be read using the following code for manual analysis, or can be used by the plotting script `plot_dataframe.py` in the scripts folder.
``` python
import json
from pathlib import Path
import pandas as pd
filename=Path('user_data/backtest_data/backtest-result.json')
with filename.open() as file:
data = json.load(file)
columns = ["pair", "profit", "opents", "closets", "index", "duration",
"open_rate", "close_rate", "open_at_end", "sell_reason"]
df = pd.DataFrame(data, columns=columns)
df['opents'] = pd.to_datetime(df['opents'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['closets'] = pd.to_datetime(df['closets'],
unit='s',
utc=True,
infer_datetime_format=True
)
```
If you have some ideas for interesting / helpful backtest data analysis, feel free to submit a PR so the community can benefit from it.
#### Exporting trades to file specifying a custom filename
```bash
python3 ./freqtrade/main.py backtesting --export trades --export-filename=backtest_teststrategy.json
```
#### Running backtest with smaller testset
Use the `--timerange` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
Example:
```bash
python3 ./freqtrade/main.py backtesting --timerange=-200
```
***Advanced use of timerange***
#### Advanced use of timerange
Doing `--timerange=-200` will get the last 200 timeframes
from your inputdata. You can also specify specific dates,
or a range span indexed by start and stop.
The full timerange specification:
- Use last 123 tickframes of data: `--timerange=-123`
- Use first 123 tickframes of data: `--timerange=123-`
- Use tickframes from line 123 through 456: `--timerange=123-456`
- Use tickframes till 2018/01/31: `--timerange=-20180131`
- Use tickframes since 2018/01/31: `--timerange=20180131-`
- Use tickframes since 2018/01/31 till 2018/03/01 : `--timerange=20180131-20180301`
- Use tickframes between POSIX timestamps 1527595200 1527618600:
`--timerange=1527595200-1527618600`
#### Downloading new set of ticker data
Incoming feature, not implemented yet:
- `--timerange=-20180131`
- `--timerange=20180101-`
- `--timerange=20180101-20181231`
To download new set of backtesting ticker data, you can use a download script.
If you are using Binance for example:
**Update testdata directory**
To update your testdata directory, or download into another testdata directory:
```bash
mkdir -p user_data/data/testdata-20180113
cp freqtrade/tests/testdata/pairs.json user_data/data-20180113
cd user_data/data-20180113
```
Possibly edit pairs.json file to include/exclude pairs
- create a folder `user_data/data/binance` and copy `pairs.json` in that folder.
- update the `pairs.json` to contain the currency pairs you are interested in.
```bash
python3 freqtrade/tests/testdata/download_backtest_data.py -p pairs.json
mkdir -p user_data/data/binance
cp freqtrade/tests/testdata/pairs.json user_data/data/binance
```
The script will read your pairs.json file, and download ticker data
into the current working directory.
Then run:
```bash
python scripts/download_backtest_data.py --exchange binance
```
For help about backtesting usage, please refer to
[Backtesting commands](#backtesting-commands).
This will download ticker data for all the currency pairs you defined in `pairs.json`.
- To use a different folder than the exchange specific default, use `--export user_data/data/some_directory`.
- To change the exchange used to download the tickers, use `--exchange`. Default is `bittrex`.
- To use `pairs.json` from some other folder, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10`.
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
For help about backtesting usage, please refer to [Backtesting commands](#backtesting-commands).
## Understand the backtesting result
The most important in the backtesting is to understand the result.
A backtesting result will look like that:
```
====================== BACKTESTING REPORT ================================
pair buy count avg profit % total profit BTC avg duration
-------- ----------- -------------- ------------------ --------------
BTC_ETH 56 -0.67 -0.00075455 62.3
BTC_LTC 38 -0.48 -0.00036315 57.9
BTC_ETC 42 -1.15 -0.00096469 67.0
BTC_DASH 72 -0.62 -0.00089368 39.9
BTC_ZEC 45 -0.46 -0.00041387 63.2
BTC_XLM 24 -0.88 -0.00041846 47.7
BTC_NXT 24 0.68 0.00031833 40.2
BTC_POWR 35 0.98 0.00064887 45.3
BTC_ADA 43 -0.39 -0.00032292 55.0
BTC_XMR 40 -0.40 -0.00032181 47.4
TOTAL 419 -0.41 -0.00348593 52.9
======================================== BACKTESTING REPORT =========================================
| pair | buy count | avg profit % | total profit BTC | avg duration | profit | loss |
|:---------|------------:|---------------:|-------------------:|---------------:|---------:|-------:|
| ETH/BTC | 44 | 0.18 | 0.00159118 | 50.9 | 44 | 0 |
| LTC/BTC | 27 | 0.10 | 0.00051931 | 103.1 | 26 | 1 |
| ETC/BTC | 24 | 0.05 | 0.00022434 | 166.0 | 22 | 2 |
| DASH/BTC | 29 | 0.18 | 0.00103223 | 192.2 | 29 | 0 |
| ZEC/BTC | 65 | -0.02 | -0.00020621 | 202.7 | 62 | 3 |
| XLM/BTC | 35 | 0.02 | 0.00012877 | 242.4 | 32 | 3 |
| BCH/BTC | 12 | 0.62 | 0.00149284 | 50.0 | 12 | 0 |
| POWR/BTC | 21 | 0.26 | 0.00108215 | 134.8 | 21 | 0 |
| ADA/BTC | 54 | -0.19 | -0.00205202 | 191.3 | 47 | 7 |
| XMR/BTC | 24 | -0.43 | -0.00206013 | 120.6 | 20 | 4 |
| TOTAL | 335 | 0.03 | 0.00175246 | 157.9 | 315 | 20 |
2018-06-13 06:57:27,347 - freqtrade.optimize.backtesting - INFO -
====================================== LEFT OPEN TRADES REPORT ======================================
| pair | buy count | avg profit % | total profit BTC | avg duration | profit | loss |
|:---------|------------:|---------------:|-------------------:|---------------:|---------:|-------:|
| ETH/BTC | 3 | 0.16 | 0.00009619 | 25.0 | 3 | 0 |
| LTC/BTC | 1 | -1.00 | -0.00020118 | 1085.0 | 0 | 1 |
| ETC/BTC | 2 | -1.80 | -0.00071933 | 1092.5 | 0 | 2 |
| DASH/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| ZEC/BTC | 3 | -4.27 | -0.00256826 | 1301.7 | 0 | 3 |
| XLM/BTC | 3 | -1.11 | -0.00066744 | 965.0 | 0 | 3 |
| BCH/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| POWR/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| ADA/BTC | 7 | -3.58 | -0.00503604 | 850.0 | 0 | 7 |
| XMR/BTC | 4 | -3.79 | -0.00303456 | 291.2 | 0 | 4 |
| TOTAL | 23 | -2.63 | -0.01213062 | 750.4 | 3 | 20 |
```
The 1st table will contain all trades the bot made.
The 2nd table will contain all trades the bot had to `forcesell` at the end of the backtest period to prsent a full picture.
These trades are also included in the first table, but are extracted separately for clarity.
The last line will give you the overall performance of your strategy,
here:
```
TOTAL 419 -0.41 -0.00348593 52.9
```
@@ -147,6 +226,7 @@ strategy, your sell strategy, and also by the `minimal_roi` and
As for an example if your minimal_roi is only `"0": 0.01`. You cannot
expect the bot to make more profit than 1% (because it will sell every
time a trade will reach 1%).
```json
"minimal_roi": {
"0": 0.01
@@ -158,7 +238,33 @@ On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
profit. Hence, keep in mind that your performance is a mix of your
strategies, your configuration, and the crypto-currency you have set up.
## Backtesting multiple strategies
To backtest multiple strategies, a list of Strategies can be provided.
This is limited to 1 ticker-interval per run, however, data is only loaded once from disk so if you have multiple
strategies you'd like to compare, this should give a nice runtime boost.
All listed Strategies need to be in the same folder.
``` bash
freqtrade backtesting --timerange 20180401-20180410 --ticker-interval 5m --strategy-list Strategy001 Strategy002 --export trades
```
This will save the results to `user_data/backtest_data/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
Detailed output for all strategies one after the other will be available, so make sure to scroll up.
```
=================================================== Strategy Summary ====================================================
| Strategy | buy count | avg profit % | cum profit % | total profit ETH | avg duration | profit | loss |
|:-----------|------------:|---------------:|---------------:|-------------------:|:----------------|---------:|-------:|
| Strategy1 | 19 | -0.76 | -14.39 | -0.01440287 | 15:48:00 | 15 | 4 |
| Strategy2 | 6 | -2.73 | -16.40 | -0.01641299 | 1 day, 14:12:00 | 3 | 3 |
```
## Next step
Great, your strategy is profitable. What if the bot can give your the
optimal parameters to use for your strategy?
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)

View File

@@ -1,8 +1,10 @@
# Bot Optimization
This page explains where to customize your strategies, and add new
indicators.
## Table of Contents
- [Install a custom strategy file](#install-a-custom-strategy-file)
- [Customize your strategy](#change-your-strategy)
- [Add more Indicator](#add-more-indicator)
@@ -11,10 +13,12 @@ indicators.
Since the version `0.16.0` the bot allows using custom strategy file.
## Install a custom strategy file
This is very simple. Copy paste your strategy file into the folder
`user_data/strategies`.
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`:
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py`
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
@@ -23,51 +27,55 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
## Change your strategy
The bot includes a default strategy file. However, we recommend you to
use your own file to not have to lose your parameters every time the default
strategy file will be updated on Github. Put your custom strategy file
into the folder `user_data/strategies`.
A strategy file contains all the information needed to build a good strategy:
- Buy strategy rules
- Sell strategy rules
- Minimal ROI recommended
- Stoploss recommended
- Hyperopt parameter
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
You can test it with the parameter: `--strategy TestStrategy`
```bash
``` bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
### Specify custom strategy location
If you want to use a strategy from a different folder you can pass `--strategy-path`
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/folder
```
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
file as reference.**
### Buy strategy
Edit the method `populate_buy_trend()` into your strategy file to
update your buy strategy.
Edit the method `populate_buy_trend()` into your strategy file to update your buy strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] <= dataframe['blower']) &
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1))
),
'buy'] = 1
@@ -76,37 +84,49 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
```
### Sell strategy
Edit the method `populate_sell_trend()` into your strategy file to
update your sell strategy.
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['blower']) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
),
'sell'] = 1
return dataframe
```
## Add more Indicator
As you have seen, buy and sell strategies need indicators. You can add
more indicators by extending the list contained in
the method `populate_indicators()` from your strategy file.
## Add more Indicators
As you have seen, buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
You should only add the indicators used in either `populate_buy_trend()`, `populate_sell_trend()`, or to populate another indicator, otherwise performance may suffer.
Sample:
```python
def populate_indicators(dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
dataframe['sar'] = ta.SAR(dataframe)
dataframe['adx'] = ta.ADX(dataframe)
@@ -137,16 +157,30 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
return dataframe
```
**Want more indicators example?**
Look into the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
### Metadata dict
The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `populate_indicators`) contains additional information.
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
### Want more indicator examples
Look into the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
Then uncomment indicators you need.
### Where is the default strategy?
The default buy strategy is located in the file
[freqtrade/default_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
The default buy strategy is located in the file
[freqtrade/default_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
### Further strategy ideas
To get additional Ideas for strategies, head over to our [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
Feel free to use any of them as inspiration for your own strategies.
We're happy to accept Pull Requests containing new Strategies to that repo.
We also got a *strategy-sharing* channel in our [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) which is a great place to get and/or share ideas.
## Next step
Now you have a perfect strategy you probably want to backtesting it.
Your next step is to learn [How to use the Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md).
Now you have a perfect strategy you probably want to backtest it.
Your next step is to learn [How to use the Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md).

View File

@@ -1,16 +1,19 @@
# Bot usage
This page explains the difference parameters of the bot and how to run
it.
This page explains the difference parameters of the bot and how to run it.
## Table of Contents
- [Bot commands](#bot-commands)
- [Backtesting commands](#backtesting-commands)
- [Hyperopt commands](#hyperopt-commands)
## Bot commands
```
usage: main.py [-h] [-c PATH] [-v] [--version] [--dynamic-whitelist [INT]]
[--dry-run-db]
usage: freqtrade [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
[--strategy-path PATH] [--dynamic-whitelist [INT]]
[--db-url PATH]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
@@ -26,20 +29,21 @@ optional arguments:
--version show program's version number and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
-d PATH, --datadir PATH
path to backtest data
-s NAME, --strategy NAME
specify strategy class name (default: DefaultStrategy)
--strategy-path PATH specify additional strategy lookup path
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH
path to backtest data (default freqdata/tests/testdata
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
BaseVolume (default: 20)
--db-url PATH Override trades database URL, this is useful if
dry_run is enabled or in custom deployments (default:
sqlite:///tradesv3.sqlite)
```
### How to use a different config file?
The bot allows you to select which config file you want to use. Per
default, the bot will load the file `./config.json`
@@ -48,6 +52,7 @@ python3 ./freqtrade/main.py -c path/far/far/away/config.json
```
### How to use --strategy?
This parameter will allow you to load your custom strategy class.
Per default without `--strategy` or `-s` the bot will load the
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
@@ -59,6 +64,7 @@ To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this
**Example:**
In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
a strategy class called `AwesomeStrategy` to load it:
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
@@ -66,9 +72,10 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy
If the bot does not find your strategy file, it will display in an error
message the reason (File not found, or errors in your code).
Learn more about strategy file in [optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).
Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
### How to use --strategy-path?
This parameter allows you to add an additional strategy lookup path, which gets
checked before the default locations (The passed path must be a folder!):
```bash
@@ -76,21 +83,25 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/fol
```
#### How to install a strategy?
This is very simple. Copy paste your strategy file into the folder
`user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it.
### How to use --dynamic-whitelist?
Per default `--dynamic-whitelist` will retrieve the 20 currencies based
on BaseVolume. This value can be changed when you run the script.
**By Default**
Get the 20 currencies based on BaseVolume.
```bash
python3 ./freqtrade/main.py --dynamic-whitelist
```
**Customize the number of currencies to retrieve**
Get the 30 currencies based on BaseVolume.
```bash
python3 ./freqtrade/main.py --dynamic-whitelist 30
```
@@ -100,40 +111,65 @@ python3 ./freqtrade/main.py --dynamic-whitelist 30
negative value (e.g -2), `--dynamic-whitelist` will use the default
value (20).
### How to use --dry-run-db?
### How to use --db-url?
When you run the bot in Dry-run mode, per default no transactions are
stored in a database. If you want to store your bot actions in a DB
using `--dry-run-db`. This command will use a separate database file
`tradesv3.dry_run.sqlite`
using `--db-url`. This can also be used to specify a custom database
in production mode. Example command:
```bash
python3 ./freqtrade/main.py -c config.json --dry-run-db
python3 ./freqtrade/main.py -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
```
## Backtesting commands
Backtesting also uses the config specified via `-c/--config`.
```
usage: freqtrade backtesting [-h] [-l] [-i INT] [--realistic-simulation]
[-r]
usage: freqtrade backtesting [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp]
[--timerange TIMERANGE] [-l] [-r]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH]
optional arguments:
-h, --help show this help message and exit
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
specify ticker interval (1m, 5m, 30m, 1h, 1d)
--eps, --enable-position-stacking
Allow buying the same pair multiple times (position
stacking)
--dmmp, --disable-max-market-positions
Disable applying `max_open_trades` during backtest
(same as setting `max_open_trades` to a very high
number)
--timerange TIMERANGE
specify what timerange of data to use.
-l, --live using live data
-i INT, --ticker-interval INT
specify ticker interval in minutes (default: 5)
--realistic-simulation
uses max_open_trades from config to simulate real
world limitations
-r, --refresh-pairs-cached
refresh the pairs files in tests/testdata with
the latest data from Bittrex. Use it if you want
to run your backtesting with up-to-date data.
refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your backtesting with up-to-date data.
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a commaseparated list of strategies to
backtest Please note that ticker-interval needs to be
set either in config or via command line. When using
this together with --export trades, the strategy-name
is injected into the filename (so backtest-data.json
becomes backtest-data-DefaultStrategy.json
--export EXPORT export backtest results, argument are: trades Example
--export=trades
--export-filename PATH
Save backtest results to this filename requires
--export to be set as well Example --export-
filename=user_data/backtest_data/backtest_today.json
(default: user_data/backtest_data/backtest-
result.json)
```
### How to use --refresh-pairs-cached parameter?
The first time your run Backtesting, it will take the pairs you have
set in your config file and download data from Bittrex.
@@ -145,29 +181,42 @@ to come back to the previous version.**
To test your strategy with latest data, we recommend continuing using
the parameter `-l` or `--live`.
## Hyperopt commands
It is possible to use hyperopt for trading strategy optimization.
Hyperopt uses an internal json config return by `hyperopt_optimize_conf()`
located in `freqtrade/optimize/hyperopt_conf.py`.
To optimize your strategy, you can use hyperopt parameter hyperoptimization
to find optimal parameter values for your stategy.
```
usage: freqtrade hyperopt [-h] [-e INT] [--use-mongodb]
usage: freqtrade hyperopt [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp]
[--timerange TIMERANGE] [-e INT]
[-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]]
optional arguments:
-h, --help show this help message and exit
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
specify ticker interval (1m, 5m, 30m, 1h, 1d)
--eps, --enable-position-stacking
Allow buying the same pair multiple times (position
stacking)
--dmmp, --disable-max-market-positions
Disable applying `max_open_trades` during backtest
(same as setting `max_open_trades` to a very high
number)
--timerange TIMERANGE
specify what timerange of data to use.
-e INT, --epochs INT specify number of epochs (default: 100)
--use-mongodb parallelize evaluations with mongodb (requires mongod
in PATH)
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
Specify which parameters to hyperopt. Space separate
list. Default: all
```
## A parameter missing in the configuration?
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
in [misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L84)
in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L84)
## Next step
The optimal strategy of the bot will change with time depending of the
market trends. The next step is to
[optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).
The optimal strategy of the bot will change with time depending of the market trends. The next step is to
[optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).

View File

@@ -1,12 +1,15 @@
# Configure the bot
This page explains how to configure your `config.json` file.
## Table of Contents
- [Bot commands](#bot-commands)
- [Backtesting commands](#backtesting-commands)
- [Hyperopt commands](#hyperopt-commands)
## Setup config.json
We recommend to copy and use the `config.json.example` as a template
for your bot configuration.
@@ -16,36 +19,56 @@ The table below will list all configuration parameters.
|----------|---------|----------|-------------|
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have.
| `stake_currency` | BTC | Yes | Crypto-currency used for trading.
| `stake_amount` | 0.05 | Yes | Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged.
| `ticker_interval` | [1, 5, 30, 60, 1440] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Defaut is 5 minutes
| `stake_amount` | 0.05 | Yes | Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged. Set it to 'unlimited' to allow the bot to use all avaliable balance.
| `ticker_interval` | [1m, 5m, 30m, 1h, 1d] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Default is 5 minutes
| `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below.
| `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode.
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
| `unfilledtimeout` | 0 | No | How long (in minutes) the bot will wait for an unfilled order to complete, after which the order will be cancelled.
| `trailing_stoploss` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file).
| `trailing_stoploss_positve` | 0 | No | Changes stop-loss once profit has been reached.
| `trailing_stoploss_positve_offset` | 0 | No | Offset on when to apply `trailing_stoploss_positive`. Percentage value which should be positive.
| `unfilledtimeout.buy` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled.
| `unfilledtimeout.sell` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled.
| `bid_strategy.ask_last_balance` | 0.0 | Yes | Set the bidding price. More information below.
| `exchange.name` | bittrex | Yes | Name of the exchange class to use.
| `exchange.name` | bittrex | Yes | Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
| `exchange.secret` | secret | No | API secret to use for the exchange. Only required when you are in production mode.
| `exchange.pair_whitelist` | [] | No | List of currency to use by the bot. Can be overrided with `--dynamic-whitelist` param.
| `exchange.pair_blacklist` | [] | No | List of currency the bot must avoid. Useful when using `--dynamic-whitelist` param.
| `experimental.use_sell_signal` | false | No | Use your sell strategy in addition of the `minimal_roi`.
| `experimental.sell_profit_only` | false | No | waits until you have made a positive profit before taking a sell decision.
| `experimental.ignore_roi_if_buy_signal` | false | No | Does not sell if the buy-signal is still active. Takes preference over `minimal_roi` and `use_sell_signal`
| `telegram.enabled` | true | Yes | Enable or not the usage of Telegram.
| `telegram.token` | token | No | Your Telegram bot token. Only required if `telegram.enabled` is `true`.
| `telegram.chat_id` | chat_id | No | Your personal Telegram account id. Only required if `telegram.enabled` is `true`.
| `webhook.enabled` | false | No | Enable useage of Webhook notifications
| `webhook.url` | false | No | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details.
| `webhook.webhookbuy` | false | No | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details.
| `webhook.webhooksell` | false | No | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details.
| `webhook.webhookstatus` | false | No | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details.
| `db_url` | `sqlite:///tradesv3.sqlite` | No | Declares database URL to use. NOTE: This defaults to `sqlite://` if `dry_run` is `True`.
| `initial_state` | running | No | Defines the initial application state. More information below.
| `strategy` | DefaultStrategy | No | Defines Strategy class to use.
| `strategy_path` | null | No | Adds an additional strategy lookup path (must be a folder).
| `internals.process_throttle_secs` | 5 | Yes | Set the process throttle. Value in second.
The definition of each config parameters is in
[misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L205).
The definition of each config parameters is in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L205).
### Understand stake_amount
`stake_amount` is an amount of crypto-currency your bot will use for each trade.
The minimal value is 0.0005. If there is not enough crypto-currency in
the account an exception is generated.
To allow the bot to trade all the avaliable `stake_currency` in your account set `stake_amount` = `unlimited`.
In this case a trade amount is calclulated as `currency_balanse / (max_open_trades - current_open_trades)`.
### Understand minimal_roi
`minimal_roi` is a JSON object where the key is a duration
in minutes and the value is the minimum ROI in percent.
See the example below:
```
"minimal_roi": {
"40": 0.0, # Sell after 40 minutes if the profit is not negative
@@ -60,6 +83,7 @@ value. This parameter is optional. If you use it, it will take over the
`minimal_roi` value from the strategy file.
### Understand stoploss
`stoploss` is loss in percentage that should trigger a sale.
For example value `-0.10` will cause immediate sell if the
profit dips below -10% for a given trade. This parameter is optional.
@@ -68,35 +92,70 @@ Most of the strategy files already include the optimal `stoploss`
value. This parameter is optional. If you use it, it will take over the
`stoploss` value from the strategy file.
### Understand trailing stoploss
Go to the [trailing stoploss Documentation](stoploss.md) for details on trailing stoploss.
### Understand initial_state
`initial_state` is an optional field that defines the initial application state.
Possible values are `running` or `stopped`. (default=`running`)
If the value is `stopped` the bot has to be started with `/start` first.
### Understand process_throttle_secs
`process_throttle_secs` is an optional field that defines in seconds how long the bot should wait
before asking the strategy if we should buy or a sell an asset. After each wait period, the strategy is asked again for
every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or
the static list of pairs) if we should buy.
### Understand ask_last_balance
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
### What values for exchange.name?
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports 115 cryptocurrency
exchange markets and trading APIs. The complete up-to-date list can be found in the
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python). However, the bot was tested
with only Bittrex and Binance.
The bot was tested with the following exchanges:
- [Bittrex](https://bittrex.com/): "bittrex"
- [Binance](https://www.binance.com/): "binance"
Feel free to test other exchanges and submit your PR to improve the bot.
### What values for fiat_display_currency?
`fiat_display_currency` set the fiat to use for the conversion form coin to fiat in Telegram.
The valid value are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
`fiat_display_currency` set the base currency to use for the conversion from coin to fiat in Telegram.
The valid values are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
In addition to central bank currencies, a range of cryto currencies are supported.
The valid values are: "BTC", "ETH", "XRP", "LTC", "BCH", "USDT".
## Switch to dry-run mode
We recommend starting the bot in dry-run mode to see how your bot will
behave and how is the performance of your strategy. In Dry-run mode the
bot does not engage your money. It only runs a live simulation without
creating trades.
### To switch your bot in Dry-run mode:
1. Edit your `config.json` file
2. Switch dry-run to true
2. Switch dry-run to true and specify db_url for a persistent db
```json
"dry_run": true,
"db_url": "sqlite///tradesv3.dryrun.sqlite",
```
3. Remove your Bittrex API key (change them by fake api credentials)
3. Remove your Exchange API key (change them by fake api credentials)
```json
"exchange": {
"name": "bittrex",
@@ -110,19 +169,23 @@ Once you will be happy with your bot performance, you can switch it to
production mode.
## Switch to production mode
In production mode, the bot will engage your money. Be careful a wrong
strategy can lose all your money. Be aware of what you are doing when
you run it in production mode.
### To switch your bot in production mode:
1. Edit your `config.json` file
2. Switch dry-run to false
2. Switch dry-run to false and don't forget to adapt your database URL if set
```json
"dry_run": false,
```
3. Insert your Bittrex API key (change them by fake api keys)
3. Insert your Exchange API key (change them by fake api keys)
```json
"exchange": {
"name": "bittrex",
@@ -130,11 +193,37 @@ you run it in production mode.
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
...
}
```
If you have not your Bittrex API key yet,
[see our tutorial](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md).
```
If you have not your Bittrex API key yet, [see our tutorial](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md).
### Embedding Strategies
FreqTrade provides you with with an easy way to embed the strategy into your configuration file.
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
in your chosen config file.
##### Encoding a string as BASE64
This is a quick example, how to generate the BASE64 string in python
```python
from base64 import urlsafe_b64encode
with open(file, 'r') as f:
content = f.read()
content = urlsafe_b64encode(content.encode('utf-8'))
```
The variable 'content', will contain the strategy file in a BASE64 encoded form. Which can now be set in your configurations file as following
```json
"strategy": "NameOfStrategy:BASE64String"
```
Please ensure that 'NameOfStrategy' is identical to the strategy name!
## Next step
Now you have configured your config.json, the next step is to
[start your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md).
Now you have configured your config.json, the next step is to [start your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md).

View File

@@ -27,7 +27,7 @@ like pauses. You can stop your bot, adjust settings and start it again.
#### I want to improve the bot with a new strategy
That's great. We have a nice backtesting and hyperoptimizing setup. See
the tutorial [here|Testing-new-strategies-with-Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands).
the tutorial [here|Testing-new-strategies-with-Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands).
#### Is there a setting to only SELL the coins being held and not
perform anymore BUYS?

View File

@@ -1,156 +1,114 @@
# Hyperopt
This page explains how to tune your strategy by finding the optimal
parameters with Hyperopt.
parameters, a process called hyperparameter optimization. The bot uses several
algorithms included in the `scikit-optimize` package to accomplish this. The
search will burn all your CPU cores, make your laptop sound like a fighter jet
and still take a long time.
## Table of Contents
- [Prepare your Hyperopt](#prepare-hyperopt)
- [1. Configure your Guards and Triggers](#1-configure-your-guards-and-triggers)
- [2. Update the hyperopt config file](#2-update-the-hyperopt-config-file)
- [Advanced Hyperopt notions](#advanced-notions)
- [Understand the Guards and Triggers](#understand-the-guards-and-triggers)
- [Configure your Guards and Triggers](#configure-your-guards-and-triggers)
- [Solving a Mystery](#solving-a-mystery)
- [Adding New Indicators](#adding-new-indicators)
- [Execute Hyperopt](#execute-hyperopt)
- [Hyperopt with MongoDB](#hyperopt-with-mongoDB)
- [Understand the hyperopts result](#understand-the-backtesting-result)
## Prepare Hyperopt
Before we start digging in Hyperopt, we recommend you to take a look at
your strategy file located into [user_data/strategies/](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
## Prepare Hyperopting
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
### 1. Configure your Guards and Triggers
There are two places you need to change in your strategy file to add a
new buy strategy for testing:
- Inside [populate_buy_trend()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
- Inside [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
### Configure your Guards and Triggers
There are two places you need to change to add a new buy strategy for testing:
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L278-L294).
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L218-L229)
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
There you have two different type of indicators: 1. `guards` and 2.
`triggers`.
1. Guards are conditions like "never buy if ADX < 10", or never buy if
current price is over EMA10.
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
1. Guards are conditions like "never buy if ADX < 10", or "never buy if
current price is over EMA10".
2. Triggers are ones that actually trigger buy in specific moment, like
"buy when EMA5 crosses over EMA10" or buy when close price touches lower
bollinger band.
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
bollinger band".
HyperOpt will, for each eval round, pick just ONE trigger, and possibly
multiple guards. So that the constructed strategy will be something like
Hyperoptimization will, for each eval round, pick one trigger and possibly
multiple guards. The constructed strategy will be something like
"*buy exactly when close price touches lower bollinger band, BUT only if
ADX > 10*".
If you have updated the buy strategy, means change the content of
If you have updated the buy strategy, ie. changed the contents of
`populate_buy_trend()` method you have to update the `guards` and
`triggers` hyperopts must used.
`triggers` hyperopts must use.
## Solving a Mystery
Let's say you are curious: should you use MACD crossings or lower Bollinger
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
help with those buy decisions. If you decide to use RSI or ADX, which values
should I use for them? So let's use hyperparameter optimization to solve this
mystery.
We will start by defining a search space:
```
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return [
Integer(20, 40, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal'], name='trigger')
]
```
Above definition says: I have five parameters I want you to randomly combine
to find the best combination. Two of them are integer values (`adx-value`
and `rsi-value`) and I want you test in the range of values 20 to 40.
Then we have three category variables. First two are either `True` or `False`.
We use these to either enable or disable the ADX and RSI guards. The last
one we call `trigger` and use it to decide which buy trigger we want to use.
So let's write the buy strategy using these values:
```
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
As for an example if your `populate_buy_trend()` method is:
```python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(dataframe['rsi'] < 35) &
(dataframe['adx'] > 65),
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
```
Your hyperopt file must contain `guards` to find the right value for
`(dataframe['adx'] > 65)` & and `(dataframe['plus_di'] > 0.5)`. That
means you will need to enable/disable triggers.
Hyperopting will now call this `populate_buy_trend` as many times you ask it (`epochs`)
with different value combinations. It will then use the given historical data and make
buys based on the buy signals generated with the above function and based on the results
it will end with telling you which paramter combination produced the best profits.
In our case the `SPACE` and `populate_buy_trend` in your strategy file
will look like:
```python
space = {
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'stochf_cross'},
{'type': 'ht_sine'},
]),
}
The search for best parameters starts with a few random combinations and then uses a
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
that minimizes the value of the objective function `calculate_loss` in `hyperopt.py`.
...
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
}
...
```
### 2. Update the hyperopt config file
Hyperopt is using a dedicated config file. Currently hyperopt
cannot use your config file. It is also made on purpose to allow you
testing your strategy with different configurations.
The Hyperopt configuration is located in
[user_data/hyperopt_conf.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopt_conf.py).
## Advanced notions
### Understand the Guards and Triggers
When you need to add the new guards and triggers to be hyperopt
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
If it's a trigger, you add one line to the 'trigger' choice group and that's it.
If it's a guard, you will add a line like this:
```
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
```
This says, "*one of the guards is RSI, it can have two values, enabled or
disabled. If it is enabled, try different values for it between 20 and 40*".
So, the part of the strategy builder using the above setting looks like
this:
```
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
```
It checks if Hyperopt wants the RSI guard to be enabled for this
round `params['rsi']['enabled']` and if it is, then it will add a
condition that says RSI must be smaller than the value hyperopt picked
for this evaluation, which is given in the `params['rsi']['value']`.
That's it. Now you can add new parts of strategies to Hyperopt and it
will try all the combinations with all different values in the search
for best working algo.
### Add a new Indicators
If you want to test an indicator that isn't used by the bot currently,
you need to add it to the `populate_indicators()` method in `hyperopt.py`.
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
When you want to test an indicator that isn't used by the bot currently, remember to
add it to the `populate_indicators()` method in `hyperopt.py`.
## Execute Hyperopt
Once you have updated your hyperopt configuration you can run it.
@@ -165,12 +123,12 @@ python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
The `-e` flag will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations.
### Execute hyperopt with different ticker-data source
### Execute Hyperopt with Different Ticker-Data Source
If you would like to hyperopt parameters using an alternate ticker data that
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
use data from directory `user_data/data`.
### Running hyperopt with smaller testset
### Running Hyperopt with Smaller Testset
Use the `--timeperiod` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
Example:
@@ -179,7 +137,7 @@ Example:
python3 ./freqtrade/main.py hyperopt --timeperiod -200
```
### Running hyperopt with smaller search space
### Running Hyperopt with Smaller Search Space
Use the `--spaces` argument to limit the search space used by hyperopt.
Letting Hyperopt optimize everything is a huuuuge search space. Often it
might make more sense to start by just searching for initial buy algorithm.
@@ -194,122 +152,44 @@ Legal values are:
- `stoploss`: search for the best stoploss value
- space-separated list of any of the above values for example `--spaces roi stoploss`
### Hyperopt with MongoDB
Hyperopt with MongoDB, is like Hyperopt under steroids. As you saw by
executing the previous command is the execution takes a long time.
To accelerate it you can use hyperopt with MongoDB.
## Understand the Hyperopts Result
Once Hyperopt is completed you can use the result to create a new strategy.
Given the following result from hyperopt:
To run hyperopt with MongoDb you will need 3 terminals.
**Terminal 1: Start MongoDB**
```bash
cd <freqtrade>
source .env/bin/activate
python3 scripts/start-mongodb.py
```
**Terminal 2: Start Hyperopt worker**
```bash
cd <freqtrade>
source .env/bin/activate
python3 scripts/start-hyperopt-worker.py
```
**Terminal 3: Start Hyperopt with MongoDB**
```bash
cd <freqtrade>
source .env/bin/activate
python3 ./freqtrade/main.py -c config.json hyperopt --use-mongodb
```
**Re-run an Hyperopt**
To re-run Hyperopt you have to delete the existing MongoDB table.
```bash
cd <freqtrade>
rm -rf .hyperopt/mongodb/
```
## Understand the hyperopts result
Once Hyperopt is completed you can use the result to adding new buy
signal. Given following result from hyperopt:
```
Best parameters:
{
"adx": {
"enabled": true,
"value": 15.0
},
"fastd": {
"enabled": true,
"value": 40.0
},
"green_candle": {
"enabled": true
},
"mfi": {
"enabled": false
},
"over_sar": {
"enabled": false
},
"rsi": {
"enabled": true,
"value": 37.0
},
"trigger": {
"type": "lower_bb"
},
"uptrend_long_ema": {
"enabled": true
},
"uptrend_short_ema": {
"enabled": false
},
"uptrend_sma": {
"enabled": false
}
}
Best Result:
2197 trades. Avg profit 1.84%. Total profit 0.79367541 BTC. Avg duration 241.0 mins.
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
{'adx-value': 44, 'rsi-value': 29, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'bb_lower'}
```
You should understand this result like:
- You should **consider** the guard "adx" (`"adx"` is `"enabled": true`)
and the best value is `15.0` (`"value": 15.0,`)
- You should **consider** the guard "fastd" (`"fastd"` is `"enabled":
true`) and the best value is `40.0` (`"value": 40.0,`)
- You should **consider** to enable the guard "green_candle"
(`"green_candle"` is `"enabled": true`) but this guards as no
customizable value.
- You should **ignore** the guard "mfi" (`"mfi"` is `"enabled": false`)
- and so on...
- The buy trigger that worked best was `bb_lower`.
- You should not use ADX because `adx-enabled: False`)
- You should **consider** using the RSI indicator (`rsi-enabled: True` and the best value is `29.0` (`rsi-value: 29.0`)
You have to look inside your strategy file into `buy_strategy_generator()`
method, what those values match to.
So for example you had `adx:` with the `value: 15.0` so we would look
at `adx`-block, that translates to the following code block:
So for example you had `rsi-value: 29.0` so we would look
at `rsi`-block, that translates to the following code block:
```
(dataframe['adx'] > 15.0)
(dataframe['rsi'] < 29.0)
```
Translating your whole hyperopt result to as the new buy-signal
would be the following:
Translating your whole hyperopt result as the new buy-signal
would then look like:
```
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(dataframe['adx'] > 15.0) & # adx-value
(dataframe['fastd'] < 40.0) & # fastd-value
(dataframe['close'] > dataframe['open']) & # green_candle
(dataframe['rsi'] < 37.0) & # rsi-value
(dataframe['ema50'] > dataframe['ema100']) # uptrend_long_ema
(dataframe['rsi'] < 29.0) & # rsi-value
dataframe['close'] < dataframe['bb_lowerband'] # trigger
),
'buy'] = 1
return dataframe
```
## Next step
## Next Step
Now you have a perfect bot and want to control it from Telegram. Your
next step is to learn the [Telegram usage](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md).
next step is to learn the [Telegram usage](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md).

View File

@@ -1,4 +1,5 @@
# freqtrade documentation
Welcome to freqtrade documentation. Please feel free to contribute to
this documentation if you see it became outdated by sending us a
Pull-request. Do not hesitate to reach us on
@@ -6,27 +7,30 @@ Pull-request. Do not hesitate to reach us on
if you do not find the answer to your questions.
## Table of Contents
- [Pre-requisite](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
- [Setup your Bittrex account](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
- [Setup your Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
- [Bot Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Install with Docker (all platforms)](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#docker)
- [Install on Linux Ubuntu](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#21-linux---ubuntu-1604)
- [Install on MacOS](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#23-macos-installation)
- [Install on Windows](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#windows)
- [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage (Start your bot)](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md)
- [Bot commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [Backtesting commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [Hyperopt commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Bot Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Change your strategy](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
- [Add more Indicator](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
- [Test your strategy with Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Control the bot with telegram](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md)
- [Contribute to the project](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [How to contribute](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [Run tests & Check PEP8 compliance](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [FAQ](https://github.com/gcarq/freqtrade/blob/develop/docs/faq.md)
- [SQL cheatsheet](https://github.com/gcarq/freqtrade/blob/develop/docs/sql_cheatsheet.md)
- [Pre-requisite](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md)
- [Setup your Bittrex account](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
- [Setup your Telegram bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
- [Bot Installation](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)
- [Install with Docker (all platforms)](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#docker)
- [Install on Linux Ubuntu](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#21-linux---ubuntu-1604)
- [Install on MacOS](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#23-macos-installation)
- [Install on Windows](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#windows)
- [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage (Start your bot)](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md)
- [Bot commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [Backtesting commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [Hyperopt commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Bot Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
- [Change your strategy](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
- [Add more Indicator](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
- [Test your strategy with Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
- [Find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
- [Control the bot with telegram](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md)
- [Receive notifications via webhook](https://github.com/freqtrade/freqtrade/blob/develop/docs/webhook-config.md)
- [Contribute to the project](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [How to contribute](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [Run tests & Check PEP8 compliance](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [FAQ](https://github.com/freqtrade/freqtrade/blob/develop/docs/faq.md)
- [SQL cheatsheet](https://github.com/freqtrade/freqtrade/blob/develop/docs/sql_cheatsheet.md)
- [Sandbox Testing](https://github.com/freqtrade/freqtrade/blob/develop/docs/sandbox-testing.md))

View File

@@ -2,12 +2,13 @@
This page explains how to prepare your environment for running the bot.
To understand how to set up the bot please read the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
To understand how to set up the bot please read the [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md) page.
## Table of Contents
* [Table of Contents](#table-of-contents)
* [Easy Installation - Linux Script](#easy-installation---linux-script)
* [Manual installation](#manual-installation)
* [Automatic Installation - Docker](#automatic-installation---docker)
* [Custom Linux MacOS Installation](#custom-installation)
- [Requirements](#requirements)
@@ -16,7 +17,6 @@ To understand how to set up the bot please read the [Bot Configuration](https://
- [Setup Config and virtual env](#setup-config-and-virtual-env)
* [Windows](#windows)
<!-- /TOC -->
------
@@ -35,7 +35,9 @@ usage:
```
### --install
This script will install everything you need to run the bot:
* Mandatory software as: `Python3`, `ta-lib`, `wget`
* Setup your virtualenv
* Configure your `config.json` file
@@ -43,14 +45,45 @@ This script will install everything you need to run the bot:
This script is a combination of `install script` `--reset`, `--config`
### --update
Update parameter will pull the last version of your current branch and update your virtualenv.
### --reset
Reset parameter will hard reset your branch (only if you are on `master` or `develop`) and recreate your virtualenv.
### --config
Config parameter is a `config.json` configurator. This script will ask you questions to setup your bot and create your `config.json`.
## Manual installation - Linux/MacOS
The following steps are made for Linux/MacOS environment
### 1. Clone the repo
```bash
git clone git@github.com:freqtrade/freqtrade.git
git checkout develop
cd freqtrade
```
### 2. Create the config file
Switch `"dry_run": true,`
```bash
cp config.json.example config.json
vi config.json
```
### 3. Build your docker image and run it
```bash
docker build -t freqtrade .
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
------
## Automatic Installation - Docker
@@ -63,13 +96,12 @@ Start by downloading Docker for your platform:
Once you have Docker installed, simply create the config file (e.g. `config.json`) and then create a Docker image for `freqtrade` using the Dockerfile in this repo.
### 1. Prepare the Bot
#### 1.1. Clone the git repository
```bash
git clone https://github.com/gcarq/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
```
#### 1.2. (Optional) Checkout the develop branch
@@ -90,21 +122,22 @@ cd freqtrade
cp -n config.json.example config.json
```
> To edit the config please refer to the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
> To edit the config please refer to the [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md) page.
#### 1.5. Create your database file *(optional - the bot will create it if it is missing)*
Production
```bash
touch tradesv3.sqlite
````
Dry-Run
```bash
touch tradesv3.dryrun.sqlite
```
### 2. Build the Docker image
```bash
@@ -114,7 +147,6 @@ docker build -t freqtrade .
For security reasons, your configuration file will not be included in the image, you will need to bind mount it. It is also advised to bind mount an SQLite database file (see the "5. Run a restartable docker image" section) to keep it between updates.
### 3. Verify the Docker image
After the build process you can verify that the image was created with:
@@ -123,7 +155,6 @@ After the build process you can verify that the image was created with:
docker images
```
### 4. Run the Docker image
You can run a one-off container that is immediately deleted upon exiting with the following command (`config.json` must be in the current working directory):
@@ -132,8 +163,15 @@ You can run a one-off container that is immediately deleted upon exiting with th
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
There is known issue in OSX Docker versions after 17.09.1, whereby /etc/localtime cannot be shared causing Docker to not start. A work-around for this is to start with the following cmd.
```bash
docker run --rm -e TZ=`ls -la /etc/localtime | cut -d/ -f8-9` -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
More information on this docker issue and work-around can be read [here](https://github.com/docker/for-mac/issues/2396)
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
### 5. Run a restartable docker image
@@ -155,10 +193,11 @@ docker run -d \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade
freqtrade --db-url sqlite:///tradesv3.sqlite
```
If you are using `dry_run=True` it's not necessary to mount `tradesv3.sqlite`, but you can mount `tradesv3.dryrun.sqlite` if you plan to use the dry run mode with the param `--dry-run-db`.
NOTE: db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
### 6. Monitor your Docker instance
@@ -174,6 +213,26 @@ docker start freqtrade
You do not need to rebuild the image for configuration changes, it will suffice to edit `config.json` and restart the container.
### 7. Backtest with docker
The following assumes that the above steps (1-4) have been completed successfully.
Also, backtest-data should be available at `~/.freqtrade/user_data/`.
``` bash
docker run -d \
--name freqtrade \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-v ~/.freqtrade/user_data/:/freqtrade/user_data/ \
freqtrade --strategy AwsomelyProfitableStrategy backtesting
```
Head over to the [Backtesting Documentation](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md) for more details.
*Note*: Additional parameters can be appended after the image name (`freqtrade` in the above example).
------
## Custom Installation
@@ -183,13 +242,13 @@ We've included/collected install instructions for Ubuntu 16.04, MacOS, and Windo
### Requirements
Click each one for install guide:
* [Python 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/), note the bot was not tested on Python >= 3.7.x
* [pip](https://pip.pypa.io/en/stable/installing/)
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
### Linux - Ubuntu 16.04
#### 1. Install Python 3.6, Git, and wget
@@ -208,6 +267,7 @@ Official webpage: https://mrjbq7.github.io/ta-lib/install.html
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
tar xvzf ta-lib-0.4.0-src.tar.gz
cd ta-lib
sed -i "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h
./configure --prefix=/usr
make
make install
@@ -215,35 +275,20 @@ cd ..
rm -rf ./ta-lib*
```
#### 3. [Optional] Install MongoDB
Install MongoDB if you plan to optimize your strategy with Hyperopt.
```bash
sudo apt-get install mongodb-org
```
> Complete tutorial from Digital Ocean: [How to Install MongoDB on Ubuntu 16.04](https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-16-04).
#### 4. Install FreqTrade
#### 3. Install FreqTrade
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
```
Optionally checkout the develop branch:
```bash
git checkout develop
```
#### 5. Configure `freqtrade` as a `systemd` service
#### 4. Configure `freqtrade` as a `systemd` service
From the freqtrade repo... copy `freqtrade.service` to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
@@ -254,7 +299,6 @@ For this to be persistent (run when user is logged out) you'll need to enable `l
sudo loginctl enable-linger "$USER"
```
### MacOS
#### 1. Install Python 3.6, git, wget and ta-lib
@@ -263,24 +307,12 @@ sudo loginctl enable-linger "$USER"
brew install python3 git wget ta-lib
```
#### 2. [Optional] Install MongoDB
Install MongoDB if you plan to optimize your strategy with Hyperopt.
```bash
curl -O https://fastdl.mongodb.org/osx/mongodb-osx-ssl-x86_64-3.4.10.tgz
tar -zxvf mongodb-osx-ssl-x86_64-3.4.10.tgz
mkdir -p <path_freqtrade>/env/mongodb
cp -R -n mongodb-osx-x86_64-3.4.10/ <path_freqtrade>/env/mongodb
export PATH=<path_freqtrade>/env/mongodb/bin:$PATH
```
#### 3. Install FreqTrade
#### 2. Install FreqTrade
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
```
Optionally checkout the develop branch:
@@ -289,7 +321,6 @@ Optionally checkout the develop branch:
git checkout develop
```
### Setup Config and virtual env
#### 1. Initialize the configuration
@@ -299,8 +330,7 @@ cd freqtrade
cp config.json.example config.json
```
> *To edit the config please refer to [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md).*
> *To edit the config please refer to [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md).*
#### 2. Setup your Python virtual environment (virtualenv)
@@ -324,27 +354,41 @@ python3.6 ./freqtrade/main.py -c config.json
## Windows
We recommend that Windows users use [Docker](#docker) as this will work
much easier and smoother (also more secure).
We recommend that Windows users use [Docker](#docker) as this will work much easier and smoother (also more secure).
### Install freqtrade
If that is not possible, try using the Windows Linux subsystem (WSL) - for which the Ubuntu instructions should work.
If that is not available on your system, feel free to try the instructions below, which led to success for some.
### Install freqtrade manually
#### Clone the git repository
```bash
git clone https://github.com/freqtrade/freqtrade.git
```
copy paste `config.json` to ``\path\freqtrade-develop\freqtrade`
#### install ta-lib
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of inofficial precompiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib0.4.17cp36cp36mwin32.whl` (make sure to use the version matching your python version)
```cmd
>cd \path\freqtrade-develop
>python -m venv .env
>cd .env\Scripts
>activate.bat
>cd \path\freqtrade-develop
REM optionally install ta-lib from wheel
REM >pip install TA_Lib0.4.17cp36cp36mwin32.whl
>pip install -r requirements.txt
>pip install -e .
>cd freqtrade
>python main.py
>python freqtrade\main.py
```
> Thanks [Owdr](https://github.com/Owdr) for the commands. Source: [Issue #222](https://github.com/gcarq/freqtrade/issues/222)
> Thanks [Owdr](https://github.com/Owdr) for the commands. Source: [Issue #222](https://github.com/freqtrade/freqtrade/issues/222)
Now you have an environment ready, the next step is
[Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)...
[Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)...

View File

@@ -24,7 +24,7 @@ script/plot_dataframe.py [-h] [-p pair] [--live]
Example
```
python scripts/plot_dataframe.py -p BTC_ETH
python scripts/plot_dataframe.py -p BTC/ETH
```
The `-p` pair argument, can be used to specify what
@@ -34,15 +34,25 @@ pair you would like to plot.
To plot the current live price use the `--live` flag:
```
python scripts/plot_dataframe.py -p BTC_ETH --live
python scripts/plot_dataframe.py -p BTC/ETH --live
```
To plot a timerange (to zoom in):
```
python scripts/plot_dataframe.py -p BTC_ETH --timerange=100-200
python scripts/plot_dataframe.py -p BTC/ETH --timerange=100-200
```
Timerange doesn't work with live data.
To plot trades stored in a database use `--db-url` argument:
```
python scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH
```
To plot a test strategy the strategy should have first be backtested.
The results may then be plotted with the -s argument:
```
python scripts/plot_dataframe.py -s Strategy_Name -p BTC/ETH --datadir user_data/data/<exchange_name>/
```
## Plot profit

151
docs/sandbox-testing.md Normal file
View File

@@ -0,0 +1,151 @@
# Sandbox API testing
Where an exchange provides a sandbox for risk-free integration, or end-to-end, testing CCXT provides access to these.
This document is a *light overview of configuring Freqtrade and GDAX sandbox.
This can be useful to developers and trader alike as Freqtrade is quite customisable.
When testing your API connectivity, make sure to use the following URLs.
***Website**
https://public.sandbox.gdax.com
***REST API**
https://api-public.sandbox.gdax.com
---
# Configure a Sandbox account on Gdax
Aim of this document section
- An sanbox account
- create 2FA (needed to create an API)
- Add test 50BTC to account
- Create :
- - API-KEY
- - API-Secret
- - API Password
## Acccount
This link will redirect to the sandbox main page to login / create account dialogues:
https://public.sandbox.pro.coinbase.com/orders/
After registration and Email confimation you wil be redirected into your sanbox account. It is easy to verify you're in sandbox by checking the URL bar.
> https://public.sandbox.pro.coinbase.com/
## Enable 2Fa (a prerequisite to creating sandbox API Keys)
From within sand box site select your profile, top right.
>Or as a direct link: https://public.sandbox.pro.coinbase.com/profile
From the menu panel to the left of the screen select
> Security: "*View or Update*"
In the new site select "enable authenticator" as typical google Authenticator.
- open Google Authenticator on your phone
- scan barcode
- enter your generated 2fa
## Enable API Access
From within sandbox select profile>api>create api-keys
>or as a direct link: https://public.sandbox.pro.coinbase.com/profile/api
Click on "create one" and ensure **view** and **trade** are "checked" and sumbit your 2Fa
- **Copy and paste the Passphase** into a notepade this will be needed later
- **Copy and paste the API Secret** popup into a notepad this will needed later
- **Copy and paste the API Key** into a notepad this will needed later
## Add 50 BTC test funds
To add funds, use the web interface deposit and withdraw buttons.
To begin select 'Wallets' from the top menu.
> Or as a direct link: https://public.sandbox.pro.coinbase.com/wallets
- Deposits (bottom left of screen)
- - Deposit Funds Bitcoin
- - - Coinbase BTC Wallet
- - - - Max (50 BTC)
- - - - - Deposit
*This process may be repeated for other currencies, ETH as example*
---
# Configure Freqtrade to use Gax Sandbox
The aim of this document section
- Enable sandbox URLs in Freqtrade
- Configure API
- - secret
- - key
- - passphrase
## Sandbox URLs
Freqtrade makes use of CCXT which in turn provides a list of URLs to Freqtrade.
These include `['test']` and `['api']`.
- `[Test]` if available will point to an Exchanges sandbox.
- `[Api]` normally used, and resolves to live API target on the exchange
To make use of sandbox / test add "sandbox": true, to your config.json
```
"exchange": {
"name": "gdax",
"sandbox": true,
"key": "5wowfxemogxeowo;heiohgmd",
"secret": "/ZMH1P62rCVmwefewrgcewX8nh4gob+lywxfwfxwwfxwfNsH1ySgvWCUR/w==",
"password": "1bkjfkhfhfu6sr",
"pair_whitelist": [
"BTC/USD"
```
Also insert your
- api-key (noted earlier)
- api-secret (noted earlier)
- password (the passphrase - noted earlier)
---
## You should now be ready to test your sandbox!
Ensure Freqtrade logs show the sandbox URL, and trades made are shown in sandbox.
** Typically the BTC/USD has the most activity in sandbox to test against.
## GDAX - Old Candles problem
It is my experience that GDAX sandbox candles may be 20+- minutes out of date. This can cause trades to fail as one of Freqtrades safety checks
To disable this check, edit:
>strategy/interface.py
Look for the following section:
```
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
```
You could Hash out the entire check as follows:
```
# # Check if dataframe is out of date
# signal_date = arrow.get(latest['date'])
# interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
# if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
# logger.warning(
# 'Outdated history for pair %s. Last tick is %s minutes old',
# pair,
# (arrow.utcnow() - signal_date).seconds // 60
# )
# return False, False
```
Or inrease the timeout to offer a level of protection/alignment of this test to freqtrade in live.
As example, to allow an additional 30 minutes. "(interval_minutes * 2 + 5 + 30)"
```
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5 + 30))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
```

View File

@@ -32,9 +32,12 @@ CREATE TABLE trades (
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
fee_open FLOAT NOT NULL,
fee_close FLOAT NOT NULL,
open_rate FLOAT,
open_rate_requested FLOAT,
close_rate FLOAT,
close_rate_requested FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
@@ -56,7 +59,7 @@ SELECT * FROM trades;
```sql
UPDATE trades
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate-1
WHERE id=<trade_ID_to_update>;
```
@@ -71,18 +74,18 @@ WHERE id=31;
```sql
INSERT
INTO trades (exchange, pair, is_open, fee, open_rate, stake_amount, amount, open_date)
VALUES ('BITTREX', 'BTC_<COIN>', 1, 0.0025, <open_rate>, <stake_amount>, <amount>, '<datetime>')
INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date)
VALUES ('BITTREX', 'BTC_<COIN>', 1, 0.0025, 0.0025, <open_rate>, <stake_amount>, <amount>, '<datetime>')
```
**Example:**
```sql
INSERT INTO trades (exchange, pair, is_open, fee, open_rate, stake_amount, amount, open_date) VALUES ('BITTREX', 'BTC_ETC', 1, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date) VALUES ('BITTREX', 'BTC_ETC', 1, 0.0025, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
```
## Fix wrong fees in the table
If your DB was created before
[PR#200](https://github.com/gcarq/freqtrade/pull/200) was merged
[PR#200](https://github.com/freqtrade/freqtrade/pull/200) was merged
(before 12/23/17).
```sql

51
docs/stoploss.md Normal file
View File

@@ -0,0 +1,51 @@
# Stop Loss support
At this stage the bot contains the following stoploss support modes:
1. static stop loss, defined in either the strategy or configuration
2. trailing stop loss, defined in the configuration
3. trailing stop loss, custom positive loss, defined in configuration
## Static Stop Loss
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
## Trail Stop Loss
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally.
To enable this Feauture all you have to do is to define the configuration element:
``` json
"trailing_stop" : True
```
This will now activate an algorithm, which automatically moves your stop loss up every time the price of your asset increases.
For example, simplified math,
* you buy an asset at a price of 100$
* your stop loss is defined at 2%
* which means your stop loss, gets triggered once your asset dropped below 98$
* assuming your asset now increases to 102$
* your stop loss, will now be 2% of 102$ or 99.96$
* now your asset drops in value to 101$, your stop loss, will still be 99.96$
basically what this means is that your stop loss will be adjusted to be always be 2% of the highest observed price
### Custom positive loss
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage,
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you have 1.1% profit,
it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
Both values can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true.
``` json
"trailing_stop_positive": 0.01,
"trailing_stop_positive_offset": 0.011,
```
The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
You should also make sure to have this value higher than your minimal ROI, otherwise minimal ROI will apply first and sell your trade.

View File

@@ -4,7 +4,7 @@ This page explains how to command your bot with Telegram.
## Pre-requisite
To control your bot with Telegram, you need first to
[set up a Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
[set up a Telegram bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md)
and add your Telegram API keys into your config file.
## Telegram commands
@@ -16,6 +16,7 @@ official commands. You can ask at any moment for help with `/help`.
|----------|---------|-------------|
| `/start` | | Starts the trader
| `/stop` | | Stops the trader
| `/reload_conf` | | Reloads the configuration file
| `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format
| `/count` | | Displays number of trades used and available
@@ -42,7 +43,7 @@ Below, example of Telegram message you will receive for each command.
For each open trade, the bot will send you the following message.
> **Trade ID:** `123`
> **Current Pair:** BTC_CVC
> **Current Pair:** CVC/BTC
> **Open Since:** `1 days ago`
> **Amount:** `26.64180098`
> **Open Rate:** `0.00007489`
@@ -57,8 +58,8 @@ Return the status of all open trades in a table format.
```
ID Pair Since Profit
---- -------- ------- --------
67 BTC_SC 1 d 13.33%
123 BTC_CVC 1 h 12.95%
67 SC/BTC 1 d 13.33%
123 CVC/BTC 1 h 12.95%
```
## /count
@@ -83,7 +84,7 @@ Return a summary of your profit/loss and performance.
> **First Trade opened:** `3 days ago`
> **Latest Trade opened:** `2 minutes ago`
> **Avg. Duration:** `2:33:45`
> **Best Performing:** `BTC_PAY: 50.23%`
> **Best Performing:** `PAY/BTC: 50.23%`
## /forcesell <trade_id>
@@ -92,11 +93,11 @@ Return a summary of your profit/loss and performance.
## /performance
Return the performance of each crypto-currency the bot has sold.
> Performance:
> 1. `BTC_RCN 57.77%`
> 2. `BTC_PAY 56.91%`
> 3. `BTC_VIB 47.07%`
> 4. `BTC_SALT 30.24%`
> 5. `BTC_STORJ 27.24%`
> 1. `RCN/BTC 57.77%`
> 2. `PAY/BTC 56.91%`
> 3. `VIB/BTC 47.07%`
> 4. `SALT/BTC 30.24%`
> 5. `STORJ/BTC 27.24%`
> ...
## /balance
@@ -129,12 +130,8 @@ Day Profit BTC Profit USD
> **Version:** `0.14.3`
### using proxy with telegram
in [freqtrade/freqtrade/rpc/telegram.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/rpc/telegram.py) replace
```
self._updater = Updater(token=self._config['telegram']['token'], workers=0)
```
with
```
self._updater = Updater(token=self._config['telegram']['token'], request_kwargs={'proxy_url': 'socks5://127.0.0.1:1080/'}, workers=0)
$ export HTTP_PROXY="http://addr:port"
$ export HTTPS_PROXY="http://addr:port"
$ freqtrade
```

74
docs/webhook-config.md Normal file
View File

@@ -0,0 +1,74 @@
# Webhook usage
This page explains how to configure your bot to talk to webhooks.
## Configuration
Enable webhooks by adding a webhook-section to your configuration file, and setting `webhook.enabled` to `true`.
Sample configuration (tested using IFTTT).
```json
"webhook": {
"enabled": true,
"url": "https://maker.ifttt.com/trigger/<YOUREVENT>/with/key/<YOURKEY>/",
"webhookbuy": {
"value1": "Buying {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhooksell": {
"value1": "Selling {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
},
"webhookstatus": {
"value1": "Status: {status}",
"value2": "",
"value3": ""
}
},
```
The url in `webhook.url` should point to the correct url for your webhook. If you're using [IFTTT](https://ifttt.com) (as shown in the sample above) please insert our event and key to the url.
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
### Webhookbuy
The fields in `webhook.webhookbuy` are filled when the bot executes a buy. Parameters are filled using string.format.
Possible parameters are:
* exchange
* pair
* market_url
* limit
* stake_amount
* stake_amount_fiat
* stake_currency
* fiat_currency
### Webhooksell
The fields in `webhook.webhooksell` are filled when the bot sells a trade. Parameters are filled using string.format.
Possible parameters are:
* exchange
* pair
* gain
* market_url
* limit
* amount
* open_rate
* current_rate
* profit_amount
* profit_percent
* profit_fiat
* stake_currency
* fiat_currency
### Webhookstatus
The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.
The only possible value here is `{status}`.

View File

@@ -1,5 +1,5 @@
""" FreqTrade bot """
__version__ = '0.16.1'
__version__ = '0.17.1'
class DependencyException(BaseException):
@@ -12,5 +12,14 @@ class DependencyException(BaseException):
class OperationalException(BaseException):
"""
Requires manual intervention.
This happens when an exchange returns an unexpected error during runtime.
This happens when an exchange returns an unexpected error during runtime
or given configuration is invalid.
"""
class TemporaryError(BaseException):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""

15
freqtrade/__main__.py Normal file
View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python3
"""
__main__.py for Freqtrade
To launch Freqtrade as a module
> python -m freqtrade (with Python >= 3.6)
"""
import sys
from freqtrade import main
if __name__ == '__main__':
main.set_loggers()
main.main(sys.argv[1:])

View File

@@ -1,214 +0,0 @@
"""
Functions to analyze ticker data with indicators and produce buy and sell signals
"""
import logging
from datetime import datetime, timedelta
from enum import Enum
from typing import Dict, List, Tuple
import arrow
from pandas import DataFrame, to_datetime
from freqtrade.exchange import get_ticker_history
from freqtrade.persistence import Trade
from freqtrade.strategy.resolver import StrategyResolver
logger = logging.getLogger(__name__)
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
"""
BUY = "buy"
SELL = "sell"
class Analyze(object):
"""
Analyze class contains everything the bot need to determine if the situation is good for
buying or selling.
"""
def __init__(self, config: dict) -> None:
"""
Init Analyze
:param config: Bot configuration (use the one from Configuration())
"""
self.config = config
self.strategy = StrategyResolver(self.config).strategy
@staticmethod
def parse_ticker_dataframe(ticker: list) -> DataFrame:
"""
Analyses the trend for the given ticker history
:param ticker: See exchange.get_ticker_history
:return: DataFrame
"""
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
frame = DataFrame(ticker).rename(columns=columns)
if 'BV' in frame:
frame.drop('BV', axis=1, inplace=True)
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
'close': 'last',
'high': 'max',
'low': 'min',
'open': 'first',
'volume': 'max',
})
return frame
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
return self.strategy.populate_indicators(dataframe=dataframe)
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.strategy.populate_buy_trend(dataframe=dataframe)
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.strategy.populate_sell_trend(dataframe=dataframe)
def get_ticker_interval(self) -> int:
"""
Return ticker interval to use
:return: Ticker interval value to use
"""
return self.strategy.ticker_interval
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
dataframe = self.parse_ticker_dataframe(ticker_history)
dataframe = self.populate_indicators(dataframe)
dataframe = self.populate_buy_trend(dataframe)
dataframe = self.populate_sell_trend(dataframe)
return dataframe
def get_signal(self, pair: str, interval: int) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format BTC_ANT or BTC-ANT
:param interval: Interval to use (in min)
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
"""
ticker_hist = get_ticker_history(pair, interval)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False, False
try:
dataframe = self.analyze_ticker(ticker_hist)
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing ticker for pair %s: %s',
pair,
str(error)
)
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
if signal_date < arrow.utcnow() - timedelta(minutes=(interval + 5)):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug(
'trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'],
pair,
str(buy),
str(sell)
)
return buy, sell
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool) -> bool:
"""
This function evaluate if on the condition required to trigger a sell has been reached
if the threshold is reached and updates the trade record.
:return: True if trade should be sold, False otherwise
"""
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
if self.min_roi_reached(trade=trade, current_rate=rate, current_time=date):
logger.debug('Required profit reached. Selling..')
return True
# Experimental: Check if the trade is profitable before selling it (avoid selling at loss)
if self.config.get('experimental', {}).get('sell_profit_only', False):
logger.debug('Checking if trade is profitable..')
if trade.calc_profit(rate=rate) <= 0:
return False
if sell and not buy and self.config.get('experimental', {}).get('use_sell_signal', False):
logger.debug('Sell signal received. Selling..')
return True
return False
def min_roi_reached(self, trade: Trade, current_rate: float, current_time: datetime) -> bool:
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should
sell
:return True if bot should sell at current rate
"""
current_profit = trade.calc_profit_percent(current_rate)
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss:
logger.debug('Stop loss hit.')
return True
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration, threshold in self.strategy.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
return False
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
"""
return {pair: self.populate_indicators(self.parse_ticker_dataframe(pair_data))
for pair, pair_data in tickerdata.items()}

View File

@@ -3,22 +3,35 @@ This module contains the argument manager class
"""
import argparse
import logging
import os
import re
from typing import List, Tuple, Optional
from typing import List, NamedTuple, Optional
import arrow
from freqtrade import __version__, constants
class TimeRange(NamedTuple):
"""
NamedTuple Defining timerange inputs.
[start/stop]type defines if [start/stop]ts shall be used.
if *type is none, don't use corresponding startvalue.
"""
starttype: Optional[str] = None
stoptype: Optional[str] = None
startts: int = 0
stopts: int = 0
class Arguments(object):
"""
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: List[str], description: str):
def __init__(self, args: List[str], description: str) -> None:
self.args = args
self.parsed_arg = None
self.parsed_arg: Optional[argparse.Namespace] = None
self.parser = argparse.ArgumentParser(description=description)
def _load_args(self) -> None:
@@ -50,16 +63,15 @@ class Arguments(object):
"""
self.parser.add_argument(
'-v', '--verbose',
help='be verbose',
action='store_const',
help='verbose mode (-vv for more, -vvv to get all messages)',
action='count',
dest='loglevel',
const=logging.DEBUG,
default=logging.INFO,
default=0,
)
self.parser.add_argument(
'--version',
action='version',
version='%(prog)s {}'.format(__version__),
version=f'%(prog)s {__version__}'
)
self.parser.add_argument(
'-c', '--config',
@@ -71,9 +83,9 @@ class Arguments(object):
)
self.parser.add_argument(
'-d', '--datadir',
help='path to backtest data (default: %(default)s',
help='path to backtest data',
dest='datadir',
default=os.path.join('freqtrade', 'tests', 'testdata'),
default=None,
type=str,
metavar='PATH',
)
@@ -94,8 +106,8 @@ class Arguments(object):
)
self.parser.add_argument(
'--dynamic-whitelist',
help='dynamically generate and update whitelist \
based on 24h BaseVolume (Default 20 currencies)', # noqa
help='dynamically generate and update whitelist'
' based on 24h BaseVolume (default: %(const)s)',
dest='dynamic_whitelist',
const=constants.DYNAMIC_WHITELIST,
type=int,
@@ -103,11 +115,13 @@ class Arguments(object):
nargs='?',
)
self.parser.add_argument(
'--dry-run-db',
help='Force dry run to use a local DB "tradesv3.dry_run.sqlite" \
instead of memory DB. Work only if dry_run is enabled.',
action='store_true',
dest='dry_run_db',
'--db-url',
help='Override trades database URL, this is useful if dry_run is enabled'
' or in custom deployments (default: %(default)s)',
dest='db_url',
default=constants.DEFAULT_DB_PROD_URL,
type=str,
metavar='PATH',
)
@staticmethod
@@ -123,11 +137,21 @@ class Arguments(object):
)
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='refresh the pairs files in tests/testdata with the latest data from Bittrex. \
Use it if you want to run your backtesting with up-to-date data.',
help='refresh the pairs files in tests/testdata with the latest data from the '
'exchange. Use it if you want to run your backtesting with up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
parser.add_argument(
'--strategy-list',
help='Provide a commaseparated list of strategies to backtest '
'Please note that ticker-interval needs to be set either in config '
'or via command line. When using this together with --export trades, '
'the strategy-name is injected into the filename '
'(so backtest-data.json becomes backtest-data-DefaultStrategy.json',
nargs='+',
dest='strategy_list',
)
parser.add_argument(
'--export',
help='export backtest results, argument are: trades\
@@ -136,22 +160,48 @@ class Arguments(object):
default=None,
dest='export',
)
parser.add_argument(
'--export-filename',
help='Save backtest results to this filename \
requires --export to be set as well\
Example --export-filename=user_data/backtest_data/backtest_today.json\
(default: %(default)s)',
type=str,
default=os.path.join('user_data', 'backtest_data', 'backtest-result.json'),
dest='exportfilename',
metavar='PATH',
)
@staticmethod
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
"""
Parses given common arguments for Backtesting and Hyperopt scripts.
:param parser:
:return:
"""
parser.add_argument(
'-i', '--ticker-interval',
help='specify ticker interval in minutes (1, 5, 30, 60, 1440)',
help='specify ticker interval (1m, 5m, 30m, 1h, 1d)',
dest='ticker_interval',
type=int,
metavar='INT',
type=str,
)
parser.add_argument(
'--realistic-simulation',
help='uses max_open_trades from config to simulate real world limitations',
'--eps', '--enable-position-stacking',
help='Allow buying the same pair multiple times (position stacking)',
action='store_true',
dest='realistic_simulation',
dest='position_stacking',
default=False
)
parser.add_argument(
'--dmmp', '--disable-max-market-positions',
help='Disable applying `max_open_trades` during backtest '
'(same as setting `max_open_trades` to a very high number)',
action='store_false',
dest='use_max_market_positions',
default=True
)
parser.add_argument(
'--timerange',
help='specify what timerange of data to use.',
@@ -173,12 +223,6 @@ class Arguments(object):
type=int,
metavar='INT',
)
parser.add_argument(
'--use-mongodb',
help='parallelize evaluations with mongodb (requires mongod in PATH)',
dest='mongodb',
action='store_true',
)
parser.add_argument(
'-s', '--spaces',
help='Specify which parameters to hyperopt. Space separate list. \
@@ -211,17 +255,20 @@ class Arguments(object):
self.hyperopt_options(hyperopt_cmd)
@staticmethod
def parse_timerange(text: str) -> Optional[Tuple[List, int, int]]:
def parse_timerange(text: Optional[str]) -> TimeRange:
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
return None
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^-(\d{10})$', (None, 'date')),
(r'^(\d{10})-$', ('date', None)),
(r'^(\d{10})-(\d{10})$', ('date', 'date')),
(r'^(-\d+)$', (None, 'line')),
(r'^(\d+)-$', ('line', None)),
(r'^(\d+)-(\d+)$', ('index', 'index'))]
@@ -231,23 +278,27 @@ class Arguments(object):
if match: # Regex has matched
rvals = match.groups()
index = 0
start = None
stop = None
start: int = 0
stop: int = 0
if stype[0]:
start = rvals[index]
if stype[0] != 'date':
start = int(start)
starts = rvals[index]
if stype[0] == 'date' and len(starts) == 8:
start = arrow.get(starts, 'YYYYMMDD').timestamp
else:
start = int(starts)
index += 1
if stype[1]:
stop = rvals[index]
if stype[1] != 'date':
stop = int(stop)
return stype, start, stop
stops = rvals[index]
if stype[1] == 'date' and len(stops) == 8:
stop = arrow.get(stops, 'YYYYMMDD').timestamp
else:
stop = int(stops)
return TimeRange(stype[0], stype[1], start, stop)
raise Exception('Incorrect syntax for timerange "%s"' % text)
def scripts_options(self) -> None:
"""
Parses given arguments for plot scripts.
Parses given arguments for scripts.
"""
self.parser.add_argument(
'-p', '--pair',
@@ -255,3 +306,58 @@ class Arguments(object):
dest='pair',
default=None
)
def testdata_dl_options(self) -> None:
"""
Parses given arguments for testdata download
"""
self.parser.add_argument(
'--pairs-file',
help='File containing a list of pairs to download',
dest='pairs_file',
default=None,
metavar='PATH',
)
self.parser.add_argument(
'--export',
help='Export files to given dir',
dest='export',
default=None,
metavar='PATH',
)
self.parser.add_argument(
'--days',
help='Download data for number of days',
dest='days',
type=int,
metavar='INT',
default=None
)
self.parser.add_argument(
'--exchange',
help='Exchange name (default: %(default)s)',
dest='exchange',
type=str,
default='bittrex'
)
self.parser.add_argument(
'-t', '--timeframes',
help='Specify which tickers to download. Space separated list. \
Default: %(default)s',
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
'6h', '8h', '12h', '1d', '3d', '1w'],
default=['1m', '5m'],
nargs='+',
dest='timeframes',
)
self.parser.add_argument(
'--erase',
help='Clean all existing data for the selected exchange/pairs/timeframes',
dest='erase',
action='store_true'
)

View File

@@ -1,21 +1,33 @@
"""
This module contains the configuration class
"""
import json
import logging
import os
from argparse import Namespace
from typing import Dict, Any
from typing import Any, Dict, Optional
import ccxt
from jsonschema import Draft4Validator, validate
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants
from freqtrade import OperationalException, constants
logger = logging.getLogger(__name__)
def set_loggers(log_level: int = 0) -> None:
"""
Set the logger level for Third party libs
:return: None
"""
logging.getLogger('requests').setLevel(logging.INFO if log_level <= 1 else logging.DEBUG)
logging.getLogger("urllib3").setLevel(logging.INFO if log_level <= 1 else logging.DEBUG)
logging.getLogger('ccxt.base.exchange').setLevel(
logging.INFO if log_level <= 2 else logging.DEBUG)
logging.getLogger('telegram').setLevel(logging.INFO)
class Configuration(object):
"""
Class to read and init the bot configuration
@@ -23,7 +35,7 @@ class Configuration(object):
"""
def __init__(self, args: Namespace) -> None:
self.args = args
self.config = None
self.config: Optional[Dict[str, Any]] = None
def load_config(self) -> Dict[str, Any]:
"""
@@ -61,11 +73,9 @@ class Configuration(object):
with open(path) as file:
conf = json.load(file)
except FileNotFoundError:
logger.critical(
'Config file "%s" not found. Please create your config file',
path
)
exit(0)
raise OperationalException(
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.')
if 'internals' not in conf:
conf['internals'] = {}
@@ -81,12 +91,15 @@ class Configuration(object):
# Log level
if 'loglevel' in self.args and self.args.loglevel:
config.update({'loglevel': self.args.loglevel})
config.update({'verbosity': self.args.loglevel})
else:
config.update({'verbosity': 0})
logging.basicConfig(
level=config['loglevel'],
level=logging.INFO if config['verbosity'] < 1 else logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger.info('Log level set to %s', logging.getLevelName(config['loglevel']))
set_loggers(config['verbosity'])
logger.info('Verbosity set to %s', config['verbosity'])
# Add dynamic_whitelist if found
if 'dynamic_whitelist' in self.args and self.args.dynamic_whitelist:
@@ -97,19 +110,35 @@ class Configuration(object):
'(not applicable with Backtesting and Hyperopt)'
)
# Add dry_run_db if found and the bot in dry run
if self.args.dry_run_db and config.get('dry_run', False):
config.update({'dry_run_db': True})
logger.info('Parameter --dry-run-db detected ...')
if self.args.db_url != constants.DEFAULT_DB_PROD_URL:
config.update({'db_url': self.args.db_url})
logger.info('Parameter --db-url detected ...')
if config.get('dry_run_db', False):
if config.get('dry_run', False):
logger.info('Dry_run will use the DB file: "tradesv3.dry_run.sqlite"')
logger.info('Dry run is enabled')
if config.get('db_url') in [None, constants.DEFAULT_DB_PROD_URL]:
# Default to in-memory db for dry_run if not specified
config['db_url'] = constants.DEFAULT_DB_DRYRUN_URL
else:
logger.info('Dry run is disabled. (--dry_run_db ignored)')
if not config.get('db_url', None):
config['db_url'] = constants.DEFAULT_DB_PROD_URL
logger.info('Dry run is disabled')
logger.info(f'Using DB: "{config["db_url"]}"')
# Check if the exchange set by the user is supported
self.check_exchange(config)
return config
def _create_default_datadir(self, config: Dict[str, Any]) -> str:
exchange_name = config.get('exchange', {}).get('name').lower()
default_path = os.path.join('user_data', 'data', exchange_name)
if not os.path.isdir(default_path):
os.makedirs(default_path)
logger.info(f'Created data directory: {default_path}')
return default_path
def _load_backtesting_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Backtesting configuration
@@ -121,17 +150,24 @@ class Configuration(object):
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Parameter -i/--ticker-interval detected ...')
logger.info('Using ticker_interval: %d ...', config.get('ticker_interval'))
logger.info('Using ticker_interval: %s ...', config.get('ticker_interval'))
# If -l/--live is used we add it to the configuration
if 'live' in self.args and self.args.live:
config.update({'live': True})
logger.info('Parameter -l/--live detected ...')
# If --realistic-simulation is used we add it to the configuration
if 'realistic_simulation' in self.args and self.args.realistic_simulation:
config.update({'realistic_simulation': True})
logger.info('Parameter --realistic-simulation detected ...')
# If --enable-position-stacking is used we add it to the configuration
if 'position_stacking' in self.args and self.args.position_stacking:
config.update({'position_stacking': True})
logger.info('Parameter --enable-position-stacking detected ...')
# If --disable-max-market-positions is used we add it to the configuration
if 'use_max_market_positions' in self.args and not self.args.use_max_market_positions:
config.update({'use_max_market_positions': False})
logger.info('Parameter --disable-max-market-positions detected ...')
logger.info('max_open_trades set to unlimited ...')
else:
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
# If --timerange is used we add it to the configuration
@@ -142,18 +178,33 @@ class Configuration(object):
# If --datadir is used we add it to the configuration
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': self.args.datadir})
logger.info('Parameter --datadir detected: %s ...', self.args.datadir)
else:
config.update({'datadir': self._create_default_datadir(config)})
logger.info('Using data folder: %s ...', config.get('datadir'))
# If -r/--refresh-pairs-cached is used we add it to the configuration
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
config.update({'refresh_pairs': True})
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
if 'strategy_list' in self.args and self.args.strategy_list:
config.update({'strategy_list': self.args.strategy_list})
logger.info('Using strategy list of %s Strategies', len(self.args.strategy_list))
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Overriding ticker interval with Command line argument')
# If --export is used we add it to the configuration
if 'export' in self.args and self.args.export:
config.update({'export': self.args.export})
logger.info('Parameter --export detected: %s ...', self.args.export)
# If --export-filename is used we add it to the configuration
if 'export' in config and 'exportfilename' in self.args and self.args.exportfilename:
config.update({'exportfilename': self.args.exportfilename})
logger.info('Storing backtest results to %s ...', self.args.exportfilename)
return config
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
@@ -161,17 +212,12 @@ class Configuration(object):
Extract information for sys.argv and load Hyperopt configuration
:return: configuration as dictionary
"""
# If --realistic-simulation is used we add it to the configuration
# If --epochs is used we add it to the configuration
if 'epochs' in self.args and self.args.epochs:
config.update({'epochs': self.args.epochs})
logger.info('Parameter --epochs detected ...')
logger.info('Will run Hyperopt with for %s epochs ...', config.get('epochs'))
# If --mongodb is used we add it to the configuration
if 'mongodb' in self.args and self.args.mongodb:
config.update({'mongodb': self.args.mongodb})
logger.info('Parameter --use-mongodb detected ...')
# If --spaces is used we add it to the configuration
if 'spaces' in self.args and self.args.spaces:
config.update({'spaces': self.args.spaces})
@@ -189,7 +235,7 @@ class Configuration(object):
validate(conf, constants.CONF_SCHEMA)
return conf
except ValidationError as exception:
logger.fatal(
logger.critical(
'Invalid configuration. See config.json.example. Reason: %s',
exception
)
@@ -206,3 +252,22 @@ class Configuration(object):
self.config = self.load_config()
return self.config
def check_exchange(self, config: Dict[str, Any]) -> bool:
"""
Check if the exchange name in the config file is supported by Freqtrade
:return: True or raised an exception if the exchange if not supported
"""
exchange = config.get('exchange', {}).get('name').lower()
if exchange not in ccxt.exchanges:
exception_msg = f'Exchange "{exchange}" not supported.\n' \
f'The following exchanges are supported: {", ".join(ccxt.exchanges)}'
logger.critical(exception_msg)
raise OperationalException(
exception_msg
)
logger.debug('Exchange "%s" supported', exchange)
return True

View File

@@ -9,23 +9,49 @@ TICKER_INTERVAL = 5 # min
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
DEFAULT_STRATEGY = 'DefaultStrategy'
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
UNLIMITED_STAKE_AMOUNT = 'unlimited'
TICKER_INTERVAL_MINUTES = {
'1m': 1,
'3m': 3,
'5m': 5,
'15m': 15,
'30m': 30,
'1h': 60,
'2h': 120,
'4h': 240,
'6h': 360,
'8h': 480,
'12h': 720,
'1d': 1440,
'3d': 4320,
'1w': 10080,
}
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
]
# Required json-schema for user specified config
CONF_SCHEMA = {
'type': 'object',
'properties': {
'max_open_trades': {'type': 'integer', 'minimum': 1},
'ticker_interval': {'type': 'integer', 'enum': [1, 5, 30, 60, 1440]},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT']},
'stake_amount': {'type': 'number', 'minimum': 0.0005},
'fiat_display_currency': {'type': 'string', 'enum': ['AUD', 'BRL', 'CAD', 'CHF',
'CLP', 'CNY', 'CZK', 'DKK',
'EUR', 'GBP', 'HKD', 'HUF',
'IDR', 'ILS', 'INR', 'JPY',
'KRW', 'MXN', 'MYR', 'NOK',
'NZD', 'PHP', 'PKR', 'PLN',
'RUB', 'SEK', 'SGD', 'THB',
'TRY', 'TWD', 'ZAR', 'USD']},
'max_open_trades': {'type': 'integer', 'minimum': 0},
'ticker_interval': {'type': 'string', 'enum': list(TICKER_INTERVAL_MINUTES.keys())},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']},
'stake_amount': {
"type": ["number", "string"],
"minimum": 0.0005,
"pattern": UNLIMITED_STAKE_AMOUNT
},
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'},
'minimal_roi': {
'type': 'object',
@@ -35,7 +61,16 @@ CONF_SCHEMA = {
'minProperties': 1
},
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True},
'unfilledtimeout': {'type': 'integer', 'minimum': 0},
'trailing_stop': {'type': 'boolean'},
'trailing_stop_positive': {'type': 'number', 'minimum': 0, 'maximum': 1},
'trailing_stop_positive_offset': {'type': 'number', 'minimum': 0, 'maximum': 1},
'unfilledtimeout': {
'type': 'object',
'properties': {
'buy': {'type': 'number', 'minimum': 3},
'sell': {'type': 'number', 'minimum': 10}
}
},
'bid_strategy': {
'type': 'object',
'properties': {
@@ -53,7 +88,8 @@ CONF_SCHEMA = {
'type': 'object',
'properties': {
'use_sell_signal': {'type': 'boolean'},
'sell_profit_only': {'type': 'boolean'}
'sell_profit_only': {'type': 'boolean'},
"ignore_roi_if_buy_signal_true": {'type': 'boolean'}
}
},
'telegram': {
@@ -65,6 +101,16 @@ CONF_SCHEMA = {
},
'required': ['enabled', 'token', 'chat_id']
},
'webhook': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'webhookbuy': {'type': 'object'},
'webhooksell': {'type': 'object'},
'webhookstatus': {'type': 'object'},
},
},
'db_url': {'type': 'string'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'internals': {
'type': 'object',
@@ -79,13 +125,16 @@ CONF_SCHEMA = {
'type': 'object',
'properties': {
'name': {'type': 'string'},
'sandbox': {'type': 'boolean'},
'key': {'type': 'string'},
'secret': {'type': 'string'},
'password': {'type': 'string'},
'uid': {'type': 'string'},
'pair_whitelist': {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+_[0-9A-Z]+$'
'pattern': '^[0-9A-Z]+/[0-9A-Z]+$'
},
'uniqueItems': True
},
@@ -93,7 +142,7 @@ CONF_SCHEMA = {
'type': 'array',
'items': {
'type': 'string',
'pattern': '^[0-9A-Z]+_[0-9A-Z]+$'
'pattern': '^[0-9A-Z]+/[0-9A-Z]+$'
},
'uniqueItems': True
}
@@ -108,7 +157,6 @@ CONF_SCHEMA = {
'max_open_trades',
'stake_currency',
'stake_amount',
'fiat_display_currency',
'dry_run',
'bid_strategy',
'telegram'

View File

@@ -1,185 +1,473 @@
# pragma pylint: disable=W0603
""" Cryptocurrency Exchanges support """
import enum
import logging
from random import randint
from typing import List, Dict, Any, Optional
from datetime import datetime
from math import floor, ceil
import ccxt
import arrow
import requests
from cachetools import cached, TTLCache
from freqtrade import OperationalException
from freqtrade.exchange.bittrex import Bittrex
from freqtrade.exchange.interface import Exchange
from freqtrade import constants, OperationalException, DependencyException, TemporaryError
logger = logging.getLogger(__name__)
# Current selected exchange
_API: Exchange = None
_CONF: dict = {}
# Holds all open sell orders for dry_run
_DRY_RUN_OPEN_ORDERS: Dict[str, Any] = {}
API_RETRY_COUNT = 4
class Exchanges(enum.Enum):
"""
Maps supported exchange names to correspondent classes.
"""
BITTREX = Bittrex
# Urls to exchange markets, insert quote and base with .format()
_EXCHANGE_URLS = {
ccxt.bittrex.__name__: '/Market/Index?MarketName={quote}-{base}',
ccxt.binance.__name__: '/tradeDetail.html?symbol={base}_{quote}'
}
def init(config: dict) -> None:
def retrier(f):
def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
try:
return f(*args, **kwargs)
except (TemporaryError, DependencyException) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
return wrapper(*args, **kwargs)
else:
logger.warning('Giving up retrying: %s()', f.__name__)
raise ex
return wrapper
class Exchange(object):
# Current selected exchange
_api: ccxt.Exchange = None
_conf: Dict = {}
_cached_ticker: Dict[str, Any] = {}
# Holds all open sell orders for dry_run
_dry_run_open_orders: Dict[str, Any] = {}
def __init__(self, config: dict) -> None:
"""
Initializes this module with the given config,
it does basic validation whether the specified
exchange and pairs are valid.
:param config: config to use
:return: None
"""
global _CONF, _API
_CONF.update(config)
self._conf.update(config)
if config['dry_run']:
logger.info('Instance is running with dry_run enabled')
exchange_config = config['exchange']
self._api = self._init_ccxt(exchange_config)
# Find matching class for the given exchange name
name = exchange_config['name']
try:
exchange_class = Exchanges[name.upper()].value
except KeyError:
raise OperationalException('Exchange {} is not supported'.format(name))
_API = exchange_class(exchange_config)
logger.info('Using Exchange "%s"', self.name)
# Check if all pairs are available
validate_pairs(config['exchange']['pair_whitelist'])
self.validate_pairs(config['exchange']['pair_whitelist'])
if config.get('ticker_interval'):
# Check if timeframe is available
self.validate_timeframes(config['ticker_interval'])
def validate_pairs(pairs: List[str]) -> None:
def _init_ccxt(self, exchange_config: dict) -> ccxt.Exchange:
"""
Initialize ccxt with given config and return valid
ccxt instance.
"""
# Find matching class for the given exchange name
name = exchange_config['name']
if name not in ccxt.exchanges:
raise OperationalException(f'Exchange {name} is not supported')
try:
api = getattr(ccxt, name.lower())({
'apiKey': exchange_config.get('key'),
'secret': exchange_config.get('secret'),
'password': exchange_config.get('password'),
'uid': exchange_config.get('uid', ''),
'enableRateLimit': exchange_config.get('ccxt_rate_limit', True),
})
except (KeyError, AttributeError):
raise OperationalException(f'Exchange {name} is not supported')
self.set_sandbox(api, exchange_config, name)
return api
@property
def name(self) -> str:
"""exchange Name (from ccxt)"""
return self._api.name
@property
def id(self) -> str:
"""exchange ccxt id"""
return self._api.id
def set_sandbox(self, api, exchange_config: dict, name: str):
if exchange_config.get('sandbox'):
if api.urls.get('test'):
api.urls['api'] = api.urls['test']
logger.info("Enabled Sandbox API on %s", name)
else:
logger.warning(self._api.name, "No Sandbox URL in CCXT, exiting. "
"Please check your config.json")
raise OperationalException(f'Exchange {name} does not provide a sandbox api')
def validate_pairs(self, pairs: List[str]) -> None:
"""
Checks if all given pairs are tradable on the current exchange.
Raises OperationalException if one pair is not available.
:param pairs: list of pairs
:return: None
"""
try:
markets = _API.get_markets()
except requests.exceptions.RequestException as e:
markets = self._api.load_markets()
except ccxt.BaseError as e:
logger.warning('Unable to validate pairs (assuming they are correct). Reason: %s', e)
return
stake_cur = _CONF['stake_currency']
stake_cur = self._conf['stake_currency']
for pair in pairs:
if not pair.startswith(stake_cur):
# Note: ccxt has BaseCurrency/QuoteCurrency format for pairs
# TODO: add a support for having coins in BTC/USDT format
if not pair.endswith(stake_cur):
raise OperationalException(
'Pair {} not compatible with stake_currency: {}'.format(pair, stake_cur)
)
f'Pair {pair} not compatible with stake_currency: {stake_cur}')
if pair not in markets:
raise OperationalException(
'Pair {} is not available at {}'.format(pair, _API.name.lower()))
f'Pair {pair} is not available at {self.name}')
def validate_timeframes(self, timeframe: List[str]) -> None:
"""
Checks if ticker interval from config is a supported timeframe on the exchange
"""
timeframes = self._api.timeframes
if timeframe not in timeframes:
raise OperationalException(
f'Invalid ticker {timeframe}, this Exchange supports {timeframes}')
def buy(pair: str, rate: float, amount: float) -> str:
if _CONF['dry_run']:
global _DRY_RUN_OPEN_ORDERS
order_id = 'dry_run_buy_{}'.format(randint(0, 10**6))
_DRY_RUN_OPEN_ORDERS[order_id] = {
def exchange_has(self, endpoint: str) -> bool:
"""
Checks if exchange implements a specific API endpoint.
Wrapper around ccxt 'has' attribute
:param endpoint: Name of endpoint (e.g. 'fetchOHLCV', 'fetchTickers')
:return: bool
"""
return endpoint in self._api.has and self._api.has[endpoint]
def symbol_amount_prec(self, pair, amount: float):
'''
Returns the amount to buy or sell to a precision the Exchange accepts
Rounded down
'''
if self._api.markets[pair]['precision']['amount']:
symbol_prec = self._api.markets[pair]['precision']['amount']
big_amount = amount * pow(10, symbol_prec)
amount = floor(big_amount) / pow(10, symbol_prec)
return amount
def symbol_price_prec(self, pair, price: float):
'''
Returns the price buying or selling with to the precision the Exchange accepts
Rounds up
'''
if self._api.markets[pair]['precision']['price']:
symbol_prec = self._api.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price
def buy(self, pair: str, rate: float, amount: float) -> Dict:
if self._conf['dry_run']:
order_id = f'dry_run_buy_{randint(0, 10**6)}'
self._dry_run_open_orders[order_id] = {
'pair': pair,
'rate': rate,
'price': rate,
'amount': amount,
'type': 'LIMIT_BUY',
'type': 'limit',
'side': 'buy',
'remaining': 0.0,
'opened': arrow.utcnow().datetime,
'closed': arrow.utcnow().datetime,
'datetime': arrow.utcnow().isoformat(),
'status': 'closed',
'fee': None
}
return order_id
return {'id': order_id}
return _API.buy(pair, rate, amount)
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.symbol_amount_prec(pair, amount)
rate = self.symbol_price_prec(pair, rate)
return self._api.create_limit_buy_order(pair, amount, rate)
except ccxt.InsufficientFunds as e:
raise DependencyException(
f'Insufficient funds to create limit buy order on market {pair}.'
f'Tried to buy amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except ccxt.InvalidOrder as e:
raise DependencyException(
f'Could not create limit buy order on market {pair}.'
f'Tried to buy amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place buy order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def sell(pair: str, rate: float, amount: float) -> str:
if _CONF['dry_run']:
global _DRY_RUN_OPEN_ORDERS
order_id = 'dry_run_sell_{}'.format(randint(0, 10**6))
_DRY_RUN_OPEN_ORDERS[order_id] = {
def sell(self, pair: str, rate: float, amount: float) -> Dict:
if self._conf['dry_run']:
order_id = f'dry_run_sell_{randint(0, 10**6)}'
self._dry_run_open_orders[order_id] = {
'pair': pair,
'rate': rate,
'price': rate,
'amount': amount,
'type': 'LIMIT_SELL',
'type': 'limit',
'side': 'sell',
'remaining': 0.0,
'opened': arrow.utcnow().datetime,
'closed': arrow.utcnow().datetime,
'datetime': arrow.utcnow().isoformat(),
'status': 'closed'
}
return order_id
return {'id': order_id}
return _API.sell(pair, rate, amount)
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.symbol_amount_prec(pair, amount)
rate = self.symbol_price_prec(pair, rate)
return self._api.create_limit_sell_order(pair, amount, rate)
except ccxt.InsufficientFunds as e:
raise DependencyException(
f'Insufficient funds to create limit sell order on market {pair}.'
f'Tried to sell amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except ccxt.InvalidOrder as e:
raise DependencyException(
f'Could not create limit sell order on market {pair}.'
f'Tried to sell amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_balance(currency: str) -> float:
if _CONF['dry_run']:
@retrier
def get_balance(self, currency: str) -> float:
if self._conf['dry_run']:
return 999.9
return _API.get_balance(currency)
# ccxt exception is already handled by get_balances
balances = self.get_balances()
balance = balances.get(currency)
if balance is None:
raise TemporaryError(
f'Could not get {currency} balance due to malformed exchange response: {balances}')
return balance['free']
@retrier
def get_balances(self) -> dict:
if self._conf['dry_run']:
return {}
def get_balances():
if _CONF['dry_run']:
return []
try:
balances = self._api.fetch_balance()
# Remove additional info from ccxt results
balances.pop("info", None)
balances.pop("free", None)
balances.pop("total", None)
balances.pop("used", None)
return _API.get_balances()
return balances
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get balance due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@retrier
def get_tickers(self) -> Dict:
try:
return self._api.fetch_tickers()
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching tickers in batch.'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load tickers due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_ticker(pair: str, refresh: Optional[bool] = True) -> dict:
return _API.get_ticker(pair, refresh)
@retrier
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
if refresh or pair not in self._cached_ticker.keys():
try:
data = self._api.fetch_ticker(pair)
try:
self._cached_ticker[pair] = {
'bid': float(data['bid']),
'ask': float(data['ask']),
}
except KeyError:
logger.debug("Could not cache ticker data for %s", pair)
return data
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker history due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
else:
logger.info("returning cached ticker-data for %s", pair)
return self._cached_ticker[pair]
@retrier
def get_candle_history(self, pair: str, tick_interval: str,
since_ms: Optional[int] = None) -> List[Dict]:
try:
# last item should be in the time interval [now - tick_interval, now]
till_time_ms = arrow.utcnow().shift(
minutes=-constants.TICKER_INTERVAL_MINUTES[tick_interval]
).timestamp * 1000
# it looks as if some exchanges return cached data
# and they update it one in several minute, so 10 mins interval
# is necessary to skeep downloading of an empty array when all
# chached data was already downloaded
till_time_ms = min(till_time_ms, arrow.utcnow().shift(minutes=-10).timestamp * 1000)
@cached(TTLCache(maxsize=100, ttl=30))
def get_ticker_history(pair: str, tick_interval) -> List[Dict]:
return _API.get_ticker_history(pair, tick_interval)
data: List[Dict[Any, Any]] = []
while not since_ms or since_ms < till_time_ms:
data_part = self._api.fetch_ohlcv(pair, timeframe=tick_interval, since=since_ms)
# Because some exchange sort Tickers ASC and other DESC.
# Ex: Bittrex returns a list of tickers ASC (oldest first, newest last)
# when GDAX returns a list of tickers DESC (newest first, oldest last)
data_part = sorted(data_part, key=lambda x: x[0])
def cancel_order(order_id: str) -> None:
if _CONF['dry_run']:
if not data_part:
break
logger.debug('Downloaded data for %s time range [%s, %s]',
pair,
arrow.get(data_part[0][0] / 1000).format(),
arrow.get(data_part[-1][0] / 1000).format())
data.extend(data_part)
since_ms = data[-1][0] + 1
return data
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {self._api.name} does not support fetching historical candlestick data.'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker history due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(f'Could not fetch ticker data. Msg: {e}')
@retrier
def cancel_order(self, order_id: str, pair: str) -> None:
if self._conf['dry_run']:
return
return _API.cancel_order(order_id)
try:
return self._api.cancel_order(order_id, pair)
except ccxt.InvalidOrder as e:
raise DependencyException(
f'Could not cancel order. Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_order(order_id: str) -> Dict:
if _CONF['dry_run']:
order = _DRY_RUN_OPEN_ORDERS[order_id]
@retrier
def get_order(self, order_id: str, pair: str) -> Dict:
if self._conf['dry_run']:
order = self._dry_run_open_orders[order_id]
order.update({
'id': order_id
})
return order
try:
return self._api.fetch_order(order_id, pair)
except ccxt.InvalidOrder as e:
raise DependencyException(
f'Could not get order. Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
return _API.get_order(order_id)
@retrier
def get_trades_for_order(self, order_id: str, pair: str, since: datetime) -> List:
if self._conf['dry_run']:
return []
if not self.exchange_has('fetchMyTrades'):
return []
try:
my_trades = self._api.fetch_my_trades(pair, since.timestamp())
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
return matched_trades
def get_pair_detail_url(pair: str) -> str:
return _API.get_pair_detail_url(pair)
except ccxt.NetworkError as e:
raise TemporaryError(
f'Could not get trades due to networking error. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_pair_detail_url(self, pair: str) -> str:
try:
url_base = self._api.urls.get('www')
base, quote = pair.split('/')
def get_markets() -> List[str]:
return _API.get_markets()
return url_base + _EXCHANGE_URLS[self._api.id].format(base=base, quote=quote)
except KeyError:
logger.warning('Could not get exchange url for %s', self.name)
return ""
@retrier
def get_markets(self) -> List[dict]:
try:
return self._api.fetch_markets()
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load markets due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_market_summaries() -> List[Dict]:
return _API.get_market_summaries()
@retrier
def get_fee(self, symbol='ETH/BTC', type='', side='', amount=1,
price=1, taker_or_maker='maker') -> float:
try:
# validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0:
self._api.load_markets()
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
price=price, takerOrMaker=taker_or_maker)['rate']
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def get_name() -> str:
return _API.name
def get_fee() -> float:
return _API.fee
def get_wallet_health() -> List[Dict]:
return _API.get_wallet_health()
def get_amount_lots(self, pair: str, amount: float) -> float:
"""
get buyable amount rounding, ..
"""
# validate that markets are loaded before trying to get fee
if not self._api.markets:
self._api.load_markets()
return self._api.amount_to_lots(pair, amount)

View File

@@ -1,211 +0,0 @@
import logging
from typing import Dict, List, Optional
from bittrex.bittrex import API_V1_1, API_V2_0
from bittrex.bittrex import Bittrex as _Bittrex
from requests.exceptions import ContentDecodingError
from freqtrade import OperationalException
from freqtrade.exchange.interface import Exchange
logger = logging.getLogger(__name__)
_API: _Bittrex = None
_API_V2: _Bittrex = None
_EXCHANGE_CONF: dict = {}
class Bittrex(Exchange):
"""
Bittrex API wrapper.
"""
# Base URL and API endpoints
BASE_URL: str = 'https://www.bittrex.com'
PAIR_DETAIL_METHOD: str = BASE_URL + '/Market/Index'
def __init__(self, config: dict) -> None:
global _API, _API_V2, _EXCHANGE_CONF
_EXCHANGE_CONF.update(config)
_API = _Bittrex(
api_key=_EXCHANGE_CONF['key'],
api_secret=_EXCHANGE_CONF['secret'],
calls_per_second=1,
api_version=API_V1_1,
)
_API_V2 = _Bittrex(
api_key=_EXCHANGE_CONF['key'],
api_secret=_EXCHANGE_CONF['secret'],
calls_per_second=1,
api_version=API_V2_0,
)
self.cached_ticker = {}
@staticmethod
def _validate_response(response) -> None:
"""
Validates the given bittrex response
and raises a ContentDecodingError if a non-fatal issue happened.
"""
temp_error_messages = [
'NO_API_RESPONSE',
'MIN_TRADE_REQUIREMENT_NOT_MET',
]
if response['message'] in temp_error_messages:
raise ContentDecodingError(response['message'])
@property
def fee(self) -> float:
# 0.25 %: See https://bittrex.com/fees
return 0.0025
def buy(self, pair: str, rate: float, amount: float) -> str:
data = _API.buy_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair}, {rate}, {amount})'.format(
message=data['message'],
pair=pair,
rate=rate,
amount=amount))
return data['result']['uuid']
def sell(self, pair: str, rate: float, amount: float) -> str:
data = _API.sell_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair}, {rate}, {amount})'.format(
message=data['message'],
pair=pair,
rate=rate,
amount=amount))
return data['result']['uuid']
def get_balance(self, currency: str) -> float:
data = _API.get_balance(currency)
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({currency})'.format(
message=data['message'],
currency=currency))
return float(data['result']['Balance'] or 0.0)
def get_balances(self):
data = _API.get_balances()
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message}'.format(message=data['message']))
return data['result']
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
if refresh or pair not in self.cached_ticker.keys():
data = _API.get_ticker(pair.replace('_', '-'))
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair})'.format(
message=data['message'],
pair=pair))
keys = ['Bid', 'Ask', 'Last']
if not data.get('result') or\
not all(key in data.get('result', {}) for key in keys) or\
not all(data.get('result', {})[key] is not None for key in keys):
raise ContentDecodingError('Invalid response from Bittrex params=({pair})'.format(
pair=pair))
# Update the pair
self.cached_ticker[pair] = {
'bid': float(data['result']['Bid']),
'ask': float(data['result']['Ask']),
'last': float(data['result']['Last']),
}
return self.cached_ticker[pair]
def get_ticker_history(self, pair: str, tick_interval: int) -> List[Dict]:
if tick_interval == 1:
interval = 'oneMin'
elif tick_interval == 5:
interval = 'fiveMin'
elif tick_interval == 30:
interval = 'thirtyMin'
elif tick_interval == 60:
interval = 'hour'
elif tick_interval == 1440:
interval = 'Day'
else:
raise ValueError('Unknown tick_interval: {}'.format(tick_interval))
data = _API_V2.get_candles(pair.replace('_', '-'), interval)
# These sanity check are necessary because bittrex cannot keep their API stable.
if not data.get('result'):
raise ContentDecodingError('Invalid response from Bittrex params=({pair})'.format(
pair=pair))
for prop in ['C', 'V', 'O', 'H', 'L', 'T']:
for tick in data['result']:
if prop not in tick.keys():
raise ContentDecodingError('Required property {} not present '
'in response params=({})'.format(prop, pair))
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({pair})'.format(
message=data['message'],
pair=pair))
return data['result']
def get_order(self, order_id: str) -> Dict:
data = _API.get_order(order_id)
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({order_id})'.format(
message=data['message'],
order_id=order_id))
data = data['result']
return {
'id': data['OrderUuid'],
'type': data['Type'],
'pair': data['Exchange'].replace('-', '_'),
'opened': data['Opened'],
'rate': data['PricePerUnit'],
'amount': data['Quantity'],
'remaining': data['QuantityRemaining'],
'closed': data['Closed'],
}
def cancel_order(self, order_id: str) -> None:
data = _API.cancel(order_id)
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException('{message} params=({order_id})'.format(
message=data['message'],
order_id=order_id))
def get_pair_detail_url(self, pair: str) -> str:
return self.PAIR_DETAIL_METHOD + '?MarketName={}'.format(pair.replace('_', '-'))
def get_markets(self) -> List[str]:
data = _API.get_markets()
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return [m['MarketName'].replace('-', '_') for m in data['result']]
def get_market_summaries(self) -> List[Dict]:
data = _API.get_market_summaries()
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return data['result']
def get_wallet_health(self) -> List[Dict]:
data = _API_V2.get_wallet_health()
if not data['success']:
Bittrex._validate_response(data)
raise OperationalException(data['message'])
return [{
'Currency': entry['Health']['Currency'],
'IsActive': entry['Health']['IsActive'],
'LastChecked': entry['Health']['LastChecked'],
'Notice': entry['Currency'].get('Notice'),
} for entry in data['result']]

View File

@@ -0,0 +1,33 @@
"""
Functions to analyze ticker data with indicators and produce buy and sell signals
"""
import logging
from pandas import DataFrame, to_datetime
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list) -> DataFrame:
"""
Analyses the trend for the given ticker history
:param ticker: See exchange.get_candle_history
:return: DataFrame
"""
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'max',
})
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
return frame

View File

@@ -1,172 +0,0 @@
from abc import ABC, abstractmethod
from typing import Dict, List, Optional
class Exchange(ABC):
@property
def name(self) -> str:
"""
Name of the exchange.
:return: str representation of the class name
"""
return self.__class__.__name__
@property
def fee(self) -> float:
"""
Fee for placing an order
:return: percentage in float
"""
@abstractmethod
def buy(self, pair: str, rate: float, amount: float) -> str:
"""
Places a limit buy order.
:param pair: Pair as str, format: BTC_ETH
:param rate: Rate limit for order
:param amount: The amount to purchase
:return: order_id of the placed buy order
"""
@abstractmethod
def sell(self, pair: str, rate: float, amount: float) -> str:
"""
Places a limit sell order.
:param pair: Pair as str, format: BTC_ETH
:param rate: Rate limit for order
:param amount: The amount to sell
:return: order_id of the placed sell order
"""
@abstractmethod
def get_balance(self, currency: str) -> float:
"""
Gets account balance.
:param currency: Currency as str, format: BTC
:return: float
"""
@abstractmethod
def get_balances(self) -> List[dict]:
"""
Gets account balances across currencies
:return: List of dicts, format: [
{
'Currency': str,
'Balance': float,
'Available': float,
'Pending': float,
}
...
]
"""
@abstractmethod
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
"""
Gets ticker for given pair.
:param pair: Pair as str, format: BTC_ETC
:param refresh: Shall we query a new value or a cached value is enough
:return: dict, format: {
'bid': float,
'ask': float,
'last': float
}
"""
@abstractmethod
def get_ticker_history(self, pair: str, tick_interval: int) -> List[Dict]:
"""
Gets ticker history for given pair.
:param pair: Pair as str, format: BTC_ETC
:param tick_interval: ticker interval in minutes
:return: list, format: [
{
'O': float, (Open)
'H': float, (High)
'L': float, (Low)
'C': float, (Close)
'V': float, (Volume)
'T': datetime, (Time)
'BV': float, (Base Volume)
},
...
]
"""
def get_order(self, order_id: str) -> Dict:
"""
Get order details for the given order_id.
:param order_id: ID as str
:return: dict, format: {
'id': str,
'type': str,
'pair': str,
'opened': str ISO 8601 datetime,
'closed': str ISO 8601 datetime,
'rate': float,
'amount': float,
'remaining': int
}
"""
@abstractmethod
def cancel_order(self, order_id: str) -> None:
"""
Cancels order for given order_id.
:param order_id: ID as str
:return: None
"""
@abstractmethod
def get_pair_detail_url(self, pair: str) -> str:
"""
Returns the market detail url for the given pair.
:param pair: Pair as str, format: BTC_ETC
:return: URL as str
"""
@abstractmethod
def get_markets(self) -> List[str]:
"""
Returns all available markets.
:return: List of all available pairs
"""
@abstractmethod
def get_market_summaries(self) -> List[Dict]:
"""
Returns a 24h market summary for all available markets
:return: list, format: [
{
'MarketName': str,
'High': float,
'Low': float,
'Volume': float,
'Last': float,
'TimeStamp': datetime,
'BaseVolume': float,
'Bid': float,
'Ask': float,
'OpenBuyOrders': int,
'OpenSellOrders': int,
'PrevDay': float,
'Created': datetime
},
...
]
"""
@abstractmethod
def get_wallet_health(self) -> List[Dict]:
"""
Returns a list of all wallet health information
:return: list, format: [
{
'Currency': str,
'IsActive': bool,
'LastChecked': str,
'Notice': str
},
...
"""

View File

@@ -5,9 +5,13 @@ e.g BTC to USD
import logging
import time
from typing import Dict, List
from coinmarketcap import Market
from freqtrade.constants import SUPPORTED_FIAT
logger = logging.getLogger(__name__)
@@ -32,7 +36,7 @@ class CryptoFiat(object):
self.price = 0.0
# Private attributes
self._expiration = 0
self._expiration = 0.0
self.crypto_symbol = crypto_symbol.upper()
self.fiat_symbol = fiat_symbol.upper()
@@ -63,21 +67,9 @@ class CryptoToFiatConverter(object):
This object is also a Singleton
"""
__instance = None
_coinmarketcap = None
_coinmarketcap: Market = None
# Constants
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD"
]
CRYPTOMAP = {
'BTC': 'bitcoin',
'ETH': 'ethereum',
'USDT': 'thether'
}
_cryptomap: Dict = {}
def __new__(cls):
if CryptoToFiatConverter.__instance is None:
@@ -89,7 +81,19 @@ class CryptoToFiatConverter(object):
return CryptoToFiatConverter.__instance
def __init__(self) -> None:
self._pairs = []
self._pairs: List[CryptoFiat] = []
self._load_cryptomap()
def _load_cryptomap(self) -> None:
try:
coinlistings = self._coinmarketcap.listings()
self._cryptomap = dict(map(lambda coin: (coin["symbol"], str(coin["id"])),
coinlistings["data"]))
except (BaseException) as exception:
logger.error(
"Could not load FIAT Cryptocurrency map for the following problem: %s",
type(exception).__name__
)
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
"""
@@ -99,6 +103,8 @@ class CryptoToFiatConverter(object):
:param fiat_symbol: fiat to convert to
:return: float, value in fiat of the crypto-currency amount
"""
if crypto_symbol == fiat_symbol:
return crypto_amount
price = self.get_price(crypto_symbol=crypto_symbol, fiat_symbol=fiat_symbol)
return float(crypto_amount) * float(price)
@@ -114,7 +120,7 @@ class CryptoToFiatConverter(object):
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
raise ValueError(f'The fiat {fiat_symbol} is not supported.')
# Get the pair that interest us and return the price in fiat
for pair in self._pairs:
@@ -166,7 +172,7 @@ class CryptoToFiatConverter(object):
fiat = fiat.upper()
return fiat in self.SUPPORTED_FIAT
return fiat in SUPPORTED_FIAT
def _find_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
@@ -177,17 +183,24 @@ class CryptoToFiatConverter(object):
"""
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
raise ValueError(f'The fiat {fiat_symbol} is not supported.')
# No need to convert if both crypto and fiat are the same
if crypto_symbol == fiat_symbol:
return 1.0
if crypto_symbol not in self._cryptomap:
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
return 0.0
if crypto_symbol not in self.CRYPTOMAP:
raise ValueError(
'The crypto symbol {} is not supported.'.format(crypto_symbol))
try:
return float(
self._coinmarketcap.ticker(
currency=self.CRYPTOMAP[crypto_symbol],
currency=self._cryptomap[crypto_symbol],
convert=fiat_symbol
)[0]['price_' + fiat_symbol.lower()]
)['data']['quotes'][fiat_symbol.upper()]['price']
)
except BaseException:
except BaseException as exception:
logger.error("Error in _find_price: %s", exception)
return 0.0

View File

@@ -3,27 +3,24 @@ Freqtrade is the main module of this bot. It contains the class Freqtrade()
"""
import copy
import json
import logging
import time
import traceback
from datetime import datetime
from typing import Dict, List, Optional, Any, Callable
from typing import Any, Callable, Dict, List, Optional
import arrow
import requests
from cachetools import cached, TTLCache
from cachetools import TTLCache, cached
from freqtrade import (
DependencyException, OperationalException, exchange, persistence, __version__
)
from freqtrade.analyze import Analyze
from freqtrade import constants
from freqtrade.fiat_convert import CryptoToFiatConverter
from freqtrade import (DependencyException, OperationalException,
TemporaryError, __version__, constants, persistence)
from freqtrade.exchange import Exchange
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc_manager import RPCManager
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.state import State
from freqtrade.strategy.interface import SellType
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
logger = logging.getLogger(__name__)
@@ -34,12 +31,11 @@ class FreqtradeBot(object):
This is from here the bot start its logic.
"""
def __init__(self, config: Dict[str, Any], db_url: Optional[str] = None):
def __init__(self, config: Dict[str, Any])-> None:
"""
Init all variables and object the bot need to work
:param config: configuration dict, you can use the Configuration.get_config()
method to get the config dict.
:param db_url: database connector string for sqlalchemy (Optional)
"""
logger.info(
@@ -52,27 +48,20 @@ class FreqtradeBot(object):
# Init objects
self.config = config
self.analyze = None
self.fiat_converter = None
self.rpc = None
self.strategy: IStrategy = StrategyResolver(self.config).strategy
self.rpc: RPCManager = RPCManager(self)
self.persistence = None
self.exchange = None
self.exchange = Exchange(self.config)
self._init_modules()
self._init_modules(db_url=db_url)
def _init_modules(self, db_url: Optional[str] = None) -> None:
def _init_modules(self) -> None:
"""
Initializes all modules and updates the config
:param db_url: database connector string for sqlalchemy (Optional)
:return: None
"""
# Initialize all modules
self.analyze = Analyze(self.config)
self.fiat_converter = CryptoToFiatConverter()
self.rpc = RPCManager(self)
persistence.init(self.config, db_url)
exchange.init(self.config)
persistence.init(self.config)
# Set initial application state
initial_state = self.config.get('initial_state')
@@ -82,19 +71,16 @@ class FreqtradeBot(object):
else:
self.state = State.STOPPED
def clean(self) -> bool:
def cleanup(self) -> None:
"""
Cleanup the application state und finish all pending tasks
Cleanup pending resources on an already stopped bot
:return: None
"""
self.rpc.send_msg('*Status:* `Stopping trader...`')
logger.info('Stopping trader and cleaning up modules...')
self.state = State.STOPPED
logger.info('Cleaning up modules ...')
self.rpc.cleanup()
persistence.cleanup()
return True
def worker(self, old_state: None) -> State:
def worker(self, old_state: State = None) -> State:
"""
Trading routine that must be run at each loop
:param old_state: the previous service state from the previous call
@@ -103,8 +89,13 @@ class FreqtradeBot(object):
# Log state transition
state = self.state
if state != old_state:
self.rpc.send_msg('*Status:* `{}`'.format(state.name.lower()))
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'{state.name.lower()}'
})
logger.info('Changing state to: %s', state.name)
if state == State.RUNNING:
self._startup_messages()
if state == State.STOPPED:
time.sleep(1)
@@ -121,6 +112,38 @@ class FreqtradeBot(object):
nb_assets=nb_assets)
return state
def _startup_messages(self) -> None:
if self.config.get('dry_run', False):
self.rpc.send_msg({
'type': RPCMessageType.WARNING_NOTIFICATION,
'status': 'Dry run is enabled. All trades are simulated.'
})
stake_currency = self.config['stake_currency']
stake_amount = self.config['stake_amount']
minimal_roi = self.config['minimal_roi']
ticker_interval = self.config['ticker_interval']
exchange_name = self.config['exchange']['name']
strategy_name = self.config.get('strategy', '')
self.rpc.send_msg({
'type': RPCMessageType.CUSTOM_NOTIFICATION,
'status': f'*Exchange:* `{exchange_name}`\n'
f'*Stake per trade:* `{stake_amount} {stake_currency}`\n'
f'*Minimum ROI:* `{minimal_roi}`\n'
f'*Ticker Interval:* `{ticker_interval}`\n'
f'*Strategy:* `{strategy_name}`'
})
if self.config.get('dynamic_whitelist', False):
top_pairs = 'top ' + str(self.config.get('dynamic_whitelist', 20))
specific_pairs = ''
else:
top_pairs = 'whitelisted'
specific_pairs = '\n' + ', '.join(self.config['exchange'].get('pair_whitelist', ''))
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Searching for {top_pairs} {stake_currency} pairs to buy and sell...'
f'{specific_pairs}'
})
def _throttle(self, func: Callable[..., Any], min_secs: float, *args, **kwargs) -> Any:
"""
Throttles the given callable that it
@@ -170,69 +193,78 @@ class FreqtradeBot(object):
if 'unfilledtimeout' in self.config:
# Check and handle any timed out open orders
self.check_handle_timedout(self.config['unfilledtimeout'])
self.check_handle_timedout()
Trade.session.flush()
except (requests.exceptions.RequestException, json.JSONDecodeError) as error:
except TemporaryError as error:
logger.warning('%s, retrying in 30 seconds...', error)
time.sleep(constants.RETRY_TIMEOUT)
except OperationalException:
self.rpc.send_msg(
'*Status:* OperationalException:\n```\n{traceback}```{hint}'
.format(
traceback=traceback.format_exc(),
hint='Issue `/start` if you think it is safe to restart.'
)
)
tb = traceback.format_exc()
hint = 'Issue `/start` if you think it is safe to restart.'
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'OperationalException:\n```\n{tb}```{hint}'
})
logger.exception('OperationalException. Stopping trader ...')
self.state = State.STOPPED
return state_changed
@cached(TTLCache(maxsize=1, ttl=1800))
def _gen_pair_whitelist(self, base_currency: str, key: str = 'BaseVolume') -> List[str]:
def _gen_pair_whitelist(self, base_currency: str, key: str = 'quoteVolume') -> List[str]:
"""
Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str
:param key: sort key (defaults to 'BaseVolume')
:param key: sort key (defaults to 'quoteVolume')
:return: List of pairs
"""
summaries = sorted(
(s for s in exchange.get_market_summaries() if
s['MarketName'].startswith(base_currency)),
key=lambda s: s.get(key) or 0.0,
reverse=True
if not self.exchange.exchange_has('fetchTickers'):
raise OperationalException(
'Exchange does not support dynamic whitelist.'
'Please edit your config and restart the bot'
)
return [s['MarketName'].replace('-', '_') for s in summaries]
tickers = self.exchange.get_tickers()
# check length so that we make sure that '/' is actually in the string
tickers = [v for k, v in tickers.items()
if len(k.split('/')) == 2 and k.split('/')[1] == base_currency]
sorted_tickers = sorted(tickers, reverse=True, key=lambda t: t[key])
pairs = [s['symbol'] for s in sorted_tickers]
return pairs
def _refresh_whitelist(self, whitelist: List[str]) -> List[str]:
"""
Check wallet health and remove pair from whitelist if necessary
Check available markets and remove pair from whitelist if necessary
:param whitelist: the sorted list (based on BaseVolume) of pairs the user might want to
trade
:return: the list of pairs the user wants to trade without the one unavailable or
black_listed
"""
sanitized_whitelist = whitelist
health = exchange.get_wallet_health()
markets = self.exchange.get_markets()
markets = [m for m in markets if m['quote'] == self.config['stake_currency']]
known_pairs = set()
for status in health:
pair = '{}_{}'.format(self.config['stake_currency'], status['Currency'])
for market in markets:
pair = market['symbol']
# pair is not int the generated dynamic market, or in the blacklist ... ignore it
if pair not in whitelist or pair in self.config['exchange'].get('pair_blacklist', []):
continue
# else the pair is valid
known_pairs.add(pair)
# Market is not active
if not status['IsActive']:
if not market['active']:
sanitized_whitelist.remove(pair)
logger.info(
'Ignoring %s from whitelist (reason: %s).',
pair, status.get('Notice') or 'wallet is not active'
'Ignoring %s from whitelist. Market is not active.',
pair
)
# We need to remove pairs that are unknown
final_list = [x for x in sanitized_whitelist if x in known_pairs]
return final_list
def get_target_bid(self, ticker: Dict[str, float]) -> float:
@@ -246,27 +278,80 @@ class FreqtradeBot(object):
balance = self.config['bid_strategy']['ask_last_balance']
return ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
def _get_trade_stake_amount(self) -> Optional[float]:
"""
Check if stake amount can be fulfilled with the available balance
for the stake currency
:return: float: Stake Amount
"""
stake_amount = self.config['stake_amount']
avaliable_amount = self.exchange.get_balance(self.config['stake_currency'])
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
open_trades = len(Trade.query.filter(Trade.is_open.is_(True)).all())
if open_trades >= self.config['max_open_trades']:
logger.warning('Can\'t open a new trade: max number of trades is reached')
return None
return avaliable_amount / (self.config['max_open_trades'] - open_trades)
# Check if stake_amount is fulfilled
if avaliable_amount < stake_amount:
raise DependencyException(
'Available balance(%f %s) is lower than stake amount(%f %s)' % (
avaliable_amount, self.config['stake_currency'],
stake_amount, self.config['stake_currency'])
)
return stake_amount
def _get_min_pair_stake_amount(self, pair: str, price: float) -> Optional[float]:
markets = self.exchange.get_markets()
markets = [m for m in markets if m['symbol'] == pair]
if not markets:
raise ValueError(f'Can\'t get market information for symbol {pair}')
market = markets[0]
if 'limits' not in market:
return None
min_stake_amounts = []
limits = market['limits']
if ('cost' in limits and 'min' in limits['cost']
and limits['cost']['min'] is not None):
min_stake_amounts.append(limits['cost']['min'])
if ('amount' in limits and 'min' in limits['amount']
and limits['amount']['min'] is not None):
min_stake_amounts.append(limits['amount']['min'] * price)
if not min_stake_amounts:
return None
amount_reserve_percent = 1 - 0.05 # reserve 5% + stoploss
if self.strategy.stoploss is not None:
amount_reserve_percent += self.strategy.stoploss
# it should not be more than 50%
amount_reserve_percent = max(amount_reserve_percent, 0.5)
return min(min_stake_amounts)/amount_reserve_percent
def create_trade(self) -> bool:
"""
Checks the implemented trading indicator(s) for a randomly picked pair,
if one pair triggers the buy_signal a new trade record gets created
:param stake_amount: amount of btc to spend
:param interval: Ticker interval used for Analyze
:return: True if a trade object has been created and persisted, False otherwise
"""
stake_amount = self.config['stake_amount']
interval = self.analyze.get_ticker_interval()
interval = self.strategy.ticker_interval
stake_amount = self._get_trade_stake_amount()
if not stake_amount:
return False
logger.info(
'Checking buy signals to create a new trade with stake_amount: %f ...',
stake_amount
)
whitelist = copy.deepcopy(self.config['exchange']['pair_whitelist'])
# Check if stake_amount is fulfilled
if exchange.get_balance(self.config['stake_currency']) < stake_amount:
raise DependencyException(
'stake amount is not fulfilled (currency={})'.format(self.config['stake_currency'])
)
# Remove currently opened and latest pairs from whitelist
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
@@ -277,51 +362,66 @@ class FreqtradeBot(object):
if not whitelist:
raise DependencyException('No currency pairs in whitelist')
# Pick pair based on StochRSI buy signals
# Pick pair based on buy signals
for _pair in whitelist:
(buy, sell) = self.analyze.get_signal(_pair, interval)
thistory = self.exchange.get_candle_history(_pair, interval)
(buy, sell) = self.strategy.get_signal(_pair, interval, thistory)
if buy and not sell:
pair = _pair
break
else:
return self.execute_buy(_pair, stake_amount)
return False
def execute_buy(self, pair: str, stake_amount: float) -> bool:
"""
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
:return: None
"""
pair_s = pair.replace('_', '/')
pair_url = self.exchange.get_pair_detail_url(pair)
stake_currency = self.config['stake_currency']
fiat_currency = self.config.get('fiat_display_currency', None)
# Calculate amount
buy_limit = self.get_target_bid(exchange.get_ticker(pair))
buy_limit = self.get_target_bid(self.exchange.get_ticker(pair))
min_stake_amount = self._get_min_pair_stake_amount(pair_s, buy_limit)
if min_stake_amount is not None and min_stake_amount > stake_amount:
logger.warning(
f'Can\'t open a new trade for {pair_s}: stake amount'
f' is too small ({stake_amount} < {min_stake_amount})'
)
return False
amount = stake_amount / buy_limit
order_id = exchange.buy(pair, buy_limit, amount)
order_id = self.exchange.buy(pair, buy_limit, amount)['id']
stake_amount_fiat = self.fiat_converter.convert_amount(
stake_amount,
self.config['stake_currency'],
self.config['fiat_display_currency']
)
# Create trade entity and return
self.rpc.send_msg(
'*{}:* Buying [{}]({}) with limit `{:.8f} ({:.6f} {}, {:.3f} {})` '
.format(
exchange.get_name().upper(),
pair.replace('_', '/'),
exchange.get_pair_detail_url(pair),
buy_limit,
stake_amount,
self.config['stake_currency'],
stake_amount_fiat,
self.config['fiat_display_currency']
)
)
self.rpc.send_msg({
'type': RPCMessageType.BUY_NOTIFICATION,
'exchange': self.exchange.name.capitalize(),
'pair': pair_s,
'market_url': pair_url,
'limit': buy_limit,
'stake_amount': stake_amount,
'stake_currency': stake_currency,
'fiat_currency': fiat_currency
})
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
trade = Trade(
pair=pair,
stake_amount=stake_amount,
amount=amount,
fee=exchange.get_fee(),
fee_open=fee,
fee_close=fee,
open_rate=buy_limit,
open_rate_requested=buy_limit,
open_date=datetime.utcnow(),
exchange=exchange.get_name().upper(),
open_order_id=order_id
exchange=self.exchange.id,
open_order_id=order_id,
strategy=self.strategy.get_strategy_name(),
ticker_interval=constants.TICKER_INTERVAL_MINUTES[self.config['ticker_interval']]
)
Trade.session.add(trade)
Trade.session.flush()
@@ -348,65 +448,137 @@ class FreqtradeBot(object):
Tries to execute a sell trade
:return: True if executed
"""
try:
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Found open order for %s', trade)
trade.update(exchange.get_order(trade.open_order_id))
order = self.exchange.get_order(trade.open_order_id, trade.pair)
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
if order['amount'] != new_amount:
order['amount'] = new_amount
# Fee was applied, so set to 0
trade.fee_open = 0
except OperationalException as exception:
logger.warning("could not update trade amount: %s", exception)
trade.update(order)
if trade.is_open and trade.open_order_id is None:
# Check if we can sell our current pair
return self.handle_trade(trade)
except DependencyException as exception:
logger.warning('Unable to sell trade: %s', exception)
return False
def get_real_amount(self, trade: Trade, order: Dict) -> float:
"""
Get real amount for the trade
Necessary for self.exchanges which charge fees in base currency (e.g. binance)
"""
order_amount = order['amount']
# Only run for closed orders
if trade.fee_open == 0 or order['status'] == 'open':
return order_amount
# use fee from order-dict if possible
if 'fee' in order and order['fee'] and (order['fee'].keys() >= {'currency', 'cost'}):
if trade.pair.startswith(order['fee']['currency']):
new_amount = order_amount - order['fee']['cost']
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
trade, order['amount'], new_amount)
return new_amount
# Fallback to Trades
trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
trade.open_date)
if len(trades) == 0:
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
return order_amount
amount = 0
fee_abs = 0
for exectrade in trades:
amount += exectrade['amount']
if "fee" in exectrade and (exectrade['fee'].keys() >= {'currency', 'cost'}):
# only applies if fee is in quote currency!
if trade.pair.startswith(exectrade['fee']['currency']):
fee_abs += exectrade['fee']['cost']
if amount != order_amount:
logger.warning(f"amount {amount} does not match amount {trade.amount}")
raise OperationalException("Half bought? Amounts don't match")
real_amount = amount - fee_abs
if fee_abs != 0:
logger.info(f"""Applying fee on amount for {trade} \
(from {order_amount} to {real_amount}) from Trades""")
return real_amount
def handle_trade(self, trade: Trade) -> bool:
"""
Sells the current pair if the threshold is reached and updates the trade record.
:return: True if trade has been sold, False otherwise
"""
if not trade.is_open:
raise ValueError('attempt to handle closed trade: {}'.format(trade))
raise ValueError(f'attempt to handle closed trade: {trade}')
logger.debug('Handling %s ...', trade)
current_rate = exchange.get_ticker(trade.pair)['bid']
current_rate = self.exchange.get_ticker(trade.pair)['bid']
(buy, sell) = (False, False)
experimental = self.config.get('experimental', {})
if experimental.get('use_sell_signal') or experimental.get('ignore_roi_if_buy_signal'):
ticker = self.exchange.get_candle_history(trade.pair, self.strategy.ticker_interval)
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.ticker_interval,
ticker)
if self.config.get('experimental', {}).get('use_sell_signal'):
(buy, sell) = self.analyze.get_signal(trade.pair, self.analyze.get_ticker_interval())
if self.analyze.should_sell(trade, current_rate, datetime.utcnow(), buy, sell):
self.execute_sell(trade, current_rate)
should_sell = self.strategy.should_sell(trade, current_rate, datetime.utcnow(), buy, sell)
if should_sell.sell_flag:
self.execute_sell(trade, current_rate, should_sell.sell_type)
return True
logger.info('Found no sell signals for whitelisted currencies. Trying again..')
return False
def check_handle_timedout(self, timeoutvalue: int) -> None:
def check_handle_timedout(self) -> None:
"""
Check if any orders are timed out and cancel if neccessary
:param timeoutvalue: Number of minutes until order is considered timed out
:return: None
"""
timeoutthreashold = arrow.utcnow().shift(minutes=-timeoutvalue).datetime
buy_timeout = self.config['unfilledtimeout']['buy']
sell_timeout = self.config['unfilledtimeout']['sell']
buy_timeoutthreashold = arrow.utcnow().shift(minutes=-buy_timeout).datetime
sell_timeoutthreashold = arrow.utcnow().shift(minutes=-sell_timeout).datetime
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
try:
order = exchange.get_order(trade.open_order_id)
# FIXME: Somehow the query above returns results
# where the open_order_id is in fact None.
# This is probably because the record got
# updated via /forcesell in a different thread.
if not trade.open_order_id:
continue
order = self.exchange.get_order(trade.open_order_id, trade.pair)
except requests.exceptions.RequestException:
logger.info(
'Cannot query order for %s due to %s',
trade,
traceback.format_exc())
continue
ordertime = arrow.get(order['opened'])
ordertime = arrow.get(order['datetime']).datetime
# Check if trade is still actually open
if int(order['remaining']) == 0:
continue
if order['type'] == "LIMIT_BUY" and ordertime < timeoutthreashold:
# Check if trade is still actually open
if order['status'] == 'open':
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
self.handle_timedout_limit_buy(trade, order)
elif order['type'] == "LIMIT_SELL" and ordertime < timeoutthreashold:
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
self.handle_timedout_limit_sell(trade, order)
# FIX: 20180110, why is cancel.order unconditionally here, whereas
@@ -416,16 +588,17 @@ class FreqtradeBot(object):
"""Buy timeout - cancel order
:return: True if order was fully cancelled
"""
exchange.cancel_order(trade.open_order_id)
pair_s = trade.pair.replace('_', '/')
self.exchange.cancel_order(trade.open_order_id, trade.pair)
if order['remaining'] == order['amount']:
# if trade is not partially completed, just delete the trade
Trade.session.delete(trade)
# FIX? do we really need to flush, caller of
# check_handle_timedout will flush afterwards
Trade.session.flush()
logger.info('Buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Unfilled buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled buy order for {pair_s} cancelled due to timeout'
})
return True
# if trade is partially complete, edit the stake details for the trade
@@ -434,8 +607,10 @@ class FreqtradeBot(object):
trade.stake_amount = trade.amount * trade.open_rate
trade.open_order_id = None
logger.info('Partial buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Remaining buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Remaining buy order for {pair_s} cancelled due to timeout'
})
return False
# FIX: 20180110, should cancel_order() be cond. or unconditionally called?
@@ -444,83 +619,68 @@ class FreqtradeBot(object):
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
"""
pair_s = trade.pair.replace('_', '/')
if order['remaining'] == order['amount']:
# if trade is not partially completed, just cancel the trade
exchange.cancel_order(trade.open_order_id)
self.exchange.cancel_order(trade.open_order_id, trade.pair)
trade.close_rate = None
trade.close_profit = None
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
self.rpc.send_msg('*Timeout:* Unfilled sell order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled sell order for {pair_s} cancelled due to timeout'
})
logger.info('Sell order timeout for %s.', trade)
return True
# TODO: figure out how to handle partially complete sell orders
return False
def execute_sell(self, trade: Trade, limit: float) -> None:
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None:
"""
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
:param sellreason: Reason the sell was triggered
:return: None
"""
# Execute sell and update trade record
order_id = exchange.sell(str(trade.pair), limit, trade.amount)
order_id = self.exchange.sell(str(trade.pair), limit, trade.amount)['id']
trade.open_order_id = order_id
trade.close_rate_requested = limit
trade.sell_reason = sell_reason.value
fmt_exp_profit = round(trade.calc_profit_percent(rate=limit) * 100, 2)
profit_trade = trade.calc_profit(rate=limit)
current_rate = exchange.get_ticker(trade.pair, False)['bid']
profit = trade.calc_profit_percent(current_rate)
current_rate = self.exchange.get_ticker(trade.pair)['bid']
profit_percent = trade.calc_profit_percent(limit)
pair_url = self.exchange.get_pair_detail_url(trade.pair)
gain = "profit" if profit_percent > 0 else "loss"
message = "*{exchange}:* Selling\n" \
"*Current Pair:* [{pair}]({pair_url})\n" \
"*Limit:* `{limit}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Profit:* `{profit:.2f}%`" \
"".format(
exchange=trade.exchange,
pair=trade.pair,
pair_url=exchange.get_pair_detail_url(trade.pair),
limit=limit,
open_rate=trade.open_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
profit=round(profit * 100, 2),
)
msg = {
'type': RPCMessageType.SELL_NOTIFICATION,
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'gain': gain,
'market_url': pair_url,
'limit': limit,
'amount': trade.amount,
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_percent': profit_percent,
}
# For regular case, when the configuration exists
if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
fiat_converter = CryptoToFiatConverter()
profit_fiat = fiat_converter.convert_amount(
profit_trade,
self.config['stake_currency'],
self.config['fiat_display_currency']
)
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f} {coin}`' \
'` / {profit_fiat:.3f} {fiat})`' \
''.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade,
coin=self.config['stake_currency'],
profit_fiat=profit_fiat,
fiat=self.config['fiat_display_currency'],
)
# Because telegram._forcesell does not have the configuration
# Ignore the FIAT value and does not show the stake_currency as well
else:
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f})`'.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade
)
stake_currency = self.config['stake_currency']
fiat_currency = self.config['fiat_display_currency']
msg.update({
'stake_currency': stake_currency,
'fiat_currency': fiat_currency,
})
# Send the message
self.rpc.send_msg(message)
self.rpc.send_msg(msg)
Trade.session.flush()

View File

@@ -1,4 +1,4 @@
from math import exp, pi, sqrt, cos
from math import cos, exp, pi, sqrt
import numpy as np
import talib as ta
@@ -13,7 +13,7 @@ def went_down(series: Series) -> bool:
return series < series.shift(1)
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> type(Series):
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> Series:
magic = pi * sqrt(2) / smoothing
a1 = exp(-magic)
coeff2 = 2 * a1 * cos(magic)

View File

@@ -5,11 +5,15 @@ Read the documentation to know what cli arguments you need.
"""
import logging
import sys
from argparse import Namespace
from typing import List
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.configuration import Configuration, set_loggers
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.state import State
from freqtrade.rpc import RPCMessageType
logger = logging.getLogger('freqtrade')
@@ -43,25 +47,41 @@ def main(sysargv: List[str]) -> None:
state = None
while 1:
state = freqtrade.worker(old_state=state)
if state == State.RELOAD_CONF:
freqtrade = reconfigure(freqtrade, args)
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
return_code = 0
except OperationalException as e:
logger.error(str(e))
return_code = 2
except BaseException:
logger.exception('Fatal exception!')
finally:
if freqtrade:
freqtrade.clean()
freqtrade.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': 'process died'
})
freqtrade.cleanup()
sys.exit(return_code)
def set_loggers() -> None:
def reconfigure(freqtrade: FreqtradeBot, args: Namespace) -> FreqtradeBot:
"""
Set the logger level for Third party libs
:return: None
Cleans up current instance, reloads the configuration and returns the new instance
"""
logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)
# Clean up current modules
freqtrade.cleanup()
# Create new instance
freqtrade = FreqtradeBot(Configuration(args).get_config())
freqtrade.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': 'config reloaded'
})
return freqtrade
if __name__ == '__main__':

View File

@@ -2,6 +2,7 @@
Various tool function for Freqtrade and scripts
"""
import gzip
import json
import logging
import re
@@ -63,12 +64,28 @@ def common_datearray(dfs: Dict[str, DataFrame]) -> np.ndarray:
return np.sort(arr, axis=0)
def file_dump_json(filename, data) -> None:
def file_dump_json(filename, data, is_zip=False) -> None:
"""
Dump JSON data into a file
:param filename: file to create
:param data: JSON Data to save
:return:
"""
print(f'dumping json to "{filename}"')
if is_zip:
if not filename.endswith('.gz'):
filename = filename + '.gz'
with gzip.open(filename, 'w') as fp:
json.dump(data, fp, default=str)
else:
with open(filename, 'w') as fp:
json.dump(data, fp, default=str)
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.
: epoch-string in ms
"""
return datetime.fromtimestamp(date/1000.0).strftime('%Y-%m-%dT%H:%M:%S')

View File

@@ -4,40 +4,58 @@ import gzip
import json
import logging
import os
from typing import Optional, List, Dict, Tuple
from typing import Optional, List, Dict, Tuple, Any
import arrow
from freqtrade import misc
from freqtrade.exchange import get_ticker_history
from user_data.hyperopt_conf import hyperopt_optimize_conf
from freqtrade import misc, constants, OperationalException
from freqtrade.exchange import Exchange
from freqtrade.arguments import TimeRange
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: Tuple[Tuple, int, int]) -> List[Dict]:
stype, start, stop = timerange
if stype == (None, 'line'):
return tickerlist[stop:]
elif stype == ('line', None):
return tickerlist[0:start]
elif stype == ('index', 'index'):
return tickerlist[start:stop]
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
if not tickerlist:
return tickerlist
start_index = 0
stop_index = len(tickerlist)
if timerange.starttype == 'line':
stop_index = timerange.startts
if timerange.starttype == 'index':
start_index = timerange.startts
elif timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if timerange.stoptype == 'line':
start_index = len(tickerlist) + timerange.stopts
if timerange.stoptype == 'index':
stop_index = timerange.stopts
elif timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
def load_tickerdata_file(
datadir: str, pair: str,
ticker_interval: int,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Optional[List[Dict]]:
ticker_interval: str,
timerange: Optional[TimeRange] = None) -> Optional[List[Dict]]:
"""
Load a pair from file,
:return dict OR empty if unsuccesful
"""
path = make_testdata_path(datadir)
file = os.path.join(path, '{pair}-{ticker_interval}.json'.format(
pair=pair,
ticker_interval=ticker_interval,
))
pair_s = pair.replace('/', '_')
file = os.path.join(path, f'{pair_s}-{ticker_interval}.json')
gzipfile = file + '.gz'
# If the file does not exist we download it when None is returned.
@@ -58,31 +76,38 @@ def load_tickerdata_file(
return pairdata
def load_data(datadir: str, ticker_interval: int,
pairs: Optional[List[str]] = None,
def load_data(datadir: str,
ticker_interval: str,
pairs: List[str],
refresh_pairs: Optional[bool] = False,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Dict[str, List]:
exchange: Optional[Exchange] = None,
timerange: TimeRange = TimeRange(None, None, 0, 0)) -> Dict[str, List]:
"""
Loads ticker history data for the given parameters
:return: dict
"""
result = {}
_pairs = pairs or hyperopt_optimize_conf()['exchange']['pair_whitelist']
# If the user force the refresh of pairs
if refresh_pairs:
logger.info('Download data for all pairs and store them in %s', datadir)
download_pairs(datadir, _pairs, ticker_interval)
if not exchange:
raise OperationalException("Exchange needs to be initialized when "
"calling load_data with refresh_pairs=True")
download_pairs(datadir, exchange, pairs, ticker_interval, timerange=timerange)
for pair in _pairs:
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
if not pairdata:
# download the tickerdata from exchange
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
# and retry reading the pair
for pair in pairs:
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
if pairdata:
result[pair] = pairdata
else:
logger.warning(
'No data for pair: "%s", Interval: %s. '
'Use --refresh-pairs-cached to download the data',
pair,
ticker_interval
)
return result
@@ -95,14 +120,20 @@ def make_testdata_path(datadir: str) -> str:
)
def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
def download_pairs(datadir, exchange: Exchange, pairs: List[str],
ticker_interval: str,
timerange: TimeRange = TimeRange(None, None, 0, 0)) -> bool:
"""For each pairs passed in parameters, download the ticker intervals"""
for pair in pairs:
try:
download_backtesting_testdata(datadir, pair=pair, interval=ticker_interval)
download_backtesting_testdata(datadir,
exchange=exchange,
pair=pair,
tick_interval=ticker_interval,
timerange=timerange)
except BaseException:
logger.info(
'Failed to download the pair: "%s", Interval: %s min',
'Failed to download the pair: "%s", Interval: %s',
pair,
ticker_interval
)
@@ -110,39 +141,89 @@ def download_pairs(datadir, pairs: List[str], ticker_interval: int) -> bool:
return True
# FIX: 20180110, suggest rename interval to tick_interval
def download_backtesting_testdata(datadir: str, pair: str, interval: int = 5) -> None:
def load_cached_data_for_updating(filename: str,
tick_interval: str,
timerange: Optional[TimeRange]) -> Tuple[
List[Any],
Optional[int]]:
"""
Download the latest 1 and 5 ticker intervals from Bittrex for the pairs passed in parameters
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
Load cached data and choose what part of the data should be updated
"""
path = make_testdata_path(datadir)
logger.info(
'Download the pair: "%s", Interval: %s min', pair, interval
)
since_ms = None
filename = os.path.join(path, '{pair}-{interval}.json'.format(
pair=pair.replace("-", "_"),
interval=interval,
))
# user sets timerange, so find the start time
if timerange:
if timerange.starttype == 'date':
since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * constants.TICKER_INTERVAL_MINUTES[tick_interval]
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file
if os.path.isfile(filename):
with open(filename, "rt") as file:
data = json.load(file)
# remove the last item, because we are not sure if it is correct
# it could be fetched when the candle was incompleted
if data:
data.pop()
else:
data = []
logger.debug('Current Start: %s', data[1]['T'] if data else None)
logger.debug('Current End: %s', data[-1:][0]['T'] if data else None)
if data:
if since_ms and since_ms < data[0][0]:
# the data is requested for earlier period than the cache has
# so fully redownload all the data
data = []
else:
# a part of the data was already downloaded, so
# download unexist data only
since_ms = data[-1][0] + 1
# Extend data with new ticker history
data.extend([
row for row in get_ticker_history(pair=pair, tick_interval=int(interval))
if row not in data
])
return (data, since_ms)
def download_backtesting_testdata(datadir: str,
exchange: Exchange,
pair: str,
tick_interval: str = '5m',
timerange: Optional[TimeRange] = None) -> None:
"""
Download the latest ticker intervals from the exchange for the pairs passed in parameters
The data is downloaded starting from the last correct ticker interval data that
esists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pairs: list of pairs to download
:param tick_interval: ticker interval
:param timerange: range of time to download
:return: None
"""
path = make_testdata_path(datadir)
filepair = pair.replace("/", "_")
filename = os.path.join(path, f'{filepair}-{tick_interval}.json')
logger.info(
'Download the pair: "%s", Interval: %s',
pair,
tick_interval
)
data, since_ms = load_cached_data_for_updating(filename, tick_interval, timerange)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
new_data = exchange.get_candle_history(pair=pair, tick_interval=tick_interval,
since_ms=since_ms)
data.extend(new_data)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
data = sorted(data, key=lambda _data: _data['T'])
logger.debug('New Start: %s', data[1]['T'])
logger.debug('New End: %s', data[-1:][0]['T'])
misc.file_dump_json(filename, data)

View File

@@ -6,25 +6,46 @@ This module contains the backtesting logic
import logging
import operator
from argparse import Namespace
from typing import Dict, Tuple, Any, List, Optional
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
from pandas import DataFrame
from tabulate import tabulate
import freqtrade.optimize as optimize
from freqtrade import exchange
from freqtrade.analyze import Analyze
from freqtrade import DependencyException, constants
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.exchange import Bittrex
from freqtrade.exchange import Exchange
from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
from freqtrade.strategy.interface import SellType
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
logger = logging.getLogger(__name__)
class BacktestResult(NamedTuple):
"""
NamedTuple Defining BacktestResults inputs.
"""
pair: str
profit_percent: float
profit_abs: float
open_time: datetime
close_time: datetime
open_index: int
close_index: int
trade_duration: float
open_at_end: bool
open_rate: float
close_rate: float
sell_reason: SellType
class Backtesting(object):
"""
Backtesting class, this class contains all the logic to run a backtest
@@ -33,26 +54,45 @@ class Backtesting(object):
backtesting = Backtesting(config)
backtesting.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.analyze = None
self.ticker_interval = None
self.tickerdata_to_dataframe = None
self.populate_buy_trend = None
self.populate_sell_trend = None
self._init()
def _init(self) -> None:
# Reset keys for backtesting
self.config['exchange']['key'] = ''
self.config['exchange']['secret'] = ''
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['dry_run'] = True
self.strategylist: List[IStrategy] = []
if self.config.get('strategy_list', None):
# Force one interval
self.ticker_interval = str(self.config.get('ticker_interval'))
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy)
else:
# only one strategy
strat = StrategyResolver(self.config).strategy
self.strategylist.append(StrategyResolver(self.config).strategy)
# Load one strategy
self._set_strategy(self.strategylist[0])
self.exchange = Exchange(self.config)
self.fee = self.exchange.get_fee()
def _set_strategy(self, strategy):
"""
Init objects required for backtesting
:return: None
Load strategy into backtesting
"""
self.analyze = Analyze(self.config)
self.ticker_interval = self.analyze.strategy.ticker_interval
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
self.populate_buy_trend = self.analyze.populate_buy_trend
self.populate_sell_trend = self.analyze.populate_sell_trend
exchange._API = Bittrex({'key': '', 'secret': ''})
self.strategy = strategy
self.ticker_interval = self.config.get('ticker_interval')
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
self.advise_buy = strategy.advise_buy
self.advise_sell = strategy.advise_sell
@staticmethod
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
@@ -62,7 +102,7 @@ class Backtesting(object):
:return: tuple containing min_date, max_date
"""
timeframe = [
(arrow.get(min(frame.date)), arrow.get(max(frame.date)))
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
@@ -73,22 +113,24 @@ class Backtesting(object):
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
stake_currency = self.config.get('stake_currency')
stake_currency = str(self.config.get('stake_currency'))
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %',
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.currency == pair]
result = results[results.pair == pair]
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_BTC.sum(),
result.duration.mean(),
len(result[result.profit_BTC > 0]),
len(result[result.profit_BTC < 0])
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total
@@ -96,25 +138,79 @@ class Backtesting(object):
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.duration.mean(),
len(results[results.profit_BTC > 0]),
len(results[results.profit_BTC < 0])
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generate small table outlining Backtest results
"""
tabular_data = []
headers = ['Sell Reason', 'Count']
for reason, count in results['sell_reason'].value_counts().iteritems():
tabular_data.append([reason.value, count])
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def _generate_text_table_strategy(self, all_results: dict) -> str:
"""
Generate summary table per strategy
"""
stake_currency = str(self.config.get('stake_currency'))
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
strategyname: Optional[str] = None) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
for index, t in results.iterrows()]
if records:
if strategyname:
# Inject strategyname to filename
recname = Path(recordfilename)
recordfilename = str(Path.joinpath(
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[Tuple]:
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(
open_rate=buy_row.close,
open_rate=buy_row.open,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / buy_row.open,
fee=exchange.get_fee()
fee_open=self.fee,
fee_close=self.fee
)
# calculate win/lose forwards from buy point
@@ -124,17 +220,44 @@ class Backtesting(object):
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
buy_signal = sell_row.buy
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
sell_row.sell):
return \
sell_row, \
(
pair,
trade.calc_profit_percent(rate=sell_row.close),
trade.calc_profit(rate=sell_row.close),
(sell_row.date - buy_row.date).seconds // 60
), \
sell_row.date
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
sell_row.sell)
if sell.sell_flag:
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=int((
sell_row.date - buy_row.date).total_seconds() // 60),
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=False,
open_rate=buy_row.open,
close_rate=sell_row.open,
sell_reason=sell.sell_type
)
if partial_ticker:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
btr = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=int((
sell_row.date - buy_row.date).total_seconds() // 60),
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=True,
open_rate=buy_row.open,
close_rate=sell_row.open,
sell_reason=SellType.FORCE_SELL
)
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
btr.profit_percent, btr.profit_abs)
return btr
return None
def backtest(self, args: Dict) -> DataFrame:
@@ -149,23 +272,29 @@ class Backtesting(object):
stake_amount: btc amount to use for each trade
processed: a processed dictionary with format {pair, data}
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
realistic: do we try to simulate realistic trades? (default: True)
sell_profit_only: sell if profit only
use_sell_signal: act on sell-signal
position_stacking: do we allow position stacking? (default: False)
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', False)
record = args.get('record', None)
records = []
position_stacking = args.get('position_stacking', False)
trades = []
trade_count_lock = {}
trade_count_lock: Dict = {}
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(self.populate_buy_trend(pair_data))[headers]
ticker_data = self.advise_sell(
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
ticker_data.drop(ticker_data.head(1).index, inplace=True)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
@@ -173,7 +302,7 @@ class Backtesting(object):
if row.buy == 0 or row.sell == 1:
continue # skip rows where no buy signal or that would immediately sell off
if realistic:
if not position_stacking:
if lock_pair_until is not None and row.date <= lock_pair_until:
continue
if max_open_trades > 0:
@@ -183,28 +312,18 @@ class Backtesting(object):
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
ret = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_count_lock, args)
if ret:
row2, trade_entry, next_date = ret
lock_pair_until = next_date
if trade_entry:
lock_pair_until = trade_entry.close_time
trades.append(trade_entry)
if record:
# Note, need to be json.dump friendly
# record a tuple of pair, current_profit_percent,
# entry-date, duration
records.append((pair, trade_entry[1],
row.date.strftime('%s'),
row2.date.strftime('%s'),
index, trade_entry[3]))
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:
logger.info('Dumping backtest results')
file_dump_json('backtest-result.json', records)
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
return DataFrame.from_records(trades, columns=labels)
else:
# Set lock_pair_until to end of testing period if trade could not be closed
# This happens only if the buy-signal was with the last candle
lock_pair_until = ticker_data.iloc[-1].date
return DataFrame.from_records(trades, columns=BacktestResult._fields)
def start(self) -> None:
"""
@@ -219,26 +338,37 @@ class Backtesting(object):
if self.config.get('live'):
logger.info('Downloading data for all pairs in whitelist ...')
for pair in pairs:
data[pair] = exchange.get_ticker_history(pair, self.ticker_interval)
data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval)
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
timerange = Arguments.parse_timerange(self.config.get('timerange'))
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = optimize.load_data(
self.config['datadir'],
pairs=pairs,
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
# Ignore max_open_trades in backtesting, except realistic flag was passed
if self.config.get('realistic_simulation', False):
if not data:
logger.critical("No data found. Terminating.")
return
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
max_open_trades = self.config['max_open_trades']
else:
logger.info('Ignoring max_open_trades (realistic_simulation not set) ...')
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0
all_results = {}
for strat in self.strategylist:
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
self._set_strategy(strat)
# need to reprocess data every time to populate signals
preprocessed = self.tickerdata_to_dataframe(data)
# Print timeframe
@@ -251,29 +381,36 @@ class Backtesting(object):
)
# Execute backtest and print results
sell_profit_only = self.config.get('experimental', {}).get('sell_profit_only', False)
use_sell_signal = self.config.get('experimental', {}).get('use_sell_signal', False)
results = self.backtest(
all_results[self.strategy.get_strategy_name()] = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'realistic': self.config.get('realistic_simulation', False),
'sell_profit_only': sell_profit_only,
'use_sell_signal': use_sell_signal,
'record': self.config.get('export')
'position_stacking': self.config.get('position_stacking', False),
}
)
logger.info(
'\n==================================== '
'BACKTESTING REPORT'
' ====================================\n'
'%s',
self._generate_text_table(
data,
results
)
)
for strategy, results in all_results.items():
if self.config.get('export', False):
self._store_backtest_result(self.config['exportfilename'], results,
strategy if len(self.strategylist) > 1 else None)
print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(119, '='))
print(self._generate_text_table(data, results))
print(' SELL REASON STATS '.center(119, '='))
print(self._generate_text_table_sell_reason(data, results))
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
print(self._generate_text_table(data, results.loc[results.open_at_end]))
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' Strategy Summary '.center(119, '='))
print(self._generate_text_table_strategy(all_results))
print('\nFor more details, please look at the detail tables above')
def setup_configuration(args: Namespace) -> Dict[str, Any]:
@@ -289,6 +426,10 @@ def setup_configuration(args: Namespace) -> Dict[str, Any]:
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config

View File

@@ -4,34 +4,33 @@
This module contains the hyperopt logic
"""
import json
import logging
import multiprocessing
import os
import pickle
import signal
import sys
from argparse import Namespace
from functools import reduce
from math import exp
from operator import itemgetter
from typing import Dict, Any, Callable
from typing import Any, Callable, Dict, List
import numpy
import talib.abstract as ta
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
from hyperopt.mongoexp import MongoTrials
from pandas import DataFrame
from sklearn.externals.joblib import Parallel, delayed, dump, load
from skopt import Optimizer
from skopt.space import Categorical, Dimension, Integer, Real
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.optimize import load_data
from freqtrade.optimize.backtesting import Backtesting
from user_data.hyperopt_conf import hyperopt_optimize_conf
logger = logging.getLogger(__name__)
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
class Hyperopt(Backtesting):
"""
@@ -42,13 +41,11 @@ class Hyperopt(Backtesting):
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
# set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
self.target_trades = 600
self.total_tries = config.get('epochs', 0)
self.current_tries = 0
self.current_best_loss = 100
# max average trade duration in minutes
@@ -60,130 +57,38 @@ class Hyperopt(Backtesting):
# check that the reported Σ% values do not exceed this!
self.expected_max_profit = 3.0
# Configuration and data used by hyperopt
self.processed = None
# Previous evaluations
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
self.trials: List = []
# Hyperopt Trials
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
self.trials = Trials()
def get_args(self, params):
dimensions = self.hyperopt_space()
# Ensure the number of dimensions match
# the number of parameters in the list x.
if len(params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. '
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
return arg_dict
@staticmethod
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['adx'] = ta.ADX(dataframe)
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['roc'] = ta.ROC(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabolic
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
return dataframe
@@ -191,15 +96,16 @@ class Hyperopt(Backtesting):
"""
Save hyperopt trials to file
"""
logger.info('Saving Trials to \'%s\'', self.trials_file)
pickle.dump(self.trials, open(self.trials_file, 'wb'))
if self.trials:
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
dump(self.trials, self.trials_file)
def read_trials(self) -> Trials:
def read_trials(self) -> List:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = pickle.load(open(self.trials_file, 'rb'))
trials = load(self.trials_file)
os.remove(self.trials_file)
return trials
@@ -207,22 +113,27 @@ class Hyperopt(Backtesting):
"""
Display Best hyperopt result
"""
vals = json.dumps(self.trials.best_trial['misc']['vals'], indent=4)
results = self.trials.best_trial['result']['result']
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
logger.info(
'Best result:\n%s\nwith values:\n%s',
best_result['result'],
best_result['params']
)
if 'roi_t1' in best_result['params']:
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
if results['loss'] < self.current_best_loss:
current = results['current_tries']
total = results['total_tries']
res = results['result']
loss = results['loss']
self.current_best_loss = results['loss']
log_msg = '\n{:5d}/{}: {}. Loss {:.5f}'.format(
results['current_tries'],
results['total_tries'],
results['result'],
results['loss']
)
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
print(log_msg)
else:
print('.', end='')
@@ -235,7 +146,8 @@ class Hyperopt(Backtesting):
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
return trade_loss + profit_loss + duration_loss
result = trade_loss + profit_loss + duration_loss
return result
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
@@ -251,87 +163,44 @@ class Hyperopt(Backtesting):
return roi_table
@staticmethod
def roi_space() -> Dict[str, Any]:
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
"""
return {
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
}
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> Dict[str, Any]:
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Stoploss search space
"""
return {
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
}
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
def indicator_space() -> Dict[str, Any]:
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return {
'macd_below_zero': hp.choice('macd_below_zero', [
{'enabled': False},
{'enabled': True}
]),
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 10, 25, 5)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 15, 45, 5)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 20, 50, 5)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 5)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'lower_bb_tema'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema3_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'ht_sine'},
{'type': 'heiken_reversal_bull'},
{'type': 'di_cross'},
]),
}
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
def has_space(self, space: str) -> bool:
"""
@@ -341,17 +210,17 @@ class Hyperopt(Backtesting):
return True
return False
def hyperopt_space(self) -> Dict[str, Any]:
def hyperopt_space(self) -> List[Dimension]:
"""
Return the space to use during Hyperopt
"""
spaces = {}
spaces: List[Dimension] = []
if self.has_space('buy'):
spaces = {**spaces, **Hyperopt.indicator_space()}
spaces += Hyperopt.indicator_space()
if self.has_space('roi'):
spaces = {**spaces, **Hyperopt.roi_space()}
spaces += Hyperopt.roi_space()
if self.has_space('stoploss'):
spaces = {**spaces, **Hyperopt.stoploss_space()}
spaces += Hyperopt.stoploss_space()
return spaces
@staticmethod
@@ -359,69 +228,32 @@ class Hyperopt(Backtesting):
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
conditions = []
# GUARDS AND TRENDS
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
conditions.append(dataframe['macd'] < 0)
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if 'mfi' in params and params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if 'fastd' in params and params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if 'adx' in params and params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if 'rsi' in params and params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if 'over_sar' in params and params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if 'green_candle' in params and params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
triggers = {
'lower_bb': (
dataframe['close'] < dataframe['bb_lowerband']
),
'lower_bb_tema': (
dataframe['tema'] < dataframe['bb_lowerband']
),
'faststoch10': (qtpylib.crossed_above(
dataframe['fastd'], 10.0
)),
'ao_cross_zero': (qtpylib.crossed_above(
dataframe['ao'], 0.0
)),
'ema3_cross_ema10': (qtpylib.crossed_above(
dataframe['ema3'], dataframe['ema10']
)),
'macd_cross_signal': (qtpylib.crossed_above(
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
)),
'sar_reversal': (qtpylib.crossed_above(
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
)),
'ht_sine': (qtpylib.crossed_above(
dataframe['htleadsine'], dataframe['htsine']
)),
'heiken_reversal_bull': (
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
(dataframe['ha_low'] == dataframe['ha_open'])
),
'di_cross': (qtpylib.crossed_above(
dataframe['plus_di'], dataframe['minus_di']
)),
}
conditions.append(triggers.get(params['trigger']['type']))
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -431,153 +263,124 @@ class Hyperopt(Backtesting):
return populate_buy_trend
def generate_optimizer(self, params: Dict) -> Dict:
def generate_optimizer(self, _params) -> Dict:
params = self.get_args(_params)
if self.has_space('roi'):
self.analyze.strategy.minimal_roi = self.generate_roi_table(params)
self.strategy.minimal_roi = self.generate_roi_table(params)
if self.has_space('buy'):
self.populate_buy_trend = self.buy_strategy_generator(params)
self.advise_buy = self.buy_strategy_generator(params)
if self.has_space('stoploss'):
self.analyze.strategy.stoploss = params['stoploss']
self.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': self.processed,
'realistic': self.config.get('realistic_simulation', False),
'processed': processed,
'position_stacking': self.config.get('position_stacking', True),
}
)
result_explanation = self.format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.duration.mean()
trade_duration = results.trade_duration.mean()
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
print('.', end='')
if trade_count == 0:
return {
'status': STATUS_FAIL,
'loss': float('inf')
'loss': MAX_LOSS,
'params': params,
'result': result_explanation,
}
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
self.current_tries += 1
self.log_results(
{
'loss': loss,
'current_tries': self.current_tries,
'total_tries': self.total_tries,
'result': result_explanation,
}
)
return {
'loss': loss,
'status': STATUS_OK,
'params': params,
'result': result_explanation,
}
@staticmethod
def format_results(results: DataFrame) -> str:
def format_results(self, results: DataFrame) -> str:
"""
Return the format result in a string
"""
return ('{:6d} trades. Avg profit {: 5.2f}%. '
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.profit_percent.sum(),
results.duration.mean(),
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum()
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=30,
acq_optimizer_kwargs={'n_jobs': cpu_count}
)
def run_optimizer_parallel(self, parallel, asked) -> List:
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
len(self.trials)
)
def start(self) -> None:
timerange = Arguments.parse_timerange(self.config.get('timerange'))
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=self.config.get('datadir'),
datadir=str(self.config.get('datadir')),
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
timerange=timerange
)
if self.has_space('buy'):
self.analyze.populate_indicators = Hyperopt.populate_indicators
self.processed = self.tickerdata_to_dataframe(data)
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
self.exchange = None # type: ignore
self.load_previous_results()
if self.config.get('mongodb'):
logger.info('Using mongodb ...')
logger.info(
'Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!'
)
db_name = 'freqtrade_hyperopt'
self.trials = MongoTrials(
arg='mongo://127.0.0.1:1234/{}/jobs'.format(db_name),
exp_key='exp1'
)
else:
logger.info('Preparing Trials..')
signal.signal(signal.SIGINT, self.signal_handler)
# read trials file if we have one
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
self.current_tries = len(self.trials.results)
self.total_tries += self.current_tries
logger.info(
'Continuing with trials. Current: %d, Total: %d',
self.current_tries,
self.total_tries
)
cpus = multiprocessing.cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
opt = self.get_optimizer(cpus)
EVALS = max(self.total_tries // cpus, 1)
try:
best_parameters = fmin(
fn=self.generate_optimizer,
space=self.hyperopt_space(),
algo=tpe.suggest,
max_evals=self.total_tries,
trials=self.trials
)
with Parallel(n_jobs=cpus) as parallel:
for i in range(EVALS):
asked = opt.ask(n_points=cpus)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [i['loss'] for i in f_val])
results = sorted(self.trials.results, key=itemgetter('loss'))
best_result = results[0]['result']
except ValueError:
best_parameters = {}
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
'try with more epochs (param: -e).'
# Improve best parameter logging display
if best_parameters:
best_parameters = space_eval(
self.hyperopt_space(),
best_parameters
)
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
if 'roi_t1' in best_parameters:
logger.info('ROI table:\n%s', self.generate_roi_table(best_parameters))
logger.info('Best Result:\n%s', best_result)
# Store trials result to file to resume next time
self.save_trials()
def signal_handler(self, sig, frame) -> None:
"""
Hyperopt SIGINT handler
"""
logger.info(
'Hyperopt received %s',
signal.Signals(sig).name
)
self.trials += f_val
for j in range(cpus):
self.log_results({
'loss': f_val[j]['loss'],
'current_tries': i * cpus + j,
'total_tries': self.total_tries,
'result': f_val[j]['result'],
})
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials()
self.log_trials_result()
sys.exit(0)
def start(args: Namespace) -> None:
@@ -588,18 +391,14 @@ def start(args: Namespace) -> None:
"""
# Remove noisy log messages
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
# Initialize configuration
# Monkey patch the configuration with hyperopt_conf.py
configuration = Configuration(args)
logger.info('Starting freqtrade in Hyperopt mode')
config = configuration.load_config()
optimize_config = hyperopt_optimize_conf()
config = configuration._load_common_config(optimize_config)
config = configuration._load_backtesting_config(config)
config = configuration._load_hyperopt_config(config)
config['exchange']['key'] = ''
config['exchange']['secret'] = ''

View File

@@ -5,57 +5,131 @@ This module contains the class to persist trades into SQLite
import logging
from datetime import datetime
from decimal import Decimal, getcontext
from typing import Dict, Optional
from typing import Any, Dict, Optional
import arrow
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
create_engine)
from sqlalchemy.engine import Engine
create_engine, inspect)
from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.pool import StaticPool
from freqtrade import OperationalException
logger = logging.getLogger(__name__)
_CONF = {}
_DECL_BASE = declarative_base()
_DECL_BASE: Any = declarative_base()
_SQL_DOCS_URL = 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
def init(config: dict, engine: Optional[Engine] = None) -> None:
def init(config: Dict) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:param engine: database engine for sqlalchemy (Optional)
:return: None
"""
_CONF.update(config)
if not engine:
if _CONF.get('dry_run', False):
# the user wants dry run to use a DB
if _CONF.get('dry_run_db', False):
engine = create_engine('sqlite:///tradesv3.dry_run.sqlite')
# Otherwise dry run will store in memory
else:
engine = create_engine('sqlite://',
connect_args={'check_same_thread': False},
poolclass=StaticPool,
echo=False)
else:
engine = create_engine('sqlite:///tradesv3.sqlite')
db_url = config.get('db_url', None)
kwargs = {}
# Take care of thread ownership if in-memory db
if db_url == 'sqlite://':
kwargs.update({
'connect_args': {'check_same_thread': False},
'poolclass': StaticPool,
'echo': False,
})
try:
engine = create_engine(db_url, **kwargs)
except NoSuchModuleError:
raise OperationalException(f'Given value for db_url: \'{db_url}\' '
f'is no valid database URL! (See {_SQL_DOCS_URL})')
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
Trade.session = session()
Trade.query = session.query_property()
_DECL_BASE.metadata.create_all(engine)
check_migrate(engine)
# Clean dry_run DB
if _CONF.get('dry_run', False) and _CONF.get('dry_run_db', False):
# Clean dry_run DB if the db is not in-memory
if config.get('dry_run', False) and db_url != 'sqlite://':
clean_dry_run_db()
def has_column(columns, searchname: str) -> bool:
return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1
def get_column_def(columns, column: str, default: str) -> str:
return default if not has_column(columns, column) else column
def check_migrate(engine) -> None:
"""
Checks if migration is necessary and migrates if necessary
"""
inspector = inspect(engine)
cols = inspector.get_columns('trades')
tabs = inspector.get_table_names()
table_back_name = 'trades_bak'
for i, table_back_name in enumerate(tabs):
table_back_name = f'trades_bak{i}'
logger.info(f'trying {table_back_name}')
# Check for latest column
if not has_column(cols, 'ticker_interval'):
fee_open = get_column_def(cols, 'fee_open', 'fee')
fee_close = get_column_def(cols, 'fee_close', 'fee')
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
close_rate_requested = get_column_def(cols, 'close_rate_requested', 'null')
stop_loss = get_column_def(cols, 'stop_loss', '0.0')
initial_stop_loss = get_column_def(cols, 'initial_stop_loss', '0.0')
max_rate = get_column_def(cols, 'max_rate', '0.0')
sell_reason = get_column_def(cols, 'sell_reason', 'null')
strategy = get_column_def(cols, 'strategy', 'null')
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
# Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}")
# let SQLAlchemy create the schema as required
_DECL_BASE.metadata.create_all(engine)
# Copy data back - following the correct schema
engine.execute(f"""insert into trades
(id, exchange, pair, is_open, fee_open, fee_close, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id,
stop_loss, initial_stop_loss, max_rate, sell_reason, strategy,
ticker_interval
)
select id, lower(exchange),
case
when instr(pair, '_') != 0 then
substr(pair, instr(pair, '_') + 1) || '/' ||
substr(pair, 1, instr(pair, '_') - 1)
else pair
end
pair,
is_open, {fee_open} fee_open, {fee_close} fee_close,
open_rate, {open_rate_requested} open_rate_requested, close_rate,
{close_rate_requested} close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id,
{stop_loss} stop_loss, {initial_stop_loss} initial_stop_loss,
{max_rate} max_rate, {sell_reason} sell_reason, {strategy} strategy,
{ticker_interval} ticker_interval
from {table_back_name}
""")
# Reread columns - the above recreated the table!
inspector = inspect(engine)
cols = inspector.get_columns('trades')
def cleanup() -> None:
"""
Flushes all pending operations to disk.
@@ -83,26 +157,74 @@ class Trade(_DECL_BASE):
id = Column(Integer, primary_key=True)
exchange = Column(String, nullable=False)
pair = Column(String, nullable=False)
is_open = Column(Boolean, nullable=False, default=True)
fee = Column(Float, nullable=False, default=0.0)
pair = Column(String, nullable=False, index=True)
is_open = Column(Boolean, nullable=False, default=True, index=True)
fee_open = Column(Float, nullable=False, default=0.0)
fee_close = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float)
open_rate_requested = Column(Float)
close_rate = Column(Float)
close_rate_requested = Column(Float)
close_profit = Column(Float)
stake_amount = Column(Float, nullable=False)
amount = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String)
# absolute value of the stop loss
stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the initial stop loss
initial_stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=True, default=0.0)
sell_reason = Column(String, nullable=True)
strategy = Column(String, nullable=True)
ticker_interval = Column(Integer, nullable=True)
def __repr__(self):
return 'Trade(id={}, pair={}, amount={:.8f}, open_rate={:.8f}, open_since={})'.format(
self.id,
self.pair,
self.amount,
self.open_rate,
arrow.get(self.open_date).humanize() if self.is_open else 'closed'
)
open_since = arrow.get(self.open_date).humanize() if self.is_open else 'closed'
return (f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})')
def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False):
"""this adjusts the stop loss to it's most recently observed setting"""
if initial and not (self.stop_loss is None or self.stop_loss == 0):
# Don't modify if called with initial and nothing to do
return
new_loss = float(current_price * (1 - abs(stoploss)))
# keeping track of the highest observed rate for this trade
if self.max_rate is None:
self.max_rate = current_price
else:
if current_price > self.max_rate:
self.max_rate = current_price
# no stop loss assigned yet
if not self.stop_loss:
logger.debug("assigning new stop loss")
self.stop_loss = new_loss
self.initial_stop_loss = new_loss
# evaluate if the stop loss needs to be updated
else:
if new_loss > self.stop_loss: # stop losses only walk up, never down!
self.stop_loss = new_loss
logger.debug("adjusted stop loss")
else:
logger.debug("keeping current stop loss")
logger.debug(
f"{self.pair} - current price {current_price:.8f}, "
f"bought at {self.open_rate:.8f} and calculated "
f"stop loss is at: {self.initial_stop_loss:.8f} initial "
f"stop at {self.stop_loss:.8f}. "
f"trailing stop loss saved us: "
f"{float(self.stop_loss) - float(self.initial_stop_loss):.8f} "
f"and max observed rate was {self.max_rate:.8f}")
def update(self, order: Dict) -> None:
"""
@@ -110,23 +232,24 @@ class Trade(_DECL_BASE):
:param order: order retrieved by exchange.get_order()
:return: None
"""
order_type = order['type']
# Ignore open and cancelled orders
if not order['closed'] or order['rate'] is None:
if order['status'] == 'open' or order['price'] is None:
return
logger.info('Updating trade (id=%d) ...', self.id)
getcontext().prec = 8 # Bittrex do not go above 8 decimal
if order['type'] == 'LIMIT_BUY':
if order_type == 'limit' and order['side'] == 'buy':
# Update open rate and actual amount
self.open_rate = Decimal(order['rate'])
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount'])
logger.info('LIMIT_BUY has been fulfilled for %s.', self)
self.open_order_id = None
elif order['type'] == 'LIMIT_SELL':
self.close(order['rate'])
elif order_type == 'limit' and order['side'] == 'sell':
self.close(order['price'])
else:
raise ValueError('Unknown order type: {}'.format(order['type']))
raise ValueError(f'Unknown order type: {order_type}')
cleanup()
def close(self, rate: float) -> None:
@@ -156,7 +279,7 @@ class Trade(_DECL_BASE):
getcontext().prec = 8
buy_trade = (Decimal(self.amount) * Decimal(self.open_rate))
fees = buy_trade * Decimal(fee or self.fee)
fees = buy_trade * Decimal(fee or self.fee_open)
return float(buy_trade + fees)
def calc_close_trade_price(
@@ -177,7 +300,7 @@ class Trade(_DECL_BASE):
return 0.0
sell_trade = (Decimal(self.amount) * Decimal(rate or self.close_rate))
fees = sell_trade * Decimal(fee or self.fee)
fees = sell_trade * Decimal(fee or self.fee_close)
return float(sell_trade - fees)
def calc_profit(
@@ -195,9 +318,10 @@ class Trade(_DECL_BASE):
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee)
fee=(fee or self.fee_close)
)
return float("{0:.8f}".format(close_trade_price - open_trade_price))
profit = close_trade_price - open_trade_price
return float(f"{profit:.8f}")
def calc_profit_percent(
self,
@@ -215,7 +339,7 @@ class Trade(_DECL_BASE):
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee)
fee=(fee or self.fee_close)
)
return float("{0:.8f}".format((close_trade_price / open_trade_price) - 1))
profit_percent = (close_trade_price / open_trade_price) - 1
return float(f"{profit_percent:.8f}")

View File

@@ -0,0 +1,2 @@
from .rpc import RPC, RPCMessageType, RPCException # noqa
from .rpc_manager import RPCManager # noqa

View File

@@ -2,124 +2,152 @@
This module contains class to define a RPC communications
"""
import logging
from datetime import datetime, timedelta
from abc import abstractmethod
from datetime import timedelta, datetime, date
from decimal import Decimal
from typing import Tuple, Any
from enum import Enum
from typing import Dict, Any, List, Optional
import arrow
import sqlalchemy as sql
from numpy import mean, nan_to_num
from pandas import DataFrame
from freqtrade import exchange
from freqtrade.fiat_convert import CryptoToFiatConverter
from freqtrade.misc import shorten_date
from freqtrade.persistence import Trade
from freqtrade.state import State
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
class RPCMessageType(Enum):
STATUS_NOTIFICATION = 'status'
WARNING_NOTIFICATION = 'warning'
CUSTOM_NOTIFICATION = 'custom'
BUY_NOTIFICATION = 'buy'
SELL_NOTIFICATION = 'sell'
def __repr__(self):
return self.value
class RPCException(Exception):
"""
Should be raised with a rpc-formatted message in an _rpc_* method
if the required state is wrong, i.e.:
raise RPCException('*Status:* `no active trade`')
"""
def __init__(self, message: str) -> None:
super().__init__(self)
self.message = message
def __str__(self):
return self.message
class RPC(object):
"""
RPC class can be used to have extra feature, like bot data, and access to DB data
"""
# Bind _fiat_converter if needed in each RPC handler
_fiat_converter: Optional[CryptoToFiatConverter] = None
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
self.freqtrade = freqtrade
self._freqtrade = freqtrade
def rpc_trade_status(self) -> Tuple[bool, Any]:
@property
def name(self) -> str:
""" Returns the lowercase name of the implementation """
return self.__class__.__name__.lower()
@abstractmethod
def cleanup(self) -> None:
""" Cleanup pending module resources """
@abstractmethod
def send_msg(self, msg: Dict[str, str]) -> None:
""" Sends a message to all registered rpc modules """
def _rpc_trade_status(self) -> List[Dict[str, Any]]:
"""
Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is
a remotely exposed function
:return:
"""
# Fetch open trade
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if self.freqtrade.state != State.RUNNING:
return True, '*Status:* `trader is not running`'
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
elif not trades:
return True, '*Status:* `no active trade`'
raise RPCException('no active trade')
else:
result = []
results = []
for trade in trades:
order = None
if trade.open_order_id:
order = exchange.get_order(trade.open_order_id)
order = self._freqtrade.exchange.get_order(trade.open_order_id, trade.pair)
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair, False)['bid']
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
current_profit = trade.calc_profit_percent(current_rate)
fmt_close_profit = '{:.2f}%'.format(
round(trade.close_profit * 100, 2)
) if trade.close_profit else None
message = "*Trade ID:* `{trade_id}`\n" \
"*Current Pair:* [{pair}]({market_url})\n" \
"*Open Since:* `{date}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Close Rate:* `{close_rate}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Close Profit:* `{close_profit}`\n" \
"*Current Profit:* `{current_profit:.2f}%`\n" \
"*Open Order:* `{open_order}`"\
.format(
fmt_close_profit = (f'{round(trade.close_profit * 100, 2):.2f}%'
if trade.close_profit else None)
results.append(dict(
trade_id=trade.id,
pair=trade.pair,
market_url=exchange.get_pair_detail_url(trade.pair),
date=arrow.get(trade.open_date).humanize(),
market_url=self._freqtrade.exchange.get_pair_detail_url(trade.pair),
date=arrow.get(trade.open_date),
open_rate=trade.open_rate,
close_rate=trade.close_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
close_profit=fmt_close_profit,
current_profit=round(current_profit * 100, 2),
open_order='({} rem={:.8f})'.format(
order['type'], order['remaining']
open_order='({} {} rem={:.8f})'.format(
order['type'], order['side'], order['remaining']
) if order else None,
)
result.append(message)
return False, result
))
return results
def rpc_status_table(self) -> Tuple[bool, Any]:
def _rpc_status_table(self) -> DataFrame:
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
if self.freqtrade.state != State.RUNNING:
return True, '*Status:* `trader is not running`'
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
elif not trades:
return True, '*Status:* `no active order`'
raise RPCException('no active order')
else:
trades_list = []
for trade in trades:
# calculate profit and send message to user
current_rate = exchange.get_ticker(trade.pair, False)['bid']
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
trade_perc = (100 * trade.calc_profit_percent(current_rate))
trades_list.append([
trade.id,
trade.pair,
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
'{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate))
f'{trade_perc:.2f}%'
])
columns = ['ID', 'Pair', 'Since', 'Profit']
df_statuses = DataFrame.from_records(trades_list, columns=columns)
df_statuses = df_statuses.set_index(columns[0])
# The style used throughout is to return a tuple
# consisting of (error_occured?, result)
# Another approach would be to just return the
# result, or raise error
return False, df_statuses
return df_statuses
def rpc_daily_profit(
def _rpc_daily_profit(
self, timescale: int,
stake_currency: str, fiat_display_currency: str) -> Tuple[bool, Any]:
stake_currency: str, fiat_display_currency: str) -> List[List[Any]]:
today = datetime.utcnow().date()
profit_days = {}
profit_days: Dict[date, Dict] = {}
if not (isinstance(timescale, int) and timescale > 0):
return True, '*Daily [n]:* `must be an integer greater than 0`'
raise RPCException('timescale must be an integer greater than 0')
fiat = self.freqtrade.fiat_converter
for day in range(0, timescale):
profitday = today - timedelta(days=day)
trades = Trade.query \
@@ -130,11 +158,11 @@ class RPC(object):
.all()
curdayprofit = sum(trade.calc_profit() for trade in trades)
profit_days[profitday] = {
'amount': format(curdayprofit, '.8f'),
'amount': f'{curdayprofit:.8f}',
'trades': len(trades)
}
stats = [
return [
[
key,
'{value:.8f} {symbol}'.format(
@@ -142,11 +170,11 @@ class RPC(object):
symbol=stake_currency
),
'{value:.3f} {symbol}'.format(
value=fiat.convert_amount(
value=self._fiat_converter.convert_amount(
value['amount'],
stake_currency,
fiat_display_currency
),
) if self._fiat_converter else 0,
symbol=fiat_display_currency
),
'{value} trade{s}'.format(
@@ -156,13 +184,10 @@ class RPC(object):
]
for key, value in profit_days.items()
]
return False, stats
def rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str) -> Tuple[bool, Any]:
"""
:return: cumulative profit statistics.
"""
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]:
""" Returns cumulative profit statistics """
trades = Trade.query.order_by(Trade.id).all()
profit_all_coin = []
@@ -172,7 +197,7 @@ class RPC(object):
durations = []
for trade in trades:
current_rate = None
current_rate: float = 0.0
if not trade.open_rate:
continue
@@ -185,7 +210,7 @@ class RPC(object):
profit_closed_percent.append(profit_percent)
else:
# Get current rate
current_rate = exchange.get_ticker(trade.pair, False)['bid']
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
profit_percent = trade.calc_profit_percent(rate=current_rate)
profit_all_coin.append(
@@ -200,36 +225,33 @@ class RPC(object):
.order_by(sql.text('profit_sum DESC')).first()
if not best_pair:
return True, '*Status:* `no closed trade`'
raise RPCException('no closed trade')
bp_pair, bp_rate = best_pair
# FIX: we want to keep fiatconverter in a state/environment,
# doing this will utilize its caching functionallity, instead we reinitialize it here
fiat = self.freqtrade.fiat_converter
# Prepare data to display
profit_closed_coin = round(sum(profit_closed_coin), 8)
profit_closed_percent = round(sum(profit_closed_percent) * 100, 2)
profit_closed_fiat = fiat.convert_amount(
profit_closed_coin,
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
profit_closed_percent = round(nan_to_num(mean(profit_closed_percent)) * 100, 2)
profit_closed_fiat = self._fiat_converter.convert_amount(
profit_closed_coin_sum,
stake_currency,
fiat_display_currency
)
profit_all_coin = round(sum(profit_all_coin), 8)
profit_all_percent = round(sum(profit_all_percent) * 100, 2)
profit_all_fiat = fiat.convert_amount(
profit_all_coin,
) if self._fiat_converter else 0
profit_all_coin_sum = round(sum(profit_all_coin), 8)
profit_all_percent = round(nan_to_num(mean(profit_all_percent)) * 100, 2)
profit_all_fiat = self._fiat_converter.convert_amount(
profit_all_coin_sum,
stake_currency,
fiat_display_currency
)
) if self._fiat_converter else 0
num = float(len(durations) or 1)
return (
False,
{
'profit_closed_coin': profit_closed_coin,
return {
'profit_closed_coin': profit_closed_coin_sum,
'profit_closed_percent': profit_closed_percent,
'profit_closed_fiat': profit_closed_fiat,
'profit_all_coin': profit_all_coin,
'profit_all_coin': profit_all_coin_sum,
'profit_all_percent': profit_all_percent,
'profit_all_fiat': profit_all_fiat,
'trade_count': len(trades),
@@ -237,104 +259,107 @@ class RPC(object):
'latest_trade_date': arrow.get(trades[-1].open_date).humanize(),
'avg_duration': str(timedelta(seconds=sum(durations) / num)).split('.')[0],
'best_pair': bp_pair,
'best_rate': round(bp_rate * 100, 2)
'best_rate': round(bp_rate * 100, 2),
}
)
def rpc_balance(self, fiat_display_currency: str) -> Tuple[bool, Any]:
"""
:return: current account balance per crypto
"""
balances = [
c for c in exchange.get_balances()
if c['Balance'] or c['Available'] or c['Pending']
]
if not balances:
return True, '`All balances are zero.`'
def _rpc_balance(self, fiat_display_currency: str) -> Dict:
""" Returns current account balance per crypto """
output = []
total = 0.0
for currency in balances:
coin = currency['Currency']
for coin, balance in self._freqtrade.exchange.get_balances().items():
if not balance['total']:
continue
if coin == 'BTC':
currency["Rate"] = 1.0
rate = 1.0
else:
if coin == 'USDT':
currency["Rate"] = 1.0 / exchange.get_ticker('USDT_BTC', False)['bid']
rate = 1.0 / self._freqtrade.exchange.get_ticker('BTC/USDT', False)['bid']
else:
currency["Rate"] = exchange.get_ticker('BTC_' + coin, False)['bid']
currency['BTC'] = currency["Rate"] * currency["Balance"]
total = total + currency['BTC']
output.append(
{
'currency': currency['Currency'],
'available': currency['Available'],
'balance': currency['Balance'],
'pending': currency['Pending'],
'est_btc': currency['BTC']
}
)
fiat = self.freqtrade.fiat_converter
rate = self._freqtrade.exchange.get_ticker(coin + '/BTC', False)['bid']
est_btc: float = rate * balance['total']
total = total + est_btc
output.append({
'currency': coin,
'available': balance['free'],
'balance': balance['total'],
'pending': balance['used'],
'est_btc': est_btc,
})
if total == 0.0:
raise RPCException('all balances are zero')
symbol = fiat_display_currency
value = fiat.convert_amount(total, 'BTC', symbol)
return False, (output, total, symbol, value)
value = self._fiat_converter.convert_amount(total, 'BTC',
symbol) if self._fiat_converter else 0
return {
'currencies': output,
'total': total,
'symbol': symbol,
'value': value,
}
def rpc_start(self) -> (bool, str):
"""
Handler for start.
"""
if self.freqtrade.state == State.RUNNING:
return True, '*Status:* `already running`'
def _rpc_start(self) -> Dict[str, str]:
""" Handler for start """
if self._freqtrade.state == State.RUNNING:
return {'status': 'already running'}
self.freqtrade.state = State.RUNNING
return False, '`Starting trader ...`'
self._freqtrade.state = State.RUNNING
return {'status': 'starting trader ...'}
def rpc_stop(self) -> (bool, str):
"""
Handler for stop.
"""
if self.freqtrade.state == State.RUNNING:
self.freqtrade.state = State.STOPPED
return False, '`Stopping trader ...`'
def _rpc_stop(self) -> Dict[str, str]:
""" Handler for stop """
if self._freqtrade.state == State.RUNNING:
self._freqtrade.state = State.STOPPED
return {'status': 'stopping trader ...'}
return True, '*Status:* `already stopped`'
return {'status': 'already stopped'}
# FIX: no test for this!!!!
def rpc_forcesell(self, trade_id) -> Tuple[bool, Any]:
def _rpc_reload_conf(self) -> Dict[str, str]:
""" Handler for reload_conf. """
self._freqtrade.state = State.RELOAD_CONF
return {'status': 'reloading config ...'}
def _rpc_forcesell(self, trade_id) -> None:
"""
Handler for forcesell <id>.
Sells the given trade at current price
:return: error or None
"""
def _exec_forcesell(trade: Trade) -> None:
# Check if there is there is an open order
if trade.open_order_id:
order = exchange.get_order(trade.open_order_id)
order = self._freqtrade.exchange.get_order(trade.open_order_id, trade.pair)
# Cancel open LIMIT_BUY orders and close trade
if order and not order['closed'] and order['type'] == 'LIMIT_BUY':
exchange.cancel_order(trade.open_order_id)
trade.close(order.get('rate') or trade.open_rate)
# TODO: sell amount which has been bought already
if order and order['status'] == 'open' \
and order['type'] == 'limit' \
and order['side'] == 'buy':
self._freqtrade.exchange.cancel_order(trade.open_order_id, trade.pair)
trade.close(order.get('price') or trade.open_rate)
# Do the best effort, if we don't know 'filled' amount, don't try selling
if order['filled'] is None:
return
trade.amount = order['filled']
# Ignore trades with an attached LIMIT_SELL order
if order and not order['closed'] and order['type'] == 'LIMIT_SELL':
if order and order['status'] == 'open' \
and order['type'] == 'limit' \
and order['side'] == 'sell':
return
# Get current rate and execute sell
current_rate = exchange.get_ticker(trade.pair, False)['bid']
self.freqtrade.execute_sell(trade, current_rate)
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
self._freqtrade.execute_sell(trade, current_rate, SellType.FORCE_SELL)
# ---- EOF def _exec_forcesell ----
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
_exec_forcesell(trade)
return False, ''
return
# Query for trade
trade = Trade.query.filter(
@@ -345,18 +370,18 @@ class RPC(object):
).first()
if not trade:
logger.warning('forcesell: Invalid argument received')
return True, 'Invalid argument.'
raise RPCException('invalid argument')
_exec_forcesell(trade)
return False, ''
Trade.session.flush()
def rpc_performance(self) -> Tuple[bool, Any]:
def _rpc_performance(self) -> List[Dict]:
"""
Handler for performance.
Shows a performance statistic from finished trades
"""
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
pair_rates = Trade.session.query(Trade.pair,
sql.func.sum(Trade.close_profit).label('profit_sum'),
@@ -365,19 +390,14 @@ class RPC(object):
.group_by(Trade.pair) \
.order_by(sql.text('profit_sum DESC')) \
.all()
trades = []
for (pair, rate, count) in pair_rates:
trades.append({'pair': pair, 'profit': round(rate * 100, 2), 'count': count})
return [
{'pair': pair, 'profit': round(rate * 100, 2), 'count': count}
for pair, rate, count in pair_rates
]
return False, trades
def _rpc_count(self) -> List[Trade]:
""" Returns the number of trades running """
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
def rpc_count(self) -> Tuple[bool, Any]:
"""
Returns the number of trades running
:return: None
"""
if self.freqtrade.state != State.RUNNING:
return True, '`trader is not running`'
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
return False, trades
return Trade.query.filter(Trade.is_open.is_(True)).all()

View File

@@ -2,9 +2,9 @@
This module contains class to manage RPC communications (Telegram, Slack, ...)
"""
import logging
from typing import List, Dict, Any
from freqtrade.rpc.telegram import Telegram
from freqtrade.rpc import RPC
logger = logging.getLogger(__name__)
@@ -14,43 +14,40 @@ class RPCManager(object):
Class to manage RPC objects (Telegram, Slack, ...)
"""
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param config: config to use
:return: None
"""
self.freqtrade = freqtrade
""" Initializes all enabled rpc modules """
self.registered_modules: List[RPC] = []
self.registered_modules = []
self.telegram = None
self._init()
def _init(self) -> None:
"""
Init RPC modules
:return:
"""
if self.freqtrade.config['telegram'].get('enabled', False):
# Enable telegram
if freqtrade.config['telegram'].get('enabled', False):
logger.info('Enabling rpc.telegram ...')
self.registered_modules.append('telegram')
self.telegram = Telegram(self.freqtrade)
from freqtrade.rpc.telegram import Telegram
self.registered_modules.append(Telegram(freqtrade))
# Enable Webhook
if freqtrade.config.get('webhook', {}).get('enabled', False):
logger.info('Enabling rpc.webhook ...')
from freqtrade.rpc.webhook import Webhook
self.registered_modules.append(Webhook(freqtrade))
def cleanup(self) -> None:
"""
Stops all enabled rpc modules
:return: None
"""
if 'telegram' in self.registered_modules:
logger.info('Cleaning up rpc.telegram ...')
self.registered_modules.remove('telegram')
self.telegram.cleanup()
""" Stops all enabled rpc modules """
logger.info('Cleaning up rpc modules ...')
while self.registered_modules:
mod = self.registered_modules.pop()
logger.debug('Cleaning up rpc.%s ...', mod.name)
mod.cleanup()
del mod
def send_msg(self, msg: str) -> None:
def send_msg(self, msg: Dict[str, Any]) -> None:
"""
Send given markdown message to all registered rpc modules
:param msg: message
:return: None
Send given message to all registered rpc modules.
A message consists of one or more key value pairs of strings.
e.g.:
{
'status': 'stopping bot'
}
"""
logger.info(msg)
if 'telegram' in self.registered_modules:
self.telegram.send_msg(msg)
logger.info('Sending rpc message: %s', msg)
for mod in self.registered_modules:
logger.debug('Forwarding message to rpc.%s', mod.name)
mod.send_msg(msg)

View File

@@ -4,7 +4,7 @@
This module manage Telegram communication
"""
import logging
from typing import Any, Callable
from typing import Any, Callable, Dict
from tabulate import tabulate
from telegram import Bot, ParseMode, ReplyKeyboardMarkup, Update
@@ -12,22 +12,22 @@ from telegram.error import NetworkError, TelegramError
from telegram.ext import CommandHandler, Updater
from freqtrade.__init__ import __version__
from freqtrade.rpc.rpc import RPC
from freqtrade.fiat_convert import CryptoToFiatConverter
from freqtrade.rpc import RPC, RPCException, RPCMessageType
logger = logging.getLogger(__name__)
logger.debug('Included module rpc.telegram ...')
def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[..., Any]:
def authorized_only(command_handler: Callable[[Any, Bot, Update], None]) -> Callable[..., Any]:
"""
Decorator to check if the message comes from the correct chat_id
:param command_handler: Telegram CommandHandler
:return: decorated function
"""
def wrapper(self, *args, **kwargs):
"""
Decorator logic
"""
""" Decorator logic """
update = kwargs.get('update') or args[1]
# Reject unauthorized messages
@@ -54,9 +54,8 @@ def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[
class Telegram(RPC):
"""
Telegram, this class send messages to Telegram
"""
""" This class handles all telegram communication """
def __init__(self, freqtrade) -> None:
"""
Init the Telegram call, and init the super class RPC
@@ -65,21 +64,18 @@ class Telegram(RPC):
"""
super().__init__(freqtrade)
self._updater = None
self._updater: Updater = None
self._config = freqtrade.config
self._init()
if self._config.get('fiat_display_currency', None):
self._fiat_converter = CryptoToFiatConverter()
def _init(self) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:return: None
"""
if not self.is_enabled():
return
self._updater = Updater(token=self._config['telegram']['token'], workers=0)
# Register command handler and start telegram message polling
@@ -93,6 +89,7 @@ class Telegram(RPC):
CommandHandler('performance', self._performance),
CommandHandler('daily', self._daily),
CommandHandler('count', self._count),
CommandHandler('reload_conf', self._reload_conf),
CommandHandler('help', self._help),
CommandHandler('version', self._version),
]
@@ -114,16 +111,59 @@ class Telegram(RPC):
Stops all running telegram threads.
:return: None
"""
if not self.is_enabled():
return
self._updater.stop()
def is_enabled(self) -> bool:
"""
Returns True if the telegram module is activated, False otherwise
"""
return bool(self._config.get('telegram', {}).get('enabled', False))
def send_msg(self, msg: Dict[str, Any]) -> None:
""" Send a message to telegram channel """
if msg['type'] == RPCMessageType.BUY_NOTIFICATION:
if self._fiat_converter:
msg['stake_amount_fiat'] = self._fiat_converter.convert_amount(
msg['stake_amount'], msg['stake_currency'], msg['fiat_currency'])
else:
msg['stake_amount_fiat'] = 0
message = "*{exchange}:* Buying [{pair}]({market_url})\n" \
"with limit `{limit:.8f}\n" \
"({stake_amount:.6f} {stake_currency}".format(**msg)
if msg.get('fiat_currency', None):
message += ",{stake_amount_fiat:.3f} {fiat_currency}".format(**msg)
message += ")`"
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
msg['amount'] = round(msg['amount'], 8)
msg['profit_percent'] = round(msg['profit_percent'] * 100, 2)
message = "*{exchange}:* Selling [{pair}]({market_url})\n" \
"*Limit:* `{limit:.8f}`\n" \
"*Amount:* `{amount:.8f}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Profit:* `{profit_percent:.2f}%`".format(**msg)
# Check if all sell properties are available.
# This might not be the case if the message origin is triggered by /forcesell
if (all(prop in msg for prop in ['gain', 'fiat_currency', 'stake_currency'])
and self._fiat_converter):
msg['profit_fiat'] = self._fiat_converter.convert_amount(
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
message += '` ({gain}: {profit_amount:.8f} {stake_currency}`' \
'` / {profit_fiat:.3f} {fiat_currency})`'.format(**msg)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
message = '*Status:* `{status}`'.format(**msg)
elif msg['type'] == RPCMessageType.WARNING_NOTIFICATION:
message = '*Warning:* `{status}`'.format(**msg)
elif msg['type'] == RPCMessageType.CUSTOM_NOTIFICATION:
message = '{status}'.format(**msg)
else:
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
self._send_msg(message)
@authorized_only
def _status(self, bot: Bot, update: Update) -> None:
@@ -142,13 +182,29 @@ class Telegram(RPC):
self._status_table(bot, update)
return
# Fetch open trade
(error, trades) = self.rpc_trade_status()
if error:
self.send_msg(trades, bot=bot)
else:
for trademsg in trades:
self.send_msg(trademsg, bot=bot)
try:
results = self._rpc_trade_status()
# pre format data
for result in results:
result['date'] = result['date'].humanize()
messages = [
"*Trade ID:* `{trade_id}`\n"
"*Current Pair:* [{pair}]({market_url})\n"
"*Open Since:* `{date}`\n"
"*Amount:* `{amount}`\n"
"*Open Rate:* `{open_rate:.8f}`\n"
"*Close Rate:* `{close_rate}`\n"
"*Current Rate:* `{current_rate:.8f}`\n"
"*Close Profit:* `{close_profit}`\n"
"*Current Profit:* `{current_profit:.2f}%`\n"
"*Open Order:* `{open_order}`".format(**result)
for result in results
]
for msg in messages:
self._send_msg(msg, bot=bot)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _status_table(self, bot: Bot, update: Update) -> None:
@@ -159,15 +215,12 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
# Fetch open trade
(err, df_statuses) = self.rpc_status_table()
if err:
self.send_msg(df_statuses, bot=bot)
else:
try:
df_statuses = self._rpc_status_table()
message = tabulate(df_statuses, headers='keys', tablefmt='simple')
message = "<pre>{}</pre>".format(message)
self.send_msg(message, parse_mode=ParseMode.HTML)
self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _daily(self, bot: Bot, update: Update) -> None:
@@ -178,31 +231,29 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
stake_cur = self._config['stake_currency']
fiat_disp_cur = self._config.get('fiat_display_currency', '')
try:
timescale = int(update.message.text.replace('/daily', '').strip())
except (TypeError, ValueError):
timescale = 7
(error, stats) = self.rpc_daily_profit(
try:
stats = self._rpc_daily_profit(
timescale,
self._config['stake_currency'],
self._config['fiat_display_currency']
stake_cur,
fiat_disp_cur
)
if error:
self.send_msg(stats, bot=bot)
else:
stats = tabulate(stats,
headers=[
'Day',
'Profit {}'.format(self._config['stake_currency']),
'Profit {}'.format(self._config['fiat_display_currency'])
f'Profit {stake_cur}',
f'Profit {fiat_disp_cur}'
],
tablefmt='simple')
message = '<b>Daily Profit over the last {} days</b>:\n<pre>{}</pre>'\
.format(
timescale,
stats
)
self.send_msg(message, bot=bot, parse_mode=ParseMode.HTML)
message = f'<b>Daily Profit over the last {timescale} days</b>:\n<pre>{stats}</pre>'
self._send_msg(message, bot=bot, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _profit(self, bot: Bot, update: Update) -> None:
@@ -213,69 +264,61 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
(error, stats) = self.rpc_trade_statistics(
self._config['stake_currency'],
self._config['fiat_display_currency']
)
if error:
self.send_msg(stats, bot=bot)
return
stake_cur = self._config['stake_currency']
fiat_disp_cur = self._config.get('fiat_display_currency', '')
try:
stats = self._rpc_trade_statistics(
stake_cur,
fiat_disp_cur)
profit_closed_coin = stats['profit_closed_coin']
profit_closed_percent = stats['profit_closed_percent']
profit_closed_fiat = stats['profit_closed_fiat']
profit_all_coin = stats['profit_all_coin']
profit_all_percent = stats['profit_all_percent']
profit_all_fiat = stats['profit_all_fiat']
trade_count = stats['trade_count']
first_trade_date = stats['first_trade_date']
latest_trade_date = stats['latest_trade_date']
avg_duration = stats['avg_duration']
best_pair = stats['best_pair']
best_rate = stats['best_rate']
# Message to display
markdown_msg = "*ROI:* Close trades\n" \
"∙ `{profit_closed_coin:.8f} {coin} ({profit_closed_percent:.2f}%)`\n" \
"∙ `{profit_closed_fiat:.3f} {fiat}`\n" \
"*ROI:* All trades\n" \
"∙ `{profit_all_coin:.8f} {coin} ({profit_all_percent:.2f}%)`\n" \
"∙ `{profit_all_fiat:.3f} {fiat}`\n" \
"*Total Trade Count:* `{trade_count}`\n" \
"*First Trade opened:* `{first_trade_date}`\n" \
"*Latest Trade opened:* `{latest_trade_date}`\n" \
"*Avg. Duration:* `{avg_duration}`\n" \
"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"\
.format(
coin=self._config['stake_currency'],
fiat=self._config['fiat_display_currency'],
profit_closed_coin=stats['profit_closed_coin'],
profit_closed_percent=stats['profit_closed_percent'],
profit_closed_fiat=stats['profit_closed_fiat'],
profit_all_coin=stats['profit_all_coin'],
profit_all_percent=stats['profit_all_percent'],
profit_all_fiat=stats['profit_all_fiat'],
trade_count=stats['trade_count'],
first_trade_date=stats['first_trade_date'],
latest_trade_date=stats['latest_trade_date'],
avg_duration=stats['avg_duration'],
best_pair=stats['best_pair'],
best_rate=stats['best_rate']
)
self.send_msg(markdown_msg, bot=bot)
f"∙ `{profit_closed_coin:.8f} {stake_cur} "\
f"({profit_closed_percent:.2f}%)`\n" \
f"∙ `{profit_closed_fiat:.3f} {fiat_disp_cur}`\n" \
f"*ROI:* All trades\n" \
f"∙ `{profit_all_coin:.8f} {stake_cur} ({profit_all_percent:.2f}%)`\n" \
f"∙ `{profit_all_fiat:.3f} {fiat_disp_cur}`\n" \
f"*Total Trade Count:* `{trade_count}`\n" \
f"*First Trade opened:* `{first_trade_date}`\n" \
f"*Latest Trade opened:* `{latest_trade_date}`\n" \
f"*Avg. Duration:* `{avg_duration}`\n" \
f"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"
self._send_msg(markdown_msg, bot=bot)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _balance(self, bot: Bot, update: Update) -> None:
"""
Handler for /balance
"""
(error, result) = self.rpc_balance(self._config['fiat_display_currency'])
if error:
self.send_msg('`All balances are zero.`')
return
(currencys, total, symbol, value) = result
""" Handler for /balance """
try:
result = self._rpc_balance(self._config.get('fiat_display_currency', ''))
output = ''
for currency in currencys:
output += """*Currency*: {currency}
*Available*: {available}
*Balance*: {balance}
*Pending*: {pending}
*Est. BTC*: {est_btc: .8f}
""".format(**currency)
for currency in result['currencies']:
output += "*{currency}:*\n" \
"\t`Available: {available: .8f}`\n" \
"\t`Balance: {balance: .8f}`\n" \
"\t`Pending: {pending: .8f}`\n" \
"\t`Est. BTC: {est_btc: .8f}`\n".format(**currency)
output += """*Estimated Value*:
*BTC*: {0: .8f}
*{1}*: {2: .2f}
""".format(total, symbol, value)
self.send_msg(output)
output += "\n*Estimated Value*:\n" \
"\t`BTC: {total: .8f}`\n" \
"\t`{symbol}: {value: .2f}`\n".format(**result)
self._send_msg(output, bot=bot)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _start(self, bot: Bot, update: Update) -> None:
@@ -286,9 +329,8 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
(error, msg) = self.rpc_start()
if error:
self.send_msg(msg, bot=bot)
msg = self._rpc_start()
self._send_msg('Status: `{status}`'.format(**msg), bot=bot)
@authorized_only
def _stop(self, bot: Bot, update: Update) -> None:
@@ -299,8 +341,20 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
(error, msg) = self.rpc_stop()
self.send_msg(msg, bot=bot)
msg = self._rpc_stop()
self._send_msg('Status: `{status}`'.format(**msg), bot=bot)
@authorized_only
def _reload_conf(self, bot: Bot, update: Update) -> None:
"""
Handler for /reload_conf.
Triggers a config file reload
:param bot: telegram bot
:param update: message update
:return: None
"""
msg = self._rpc_reload_conf()
self._send_msg('Status: `{status}`'.format(**msg), bot=bot)
@authorized_only
def _forcesell(self, bot: Bot, update: Update) -> None:
@@ -313,10 +367,10 @@ class Telegram(RPC):
"""
trade_id = update.message.text.replace('/forcesell', '').strip()
(error, message) = self.rpc_forcesell(trade_id)
if error:
self.send_msg(message, bot=bot)
return
try:
self._rpc_forcesell(trade_id)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _performance(self, bot: Bot, update: Update) -> None:
@@ -327,11 +381,8 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
(error, trades) = self.rpc_performance()
if error:
self.send_msg(trades, bot=bot)
return
try:
trades = self._rpc_performance()
stats = '\n'.join('{index}.\t<code>{pair}\t{profit:.2f}% ({count})</code>'.format(
index=i + 1,
pair=trade['pair'],
@@ -339,7 +390,9 @@ class Telegram(RPC):
count=trade['count']
) for i, trade in enumerate(trades))
message = '<b>Performance:</b>\n{}'.format(stats)
self.send_msg(message, parse_mode=ParseMode.HTML)
self._send_msg(message, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _count(self, bot: Bot, update: Update) -> None:
@@ -350,11 +403,8 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
(error, trades) = self.rpc_count()
if error:
self.send_msg(trades, bot=bot)
return
try:
trades = self._rpc_count()
message = tabulate({
'current': [len(trades)],
'max': [self._config['max_open_trades']],
@@ -362,7 +412,9 @@ class Telegram(RPC):
}, headers=['current', 'max', 'total stake'], tablefmt='simple')
message = "<pre>{}</pre>".format(message)
logger.debug(message)
self.send_msg(message, parse_mode=ParseMode.HTML)
self._send_msg(message, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@authorized_only
def _help(self, bot: Bot, update: Update) -> None:
@@ -388,7 +440,7 @@ class Telegram(RPC):
"*/help:* `This help message`\n" \
"*/version:* `Show version`"
self.send_msg(message, bot=bot)
self._send_msg(message, bot=bot)
@authorized_only
def _version(self, bot: Bot, update: Update) -> None:
@@ -399,9 +451,9 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
self.send_msg('*Version:* `{}`'.format(__version__), bot=bot)
self._send_msg('*Version:* `{}`'.format(__version__), bot=bot)
def send_msg(self, msg: str, bot: Bot = None,
def _send_msg(self, msg: str, bot: Bot = None,
parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
"""
Send given markdown message
@@ -410,9 +462,6 @@ class Telegram(RPC):
:param parse_mode: telegram parse mode
:return: None
"""
if not self.is_enabled():
return
bot = bot or self._updater.bot
keyboard = [['/daily', '/profit', '/balance'],

66
freqtrade/rpc/webhook.py Normal file
View File

@@ -0,0 +1,66 @@
"""
This module manages webhook communication
"""
import logging
from typing import Any, Dict
from requests import post, RequestException
from freqtrade.rpc import RPC, RPCMessageType
logger = logging.getLogger(__name__)
logger.debug('Included module rpc.webhook ...')
class Webhook(RPC):
""" This class handles all webhook communication """
def __init__(self, freqtrade) -> None:
"""
Init the Webhook class, and init the super class RPC
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
super().__init__(freqtrade)
self._config = freqtrade.config
self._url = self._config['webhook']['url']
def cleanup(self) -> None:
"""
Cleanup pending module resources.
This will do nothing for webhooks, they will simply not be called anymore
"""
pass
def send_msg(self, msg: Dict[str, Any]) -> None:
""" Send a message to telegram channel """
try:
if msg['type'] == RPCMessageType.BUY_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookbuy', None)
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhooksell', None)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookstatus', None)
else:
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
if not valuedict:
logger.info("Message type %s not configured for webhooks", msg['type'])
return
payload = {key: value.format(**msg) for (key, value) in valuedict.items()}
self._send_msg(payload)
except KeyError as exc:
logger.exception("Problem calling Webhook. Please check your webhook configuration. "
"Exception: %s", exc)
def _send_msg(self, payload: dict) -> None:
"""do the actual call to the webhook"""
try:
post(self._url, data=payload)
except RequestException as exc:
logger.warning("Could not call webhook url. Exception: %s", exc)

View File

@@ -8,7 +8,8 @@ import enum
class State(enum.Enum):
"""
Bot running states
Bot application states
"""
RUNNING = 0
STOPPED = 1
RELOAD_CONF = 2

View File

@@ -0,0 +1,32 @@
import logging
from copy import deepcopy
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
def import_strategy(strategy: IStrategy, config: dict) -> IStrategy:
"""
Imports given Strategy instance to global scope
of freqtrade.strategy and returns an instance of it
"""
# Copy all attributes from base class and class
attr = deepcopy({**strategy.__class__.__dict__, **strategy.__dict__})
# Adjust module name
attr['__module__'] = 'freqtrade.strategy'
name = strategy.__class__.__name__
clazz = type(name, (IStrategy,), attr)
logger.debug(
'Imported strategy %s.%s as %s.%s',
strategy.__module__, strategy.__class__.__name__,
clazz.__module__, strategy.__class__.__name__,
)
# Modify global scope to declare class
globals()[name] = clazz
return clazz(config)

View File

@@ -26,15 +26,18 @@ class DefaultStrategy(IStrategy):
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = 5
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicator
@@ -196,10 +199,11 @@ class DefaultStrategy(IStrategy):
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
@@ -217,10 +221,11 @@ class DefaultStrategy(IStrategy):
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[

View File

@@ -2,11 +2,50 @@
IStrategy interface
This module defines the interface to apply for strategies
"""
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from enum import Enum
from typing import Dict, List, NamedTuple, Tuple
import warnings
import arrow
from pandas import DataFrame
from freqtrade import constants
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
"""
BUY = "buy"
SELL = "sell"
class SellType(Enum):
"""
Enum to distinguish between sell reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
TRAILING_STOP_LOSS = "trailing_stop_loss"
SELL_SIGNAL = "sell_signal"
FORCE_SELL = "force_sell"
NONE = ""
class SellCheckTuple(NamedTuple):
"""
NamedTuple for Sell type + reason
"""
sell_flag: bool
sell_type: SellType
class IStrategy(ABC):
"""
@@ -16,29 +55,270 @@ class IStrategy(ABC):
Attributes you can use:
minimal_roi -> Dict: Minimal ROI designed for the strategy
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> int: value of the ticker interval to use for the strategy
ticker_interval -> str: value of the ticker interval to use for the strategy
"""
_populate_fun_len: int = 0
_buy_fun_len: int = 0
_sell_fun_len: int = 0
# associated minimal roi
minimal_roi: Dict
# associated stoploss
stoploss: float
# associated ticker interval
ticker_interval: str
def __init__(self, config: dict) -> None:
self.config = config
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with sell column
"""
def get_strategy_name(self) -> str:
"""
Returns strategy class name
"""
return self.__class__.__name__
def analyze_ticker(self, ticker_history: List[Dict], metadata: dict) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
dataframe = parse_ticker_dataframe(ticker_history)
dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata)
return dataframe
def get_signal(self, pair: str, interval: str, ticker_hist: List[Dict]) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format ANT/BTC
:param interval: Interval to use (in min)
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
"""
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False, False
try:
dataframe = self.analyze_ticker(ticker_hist, {'pair': pair})
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing ticker for pair %s: %s',
pair,
str(error)
)
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug(
'trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'],
pair,
str(buy),
str(sell)
)
return buy, sell
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
sell: bool) -> SellCheckTuple:
"""
This function evaluate if on the condition required to trigger a sell has been reached
if the threshold is reached and updates the trade record.
:return: True if trade should be sold, False otherwise
"""
current_profit = trade.calc_profit_percent(rate)
stoplossflag = self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date,
current_profit=current_profit)
if stoplossflag.sell_flag:
return stoplossflag
experimental = self.config.get('experimental', {})
if buy and experimental.get('ignore_roi_if_buy_signal', False):
logger.debug('Buy signal still active - not selling.')
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
if self.min_roi_reached(trade=trade, current_profit=current_profit, current_time=date):
logger.debug('Required profit reached. Selling..')
return SellCheckTuple(sell_flag=True, sell_type=SellType.ROI)
if experimental.get('sell_profit_only', False):
logger.debug('Checking if trade is profitable..')
if trade.calc_profit(rate=rate) <= 0:
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
if sell and not buy and experimental.get('use_sell_signal', False):
logger.debug('Sell signal received. Selling..')
return SellCheckTuple(sell_flag=True, sell_type=SellType.SELL_SIGNAL)
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
current_profit: float) -> SellCheckTuple:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
:param current_profit: current profit in percent
"""
trailing_stop = self.config.get('trailing_stop', False)
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
# evaluate if the stoploss was hit
if self.stoploss is not None and trade.stop_loss >= current_rate:
selltype = SellType.STOP_LOSS
if trailing_stop:
selltype = SellType.TRAILING_STOP_LOSS
logger.debug(
f"HIT STOP: current price at {current_rate:.6f}, "
f"stop loss is {trade.stop_loss:.6f}, "
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
f"trade opened at {trade.open_rate:.6f}")
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
logger.debug('Stop loss hit.')
return SellCheckTuple(sell_flag=True, sell_type=selltype)
# update the stop loss afterwards, after all by definition it's supposed to be hanging
if trailing_stop:
# check if we have a special stop loss for positive condition
# and if profit is positive
stop_loss_value = self.stoploss
sl_offset = self.config.get('trailing_stop_positive_offset', 0.0)
if 'trailing_stop_positive' in self.config and current_profit > sl_offset:
# Ignore mypy error check in configuration that this is a float
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
f"with offset {sl_offset:.4g} "
f"since we have profit {current_profit:.4f}%")
trade.adjust_stop_loss(current_rate, stop_loss_value)
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should
sell
:return True if bot should sell at current rate
"""
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration, threshold in self.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
return False
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
"""
return {pair: self.advise_indicators(parse_ticker_dataframe(pair_data), {'pair': pair})
for pair, pair_data in tickerdata.items()}
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
This method should not be overridden.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_indicators(dataframe) # type: ignore
else:
return self.populate_indicators(dataframe, metadata)
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param pair: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
if self._buy_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_buy_trend(dataframe) # type: ignore
else:
return self.populate_buy_trend(dataframe, metadata)
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param pair: Additional information, like the currently traded pair
:return: DataFrame with sell column
"""
if self._sell_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_sell_trend(dataframe) # type: ignore
else:
return self.populate_sell_trend(dataframe, metadata)

View File

@@ -7,13 +7,16 @@ import importlib.util
import inspect
import logging
import os
import tempfile
from base64 import urlsafe_b64decode
from collections import OrderedDict
from typing import Optional, Dict, Type
from pathlib import Path
from typing import Dict, Optional, Type
from freqtrade import constants
from freqtrade.strategy import import_strategy
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
@@ -33,19 +36,25 @@ class StrategyResolver(object):
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
strategy_name = config.get('strategy') or constants.DEFAULT_STRATEGY
self.strategy = self._load_strategy(strategy_name, extra_dir=config.get('strategy_path'))
self.strategy: IStrategy = self._load_strategy(strategy_name,
config=config,
extra_dir=config.get('strategy_path'))
# Set attributes
# Check if we need to override configuration
if 'minimal_roi' in config:
self.strategy.minimal_roi = config['minimal_roi']
logger.info("Override strategy \'minimal_roi\' with value in config file.")
else:
config['minimal_roi'] = self.strategy.minimal_roi
if 'stoploss' in config:
self.strategy.stoploss = config['stoploss']
logger.info(
"Override strategy \'stoploss\' with value in config file: %s.", config['stoploss']
)
else:
config['stoploss'] = self.strategy.stoploss
if 'ticker_interval' in config:
self.strategy.ticker_interval = config['ticker_interval']
@@ -53,25 +62,27 @@ class StrategyResolver(object):
"Override strategy \'ticker_interval\' with value in config file: %s.",
config['ticker_interval']
)
else:
config['ticker_interval'] = self.strategy.ticker_interval
# Sort and apply type conversions
self.strategy.minimal_roi = OrderedDict(sorted(
{int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(),
key=lambda t: t[0]))
self.strategy.stoploss = float(self.strategy.stoploss)
self.strategy.ticker_interval = int(self.strategy.ticker_interval)
def _load_strategy(
self, strategy_name: str, extra_dir: Optional[str] = None) -> Optional[IStrategy]:
self, strategy_name: str, config: dict, extra_dir: Optional[str] = None) -> IStrategy:
"""
Search and loads the specified strategy.
:param strategy_name: name of the module to import
:param config: configuration for the strategy
:param extra_dir: additional directory to search for the given strategy
:return: Strategy instance or None
"""
current_path = os.path.dirname(os.path.realpath(__file__))
abs_paths = [
os.path.join(current_path, '..', '..', 'user_data', 'strategies'),
os.path.join(os.getcwd(), 'user_data', 'strategies'),
current_path,
]
@@ -79,11 +90,37 @@ class StrategyResolver(object):
# Add extra strategy directory on top of search paths
abs_paths.insert(0, extra_dir)
if ":" in strategy_name:
logger.info("loading base64 endocded strategy")
strat = strategy_name.split(":")
if len(strat) == 2:
temp = Path(tempfile.mkdtemp("freq", "strategy"))
name = strat[0] + ".py"
temp.joinpath(name).write_text(urlsafe_b64decode(strat[1]).decode('utf-8'))
temp.joinpath("__init__.py").touch()
strategy_name = os.path.splitext(name)[0]
# register temp path with the bot
abs_paths.insert(0, str(temp.resolve()))
for path in abs_paths:
strategy = self._search_strategy(path, strategy_name)
try:
strategy = self._search_strategy(path, strategy_name=strategy_name, config=config)
if strategy:
logger.info('Using resolved strategy %s from \'%s\'', strategy_name, path)
return strategy
strategy._populate_fun_len = len(
inspect.getfullargspec(strategy.populate_indicators).args)
strategy._buy_fun_len = len(
inspect.getfullargspec(strategy.populate_buy_trend).args)
strategy._sell_fun_len = len(
inspect.getfullargspec(strategy.populate_sell_trend).args)
return import_strategy(strategy, config=config)
except FileNotFoundError:
logger.warning('Path "%s" does not exist', path)
raise ImportError(
"Impossible to load Strategy '{}'. This class does not exist"
@@ -100,9 +137,9 @@ class StrategyResolver(object):
"""
# Generate spec based on absolute path
spec = importlib.util.spec_from_file_location('user_data.strategies', module_path)
spec = importlib.util.spec_from_file_location('unknown', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
valid_strategies_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)
@@ -111,7 +148,7 @@ class StrategyResolver(object):
return next(valid_strategies_gen, None)
@staticmethod
def _search_strategy(directory: str, strategy_name: str) -> Optional[IStrategy]:
def _search_strategy(directory: str, strategy_name: str, config: dict) -> Optional[IStrategy]:
"""
Search for the strategy_name in the given directory
:param directory: relative or absolute directory path
@@ -127,5 +164,5 @@ class StrategyResolver(object):
os.path.abspath(os.path.join(directory, entry)), strategy_name
)
if strategy:
return strategy()
return strategy(config)
return None

View File

@@ -3,29 +3,43 @@ import json
import logging
from datetime import datetime
from functools import reduce
from typing import Dict, Optional
from unittest.mock import MagicMock
import arrow
import pytest
from jsonschema import validate
from sqlalchemy import create_engine
from telegram import Chat, Message, Update
from freqtrade.analyze import Analyze
from freqtrade import constants
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.exchange import Exchange
from freqtrade.freqtradebot import FreqtradeBot
logging.getLogger('').setLevel(logging.INFO)
def log_has(line, logs):
# caplog mocker returns log as a tuple: ('freqtrade.analyze', logging.WARNING, 'foobar')
# caplog mocker returns log as a tuple: ('freqtrade.something', logging.WARNING, 'foobar')
# and we want to match line against foobar in the tuple
return reduce(lambda a, b: a or b,
filter(lambda x: x[2] == line, logs),
False)
def patch_exchange(mocker, api_mock=None) -> None:
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
if api_mock:
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
else:
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock())
def get_patched_exchange(mocker, config, api_mock=None) -> Exchange:
patch_exchange(mocker, api_mock)
exchange = Exchange(config)
return exchange
# Functions for recurrent object patching
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
"""
@@ -34,16 +48,36 @@ def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
:param config: Config to pass to the bot
:return: None
"""
mocker.patch('freqtrade.fiat_convert.Market', {'price_usd': 12345.0})
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
# mocker.patch('freqtrade.fiat_convert.Market', {'price_usd': 12345.0})
patch_coinmarketcap(mocker, {'price_usd': 12345.0})
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
mocker.patch('freqtrade.freqtradebot.persistence.init', MagicMock())
mocker.patch('freqtrade.freqtradebot.exchange.init', MagicMock())
patch_exchange(mocker, None)
mocker.patch('freqtrade.freqtradebot.RPCManager._init', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager.send_msg', MagicMock())
mocker.patch('freqtrade.freqtradebot.Analyze.get_signal', MagicMock())
return FreqtradeBot(config, create_engine('sqlite://'))
return FreqtradeBot(config)
def patch_coinmarketcap(mocker, value: Optional[Dict[str, float]] = None) -> None:
"""
Mocker to coinmarketcap to speed up tests
:param mocker: mocker to patch coinmarketcap class
:return: None
"""
tickermock = MagicMock(return_value={'price_usd': 12345.0})
listmock = MagicMock(return_value={'data': [{'id': 1, 'name': 'Bitcoin', 'symbol': 'BTC',
'website_slug': 'bitcoin'},
{'id': 1027, 'name': 'Ethereum', 'symbol': 'ETH',
'website_slug': 'ethereum'}
]})
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=tickermock,
listings=listmock,
)
@pytest.fixture(scope="function")
@@ -54,7 +88,7 @@ def default_conf():
"stake_currency": "BTC",
"stake_amount": 0.001,
"fiat_display_currency": "USD",
"ticker_interval": 5,
"ticker_interval": '5m',
"dry_run": True,
"minimal_roi": {
"40": 0.0,
@@ -63,7 +97,10 @@ def default_conf():
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": 600,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0
},
@@ -73,11 +110,10 @@ def default_conf():
"key": "key",
"secret": "secret",
"pair_whitelist": [
"BTC_ETH",
"BTC_TKN",
"BTC_TRST",
"BTC_SWT",
"BTC_BCC"
"ETH/BTC",
"LTC/BTC",
"XRP/BTC",
"NEO/BTC"
]
},
"telegram": {
@@ -86,9 +122,9 @@ def default_conf():
"chat_id": "0"
},
"initial_state": "running",
"loglevel": logging.DEBUG
"db_url": "sqlite://",
"loglevel": logging.DEBUG,
}
validate(configuration, constants.CONF_SCHEMA)
return configuration
@@ -99,6 +135,11 @@ def update():
return _update
@pytest.fixture
def fee():
return MagicMock(return_value=0.0025)
@pytest.fixture
def ticker():
return MagicMock(return_value={
@@ -127,46 +168,178 @@ def ticker_sell_down():
@pytest.fixture
def health():
return MagicMock(return_value=[{
'Currency': 'BTC',
'IsActive': True,
'LastChecked': '2017-11-13T20:15:00.00',
'Notice': None
}, {
'Currency': 'ETH',
'IsActive': True,
'LastChecked': '2017-11-13T20:15:00.00',
'Notice': None
}, {
'Currency': 'TRST',
'IsActive': True,
'LastChecked': '2017-11-13T20:15:00.00',
'Notice': None
}, {
'Currency': 'SWT',
'IsActive': True,
'LastChecked': '2017-11-13T20:15:00.00',
'Notice': None
}, {
'Currency': 'BCC',
'IsActive': False,
'LastChecked': '2017-11-13T20:15:00.00',
'Notice': None
}])
def markets():
return MagicMock(return_value=[
{
'id': 'ethbtc',
'symbol': 'ETH/BTC',
'base': 'ETH',
'quote': 'BTC',
'active': True,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
},
{
'id': 'tknbtc',
'symbol': 'TKN/BTC',
'base': 'TKN',
'quote': 'BTC',
'active': True,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
},
{
'id': 'blkbtc',
'symbol': 'BLK/BTC',
'base': 'BLK',
'quote': 'BTC',
'active': True,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
},
{
'id': 'ltcbtc',
'symbol': 'LTC/BTC',
'base': 'LTC',
'quote': 'BTC',
'active': False,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
},
{
'id': 'xrpbtc',
'symbol': 'XRP/BTC',
'base': 'XRP',
'quote': 'BTC',
'active': False,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
},
{
'id': 'neobtc',
'symbol': 'NEO/BTC',
'base': 'NEO',
'quote': 'BTC',
'active': False,
'precision': {
'price': 8,
'amount': 8,
'cost': 8,
},
'lot': 0.00000001,
'limits': {
'amount': {
'min': 0.01,
'max': 1000,
},
'price': 500000,
'cost': {
'min': 1,
'max': 500000,
},
},
'info': '',
}
])
@pytest.fixture
def markets_empty():
return MagicMock(return_value=[])
@pytest.fixture(scope='function')
def limit_buy_order():
return {
'id': 'mocked_limit_buy',
'type': 'LIMIT_BUY',
'type': 'limit',
'side': 'buy',
'pair': 'mocked',
'opened': str(arrow.utcnow().datetime),
'rate': 0.00001099,
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'remaining': 0.0,
'closed': str(arrow.utcnow().datetime),
'status': 'closed'
}
@@ -174,12 +347,14 @@ def limit_buy_order():
def limit_buy_order_old():
return {
'id': 'mocked_limit_buy_old',
'type': 'LIMIT_BUY',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'type': 'limit',
'side': 'buy',
'pair': 'mocked',
'datetime': str(arrow.utcnow().shift(minutes=-601).datetime),
'price': 0.00001099,
'amount': 90.99181073,
'remaining': 90.99181073,
'status': 'open'
}
@@ -187,12 +362,14 @@ def limit_buy_order_old():
def limit_sell_order_old():
return {
'id': 'mocked_limit_sell_old',
'type': 'LIMIT_SELL',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'type': 'limit',
'side': 'sell',
'pair': 'ETH/BTC',
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'remaining': 90.99181073,
'status': 'open'
}
@@ -200,12 +377,14 @@ def limit_sell_order_old():
def limit_buy_order_old_partial():
return {
'id': 'mocked_limit_buy_old_partial',
'type': 'LIMIT_BUY',
'pair': 'BTC_ETH',
'opened': str(arrow.utcnow().shift(minutes=-601).datetime),
'rate': 0.00001099,
'type': 'limit',
'side': 'buy',
'pair': 'ETH/BTC',
'datetime': arrow.utcnow().shift(minutes=-601).isoformat(),
'price': 0.00001099,
'amount': 90.99181073,
'remaining': 67.99181073,
'status': 'open'
}
@@ -213,85 +392,227 @@ def limit_buy_order_old_partial():
def limit_sell_order():
return {
'id': 'mocked_limit_sell',
'type': 'LIMIT_SELL',
'type': 'limit',
'side': 'sell',
'pair': 'mocked',
'opened': str(arrow.utcnow().datetime),
'rate': 0.00001173,
'datetime': arrow.utcnow().isoformat(),
'price': 0.00001173,
'amount': 90.99181073,
'remaining': 0.0,
'closed': str(arrow.utcnow().datetime),
'status': 'closed'
}
@pytest.fixture
def ticker_history():
return [
{
"O": 8.794e-05,
"H": 8.948e-05,
"L": 8.794e-05,
"C": 8.88e-05,
"V": 991.09056638,
"T": "2017-11-26T08:50:00",
"BV": 0.0877869
},
{
"O": 8.88e-05,
"H": 8.942e-05,
"L": 8.88e-05,
"C": 8.893e-05,
"V": 658.77935965,
"T": "2017-11-26T08:55:00",
"BV": 0.05874751
},
{
"O": 8.891e-05,
"H": 8.893e-05,
"L": 8.875e-05,
"C": 8.877e-05,
"V": 7920.73570705,
"T": "2017-11-26T09:00:00",
"BV": 0.7039405
}
[
1511686200000, # unix timestamp ms
8.794e-05, # open
8.948e-05, # high
8.794e-05, # low
8.88e-05, # close
0.0877869, # volume (in quote currency)
],
[
1511686500000,
8.88e-05,
8.942e-05,
8.88e-05,
8.893e-05,
0.05874751,
],
[
1511686800000,
8.891e-05,
8.893e-05,
8.875e-05,
8.877e-05,
0.7039405
]
]
@pytest.fixture
def ticker_history_without_bv():
return [
{
"O": 8.794e-05,
"H": 8.948e-05,
"L": 8.794e-05,
"C": 8.88e-05,
"V": 991.09056638,
"T": "2017-11-26T08:50:00"
def tickers():
return MagicMock(return_value={
'ETH/BTC': {
'symbol': 'ETH/BTC',
'timestamp': 1522014806207,
'datetime': '2018-03-25T21:53:26.207Z',
'high': 0.061697,
'low': 0.060531,
'bid': 0.061588,
'bidVolume': 3.321,
'ask': 0.061655,
'askVolume': 0.212,
'vwap': 0.06105296,
'open': 0.060809,
'close': 0.060761,
'first': None,
'last': 0.061588,
'change': 1.281,
'percentage': None,
'average': None,
'baseVolume': 111649.001,
'quoteVolume': 6816.50176926,
'info': {}
},
{
"O": 8.88e-05,
"H": 8.942e-05,
"L": 8.88e-05,
"C": 8.893e-05,
"V": 658.77935965,
"T": "2017-11-26T08:55:00"
'TKN/BTC': {
'symbol': 'TKN/BTC',
'timestamp': 1522014806169,
'datetime': '2018-03-25T21:53:26.169Z',
'high': 0.01885,
'low': 0.018497,
'bid': 0.018799,
'bidVolume': 8.38,
'ask': 0.018802,
'askVolume': 15.0,
'vwap': 0.01869197,
'open': 0.018585,
'close': 0.018573,
'baseVolume': 81058.66,
'quoteVolume': 2247.48374509,
},
{
"O": 8.891e-05,
"H": 8.893e-05,
"L": 8.875e-05,
"C": 8.877e-05,
"V": 7920.73570705,
"T": "2017-11-26T09:00:00"
'BLK/BTC': {
'symbol': 'BLK/BTC',
'timestamp': 1522014806072,
'datetime': '2018-03-25T21:53:26.720Z',
'high': 0.007745,
'low': 0.007512,
'bid': 0.007729,
'bidVolume': 0.01,
'ask': 0.007743,
'askVolume': 21.37,
'vwap': 0.00761466,
'open': 0.007653,
'close': 0.007652,
'first': None,
'last': 0.007743,
'change': 1.176,
'percentage': None,
'average': None,
'baseVolume': 295152.26,
'quoteVolume': 1515.14631229,
'info': {}
},
'LTC/BTC': {
'symbol': 'LTC/BTC',
'timestamp': 1523787258992,
'datetime': '2018-04-15T10:14:19.992Z',
'high': 0.015978,
'low': 0.0157,
'bid': 0.015954,
'bidVolume': 12.83,
'ask': 0.015957,
'askVolume': 0.49,
'vwap': 0.01581636,
'open': 0.015823,
'close': 0.01582,
'first': None,
'last': 0.015951,
'change': 0.809,
'percentage': None,
'average': None,
'baseVolume': 88620.68,
'quoteVolume': 1401.65697943,
'info': {}
},
'ETH/USDT': {
'symbol': 'ETH/USDT',
'timestamp': 1522014804118,
'datetime': '2018-03-25T21:53:24.118Z',
'high': 530.88,
'low': 512.0,
'bid': 529.73,
'bidVolume': 0.2,
'ask': 530.21,
'askVolume': 0.2464,
'vwap': 521.02438405,
'open': 527.27,
'close': 528.42,
'first': None,
'last': 530.21,
'change': 0.558,
'percentage': None,
'average': None,
'baseVolume': 72300.0659,
'quoteVolume': 37670097.3022171,
'info': {}
},
'TKN/USDT': {
'symbol': 'TKN/USDT',
'timestamp': 1522014806198,
'datetime': '2018-03-25T21:53:26.198Z',
'high': 8718.0,
'low': 8365.77,
'bid': 8603.64,
'bidVolume': 0.15846,
'ask': 8603.67,
'askVolume': 0.069147,
'vwap': 8536.35621697,
'open': 8680.0,
'close': 8680.0,
'first': None,
'last': 8603.67,
'change': -0.879,
'percentage': None,
'average': None,
'baseVolume': 30414.604298,
'quoteVolume': 259629896.48584127,
'info': {}
},
'BLK/USDT': {
'symbol': 'BLK/USDT',
'timestamp': 1522014806145,
'datetime': '2018-03-25T21:53:26.145Z',
'high': 66.95,
'low': 63.38,
'bid': 66.473,
'bidVolume': 4.968,
'ask': 66.54,
'askVolume': 2.704,
'vwap': 65.0526901,
'open': 66.43,
'close': 66.383,
'first': None,
'last': 66.5,
'change': 0.105,
'percentage': None,
'average': None,
'baseVolume': 294106.204,
'quoteVolume': 19132399.743954,
'info': {}
},
'LTC/USDT': {
'symbol': 'LTC/USDT',
'timestamp': 1523787257812,
'datetime': '2018-04-15T10:14:18.812Z',
'high': 129.94,
'low': 124.0,
'bid': 129.28,
'bidVolume': 0.03201,
'ask': 129.52,
'askVolume': 0.14529,
'vwap': 126.92838682,
'open': 127.0,
'close': 127.1,
'first': None,
'last': 129.28,
'change': 1.795,
'percentage': None,
'average': None,
'baseVolume': 59698.79897,
'quoteVolume': 29132399.743954,
'info': {}
}
]
})
# FIX: Perhaps change result fixture to use BTC_UNITEST instead?
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
return Analyze.parse_ticker_dataframe(json.load(data_file))
with open('freqtrade/tests/testdata/UNITTEST_BTC-1m.json') as data_file:
return parse_ticker_dataframe(json.load(data_file))
# FIX:
# Create an fixture/function
@@ -300,132 +621,88 @@ def result():
# See tests in rpc/main that could use this
@pytest.fixture(scope="function")
def trades_for_order():
return [{'info': {'id': 34567,
'orderId': 123456,
'price': '0.24544100',
'qty': '8.00000000',
'commission': '0.00800000',
'commissionAsset': 'LTC',
'time': 1521663363189,
'isBuyer': True,
'isMaker': False,
'isBestMatch': True},
'timestamp': 1521663363189,
'datetime': '2018-03-21T20:16:03.189Z',
'symbol': 'LTC/ETH',
'id': '34567',
'order': '123456',
'type': None,
'side': 'buy',
'price': 0.245441,
'cost': 1.963528,
'amount': 8.0,
'fee': {'cost': 0.008, 'currency': 'LTC'}}]
@pytest.fixture(scope="function")
def trades_for_order2():
return [{'info': {'id': 34567,
'orderId': 123456,
'price': '0.24544100',
'qty': '8.00000000',
'commission': '0.00800000',
'commissionAsset': 'LTC',
'time': 1521663363189,
'isBuyer': True,
'isMaker': False,
'isBestMatch': True},
'timestamp': 1521663363189,
'datetime': '2018-03-21T20:16:03.189Z',
'symbol': 'LTC/ETH',
'id': '34567',
'order': '123456',
'type': None,
'side': 'buy',
'price': 0.245441,
'cost': 1.963528,
'amount': 4.0,
'fee': {'cost': 0.004, 'currency': 'LTC'}},
{'info': {'id': 34567,
'orderId': 123456,
'price': '0.24544100',
'qty': '8.00000000',
'commission': '0.00800000',
'commissionAsset': 'LTC',
'time': 1521663363189,
'isBuyer': True,
'isMaker': False,
'isBestMatch': True},
'timestamp': 1521663363189,
'datetime': '2018-03-21T20:16:03.189Z',
'symbol': 'LTC/ETH',
'id': '34567',
'order': '123456',
'type': None,
'side': 'buy',
'price': 0.245441,
'cost': 1.963528,
'amount': 4.0,
'fee': {'cost': 0.004, 'currency': 'LTC'}}]
@pytest.fixture
def get_market_summaries_data():
"""
This fixture is a real result from exchange.get_market_summaries() but reduced to only
8 entries. 4 BTC, 4 USTD
:return: JSON market summaries
"""
return [
{
'Ask': 1.316e-05,
'BaseVolume': 5.72599471,
'Bid': 1.3e-05,
'Created': '2014-04-14T00:00:00',
'High': 1.414e-05,
'Last': 1.298e-05,
'Low': 1.282e-05,
'MarketName': 'BTC-XWC',
'OpenBuyOrders': 2000,
'OpenSellOrders': 1484,
'PrevDay': 1.376e-05,
'TimeStamp': '2018-02-05T01:32:40.493',
'Volume': 424041.21418375
},
{
'Ask': 0.00627051,
'BaseVolume': 93.23302388,
'Bid': 0.00618192,
'Created': '2016-10-20T04:48:30.387',
'High': 0.00669897,
'Last': 0.00618192,
'Low': 0.006,
'MarketName': 'BTC-XZC',
'OpenBuyOrders': 343,
'OpenSellOrders': 2037,
'PrevDay': 0.00668229,
'TimeStamp': '2018-02-05T01:32:43.383',
'Volume': 14863.60730702
},
{
'Ask': 0.01137247,
'BaseVolume': 383.55922657,
'Bid': 0.01136006,
'Created': '2016-11-15T20:29:59.73',
'High': 0.012,
'Last': 0.01137247,
'Low': 0.01119883,
'MarketName': 'BTC-ZCL',
'OpenBuyOrders': 1332,
'OpenSellOrders': 5317,
'PrevDay': 0.01179603,
'TimeStamp': '2018-02-05T01:32:42.773',
'Volume': 33308.07358285
},
{
'Ask': 0.04155821,
'BaseVolume': 274.75369074,
'Bid': 0.04130002,
'Created': '2016-10-28T17:13:10.833',
'High': 0.04354429,
'Last': 0.041585,
'Low': 0.0413,
'MarketName': 'BTC-ZEC',
'OpenBuyOrders': 863,
'OpenSellOrders': 5579,
'PrevDay': 0.0429,
'TimeStamp': '2018-02-05T01:32:43.21',
'Volume': 6479.84033259
},
{
'Ask': 210.99999999,
'BaseVolume': 615132.70989532,
'Bid': 210.05503736,
'Created': '2017-07-21T01:08:49.397',
'High': 257.396,
'Last': 211.0,
'Low': 209.05333589,
'MarketName': 'USDT-XMR',
'OpenBuyOrders': 180,
'OpenSellOrders': 1203,
'PrevDay': 247.93528899,
'TimeStamp': '2018-02-05T01:32:43.117',
'Volume': 2688.17410793
},
{
'Ask': 0.79589979,
'BaseVolume': 9349557.01853031,
'Bid': 0.789226,
'Created': '2017-07-14T17:10:10.737',
'High': 0.977,
'Last': 0.79589979,
'Low': 0.781,
'MarketName': 'USDT-XRP',
'OpenBuyOrders': 1075,
'OpenSellOrders': 6508,
'PrevDay': 0.93300218,
'TimeStamp': '2018-02-05T01:32:42.383',
'Volume': 10801663.00788851
},
{
'Ask': 0.05154982,
'BaseVolume': 2311087.71232136,
'Bid': 0.05040107,
'Created': '2017-12-29T19:29:18.357',
'High': 0.06668561,
'Last': 0.0508,
'Low': 0.05006731,
'MarketName': 'USDT-XVG',
'OpenBuyOrders': 655,
'OpenSellOrders': 5544,
'PrevDay': 0.0627,
'TimeStamp': '2018-02-05T01:32:41.507',
'Volume': 40031424.2152716
},
{
'Ask': 332.65500022,
'BaseVolume': 562911.87455665,
'Bid': 330.00000001,
'Created': '2017-07-14T17:10:10.673',
'High': 401.59999999,
'Last': 332.65500019,
'Low': 330.0,
'MarketName': 'USDT-ZEC',
'OpenBuyOrders': 161,
'OpenSellOrders': 1731,
'PrevDay': 391.42,
'TimeStamp': '2018-02-05T01:32:42.947',
'Volume': 1571.09647946
def buy_order_fee():
return {
'id': 'mocked_limit_buy_old',
'type': 'limit',
'side': 'buy',
'pair': 'mocked',
'datetime': str(arrow.utcnow().shift(minutes=-601).datetime),
'price': 0.245441,
'amount': 8.0,
'remaining': 90.99181073,
'status': 'closed',
'fee': None
}
]

View File

@@ -1,286 +1,837 @@
# pragma pylint: disable=missing-docstring, C0103, bad-continuation, global-statement
# pragma pylint: disable=protected-access
import logging
from datetime import datetime
from random import randint
from unittest.mock import MagicMock
from unittest.mock import MagicMock, PropertyMock
import ccxt
import pytest
from requests.exceptions import RequestException
import freqtrade.exchange as exchange
from freqtrade import OperationalException
from freqtrade.exchange import init, validate_pairs, buy, sell, get_balance, get_balances, \
get_ticker, get_ticker_history, cancel_order, get_name, get_fee
from freqtrade.tests.conftest import log_has
API_INIT = False
from freqtrade import DependencyException, OperationalException, TemporaryError
from freqtrade.exchange import API_RETRY_COUNT, Exchange
from freqtrade.tests.conftest import get_patched_exchange, log_has
def maybe_init_api(conf, mocker, force=False):
global API_INIT
if force or not API_INIT:
mocker.patch('freqtrade.exchange.validate_pairs',
side_effect=lambda s: True)
init(config=conf)
API_INIT = True
def ccxt_exceptionhandlers(mocker, default_conf, api_mock, fun, mock_ccxt_fun, **kwargs):
with pytest.raises(TemporaryError):
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
getattr(exchange, fun)(**kwargs)
assert api_mock.__dict__[mock_ccxt_fun].call_count == API_RETRY_COUNT + 1
with pytest.raises(OperationalException):
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
getattr(exchange, fun)(**kwargs)
assert api_mock.__dict__[mock_ccxt_fun].call_count == 1
def test_init(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
maybe_init_api(default_conf, mocker, True)
get_patched_exchange(mocker, default_conf)
assert log_has('Instance is running with dry_run enabled', caplog.record_tuples)
def test_init_exception(default_conf):
def test_init_exception(default_conf, mocker):
default_conf['exchange']['name'] = 'wrong_exchange_name'
with pytest.raises(
OperationalException,
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
init(config=default_conf)
Exchange(default_conf)
default_conf['exchange']['name'] = 'binance'
with pytest.raises(
OperationalException,
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
mocker.patch("ccxt.binance", MagicMock(side_effect=AttributeError))
Exchange(default_conf)
def test_symbol_amount_prec(default_conf, mocker):
'''
Test rounds down to 4 Decimal places
'''
api_mock = MagicMock()
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
})
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value='binance'))
markets = PropertyMock(return_value={'ETH/BTC': {'precision': {'amount': 4}}})
type(api_mock).markets = markets
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
exchange = Exchange(default_conf)
amount = 2.34559
pair = 'ETH/BTC'
amount = exchange.symbol_amount_prec(pair, amount)
assert amount == 2.3455
def test_symbol_price_prec(default_conf, mocker):
'''
Test rounds up to 4 decimal places
'''
api_mock = MagicMock()
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
})
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value='binance'))
markets = PropertyMock(return_value={'ETH/BTC': {'precision': {'price': 4}}})
type(api_mock).markets = markets
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
exchange = Exchange(default_conf)
price = 2.34559
pair = 'ETH/BTC'
price = exchange.symbol_price_prec(pair, price)
assert price == 2.3456
def test_set_sandbox(default_conf, mocker):
"""
Test working scenario
"""
api_mock = MagicMock()
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
})
url_mock = PropertyMock(return_value={'test': "api-public.sandbox.gdax.com",
'api': 'https://api.gdax.com'})
type(api_mock).urls = url_mock
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
exchange = Exchange(default_conf)
liveurl = exchange._api.urls['api']
default_conf['exchange']['sandbox'] = True
exchange.set_sandbox(exchange._api, default_conf['exchange'], 'Logname')
assert exchange._api.urls['api'] != liveurl
def test_set_sandbox_exception(default_conf, mocker):
"""
Test Fail scenario
"""
api_mock = MagicMock()
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
})
url_mock = PropertyMock(return_value={'api': 'https://api.gdax.com'})
type(api_mock).urls = url_mock
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
with pytest.raises(OperationalException, match=r'does not provide a sandbox api'):
exchange = Exchange(default_conf)
default_conf['exchange']['sandbox'] = True
exchange.set_sandbox(exchange._api, default_conf['exchange'], 'Logname')
def test_validate_pairs(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[
'BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT', 'BTC_BCC',
])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
validate_pairs(default_conf['exchange']['pair_whitelist'])
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
})
id_mock = PropertyMock(return_value='test_exchange')
type(api_mock).id = id_mock
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
Exchange(default_conf)
def test_validate_pairs_not_available(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(return_value=[])
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
api_mock.load_markets = MagicMock(return_value={})
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
with pytest.raises(OperationalException, match=r'not available'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
Exchange(default_conf)
def test_validate_pairs_not_compatible(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_markets = MagicMock(
return_value=['BTC_ETH', 'BTC_TKN', 'BTC_TRST', 'BTC_SWT'])
api_mock.load_markets = MagicMock(return_value={
'ETH/BTC': '', 'TKN/BTC': '', 'TRST/BTC': '', 'SWT/BTC': '', 'BCC/BTC': ''
})
default_conf['stake_currency'] = 'ETH'
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
with pytest.raises(OperationalException, match=r'not compatible'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
Exchange(default_conf)
def test_validate_pairs_exception(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
api_mock = MagicMock()
api_mock.get_markets = MagicMock(side_effect=RequestException())
mocker.patch('freqtrade.exchange._API', api_mock)
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value='Binance'))
# with pytest.raises(RequestException, match=r'Unable to validate pairs'):
validate_pairs(default_conf['exchange']['pair_whitelist'])
api_mock.load_markets = MagicMock(return_value={})
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', api_mock)
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
with pytest.raises(OperationalException, match=r'Pair ETH/BTC is not available at Binance'):
Exchange(default_conf)
api_mock.load_markets = MagicMock(side_effect=ccxt.BaseError())
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
Exchange(default_conf)
assert log_has('Unable to validate pairs (assuming they are correct). Reason: ',
caplog.record_tuples)
def test_validate_pairs_stake_exception(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
default_conf['stake_currency'] = 'ETH'
api_mock = MagicMock()
api_mock.name = MagicMock(return_value='binance')
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', api_mock)
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
with pytest.raises(
OperationalException,
match=r'Pair ETH/BTC not compatible with stake_currency: ETH'
):
Exchange(default_conf)
def test_validate_timeframes(default_conf, mocker):
default_conf["ticker_interval"] = "5m"
api_mock = MagicMock()
id_mock = PropertyMock(return_value='test_exchange')
type(api_mock).id = id_mock
timeframes = PropertyMock(return_value={'1m': '1m',
'5m': '5m',
'15m': '15m',
'1h': '1h'})
type(api_mock).timeframes = timeframes
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
Exchange(default_conf)
def test_validate_timeframes_failed(default_conf, mocker):
default_conf["ticker_interval"] = "3m"
api_mock = MagicMock()
id_mock = PropertyMock(return_value='test_exchange')
type(api_mock).id = id_mock
timeframes = PropertyMock(return_value={'1m': '1m',
'5m': '5m',
'15m': '15m',
'1h': '1h'})
type(api_mock).timeframes = timeframes
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
with pytest.raises(OperationalException, match=r'Invalid ticker 3m, this Exchange supports.*'):
Exchange(default_conf)
def test_validate_timeframes_not_in_config(default_conf, mocker):
del default_conf["ticker_interval"]
api_mock = MagicMock()
id_mock = PropertyMock(return_value='test_exchange')
type(api_mock).id = id_mock
timeframes = PropertyMock(return_value={'1m': '1m',
'5m': '5m',
'15m': '15m',
'1h': '1h'})
type(api_mock).timeframes = timeframes
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
Exchange(default_conf)
def test_exchange_has(default_conf, mocker):
exchange = get_patched_exchange(mocker, default_conf)
assert not exchange.exchange_has('ASDFASDF')
api_mock = MagicMock()
type(api_mock).has = PropertyMock(return_value={'deadbeef': True})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.exchange_has("deadbeef")
type(api_mock).has = PropertyMock(return_value={'deadbeef': False})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert not exchange.exchange_has("deadbeef")
def test_buy_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
exchange = get_patched_exchange(mocker, default_conf)
assert 'dry_run_buy_' in buy(pair='BTC_ETH', rate=200, amount=1)
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
assert 'id' in order
assert 'dry_run_buy_' in order['id']
def test_buy_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.buy = MagicMock(
return_value='dry_run_buy_{}'.format(randint(0, 10**6)))
mocker.patch('freqtrade.exchange._API', api_mock)
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
api_mock.create_limit_buy_order = MagicMock(return_value={
'id': order_id,
'info': {
'foo': 'bar'
}
})
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert 'dry_run_buy_' in buy(pair='BTC_ETH', rate=200, amount=1)
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
assert 'id' in order
assert 'info' in order
assert order['id'] == order_id
# test exception handling
with pytest.raises(DependencyException):
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InsufficientFunds)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(DependencyException):
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(TemporaryError):
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(OperationalException):
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
def test_sell_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
exchange = get_patched_exchange(mocker, default_conf)
assert 'dry_run_sell_' in sell(pair='BTC_ETH', rate=200, amount=1)
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
assert 'id' in order
assert 'dry_run_sell_' in order['id']
def test_sell_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.sell = MagicMock(
return_value='dry_run_sell_{}'.format(randint(0, 10**6)))
mocker.patch('freqtrade.exchange._API', api_mock)
order_id = 'test_prod_sell_{}'.format(randint(0, 10 ** 6))
api_mock.create_limit_sell_order = MagicMock(return_value={
'id': order_id,
'info': {
'foo': 'bar'
}
})
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert 'dry_run_sell_' in sell(pair='BTC_ETH', rate=200, amount=1)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
assert 'id' in order
assert 'info' in order
assert order['id'] == order_id
# test exception handling
with pytest.raises(DependencyException):
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InsufficientFunds)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(DependencyException):
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(TemporaryError):
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
with pytest.raises(OperationalException):
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
def test_get_balance_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balance(currency='BTC') == 999.9
exchange = get_patched_exchange(mocker, default_conf)
assert exchange.get_balance(currency='BTC') == 999.9
def test_get_balance_prod(default_conf, mocker):
api_mock = MagicMock()
api_mock.get_balance = MagicMock(return_value=123.4)
mocker.patch('freqtrade.exchange._API', api_mock)
api_mock.fetch_balance = MagicMock(return_value={'BTC': {'free': 123.4}})
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balance(currency='BTC') == 123.4
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.get_balance(currency='BTC') == 123.4
with pytest.raises(OperationalException):
api_mock.fetch_balance = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_balance(currency='BTC')
with pytest.raises(TemporaryError, match=r'.*balance due to malformed exchange response:.*'):
exchange = get_patched_exchange(mocker, default_conf, api_mock)
mocker.patch('freqtrade.exchange.Exchange.get_balances', MagicMock(return_value={}))
exchange.get_balance(currency='BTC')
def test_get_balances_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert get_balances() == []
exchange = get_patched_exchange(mocker, default_conf)
assert exchange.get_balances() == {}
def test_get_balances_prod(default_conf, mocker):
balance_item = {
'Currency': '1ST',
'Balance': 10.0,
'Available': 10.0,
'Pending': 0.0,
'CryptoAddress': None
'free': 10.0,
'total': 10.0,
'used': 0.0
}
api_mock = MagicMock()
api_mock.get_balances = MagicMock(
return_value=[balance_item, balance_item, balance_item])
mocker.patch('freqtrade.exchange._API', api_mock)
api_mock.fetch_balance = MagicMock(return_value={
'1ST': balance_item,
'2ST': balance_item,
'3ST': balance_item
})
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert len(exchange.get_balances()) == 3
assert exchange.get_balances()['1ST']['free'] == 10.0
assert exchange.get_balances()['1ST']['total'] == 10.0
assert exchange.get_balances()['1ST']['used'] == 0.0
assert len(get_balances()) == 3
assert get_balances()[0]['Currency'] == '1ST'
assert get_balances()[0]['Balance'] == 10.0
assert get_balances()[0]['Available'] == 10.0
assert get_balances()[0]['Pending'] == 0.0
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_balances", "fetch_balance")
# This test is somewhat redundant with
# test_exchange_bittrex.py::test_exchange_bittrex_get_ticker
def test_get_ticker(default_conf, mocker):
maybe_init_api(default_conf, mocker)
def test_get_tickers(default_conf, mocker):
api_mock = MagicMock()
tick = {"success": True, 'result': {'Bid': 0.00001098, 'Ask': 0.00001099, 'Last': 0.0001}}
api_mock.get_ticker = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange.bittrex._API', api_mock)
tick = {'ETH/BTC': {
'symbol': 'ETH/BTC',
'bid': 0.5,
'ask': 1,
'last': 42,
}, 'BCH/BTC': {
'symbol': 'BCH/BTC',
'bid': 0.6,
'ask': 0.5,
'last': 41,
}
}
api_mock.fetch_tickers = MagicMock(return_value=tick)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# retrieve original ticker
ticker = get_ticker(pair='BTC_ETH')
tickers = exchange.get_tickers()
assert 'ETH/BTC' in tickers
assert 'BCH/BTC' in tickers
assert tickers['ETH/BTC']['bid'] == 0.5
assert tickers['ETH/BTC']['ask'] == 1
assert tickers['BCH/BTC']['bid'] == 0.6
assert tickers['BCH/BTC']['ask'] == 0.5
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_tickers", "fetch_tickers")
with pytest.raises(OperationalException):
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.NotSupported)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_tickers()
api_mock.fetch_tickers = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_tickers()
def test_get_ticker(default_conf, mocker):
api_mock = MagicMock()
tick = {
'symbol': 'ETH/BTC',
'bid': 0.00001098,
'ask': 0.00001099,
'last': 0.0001,
}
api_mock.fetch_ticker = MagicMock(return_value=tick)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# retrieve original ticker
ticker = exchange.get_ticker(pair='ETH/BTC')
assert ticker['bid'] == 0.00001098
assert ticker['ask'] == 0.00001099
# change the ticker
tick = {"success": True, 'result': {"Bid": 0.5, "Ask": 1, "Last": 42}}
api_mock.get_ticker = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange.bittrex._API', api_mock)
tick = {
'symbol': 'ETH/BTC',
'bid': 0.5,
'ask': 1,
'last': 42,
}
api_mock.fetch_ticker = MagicMock(return_value=tick)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# if not caching the result we should get the same ticker
# if not fetching a new result we should get the cached ticker
ticker = get_ticker(pair='BTC_ETH', refresh=False)
assert ticker['bid'] == 0.00001098
assert ticker['ask'] == 0.00001099
ticker = exchange.get_ticker(pair='ETH/BTC')
# force ticker refresh
ticker = get_ticker(pair='BTC_ETH', refresh=True)
assert api_mock.fetch_ticker.call_count == 1
assert ticker['bid'] == 0.5
assert ticker['ask'] == 1
assert 'ETH/BTC' in exchange._cached_ticker
assert exchange._cached_ticker['ETH/BTC']['bid'] == 0.5
assert exchange._cached_ticker['ETH/BTC']['ask'] == 1
def test_get_ticker_history(default_conf, mocker):
# Test caching
api_mock.fetch_ticker = MagicMock()
exchange.get_ticker(pair='ETH/BTC', refresh=False)
assert api_mock.fetch_ticker.call_count == 0
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_ticker", "fetch_ticker",
pair='ETH/BTC', refresh=True)
api_mock.fetch_ticker = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_ticker(pair='ETH/BTC', refresh=True)
def make_fetch_ohlcv_mock(data):
def fetch_ohlcv_mock(pair, timeframe, since):
if since:
assert since > data[-1][0]
return []
return data
return fetch_ohlcv_mock
def test_get_candle_history(default_conf, mocker):
api_mock = MagicMock()
tick = 123
api_mock.get_ticker_history = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange._API', api_mock)
tick = [
[
1511686200000, # unix timestamp ms
1, # open
2, # high
3, # low
4, # close
5, # volume (in quote currency)
]
]
type(api_mock).has = PropertyMock(return_value={'fetchOHLCV': True})
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# retrieve original ticker
ticks = get_ticker_history('BTC_ETH', int(default_conf['ticker_interval']))
assert ticks == 123
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1511686200000
assert ticks[0][1] == 1
assert ticks[0][2] == 2
assert ticks[0][3] == 3
assert ticks[0][4] == 4
assert ticks[0][5] == 5
# change the ticker
tick = 999
api_mock.get_ticker_history = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange._API', api_mock)
# change ticker and ensure tick changes
new_tick = [
[
1511686210000, # unix timestamp ms
6, # open
7, # high
8, # low
9, # close
10, # volume (in quote currency)
]
]
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(new_tick))
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# ensure caching will still return the original ticker
ticks = get_ticker_history('BTC_ETH', int(default_conf['ticker_interval']))
assert ticks == 123
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1511686210000
assert ticks[0][1] == 6
assert ticks[0][2] == 7
assert ticks[0][3] == 8
assert ticks[0][4] == 9
assert ticks[0][5] == 10
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_candle_history", "fetch_ohlcv",
pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
with pytest.raises(OperationalException, match=r'Exchange .* does not support.*'):
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NotSupported)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_candle_history(pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
def test_get_candle_history_sort(default_conf, mocker):
api_mock = MagicMock()
# GDAX use-case (real data from GDAX)
# This ticker history is ordered DESC (newest first, oldest last)
tick = [
[1527833100000, 0.07666, 0.07671, 0.07666, 0.07668, 16.65244264],
[1527832800000, 0.07662, 0.07666, 0.07662, 0.07666, 1.30051526],
[1527832500000, 0.07656, 0.07661, 0.07656, 0.07661, 12.034778840000001],
[1527832200000, 0.07658, 0.07658, 0.07655, 0.07656, 0.59780186],
[1527831900000, 0.07658, 0.07658, 0.07658, 0.07658, 1.76278136],
[1527831600000, 0.07658, 0.07658, 0.07658, 0.07658, 2.22646521],
[1527831300000, 0.07655, 0.07657, 0.07655, 0.07657, 1.1753],
[1527831000000, 0.07654, 0.07654, 0.07651, 0.07651, 0.8073060299999999],
[1527830700000, 0.07652, 0.07652, 0.07651, 0.07652, 10.04822687],
[1527830400000, 0.07649, 0.07651, 0.07649, 0.07651, 2.5734867]
]
type(api_mock).has = PropertyMock(return_value={'fetchOHLCV': True})
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# Test the ticker history sort
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1527830400000
assert ticks[0][1] == 0.07649
assert ticks[0][2] == 0.07651
assert ticks[0][3] == 0.07649
assert ticks[0][4] == 0.07651
assert ticks[0][5] == 2.5734867
assert ticks[9][0] == 1527833100000
assert ticks[9][1] == 0.07666
assert ticks[9][2] == 0.07671
assert ticks[9][3] == 0.07666
assert ticks[9][4] == 0.07668
assert ticks[9][5] == 16.65244264
# Bittrex use-case (real data from Bittrex)
# This ticker history is ordered ASC (oldest first, newest last)
tick = [
[1527827700000, 0.07659999, 0.0766, 0.07627, 0.07657998, 1.85216924],
[1527828000000, 0.07657995, 0.07657995, 0.0763, 0.0763, 26.04051037],
[1527828300000, 0.0763, 0.07659998, 0.0763, 0.0764, 10.36434124],
[1527828600000, 0.0764, 0.0766, 0.0764, 0.0766, 5.71044773],
[1527828900000, 0.0764, 0.07666998, 0.0764, 0.07666998, 47.48888565],
[1527829200000, 0.0765, 0.07672999, 0.0765, 0.07672999, 3.37640326],
[1527829500000, 0.0766, 0.07675, 0.0765, 0.07675, 8.36203831],
[1527829800000, 0.07675, 0.07677999, 0.07620002, 0.076695, 119.22963884],
[1527830100000, 0.076695, 0.07671, 0.07624171, 0.07671, 1.80689244],
[1527830400000, 0.07671, 0.07674399, 0.07629216, 0.07655213, 2.31452783]
]
type(api_mock).has = PropertyMock(return_value={'fetchOHLCV': True})
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# Test the ticker history sort
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1527827700000
assert ticks[0][1] == 0.07659999
assert ticks[0][2] == 0.0766
assert ticks[0][3] == 0.07627
assert ticks[0][4] == 0.07657998
assert ticks[0][5] == 1.85216924
assert ticks[9][0] == 1527830400000
assert ticks[9][1] == 0.07671
assert ticks[9][2] == 0.07674399
assert ticks[9][3] == 0.07629216
assert ticks[9][4] == 0.07655213
assert ticks[9][5] == 2.31452783
def test_cancel_order_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
assert cancel_order(order_id='123') is None
exchange = get_patched_exchange(mocker, default_conf)
assert exchange.cancel_order(order_id='123', pair='TKN/BTC') is None
# Ensure that if not dry_run, we should call API
def test_cancel_order(default_conf, mocker):
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
api_mock = MagicMock()
api_mock.cancel_order = MagicMock(return_value=123)
mocker.patch('freqtrade.exchange._API', api_mock)
assert cancel_order(order_id='_') == 123
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.cancel_order(order_id='_', pair='TKN/BTC') == 123
with pytest.raises(DependencyException):
api_mock.cancel_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.cancel_order(order_id='_', pair='TKN/BTC')
assert api_mock.cancel_order.call_count == API_RETRY_COUNT + 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"cancel_order", "cancel_order",
order_id='_', pair='TKN/BTC')
def test_get_order(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
order = MagicMock()
order.myid = 123
exchange._DRY_RUN_OPEN_ORDERS['X'] = order
print(exchange.get_order('X'))
assert exchange.get_order('X').myid == 123
exchange = get_patched_exchange(mocker, default_conf)
exchange._dry_run_open_orders['X'] = order
print(exchange.get_order('X', 'TKN/BTC'))
assert exchange.get_order('X', 'TKN/BTC').myid == 123
default_conf['dry_run'] = False
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)
api_mock = MagicMock()
api_mock.get_order = MagicMock(return_value=456)
mocker.patch('freqtrade.exchange._API', api_mock)
assert exchange.get_order('X') == 456
api_mock.fetch_order = MagicMock(return_value=456)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.get_order('X', 'TKN/BTC') == 456
with pytest.raises(DependencyException):
api_mock.fetch_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_order(order_id='_', pair='TKN/BTC')
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_order', 'fetch_order',
order_id='_', pair='TKN/BTC')
def test_get_name(default_conf, mocker):
mocker.patch('freqtrade.exchange.validate_pairs',
def test_name(default_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange.validate_pairs',
side_effect=lambda s: True)
default_conf['exchange']['name'] = 'bittrex'
init(default_conf)
default_conf['exchange']['name'] = 'binance'
exchange = Exchange(default_conf)
assert get_name() == 'Bittrex'
assert exchange.name == 'Binance'
def test_id(default_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange.validate_pairs',
side_effect=lambda s: True)
default_conf['exchange']['name'] = 'binance'
exchange = Exchange(default_conf)
assert exchange.id == 'binance'
def test_get_pair_detail_url(default_conf, mocker, caplog):
mocker.patch('freqtrade.exchange.Exchange.validate_pairs',
side_effect=lambda s: True)
default_conf['exchange']['name'] = 'binance'
exchange = Exchange(default_conf)
url = exchange.get_pair_detail_url('TKN/ETH')
assert 'TKN' in url
assert 'ETH' in url
url = exchange.get_pair_detail_url('LOOONG/BTC')
assert 'LOOONG' in url
assert 'BTC' in url
default_conf['exchange']['name'] = 'bittrex'
exchange = Exchange(default_conf)
url = exchange.get_pair_detail_url('TKN/ETH')
assert 'TKN' in url
assert 'ETH' in url
url = exchange.get_pair_detail_url('LOOONG/BTC')
assert 'LOOONG' in url
assert 'BTC' in url
default_conf['exchange']['name'] = 'poloniex'
exchange = Exchange(default_conf)
url = exchange.get_pair_detail_url('LOOONG/BTC')
assert '' == url
assert log_has('Could not get exchange url for Poloniex', caplog.record_tuples)
def test_get_trades_for_order(default_conf, mocker):
order_id = 'ABCD-ABCD'
since = datetime(2018, 5, 5)
default_conf["dry_run"] = False
mocker.patch('freqtrade.exchange.Exchange.exchange_has', return_value=True)
api_mock = MagicMock()
api_mock.fetch_my_trades = MagicMock(return_value=[{'id': 'TTR67E-3PFBD-76IISV',
'order': 'ABCD-ABCD',
'info': {'pair': 'XLTCZBTC',
'time': 1519860024.4388,
'type': 'buy',
'ordertype': 'limit',
'price': '20.00000',
'cost': '38.62000',
'fee': '0.06179',
'vol': '5',
'id': 'ABCD-ABCD'},
'timestamp': 1519860024438,
'datetime': '2018-02-28T23:20:24.438Z',
'symbol': 'LTC/BTC',
'type': 'limit',
'side': 'buy',
'price': 165.0,
'amount': 0.2340606,
'fee': {'cost': 0.06179, 'currency': 'BTC'}
}])
exchange = get_patched_exchange(mocker, default_conf, api_mock)
orders = exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
assert len(orders) == 1
assert orders[0]['price'] == 165
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_trades_for_order', 'fetch_my_trades',
order_id=order_id, pair='LTC/BTC', since=since)
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=False))
assert exchange.get_trades_for_order(order_id, 'LTC/BTC', since) == []
def test_get_markets(default_conf, mocker, markets):
api_mock = MagicMock()
api_mock.fetch_markets = markets
exchange = get_patched_exchange(mocker, default_conf, api_mock)
ret = exchange.get_markets()
assert isinstance(ret, list)
assert len(ret) == 6
assert ret[0]["id"] == "ethbtc"
assert ret[0]["symbol"] == "ETH/BTC"
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_markets', 'fetch_markets')
def test_get_fee(default_conf, mocker):
mocker.patch('freqtrade.exchange.validate_pairs',
side_effect=lambda s: True)
init(default_conf)
assert get_fee() == 0.0025
def test_exchange_misc(mocker):
api_mock = MagicMock()
mocker.patch('freqtrade.exchange._API', api_mock)
exchange.get_markets()
assert api_mock.get_markets.call_count == 1
exchange.get_market_summaries()
assert api_mock.get_market_summaries.call_count == 1
api_mock.name = 123
assert exchange.get_name() == 123
api_mock.fee = 456
assert exchange.get_fee() == 456
exchange.get_wallet_health()
assert api_mock.get_wallet_health.call_count == 1
api_mock.calculate_fee = MagicMock(return_value={
'type': 'taker',
'currency': 'BTC',
'rate': 0.025,
'cost': 0.05
})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.get_fee() == 0.025
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_fee', 'calculate_fee')
def test_get_amount_lots(default_conf, mocker):
api_mock = MagicMock()
api_mock.amount_to_lots = MagicMock(return_value=1.0)
api_mock.markets = None
marketmock = MagicMock()
api_mock.load_markets = marketmock
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.get_amount_lots('LTC/BTC', 1.54) == 1
assert marketmock.call_count == 1

View File

@@ -1,349 +0,0 @@
# pragma pylint: disable=missing-docstring, C0103, protected-access, unused-argument
from unittest.mock import MagicMock
import pytest
from requests.exceptions import ContentDecodingError
import freqtrade.exchange.bittrex as btx
from freqtrade.exchange.bittrex import Bittrex
# Eat this flake8
# +------------------+
# | bittrex.Bittrex |
# +------------------+
# |
# (mock Fake_bittrex)
# |
# +-----------------------------+
# | freqtrade.exchange.Bittrex |
# +-----------------------------+
# Call into Bittrex will flow up to the
# external package bittrex.Bittrex.
# By inserting a mock, we redirect those
# calls.
# The faked bittrex API is called just 'fb'
# The freqtrade.exchange.Bittrex is a
# wrapper, and is called 'wb'
def _stub_config():
return {'key': '',
'secret': ''}
class FakeBittrex():
def __init__(self, success=True):
self.success = True # Believe in yourself
self.result = None
self.get_ticker_call_count = 0
# This is really ugly, doing side-effect during instance creation
# But we're allowed to in testing-code
btx._API = MagicMock()
btx._API.buy_limit = self.fake_buysell_limit
btx._API.sell_limit = self.fake_buysell_limit
btx._API.get_balance = self.fake_get_balance
btx._API.get_balances = self.fake_get_balances
btx._API.get_ticker = self.fake_get_ticker
btx._API.get_order = self.fake_get_order
btx._API.cancel = self.fake_cancel_order
btx._API.get_markets = self.fake_get_markets
btx._API.get_market_summaries = self.fake_get_market_summaries
btx._API_V2 = MagicMock()
btx._API_V2.get_candles = self.fake_get_candles
btx._API_V2.get_wallet_health = self.fake_get_wallet_health
def fake_buysell_limit(self, pair, amount, limit):
return {'success': self.success,
'result': {'uuid': '1234'},
'message': 'barter'}
def fake_get_balance(self, cur):
return {'success': self.success,
'result': {'Balance': 1234},
'message': 'unbalanced'}
def fake_get_balances(self):
return {'success': self.success,
'result': [{'BTC_ETH': 1234}],
'message': 'no balances'}
def fake_get_ticker(self, pair):
self.get_ticker_call_count += 1
return self.result or {'success': self.success,
'result': {'Bid': 1, 'Ask': 1, 'Last': 1},
'message': 'NO_API_RESPONSE'}
def fake_get_candles(self, pair, interval):
return self.result or {'success': self.success,
'result': [{'C': 0, 'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}],
'message': 'candles lit'}
def fake_get_order(self, uuid):
return {'success': self.success,
'result': {'OrderUuid': 'ABC123',
'Type': 'Type',
'Exchange': 'BTC_ETH',
'Opened': True,
'PricePerUnit': 1,
'Quantity': 1,
'QuantityRemaining': 1,
'Closed': True},
'message': 'lost'}
def fake_cancel_order(self, uuid):
return self.result or {'success': self.success,
'message': 'no such order'}
def fake_get_markets(self):
return self.result or {'success': self.success,
'message': 'market gone',
'result': [{'MarketName': '-_'}]}
def fake_get_market_summaries(self):
return self.result or {'success': self.success,
'message': 'no summary',
'result': ['sum']}
def fake_get_wallet_health(self):
return self.result or {'success': self.success,
'message': 'bad health',
'result': [{'Health': {'Currency': 'BTC_ETH',
'IsActive': True,
'LastChecked': 0},
'Currency': {'Notice': True}}]}
# The freqtrade.exchange.bittrex is called wrap_bittrex
# to not confuse naming with bittrex.bittrex
def make_wrap_bittrex():
conf = _stub_config()
wb = btx.Bittrex(conf)
return wb
def test_exchange_bittrex_class():
conf = _stub_config()
b = Bittrex(conf)
assert isinstance(b, Bittrex)
slots = dir(b)
for name in ['fee', 'buy', 'sell', 'get_balance', 'get_balances',
'get_ticker', 'get_ticker_history', 'get_order',
'cancel_order', 'get_pair_detail_url', 'get_markets',
'get_market_summaries', 'get_wallet_health']:
assert name in slots
# FIX: ensure that the slot is also a method in the class
# getattr(b, name) => bound method Bittrex.buy
# type(getattr(b, name)) => class 'method'
def test_exchange_bittrex_fee():
fee = Bittrex.fee.__get__(Bittrex)
assert fee >= 0 and fee < 0.1 # Fee is 0-10 %
def test_exchange_bittrex_buy_good():
wb = make_wrap_bittrex()
fb = FakeBittrex()
uuid = wb.buy('BTC_ETH', 1, 1)
assert uuid == fb.fake_buysell_limit(1, 2, 3)['result']['uuid']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'barter.*'):
wb.buy('BAD', 1, 1)
def test_exchange_bittrex_sell_good():
wb = make_wrap_bittrex()
fb = FakeBittrex()
uuid = wb.sell('BTC_ETH', 1, 1)
assert uuid == fb.fake_buysell_limit(1, 2, 3)['result']['uuid']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'barter.*'):
uuid = wb.sell('BAD', 1, 1)
def test_exchange_bittrex_get_balance():
wb = make_wrap_bittrex()
fb = FakeBittrex()
bal = wb.get_balance('BTC_ETH')
assert bal == fb.fake_get_balance(1)['result']['Balance']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'unbalanced'):
wb.get_balance('BTC_ETH')
def test_exchange_bittrex_get_balances():
wb = make_wrap_bittrex()
fb = FakeBittrex()
bals = wb.get_balances()
assert bals == fb.fake_get_balances()['result']
fb.success = False
with pytest.raises(btx.OperationalException, match=r'no balances'):
wb.get_balances()
def test_exchange_bittrex_get_ticker():
wb = make_wrap_bittrex()
fb = FakeBittrex()
# Poll ticker, which updates the cache
tick = wb.get_ticker('BTC_ETH')
for x in ['bid', 'ask', 'last']:
assert x in tick
# Ensure the side-effect was made (update the ticker cache)
assert 'BTC_ETH' in wb.cached_ticker.keys()
# taint the cache, so we can recognize the cache wall utilized
wb.cached_ticker['BTC_ETH']['bid'] = 1234
# Poll again, getting the cached result
fb.get_ticker_call_count = 0
tick = wb.get_ticker('BTC_ETH', False)
# Ensure the result was from the cache, and that we didn't call exchange
assert wb.cached_ticker['BTC_ETH']['bid'] == 1234
assert fb.get_ticker_call_count == 0
def test_exchange_bittrex_get_ticker_bad():
wb = make_wrap_bittrex()
fb = FakeBittrex()
fb.result = {'success': True, 'result': {'Bid': 1, 'Ask': 0}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': False, 'message': 'gone bad'}
with pytest.raises(btx.OperationalException, match=r'.*gone bad.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': True, 'result': {}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': False, 'message': 'gone bad'}
with pytest.raises(btx.OperationalException, match=r'.*gone bad.*'):
wb.get_ticker('BTC_ETH')
fb.result = {'success': True,
'result': {'Bid': 1, 'Ask': 0, 'Last': None}} # incomplete result
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex params.*'):
wb.get_ticker('BTC_ETH')
def test_exchange_bittrex_get_ticker_history_intervals():
wb = make_wrap_bittrex()
FakeBittrex()
for tick_interval in [1, 5, 30, 60, 1440]:
assert ([{'C': 0, 'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}] ==
wb.get_ticker_history('BTC_ETH', tick_interval))
def test_exchange_bittrex_get_ticker_history():
wb = make_wrap_bittrex()
fb = FakeBittrex()
assert wb.get_ticker_history('BTC_ETH', 5)
with pytest.raises(ValueError, match=r'.*Unknown tick_interval.*'):
wb.get_ticker_history('BTC_ETH', 2)
fb.success = False
with pytest.raises(btx.OperationalException, match=r'candles lit.*'):
wb.get_ticker_history('BTC_ETH', 5)
fb.success = True
with pytest.raises(ContentDecodingError, match=r'.*Invalid response from Bittrex.*'):
fb.result = {'bad': 0}
wb.get_ticker_history('BTC_ETH', 5)
with pytest.raises(ContentDecodingError, match=r'.*Required property C not present.*'):
fb.result = {'success': True,
'result': [{'V': 0, 'O': 0, 'H': 0, 'L': 0, 'T': 0}], # close is missing
'message': 'candles lit'}
wb.get_ticker_history('BTC_ETH', 5)
def test_exchange_bittrex_get_order():
wb = make_wrap_bittrex()
fb = FakeBittrex()
order = wb.get_order('someUUID')
assert order['id'] == 'ABC123'
fb.success = False
with pytest.raises(btx.OperationalException, match=r'lost'):
wb.get_order('someUUID')
def test_exchange_bittrex_cancel_order():
wb = make_wrap_bittrex()
fb = FakeBittrex()
wb.cancel_order('someUUID')
with pytest.raises(btx.OperationalException, match=r'no such order'):
fb.success = False
wb.cancel_order('someUUID')
# Note: this can be a bug in exchange.bittrex._validate_response
with pytest.raises(KeyError):
fb.result = {'success': False} # message is missing!
wb.cancel_order('someUUID')
with pytest.raises(btx.OperationalException, match=r'foo'):
fb.result = {'success': False, 'message': 'foo'}
wb.cancel_order('someUUID')
def test_exchange_get_pair_detail_url():
wb = make_wrap_bittrex()
assert wb.get_pair_detail_url('BTC_ETH')
def test_exchange_get_markets():
wb = make_wrap_bittrex()
fb = FakeBittrex()
x = wb.get_markets()
assert x == ['__']
with pytest.raises(btx.OperationalException, match=r'market gone'):
fb.success = False
wb.get_markets()
def test_exchange_get_market_summaries():
wb = make_wrap_bittrex()
fb = FakeBittrex()
assert ['sum'] == wb.get_market_summaries()
with pytest.raises(btx.OperationalException, match=r'no summary'):
fb.success = False
wb.get_market_summaries()
def test_exchange_get_wallet_health():
wb = make_wrap_bittrex()
fb = FakeBittrex()
x = wb.get_wallet_health()
assert x[0]['Currency'] == 'BTC_ETH'
with pytest.raises(btx.OperationalException, match=r'bad health'):
fb.success = False
wb.get_wallet_health()
def test_validate_response_success():
response = {
'message': '',
'result': [],
}
Bittrex._validate_response(response)
def test_validate_response_no_api_response():
response = {
'message': 'NO_API_RESPONSE',
'result': None,
}
with pytest.raises(ContentDecodingError, match=r'.*NO_API_RESPONSE.*'):
Bittrex._validate_response(response)
def test_validate_response_min_trade_requirement_not_met():
response = {
'message': 'MIN_TRADE_REQUIREMENT_NOT_MET',
'result': None,
}
with pytest.raises(ContentDecodingError, match=r'.*MIN_TRADE_REQUIREMENT_NOT_MET.*'):
Bittrex._validate_response(response)

View File

@@ -0,0 +1,21 @@
# pragma pylint: disable=missing-docstring, C0103
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
def test_dataframe_correct_length(result):
dataframe = parse_ticker_dataframe(result)
assert len(result.index) - 1 == len(dataframe.index) # last partial candle removed
def test_dataframe_correct_columns(result):
assert result.columns.tolist() == \
['date', 'open', 'high', 'low', 'close', 'volume']
def test_parse_ticker_dataframe(ticker_history):
columns = ['date', 'open', 'high', 'low', 'close', 'volume']
# Test file with BV data
dataframe = parse_ticker_dataframe(ticker_history)
assert dataframe.columns.tolist() == columns

View File

@@ -3,22 +3,21 @@
import json
import math
import random
from copy import deepcopy
from typing import List
from unittest.mock import MagicMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import optimize
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
from freqtrade.tests.conftest import default_conf, log_has
# Avoid to reinit the same object again and again
_BACKTESTING = Backtesting(default_conf())
from freqtrade import DependencyException, constants, optimize
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
start)
from freqtrade.tests.conftest import log_has, patch_exchange
from freqtrade.strategy.interface import SellType
from freqtrade.strategy.default_strategy import DefaultStrategy
def get_args(args) -> List[str]:
@@ -33,50 +32,61 @@ def trim_dictlist(dict_list, num):
def load_data_test(what):
timerange = ((None, 'line'), None, -100)
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'], timerange=timerange)
pair = data['BTC_UNITEST']
timerange = TimeRange(None, 'line', 0, -101)
data = optimize.load_data(None, ticker_interval='1m',
pairs=['UNITTEST/BTC'], timerange=timerange)
pair = data['UNITTEST/BTC']
datalen = len(pair)
# Depending on the what parameter we now adjust the
# loaded data looks:
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
# 'C': 0.123, 'V': 123.123,
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
# pair :: [[ 1509836520000, unix timestamp in ms
# 0.00162008, open
# 0.00162008, high
# 0.00162008, low
# 0.00162008, close
# 108.14853839 base volume
# ]]
base = 0.001
if what == 'raise':
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
'O': x * base, # But replace O,H,L,C
'H': x * base + 0.0001,
'L': x * base - 0.0001,
'C': x * base} for x in range(0, datalen)]}
return {'UNITTEST/BTC': [
[
pair[x][0], # Keep old dates
x * base, # But replace O,H,L,C
x * base + 0.0001,
x * base - 0.0001,
x * base,
pair[x][5], # Keep old volume
] for x in range(0, datalen)
]}
if what == 'lower':
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
'O': 1 - x * base, # But replace O,H,L,C
'H': 1 - x * base + 0.0001,
'L': 1 - x * base - 0.0001,
'C': 1 - x * base} for x in range(0, datalen)]}
return {'UNITTEST/BTC': [
[
pair[x][0], # Keep old dates
1 - x * base, # But replace O,H,L,C
1 - x * base + 0.0001,
1 - x * base - 0.0001,
1 - x * base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]}
if what == 'sine':
hz = 0.1 # frequency
return {'BTC_UNITEST':
[{'T': pair[x]['T'], # Keep old dates
'V': pair[x]['V'], # Keep old volume
'BV': pair[x]['BV'], # keep too
# But replace O,H,L,C
'O': math.sin(x * hz) / 1000 + base,
'H': math.sin(x * hz) / 1000 + base + 0.0001,
'L': math.sin(x * hz) / 1000 + base - 0.0001,
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
return {'UNITTEST/BTC': [
[
pair[x][0], # Keep old dates
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
math.sin(x * hz) / 1000 + base + 0.0001,
math.sin(x * hz) / 1000 + base - 0.0001,
math.sin(x * hz) / 1000 + base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]}
return data
def simple_backtest(config, contour, num_results) -> None:
backtesting = _BACKTESTING
def simple_backtest(config, contour, num_results, mocker) -> None:
patch_exchange(mocker)
backtesting = Backtesting(config)
data = load_data_test(contour)
processed = backtesting.tickerdata_to_dataframe(data)
@@ -86,35 +96,38 @@ def simple_backtest(config, contour, num_results) -> None:
'stake_amount': config['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'realistic': True
'position_stacking': False
}
)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False, timerange=None):
tickerdata = optimize.load_tickerdata_file(datadir, 'BTC_UNITEST', 1, timerange=timerange)
pairdata = {'BTC_UNITEST': tickerdata}
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
timerange=None, exchange=None):
tickerdata = optimize.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
pairdata = {'UNITTEST/BTC': tickerdata}
return pairdata
# use for mock freqtrade.exchange.get_ticker_history'
# use for mock freqtrade.exchange.get_candle_history'
def _load_pair_as_ticks(pair, tickfreq):
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
ticks = trim_dictlist(ticks, -200)
ticks = trim_dictlist(ticks, -201)
return ticks[pair]
# FIX: fixturize this?
def _make_backtest_conf(conf=None, pair='BTC_UNITEST', record=None):
data = optimize.load_data(None, ticker_interval=8, pairs=[pair])
data = trim_dictlist(data, -200)
def _make_backtest_conf(mocker, conf=None, pair='UNITTEST/BTC', record=None):
data = optimize.load_data(None, ticker_interval='8m', pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
return {
'stake_amount': conf['stake_amount'],
'processed': _BACKTESTING.tickerdata_to_dataframe(data),
'processed': backtesting.tickerdata_to_dataframe(data),
'max_open_trades': 10,
'realistic': True,
'position_stacking': False,
'record': record
}
@@ -132,7 +145,7 @@ def _trend(signals, buy_value, sell_value):
return signals
def _trend_alternate(dataframe=None):
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
@@ -148,26 +161,8 @@ def _trend_alternate(dataframe=None):
return dataframe
def _run_backtest_1(fun, backtest_conf):
# strategy is a global (hidden as a singleton), so we
# emulate strategy being pure, by override/restore here
# if we dont do this, the override in strategy will carry over
# to other tests
old_buy = _BACKTESTING.populate_buy_trend
old_sell = _BACKTESTING.populate_sell_trend
_BACKTESTING.populate_buy_trend = fun # Override
_BACKTESTING.populate_sell_trend = fun # Override
results = _BACKTESTING.backtest(backtest_conf)
_BACKTESTING.populate_buy_trend = old_buy # restore override
_BACKTESTING.populate_sell_trend = old_sell # restore override
return results
# Unit tests
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
@@ -186,7 +181,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@@ -195,8 +190,8 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation' not in config
assert not log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
@@ -206,9 +201,6 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
@@ -218,12 +210,14 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1',
'--ticker-interval', '1m',
'--live',
'--realistic-simulation',
'--enable-position-stacking',
'--disable-max-market-positions',
'--refresh-pairs-cached',
'--timerange', ':100',
'--export', '/bar/foo'
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json'
]
config = setup_configuration(get_args(args))
@@ -234,24 +228,27 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1 ...',
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation'in config
assert log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'refresh_pairs'in config
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
@@ -264,13 +261,34 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
assert 'exportfilename' in config
assert log_has(
'Storing backtest results to {} ...'.format(config['exportfilename']),
caplog.record_tuples
)
def test_start(mocker, default_conf, caplog) -> None:
"""
Test start() function
"""
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
setup_configuration(get_args(args))
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
@@ -289,114 +307,156 @@ def test_start(mocker, default_conf, caplog) -> None:
assert start_mock.call_count == 1
def test_backtesting__init__(mocker, default_conf) -> None:
"""
Test Backtesting.__init__() method
"""
init_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._init', init_mock)
def test_backtesting_init(mocker, default_conf) -> None:
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.analyze is None
assert backtesting.ticker_interval is None
assert backtesting.tickerdata_to_dataframe is None
assert backtesting.populate_buy_trend is None
assert backtesting.populate_sell_trend is None
assert init_mock.call_count == 1
def test_backtesting_init(default_conf) -> None:
"""
Test Backtesting._init() method
"""
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert isinstance(backtesting.analyze, Analyze)
assert backtesting.ticker_interval == 5
assert backtesting.ticker_interval == '5m'
assert callable(backtesting.tickerdata_to_dataframe)
assert callable(backtesting.populate_buy_trend)
assert callable(backtesting.populate_sell_trend)
assert callable(backtesting.advise_buy)
assert callable(backtesting.advise_sell)
get_fee.assert_called()
assert backtesting.fee == 0.5
def test_tickerdata_to_dataframe(default_conf) -> None:
"""
Test Backtesting.tickerdata_to_dataframe() method
"""
def test_tickerdata_to_dataframe(default_conf, mocker) -> None:
patch_exchange(mocker)
timerange = TimeRange(None, 'line', 0, -100)
tick = optimize.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': tick}
timerange = ((None, 'line'), None, -100)
tick = optimize.load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange)
tickerlist = {'BTC_UNITEST': tick}
backtesting = _BACKTESTING
backtesting = Backtesting(default_conf)
data = backtesting.tickerdata_to_dataframe(tickerlist)
assert len(data['BTC_UNITEST']) == 100
assert len(data['UNITTEST/BTC']) == 99
# Load Analyze to compare the result between Backtesting function and Analyze are the same
analyze = Analyze(default_conf)
data2 = analyze.tickerdata_to_dataframe(tickerlist)
assert data['BTC_UNITEST'].equals(data2['BTC_UNITEST'])
# Load strategy to compare the result between Backtesting function and strategy are the same
strategy = DefaultStrategy(default_conf)
data2 = strategy.tickerdata_to_dataframe(tickerlist)
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
def test_get_timeframe() -> None:
"""
Test Backtesting.get_timeframe() method
"""
backtesting = _BACKTESTING
def test_get_timeframe(default_conf, mocker) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
data = backtesting.tickerdata_to_dataframe(
optimize.load_data(
None,
ticker_interval=1,
pairs=['BTC_UNITEST']
ticker_interval='1m',
pairs=['UNITTEST/BTC']
)
)
min_date, max_date = backtesting.get_timeframe(data)
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
def test_generate_text_table():
"""
Test Backtesting.generate_text_table() method
"""
backtesting = _BACKTESTING
def test_generate_text_table(default_conf, mocker):
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
'currency': ['BTC_ETH', 'BTC_ETH'],
'pair': ['ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2],
'profit_BTC': [0.2, 0.4],
'duration': [10, 30],
'profit_abs': [0.2, 0.4],
'trade_duration': [10, 30],
'profit': [2, 0],
'loss': [0, 0]
}
)
result_str = (
'pair buy count avg profit % '
'total profit BTC avg duration profit loss\n'
'------- ----------- -------------- '
'------------------ -------------- -------- ------\n'
'BTC_ETH 2 15.00 '
'0.60000000 20.0 2 0\n'
'TOTAL 2 15.00 '
'0.60000000 20.0 2 0'
'| pair | buy count | avg profit % | cum profit % | '
'total profit BTC | avg duration | profit | loss |\n'
'|:--------|------------:|---------------:|---------------:|'
'-------------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 2 | 15.00 | 30.00 | '
'0.60000000 | 0:20:00 | 2 | 0 |\n'
'| TOTAL | 2 | 15.00 | 30.00 | '
'0.60000000 | 0:20:00 | 2 | 0 |'
)
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
def test_generate_text_table_sell_reason(default_conf, mocker):
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
assert backtesting._generate_text_table(data={'BTC_ETH': {}}, results=results) == result_str
result_str = (
'| Sell Reason | Count |\n'
'|:--------------|--------:|\n'
'| roi | 2 |\n'
'| stop_loss | 1 |'
)
assert backtesting._generate_text_table_sell_reason(
data={'ETH/BTC': {}}, results=results) == result_str
def test_generate_text_table_strategyn(default_conf, mocker):
"""
Test Backtesting.generate_text_table_sell_reason() method
"""
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = {}
results['ETH/BTC'] = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
results['LTC/BTC'] = pd.DataFrame(
{
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
'profit_percent': [0.4, 0.2, 0.3],
'profit_abs': [0.4, 0.4, 0.5],
'trade_duration': [15, 30, 15],
'profit': [4, 1, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Strategy | buy count | avg profit % | cum profit % '
'| total profit BTC | avg duration | profit | loss |\n'
'|:-----------|------------:|---------------:|---------------:'
'|-------------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 3 | 20.00 | 60.00 '
'| 1.10000000 | 0:17:00 | 3 | 0 |\n'
'| LTC/BTC | 3 | 30.00 | 90.00 '
'| 1.30000000 | 0:20:00 | 3 | 0 |'
)
print(backtesting._generate_text_table_strategy(all_results=results))
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
def test_backtesting_start(default_conf, mocker, caplog) -> None:
"""
Test Backtesting.start() method
"""
def get_timeframe(input1, input2):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
mocker.patch('freqtrade.exchange.get_ticker_history')
mocker.patch('freqtrade.exchange.Exchange.get_candle_history')
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
@@ -404,15 +464,14 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
get_timeframe=get_timeframe,
)
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
conf['ticker_interval'] = 1
conf['live'] = False
conf['datadir'] = None
conf['export'] = None
conf['timerange'] = '-100'
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = 1
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '-100'
backtesting = Backtesting(conf)
backtesting = Backtesting(default_conf)
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
@@ -426,54 +485,108 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
assert log_has(line, caplog.record_tuples)
def test_backtest(default_conf) -> None:
"""
Test Backtesting.backtest() method
"""
backtesting = _BACKTESTING
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
def get_timeframe(input1, input2):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
mocker.patch('freqtrade.optimize.load_data', MagicMock(return_value={}))
mocker.patch('freqtrade.exchange.Exchange.get_candle_history')
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
get_timeframe=get_timeframe,
)
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = "1m"
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
backtesting.start()
# check the logs, that will contain the backtest result
assert log_has('No data found. Terminating.', caplog.record_tuples)
def test_backtest(default_conf, fee, mocker) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
data = optimize.load_data(None, ticker_interval='5m', pairs=['UNITTEST/BTC'])
data = trim_dictlist(data, -200)
data_processed = backtesting.tickerdata_to_dataframe(data)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': backtesting.tickerdata_to_dataframe(data),
'processed': data_processed,
'max_open_trades': 10,
'realistic': True
'position_stacking': False
}
)
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'profit_percent': [0.00029975, 0.00056708],
'profit_abs': [1.49e-06, 7.6e-07],
'open_time': [Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime],
'close_time': [Arrow(2018, 1, 29, 22, 40, 0).datetime,
Arrow(2018, 1, 30, 4, 20, 0).datetime],
'open_index': [77, 183],
'close_index': [125, 193],
'trade_duration': [240, 50],
'open_at_end': [False, False],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.105, 0.10359999],
'sell_reason': [SellType.ROI, SellType.ROI]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = data_processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
assert round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6)
def test_backtest_1min_ticker_interval(default_conf) -> None:
"""
Test Backtesting.backtest() method with 1 min ticker
"""
backtesting = _BACKTESTING
def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
# Run a backtesting for an exiting 5min ticker_interval
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
data = optimize.load_data(None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
data = trim_dictlist(data, -200)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': backtesting.tickerdata_to_dataframe(data),
'max_open_trades': 1,
'realistic': True
'position_stacking': False
}
)
assert not results.empty
assert len(results) == 1
def test_processed() -> None:
"""
Test Backtesting.backtest() method with offline data
"""
backtesting = _BACKTESTING
def test_processed(default_conf, mocker) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
dict_of_tickerrows = load_data_test('raise')
dataframes = backtesting.tickerdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['BTC_UNITEST']
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
@@ -481,80 +594,136 @@ def test_processed() -> None:
assert col in cols
def test_backtest_pricecontours(default_conf) -> None:
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
def test_backtest_pricecontours(default_conf, fee, mocker) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
tests = [['raise', 18], ['lower', 0], ['sine', 16]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres)
simple_backtest(default_conf, contour, numres, mocker)
# Test backtest using offline data (testdata directory)
def test_backtest_ticks(default_conf):
def test_backtest_ticks(default_conf, fee, mocker):
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
ticks = [1, 5]
fun = _BACKTESTING.populate_buy_trend
for tick in ticks:
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
fun = Backtesting(default_conf).advise_buy
for _ in ticks:
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
backtesting = Backtesting(default_conf)
backtesting.advise_buy = fun # Override
backtesting.advise_sell = fun # Override
results = backtesting.backtest(backtest_conf)
assert not results.empty
def test_backtest_clash_buy_sell(default_conf):
# Override the default buy trend function in our DefaultStrategy
def fun(dataframe=None):
def test_backtest_clash_buy_sell(mocker, default_conf):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
backtesting = Backtesting(default_conf)
backtesting.advise_buy = fun # Override
backtesting.advise_sell = fun # Override
results = backtesting.backtest(backtest_conf)
assert results.empty
def test_backtest_only_sell(default_conf):
# Override the default buy trend function in our DefaultStrategy
def fun(dataframe=None):
def test_backtest_only_sell(mocker, default_conf):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
backtesting = Backtesting(default_conf)
backtesting.advise_buy = fun # Override
backtesting.advise_sell = fun # Override
results = backtesting.backtest(backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf):
backtest_conf = _make_backtest_conf(conf=default_conf, pair='BTC_UNITEST')
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
backtesting = Backtesting(default_conf)
backtesting.advise_buy = _trend_alternate # Override
backtesting.advise_sell = _trend_alternate # Override
results = backtesting.backtest(backtest_conf)
backtesting._store_backtest_result("test_.json", results)
assert len(results) == 4
# One trade was force-closed at the end
assert len(results.loc[results.open_at_end]) == 1
def test_backtest_record(default_conf, mocker):
def test_backtest_record(default_conf, fee, mocker):
names = []
records = []
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch(
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
backtest_conf = _make_backtest_conf(
conf=default_conf,
pair='BTC_UNITEST',
record="trades"
)
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
backtesting = Backtesting(default_conf)
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})
backtesting._store_backtest_result("backtest-result.json", results)
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 3
# ('BTC_UNITEST', 0.00331158, '1510684320', '1510691700', 0, 117)
assert len(records) == 4
# reset test to test with strategy name
names = []
records = []
backtesting._store_backtest_result("backtest-result.json", results, "DefStrat")
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result-DefStrat.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur) in records:
assert pair == 'BTC_UNITEST'
isinstance(profit, float)
for (pair, profit, date_buy, date_sell, buy_index, dur,
openr, closer, open_at_end, sell_reason) in records:
assert pair == 'UNITTEST/BTC'
assert isinstance(profit, float)
# FIX: buy/sell should be converted to ints
isinstance(date_buy, str)
isinstance(date_sell, str)
assert isinstance(date_buy, float)
assert isinstance(date_sell, float)
assert isinstance(openr, float)
assert isinstance(closer, float)
assert isinstance(open_at_end, bool)
assert isinstance(sell_reason, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
@@ -563,47 +732,100 @@ def test_backtest_record(default_conf, mocker):
def test_backtest_start_live(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
mocker.patch('freqtrade.exchange.get_ticker_history',
new=lambda n, i: _load_pair_as_ticks(n, i))
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
mocker.patch('freqtrade.exchange.Exchange.get_candle_history',
new=lambda s, n, i: _load_pair_as_ticks(n, i))
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = MagicMock()
args.ticker_interval = 1
args.level = 10
args.live = True
args.datadir = None
args.export = None
args.strategy = 'DefaultStrategy'
args.timerange = '-100' # needed due to MagicMock malleability
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100'
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1 ...',
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Using max_open_trades: 1 ...',
'Parameter --timerange detected: -100 ..',
'Parameter --datadir detected: freqtrade/tests/testdata ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:32:00+00:00 up to 2017-11-14T22:59:00+00:00 (0 days)..'
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
log_has(line, caplog.record_tuples)
assert log_has(line, caplog.record_tuples)
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
mocker.patch('freqtrade.exchange.Exchange.get_candle_history',
new=lambda s, n, i: _load_pair_as_ticks(n, i))
patch_exchange(mocker)
backtestmock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
gen_strattable_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
gen_strattable_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategy',
]
args = get_args(args)
start(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
assert gen_strattable_mock.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategy',
]
for line in exists:
assert log_has(line, caplog.record_tuples)

View File

@@ -1,59 +1,50 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import json
import os
from copy import deepcopy
from unittest.mock import MagicMock
import pandas as pd
import pytest
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.optimize.hyperopt import Hyperopt, start
from freqtrade.strategy.resolver import StrategyResolver
from freqtrade.tests.conftest import default_conf, log_has
from freqtrade.tests.conftest import log_has, patch_exchange
from freqtrade.tests.optimize.test_backtesting import get_args
# Avoid to reinit the same object again and again
_HYPEROPT = Hyperopt(default_conf())
@pytest.fixture(scope='function')
def hyperopt(default_conf, mocker):
patch_exchange(mocker)
return Hyperopt(default_conf)
# Functions for recurrent object patching
def create_trials(mocker) -> None:
def create_trials(mocker, hyperopt) -> None:
"""
When creating trials, mock the hyperopt Trials so that *by default*
- we don't create any pickle'd files in the filesystem
- we might have a pickle'd file so make sure that we return
false when looking for it
"""
_HYPEROPT.trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
hyperopt.trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=False)
mocker.patch('freqtrade.optimize.hyperopt.os.path.getsize', return_value=1)
mocker.patch('freqtrade.optimize.hyperopt.os.remove', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
return mocker.Mock(
results=[
{
'loss': 1,
'result': 'foo',
'status': 'ok'
}
],
best_trial={'misc': {'vals': {'adx': 999}}}
)
return [{'loss': 1, 'result': 'foo', 'params': {}}]
# Unit tests
def test_start(mocker, default_conf, caplog) -> None:
"""
Test start() function
"""
start_mock = MagicMock()
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
patch_exchange(mocker)
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
@@ -74,11 +65,7 @@ def test_start(mocker, default_conf, caplog) -> None:
assert start_mock.call_count == 1
def test_loss_calculation_prefer_correct_trade_count() -> None:
"""
Test Hyperopt.calculate_loss()
"""
hyperopt = _HYPEROPT
def test_loss_calculation_prefer_correct_trade_count(hyperopt) -> None:
StrategyResolver({'strategy': 'DefaultStrategy'})
correct = hyperopt.calculate_loss(1, hyperopt.target_trades, 20)
@@ -88,20 +75,13 @@ def test_loss_calculation_prefer_correct_trade_count() -> None:
assert under > correct
def test_loss_calculation_prefer_shorter_trades() -> None:
"""
Test Hyperopt.calculate_loss()
"""
hyperopt = _HYPEROPT
def test_loss_calculation_prefer_shorter_trades(hyperopt) -> None:
shorter = hyperopt.calculate_loss(1, 100, 20)
longer = hyperopt.calculate_loss(1, 100, 30)
assert shorter < longer
def test_loss_calculation_has_limited_profit() -> None:
hyperopt = _HYPEROPT
def test_loss_calculation_has_limited_profit(hyperopt) -> None:
correct = hyperopt.calculate_loss(hyperopt.expected_max_profit, hyperopt.target_trades, 20)
over = hyperopt.calculate_loss(hyperopt.expected_max_profit * 2, hyperopt.target_trades, 20)
under = hyperopt.calculate_loss(hyperopt.expected_max_profit / 2, hyperopt.target_trades, 20)
@@ -109,8 +89,7 @@ def test_loss_calculation_has_limited_profit() -> None:
assert under > correct
def test_log_results_if_loss_improves(capsys) -> None:
hyperopt = _HYPEROPT
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
hyperopt.current_best_loss = 2
hyperopt.log_results(
{
@@ -121,11 +100,10 @@ def test_log_results_if_loss_improves(capsys) -> None:
}
)
out, err = capsys.readouterr()
assert ' 1/2: foo. Loss 1.00000'in out
assert ' 1/2: foo. Loss 1.00000' in out
def test_no_log_if_loss_does_not_improve(caplog) -> None:
hyperopt = _HYPEROPT
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
hyperopt.current_best_loss = 2
hyperopt.log_results(
{
@@ -135,176 +113,34 @@ def test_no_log_if_loss_does_not_improve(caplog) -> None:
assert caplog.record_tuples == []
def test_fmin_best_results(mocker, default_conf, caplog) -> None:
fmin_result = {
"macd_below_zero": 0,
"adx": 1,
"adx-value": 15.0,
"fastd": 1,
"fastd-value": 40.0,
"green_candle": 1,
"mfi": 0,
"over_sar": 0,
"rsi": 1,
"rsi-value": 37.0,
"trigger": 2,
"uptrend_long_ema": 1,
"uptrend_short_ema": 0,
"uptrend_sma": 0,
"stoploss": -0.1,
"roi_t1": 1,
"roi_t2": 2,
"roi_t3": 3,
"roi_p1": 1,
"roi_p2": 2,
"roi_p3": 3,
}
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value=fmin_result)
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best parameters:',
'"adx": {\n "enabled": true,\n "value": 15.0\n },',
'"fastd": {\n "enabled": true,\n "value": 40.0\n },',
'"green_candle": {\n "enabled": true\n },',
'"macd_below_zero": {\n "enabled": false\n },',
'"mfi": {\n "enabled": false\n },',
'"over_sar": {\n "enabled": false\n },',
'"roi_p1": 1.0,',
'"roi_p2": 2.0,',
'"roi_p3": 3.0,',
'"roi_t1": 1.0,',
'"roi_t2": 2.0,',
'"roi_t3": 3.0,',
'"rsi": {\n "enabled": true,\n "value": 37.0\n },',
'"stoploss": -0.1,',
'"trigger": {\n "type": "faststoch10"\n },',
'"uptrend_long_ema": {\n "enabled": true\n },',
'"uptrend_short_ema": {\n "enabled": false\n },',
'"uptrend_sma": {\n "enabled": false\n }',
'ROI table:\n{0: 6.0, 3.0: 3.0, 5.0: 1.0, 6.0: 0}',
'Best Result:\nfoo'
]
for line in exists:
assert line in caplog.text
def test_fmin_throw_value_error(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', side_effect=ValueError())
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best Result:',
'Sorry, Hyperopt was not able to find good parameters. Please try with more epochs '
'(param: -e).',
]
for line in exists:
assert line in caplog.text
def test_resuming_previous_hyperopt_results_succeeds(mocker, default_conf) -> None:
trials = create_trials(mocker)
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': False})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.len', return_value=len(trials.results))
mock_read = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.read_trials',
return_value=trials
)
mock_save = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.save_trials',
return_value=None
)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
def test_save_trials_saves_trials(mocker, hyperopt, caplog) -> None:
trials = create_trials(mocker, hyperopt)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_read.assert_called_once()
mock_save.assert_called_once()
current_tries = hyperopt.current_tries
total_tries = hyperopt.total_tries
assert current_tries == len(trials.results)
assert total_tries == (current_tries + len(trials.results))
def test_save_trials_saves_trials(mocker, caplog) -> None:
create_trials(mocker)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
hyperopt = _HYPEROPT
mocker.patch('freqtrade.optimize.hyperopt.open', return_value=hyperopt.trials_file)
hyperopt.save_trials()
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
assert log_has(
'Saving Trials to \'freqtrade/tests/optimize/ut_trials.pickle\'',
'Saving 1 evaluations to \'{}\''.format(trials_file),
caplog.record_tuples
)
mock_dump.assert_called_once()
def test_read_trials_returns_trials_file(mocker, caplog) -> None:
trials = create_trials(mocker)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.pickle.load', return_value=trials)
mock_open = mocker.patch('freqtrade.optimize.hyperopt.open', return_value=mock_load)
hyperopt = _HYPEROPT
def test_read_trials_returns_trials_file(mocker, hyperopt, caplog) -> None:
trials = create_trials(mocker, hyperopt)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
hyperopt_trial = hyperopt.read_trials()
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
assert log_has(
'Reading Trials from \'freqtrade/tests/optimize/ut_trials.pickle\'',
'Reading Trials from \'{}\''.format(trials_file),
caplog.record_tuples
)
assert hyperopt_trial == trials
mock_open.assert_called_once()
mock_load.assert_called_once()
def test_roi_table_generation() -> None:
def test_roi_table_generation(hyperopt) -> None:
params = {
'roi_t1': 5,
'roi_t2': 10,
@@ -314,221 +150,150 @@ def test_roi_table_generation() -> None:
'roi_p3': 3,
}
hyperopt = _HYPEROPT
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_fmin(mocker, default_conf) -> None:
trials = create_trials(mocker)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': False})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
hyperopt = Hyperopt(conf)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_fmin.assert_called_once()
def test_start_uses_mongotrials(mocker, default_conf) -> None:
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
mock_mongotrials = mocker.patch(
'freqtrade.optimize.hyperopt.MongoTrials',
return_value=create_trials(mocker)
mocker.patch('freqtrade.optimize.hyperopt.multiprocessing.cpu_count', MagicMock(return_value=1))
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'result': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'mongodb': True})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.hyperopt_optimize_conf', return_value=conf)
default_conf.update({'config': 'config.json.example'})
default_conf.update({'epochs': 1})
default_conf.update({'timerange': None})
default_conf.update({'spaces': 'all'})
hyperopt = Hyperopt(conf)
hyperopt = Hyperopt(default_conf)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_mongotrials.assert_called_once()
mock_fmin.assert_called_once()
parallel.assert_called_once()
assert 'Best result:\nfoo result\nwith values:\n{}' in caplog.text
assert dumper.called
# test log_trials_result
# test buy_strategy_generator def populate_buy_trend
# test optimizer if 'ro_t1' in params
def test_format_results():
"""
Test Hyperopt.format_results()
"""
def test_format_results(hyperopt):
# Test with BTC as stake_currency
trades = [
('BTC_ETH', 2, 2, 123),
('BTC_LTC', 1, 1, 123),
('BTC_XRP', -1, -2, -246)
('ETH/BTC', 2, 2, 123),
('LTC/BTC', 1, 1, 123),
('XPR/BTC', -1, -2, -246)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
df = pd.DataFrame.from_records(trades, columns=labels)
x = Hyperopt.format_results(df)
assert x.find(' 66.67%')
result = hyperopt.format_results(df)
assert result.find(' 66.67%')
assert result.find('Total profit 1.00000000 BTC')
assert result.find('2.0000Σ %')
# Test with EUR as stake_currency
trades = [
('ETH/EUR', 2, 2, 123),
('LTC/EUR', 1, 1, 123),
('XPR/EUR', -1, -2, -246)
]
df = pd.DataFrame.from_records(trades, columns=labels)
result = hyperopt.format_results(df)
assert result.find('Total profit 1.00000000 EUR')
def test_signal_handler(mocker):
"""
Test Hyperopt.signal_handler()
"""
m = MagicMock()
mocker.patch('sys.exit', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.save_trials', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.log_trials_result', m)
def test_has_space(hyperopt):
hyperopt.config.update({'spaces': ['buy', 'roi']})
assert hyperopt.has_space('roi')
assert hyperopt.has_space('buy')
assert not hyperopt.has_space('stoploss')
hyperopt = _HYPEROPT
hyperopt.signal_handler(9, None)
assert m.call_count == 3
hyperopt.config.update({'spaces': ['all']})
assert hyperopt.has_space('buy')
def test_has_space():
"""
Test Hyperopt.has_space() method
"""
_HYPEROPT.config.update({'spaces': ['buy', 'roi']})
assert _HYPEROPT.has_space('roi')
assert _HYPEROPT.has_space('buy')
assert not _HYPEROPT.has_space('stoploss')
_HYPEROPT.config.update({'spaces': ['all']})
assert _HYPEROPT.has_space('buy')
def test_populate_indicators() -> None:
"""
Test Hyperopt.populate_indicators()
"""
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
dataframe = _HYPEROPT.populate_indicators(dataframes['BTC_UNITEST'])
def test_populate_indicators(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': tick}
dataframes = hyperopt.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
assert 'adx' in dataframe
assert 'ao' in dataframe
assert 'cci' in dataframe
assert 'mfi' in dataframe
assert 'rsi' in dataframe
def test_buy_strategy_generator() -> None:
"""
Test Hyperopt.buy_strategy_generator()
"""
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
dataframe = _HYPEROPT.populate_indicators(dataframes['BTC_UNITEST'])
def test_buy_strategy_generator(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': tick}
dataframes = hyperopt.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
populate_buy_trend = _HYPEROPT.buy_strategy_generator(
populate_buy_trend = hyperopt.buy_strategy_generator(
{
'uptrend_long_ema': {
'enabled': True
},
'macd_below_zero': {
'enabled': True
},
'uptrend_short_ema': {
'enabled': True
},
'mfi': {
'enabled': True,
'value': 20
},
'fastd': {
'enabled': True,
'value': 20
},
'adx': {
'enabled': True,
'value': 20
},
'rsi': {
'enabled': True,
'value': 20
},
'over_sar': {
'enabled': True,
},
'green_candle': {
'enabled': True,
},
'uptrend_sma': {
'enabled': True,
},
'trigger': {
'type': 'lower_bb'
}
'adx-value': 20,
'fastd-value': 20,
'mfi-value': 20,
'rsi-value': 20,
'adx-enabled': True,
'fastd-enabled': True,
'mfi-enabled': True,
'rsi-enabled': True,
'trigger': 'bb_lower'
}
)
result = populate_buy_trend(dataframe)
result = populate_buy_trend(dataframe, {'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
assert 'buy' in result
assert 1 in result['buy']
def test_generate_optimizer(mocker, default_conf) -> None:
"""
Test Hyperopt.generate_optimizer() function
"""
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
default_conf.update({'config': 'config.json.example'})
default_conf.update({'timerange': None})
default_conf.update({'spaces': 'all'})
trades = [
('BTC_POWR', 0.023117, 0.000233, 100)
('POWR/BTC', 0.023117, 0.000233, 100)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.backtest',
MagicMock(return_value=backtest_result)
)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.hyperopt.load', MagicMock())
optimizer_param = {
'adx': {'enabled': False},
'fastd': {'enabled': True, 'value': 35.0},
'green_candle': {'enabled': True},
'macd_below_zero': {'enabled': True},
'mfi': {'enabled': False},
'over_sar': {'enabled': False},
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'adx-value': 0,
'fastd-value': 35,
'mfi-value': 0,
'rsi-value': 0,
'adx-enabled': False,
'fastd-enabled': True,
'mfi-enabled': False,
'rsi-enabled': False,
'trigger': 'macd_cross_signal',
'roi_t1': 60.0,
'roi_t2': 30.0,
'roi_t3': 20.0,
'rsi': {'enabled': False},
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'stoploss': -0.4,
'trigger': {'type': 'macd_cross_signal'},
'uptrend_long_ema': {'enabled': False},
'uptrend_short_ema': {'enabled': True},
'uptrend_sma': {'enabled': True}
}
response_expected = {
'loss': 1.9840569076926293,
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'(0.0231Σ%). Avg duration 100.0 mins.',
'status': 'ok'
'params': optimizer_param
}
hyperopt = Hyperopt(conf)
generate_optimizer_value = hyperopt.generate_optimizer(optimizer_param)
hyperopt = Hyperopt(default_conf)
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
assert generate_optimizer_value == response_expected

View File

@@ -1,16 +0,0 @@
# pragma pylint: disable=missing-docstring,W0212
from user_data.hyperopt_conf import hyperopt_optimize_conf
def test_hyperopt_optimize_conf():
hyperopt_conf = hyperopt_optimize_conf()
assert "max_open_trades" in hyperopt_conf
assert "stake_currency" in hyperopt_conf
assert "stake_amount" in hyperopt_conf
assert "minimal_roi" in hyperopt_conf
assert "stoploss" in hyperopt_conf
assert "bid_strategy" in hyperopt_conf
assert "exchange" in hyperopt_conf
assert "pair_whitelist" in hyperopt_conf['exchange']

View File

@@ -5,13 +5,19 @@ import os
import uuid
from shutil import copyfile
from freqtrade import optimize
from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import make_testdata_path, download_pairs, \
download_backtesting_testdata, load_tickerdata_file, trim_tickerlist
from freqtrade.tests.conftest import log_has
import arrow
# Change this if modifying BTC_UNITEST testdatafile
from freqtrade import optimize
from freqtrade.arguments import TimeRange
from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import (download_backtesting_testdata,
download_pairs,
load_cached_data_for_updating,
load_tickerdata_file,
make_testdata_path, trim_tickerlist)
from freqtrade.tests.conftest import get_patched_exchange, log_has
# Change this if modifying UNITTEST/BTC testdatafile
_BTC_UNITTEST_LENGTH = 13681
@@ -46,59 +52,64 @@ def _clean_test_file(file: str) -> None:
os.rename(file_swp, file)
def test_load_data_30min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 30 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_UNITTEST-30.json'
def test_load_data_30min_ticker(ticker_history, mocker, caplog, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-30m.json')
_backup_file(file, copy_file=True)
optimize.load_data(None, pairs=['BTC_UNITTEST'], ticker_interval=30)
optimize.load_data(None, pairs=['UNITTEST/BTC'], ticker_interval='30m')
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 30 min', caplog.record_tuples)
assert not log_has('Download the pair: "UNITTEST/BTC", Interval: 30m', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_5min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 5 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
def test_load_data_5min_ticker(ticker_history, mocker, caplog, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_ETH-5.json'
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-5m.json')
_backup_file(file, copy_file=True)
optimize.load_data(None, pairs=['BTC_ETH'], ticker_interval=5)
optimize.load_data(None, pairs=['UNITTEST/BTC'], ticker_interval='5m')
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 5 min', caplog.record_tuples)
assert not log_has('Download the pair: "UNITTEST/BTC", Interval: 5m', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
"""
Test load_data() with 1 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
file = 'freqtrade/tests/testdata/BTC_ETH-1.json'
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-1m.json')
_backup_file(file, copy_file=True)
optimize.load_data(None, ticker_interval=1, pairs=['BTC_ETH'])
optimize.load_data(None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "BTC_ETH", Interval: 1 min', caplog.record_tuples)
assert not log_has('Download the pair: "UNITTEST/BTC", Interval: 1m', caplog.record_tuples)
_clean_test_file(file)
def test_load_data_with_new_pair_1min(ticker_history, mocker, caplog) -> None:
def test_load_data_with_new_pair_1min(ticker_history, mocker, caplog, default_conf) -> None:
"""
Test load_data() with 1 min ticker
"""
mocker.patch('freqtrade.optimize.get_ticker_history', return_value=ticker_history)
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
exchange = get_patched_exchange(mocker, default_conf)
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
file = 'freqtrade/tests/testdata/BTC_MEME-1.json'
_backup_file(file)
optimize.load_data(None, ticker_interval=1, pairs=['BTC_MEME'])
# do not download a new pair if refresh_pairs isn't set
optimize.load_data(None,
ticker_interval='1m',
refresh_pairs=False,
pairs=['MEME/BTC'])
assert os.path.isfile(file) is False
assert log_has('No data for pair: "MEME/BTC", Interval: 1m. '
'Use --refresh-pairs-cached to download the data',
caplog.record_tuples)
# download a new pair if refresh_pairs is set
optimize.load_data(None,
ticker_interval='1m',
refresh_pairs=True,
exchange=exchange,
pairs=['MEME/BTC'])
assert os.path.isfile(file) is True
assert log_has('Download the pair: "BTC_MEME", Interval: 1 min', caplog.record_tuples)
assert log_has('Download the pair: "MEME/BTC", Interval: 1m', caplog.record_tuples)
_clean_test_file(file)
@@ -106,13 +117,13 @@ def test_testdata_path() -> None:
assert os.path.join('freqtrade', 'tests', 'testdata') in make_testdata_path(None)
def test_download_pairs(ticker_history, mocker) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
file1_1 = 'freqtrade/tests/testdata/BTC_MEME-1.json'
file1_5 = 'freqtrade/tests/testdata/BTC_MEME-5.json'
file2_1 = 'freqtrade/tests/testdata/BTC_CFI-1.json'
file2_5 = 'freqtrade/tests/testdata/BTC_CFI-5.json'
def test_download_pairs(ticker_history, mocker, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
exchange = get_patched_exchange(mocker, default_conf)
file1_1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
file1_5 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-5m.json')
file2_1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'CFI_BTC-1m.json')
file2_5 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'CFI_BTC-5m.json')
_backup_file(file1_1)
_backup_file(file1_5)
@@ -122,7 +133,8 @@ def test_download_pairs(ticker_history, mocker) -> None:
assert os.path.isfile(file1_1) is False
assert os.path.isfile(file2_1) is False
assert download_pairs(None, pairs=['BTC-MEME', 'BTC-CFI'], ticker_interval=1) is True
assert download_pairs(None, exchange,
pairs=['MEME/BTC', 'CFI/BTC'], ticker_interval='1m') is True
assert os.path.isfile(file1_1) is True
assert os.path.isfile(file2_1) is True
@@ -134,7 +146,8 @@ def test_download_pairs(ticker_history, mocker) -> None:
assert os.path.isfile(file1_5) is False
assert os.path.isfile(file2_5) is False
assert download_pairs(None, pairs=['BTC-MEME', 'BTC-CFI'], ticker_interval=5) is True
assert download_pairs(None, exchange,
pairs=['MEME/BTC', 'CFI/BTC'], ticker_interval='5m') is True
assert os.path.isfile(file1_5) is True
assert os.path.isfile(file2_5) is True
@@ -144,91 +157,201 @@ def test_download_pairs(ticker_history, mocker) -> None:
_clean_test_file(file2_5)
def test_download_pairs_exception(ticker_history, mocker, caplog) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
def test_load_cached_data_for_updating(mocker) -> None:
datadir = os.path.join(os.path.dirname(__file__), '..', 'testdata')
test_data = None
test_filename = os.path.join(datadir, 'UNITTEST_BTC-1m.json')
with open(test_filename, "rt") as file:
test_data = json.load(file)
# change now time to test 'line' cases
# now = last cached item + 1 hour
now_ts = test_data[-1][0] / 1000 + 60 * 60
mocker.patch('arrow.utcnow', return_value=arrow.get(now_ts))
# timeframe starts earlier than the cached data
# should fully update data
timerange = TimeRange('date', None, test_data[0][0] / 1000 - 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == []
assert start_ts == test_data[0][0] - 1000
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 120
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
TimeRange(None, 'line', 0, -num_lines))
assert data == []
assert start_ts < test_data[0][0] - 1
# timeframe starts in the center of the cached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# timeframe starts after the chached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# same with 'line' timeframe
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# no timeframe is set
# should return the chached data w/o the last item
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# no datafile exist
# should return timestamp start time
timerange = TimeRange('date', None, now_ts - 10000, 0)
data, start_ts = load_cached_data_for_updating(test_filename + 'unexist',
'1m',
timerange)
assert data == []
assert start_ts == (now_ts - 10000) * 1000
# same with 'line' timeframe
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename + 'unexist',
'1m',
timerange)
assert data == []
assert start_ts == (now_ts - num_lines * 60) * 1000
# no datafile exist, no timeframe is set
# should return an empty array and None
data, start_ts = load_cached_data_for_updating(test_filename + 'unexist',
'1m',
None)
assert data == []
assert start_ts is None
def test_download_pairs_exception(ticker_history, mocker, caplog, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
mocker.patch('freqtrade.optimize.__init__.download_backtesting_testdata',
side_effect=BaseException('File Error'))
exchange = get_patched_exchange(mocker, default_conf)
file1_1 = 'freqtrade/tests/testdata/BTC_MEME-1.json'
file1_5 = 'freqtrade/tests/testdata/BTC_MEME-5.json'
file1_1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
file1_5 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-5m.json')
_backup_file(file1_1)
_backup_file(file1_5)
download_pairs(None, pairs=['BTC-MEME'], ticker_interval=1)
download_pairs(None, exchange, pairs=['MEME/BTC'], ticker_interval='1m')
# clean files freshly downloaded
_clean_test_file(file1_1)
_clean_test_file(file1_5)
assert log_has('Failed to download the pair: "BTC-MEME", Interval: 1 min', caplog.record_tuples)
assert log_has('Failed to download the pair: "MEME/BTC", Interval: 1m', caplog.record_tuples)
def test_download_backtesting_testdata(ticker_history, mocker) -> None:
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=ticker_history)
def test_download_backtesting_testdata(ticker_history, mocker, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
exchange = get_patched_exchange(mocker, default_conf)
# Download a 1 min ticker file
file1 = 'freqtrade/tests/testdata/BTC_XEL-1.json'
file1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'XEL_BTC-1m.json')
_backup_file(file1)
download_backtesting_testdata(None, pair="BTC-XEL", interval=1)
download_backtesting_testdata(None, exchange, pair="XEL/BTC", tick_interval='1m')
assert os.path.isfile(file1) is True
_clean_test_file(file1)
# Download a 5 min ticker file
file2 = 'freqtrade/tests/testdata/BTC_STORJ-5.json'
file2 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'STORJ_BTC-5m.json')
_backup_file(file2)
download_backtesting_testdata(None, pair="BTC-STORJ", interval=5)
download_backtesting_testdata(None, exchange, pair="STORJ/BTC", tick_interval='5m')
assert os.path.isfile(file2) is True
_clean_test_file(file2)
def test_download_backtesting_testdata2(mocker) -> None:
tick = [{'T': 'bar'}, {'T': 'foo'}]
def test_download_backtesting_testdata2(mocker, default_conf) -> None:
tick = [
[1509836520000, 0.00162008, 0.00162008, 0.00162008, 0.00162008, 108.14853839],
[1509836580000, 0.00161, 0.00161, 0.00161, 0.00161, 82.390199]
]
json_dump_mock = mocker.patch('freqtrade.misc.file_dump_json', return_value=None)
mocker.patch('freqtrade.optimize.__init__.get_ticker_history', return_value=tick)
download_backtesting_testdata(None, pair="BTC-UNITEST", interval=1)
download_backtesting_testdata(None, pair="BTC-UNITEST", interval=3)
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=tick)
exchange = get_patched_exchange(mocker, default_conf)
download_backtesting_testdata(None, exchange, pair="UNITTEST/BTC", tick_interval='1m')
download_backtesting_testdata(None, exchange, pair="UNITTEST/BTC", tick_interval='3m')
assert json_dump_mock.call_count == 2
def test_load_tickerdata_file() -> None:
# 7 does not exist in either format.
assert not load_tickerdata_file(None, 'BTC_UNITEST', 7)
assert not load_tickerdata_file(None, 'UNITTEST/BTC', '7m')
# 1 exists only as a .json
tickerdata = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerdata = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
# 8 .json is empty and will fail if it's loaded. .json.gz is a copy of 1.json
tickerdata = load_tickerdata_file(None, 'BTC_UNITEST', 8)
tickerdata = load_tickerdata_file(None, 'UNITTEST/BTC', '8m')
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
def test_init(default_conf, mocker) -> None:
conf = {'exchange': {'pair_whitelist': []}}
mocker.patch('freqtrade.optimize.hyperopt_optimize_conf', return_value=conf)
exchange = get_patched_exchange(mocker, default_conf)
assert {} == optimize.load_data(
'',
exchange=exchange,
pairs=[],
refresh_pairs=True,
ticker_interval=int(default_conf['ticker_interval'])
ticker_interval=default_conf['ticker_interval']
)
def test_trim_tickerlist() -> None:
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-1m.json')
with open(file) as data_file:
ticker_list = json.load(data_file)
ticker_list_len = len(ticker_list)
# Test the pattern ^(-\d+)$
# This pattern remove X element from the beginning
timerange = ((None, 'line'), None, 5)
# This pattern uses the latest N elements
timerange = TimeRange(None, 'line', 0, -5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_list_len == ticker_len + 5
assert ticker_len == 5
assert ticker_list[0] is not ticker[0] # The first element should be different
assert ticker_list[-1] is ticker[-1] # The last element must be the same
# Test the pattern ^(\d+)-$
# This pattern keep X element from the end
timerange = (('line', None), 5, None)
timerange = TimeRange('line', None, 5, 0)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@@ -238,7 +361,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(\d+)-(\d+)$
# This pattern extract a window
timerange = (('index', 'index'), 5, 10)
timerange = TimeRange('index', 'index', 5, 10)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@@ -247,9 +370,40 @@ def test_trim_tickerlist() -> None:
assert ticker_list[5] is ticker[0] # The list starts at the index 5
assert ticker_list[9] is ticker[-1] # The list ends at the index 9 (5 elements)
# Test the pattern ^(\d{8})-(\d{8})$
# This pattern extract a window between the dates
timerange = TimeRange('date', 'date', ticker_list[5][0] / 1000, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 5
assert ticker_list[0] is not ticker[0] # The first element should be different
assert ticker_list[5] is ticker[0] # The list starts at the index 5
assert ticker_list[9] is ticker[-1] # The list ends at the index 9 (5 elements)
# Test the pattern ^-(\d{8})$
# This pattern extracts elements from the start to the date
timerange = TimeRange(None, 'date', 0, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 10
assert ticker_list[0] is ticker[0] # The start of the list is included
assert ticker_list[9] is ticker[-1] # The element 10 is not included
# Test the pattern ^(\d{8})-$
# This pattern extracts elements from the date to now
timerange = TimeRange('date', None, ticker_list[10][0] / 1000 - 1, None)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == ticker_list_len - 10
assert ticker_list[10] is ticker[0] # The first element is element #10
assert ticker_list[-1] is ticker[-1] # The last element is the same
# Test a wrong pattern
# This pattern must return the list unchanged
timerange = ((None, None), None, 5)
timerange = TimeRange(None, None, None, 5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@@ -257,11 +411,8 @@ def test_trim_tickerlist() -> None:
def test_file_dump_json() -> None:
"""
Test file_dump_json()
:return: None
"""
file = 'freqtrade/tests/testdata/test_{id}.json'.format(id=str(uuid.uuid4()))
file = os.path.join(os.path.dirname(__file__), '..', 'testdata',
'test_{id}.json'.format(id=str(uuid.uuid4())))
data = {'bar': 'foo'}
# check the file we will create does not exist

View File

@@ -1,19 +1,18 @@
# pragma pylint: disable=missing-docstring, C0103
# pragma pylint: disable=invalid-sequence-index, invalid-name, too-many-arguments
"""
Unit test file for rpc/rpc.py
"""
from datetime import datetime
from unittest.mock import MagicMock
from unittest.mock import MagicMock, ANY
from sqlalchemy import create_engine
import pytest
from freqtrade.fiat_convert import CryptoToFiatConverter
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc import RPC
from freqtrade.rpc import RPC, RPCException
from freqtrade.state import State
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
from freqtrade.tests.test_freqtradebot import patch_get_signal
from freqtrade.tests.conftest import patch_coinmarketcap
# Functions for recurrent object patching
@@ -25,107 +24,96 @@ def prec_satoshi(a, b) -> float:
# Unit tests
def test_rpc_trade_status(default_conf, ticker, mocker) -> None:
"""
Test rpc_trade_status() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_trade_status(default_conf, ticker, fee, markets, mocker) -> None:
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_trade_status()
assert error
assert 'trader is not running' in result
with pytest.raises(RPCException, match=r'.*trader is not running*'):
rpc._rpc_trade_status()
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_trade_status()
assert error
assert 'no active trade' in result
with pytest.raises(RPCException, match=r'.*no active trade*'):
rpc._rpc_trade_status()
freqtradebot.create_trade()
(error, result) = rpc.rpc_trade_status()
assert not error
trade = result[0]
results = rpc._rpc_trade_status()
result_message = [
'*Trade ID:* `1`\n'
'*Current Pair:* '
'[BTC_ETH](https://www.bittrex.com/Market/Index?MarketName=BTC-ETH)\n'
'*Open Since:* `just now`\n'
'*Amount:* `90.99181074`\n'
'*Open Rate:* `0.00001099`\n'
'*Close Rate:* `None`\n'
'*Current Rate:* `0.00001098`\n'
'*Close Profit:* `None`\n'
'*Current Profit:* `-0.59%`\n'
'*Open Order:* `(LIMIT_BUY rem=0.00000000)`'
]
assert result == result_message
assert trade.find('[BTC_ETH]') >= 0
assert {
'trade_id': 1,
'pair': 'ETH/BTC',
'market_url': 'https://bittrex.com/Market/Index?MarketName=BTC-ETH',
'date': ANY,
'open_rate': 1.099e-05,
'close_rate': None,
'current_rate': 1.098e-05,
'amount': 90.99181074,
'close_profit': None,
'current_profit': -0.59,
'open_order': '(limit buy rem=0.00000000)'
} == results[0]
def test_rpc_status_table(default_conf, ticker, mocker) -> None:
"""
Test rpc_status_table() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_status_table(default_conf, ticker, fee, markets, mocker) -> None:
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_status_table()
assert error
assert '*Status:* `trader is not running`' in result
with pytest.raises(RPCException, match=r'.*trader is not running*'):
rpc._rpc_status_table()
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_status_table()
assert error
assert '*Status:* `no active order`' in result
with pytest.raises(RPCException, match=r'.*no active order*'):
rpc._rpc_status_table()
freqtradebot.create_trade()
(error, result) = rpc.rpc_status_table()
result = rpc._rpc_status_table()
assert 'just now' in result['Since'].all()
assert 'BTC_ETH' in result['Pair'].all()
assert 'ETH/BTC' in result['Pair'].all()
assert '-0.59%' in result['Profit'].all()
def test_rpc_daily_profit(default_conf, update, ticker, limit_buy_order, limit_sell_order, mocker)\
-> None:
"""
Test rpc_daily_profit() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_daily_profit(default_conf, update, ticker, fee,
limit_buy_order, limit_sell_order, markets, mocker) -> None:
patch_coinmarketcap(mocker, value={'price_usd': 15000.0})
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
rpc = RPC(freqtradebot)
rpc._fiat_converter = CryptoToFiatConverter()
# Create some test data
freqtradebot.create_trade()
trade = Trade.query.first()
@@ -139,8 +127,7 @@ def test_rpc_daily_profit(default_conf, update, ticker, limit_buy_order, limit_s
# Try valid data
update.message.text = '/daily 2'
(error, days) = rpc.rpc_daily_profit(7, stake_currency, fiat_display_currency)
assert not error
days = rpc._rpc_daily_profit(7, stake_currency, fiat_display_currency)
assert len(days) == 7
for day in days:
# [datetime.date(2018, 1, 11), '0.00000000 BTC', '0.000 USD']
@@ -153,38 +140,37 @@ def test_rpc_daily_profit(default_conf, update, ticker, limit_buy_order, limit_s
assert str(days[0][0]) == str(datetime.utcnow().date())
# Try invalid data
(error, days) = rpc.rpc_daily_profit(0, stake_currency, fiat_display_currency)
assert error
assert days.find('must be an integer greater than 0') >= 0
with pytest.raises(RPCException, match=r'.*must be an integer greater than 0*'):
rpc._rpc_daily_profit(0, stake_currency, fiat_display_currency)
def test_rpc_trade_statistics(
default_conf, ticker, ticker_sell_up, limit_buy_order, limit_sell_order, mocker) -> None:
"""
Test rpc_trade_statistics() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
limit_buy_order, limit_sell_order, markets, mocker) -> None:
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
rpc = RPC(freqtradebot)
rpc._fiat_converter = CryptoToFiatConverter()
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert error
assert stats.find('no closed trade') >= 0
with pytest.raises(RPCException, match=r'.*no closed trade*'):
rpc._rpc_trade_statistics(stake_currency, fiat_display_currency)
# Create some test data
freqtradebot.create_trade()
@@ -194,7 +180,7 @@ def test_rpc_trade_statistics(
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
)
@@ -202,43 +188,56 @@ def test_rpc_trade_statistics(
trade.close_date = datetime.utcnow()
trade.is_open = False
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert not error
freqtradebot.create_trade()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
stats = rpc._rpc_trade_statistics(stake_currency, fiat_display_currency)
assert prec_satoshi(stats['profit_closed_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_closed_percent'], 6.2)
assert prec_satoshi(stats['profit_closed_fiat'], 0.93255)
assert prec_satoshi(stats['profit_all_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_all_percent'], 6.2)
assert prec_satoshi(stats['profit_all_fiat'], 0.93255)
assert stats['trade_count'] == 1
assert prec_satoshi(stats['profit_all_coin'], 5.632e-05)
assert prec_satoshi(stats['profit_all_percent'], 2.81)
assert prec_satoshi(stats['profit_all_fiat'], 0.8448)
assert stats['trade_count'] == 2
assert stats['first_trade_date'] == 'just now'
assert stats['latest_trade_date'] == 'just now'
assert stats['avg_duration'] == '0:00:00'
assert stats['best_pair'] == 'BTC_ETH'
assert stats['best_pair'] == 'ETH/BTC'
assert prec_satoshi(stats['best_rate'], 6.2)
# Test that rpc_trade_statistics can handle trades that lacks
# trade.open_rate (it is set to None)
def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, ticker_sell_up, limit_buy_order,
limit_sell_order):
"""
Test rpc_trade_statistics() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, fee, markets,
ticker_sell_up, limit_buy_order, limit_sell_order):
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
@@ -251,9 +250,10 @@ def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, ticker_sell_u
trade.update(limit_buy_order)
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
get_ticker=ticker_sell_up,
get_fee=fee
)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
@@ -262,8 +262,7 @@ def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, ticker_sell_u
for trade in Trade.query.order_by(Trade.id).all():
trade.open_rate = None
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert not error
stats = rpc._rpc_trade_statistics(stake_currency, fiat_display_currency)
assert prec_satoshi(stats['profit_closed_coin'], 0)
assert prec_satoshi(stats['profit_closed_percent'], 0)
assert prec_satoshi(stats['profit_closed_fiat'], 0)
@@ -274,223 +273,217 @@ def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, ticker_sell_u
assert stats['first_trade_date'] == 'just now'
assert stats['latest_trade_date'] == 'just now'
assert stats['avg_duration'] == '0:00:00'
assert stats['best_pair'] == 'BTC_ETH'
assert stats['best_pair'] == 'ETH/BTC'
assert prec_satoshi(stats['best_rate'], 6.2)
def test_rpc_balance_handle(default_conf, mocker):
"""
Test rpc_balance() method
"""
mock_balance = [
{
'Currency': 'BTC',
'Balance': 10.0,
'Available': 12.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
mock_balance = {
'BTC': {
'free': 10.0,
'total': 12.0,
'used': 2.0,
},
{
'Currency': 'ETH',
'Balance': 0.0,
'Available': 0.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX',
'ETH': {
'free': 0.0,
'total': 0.0,
'used': 0.0,
}
}
]
patch_get_signal(mocker, (True, False))
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
ticker=MagicMock(return_value={'price_usd': 15000.0}),
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc.CryptoToFiatConverter._find_price', return_value=15000.0)
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=mock_balance)
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
rpc._fiat_converter = CryptoToFiatConverter()
(error, res) = rpc.rpc_balance(default_conf['fiat_display_currency'])
assert not error
(trade, x, y, z) = res
assert prec_satoshi(x, 10)
assert prec_satoshi(z, 150000)
assert 'USD' in y
assert len(trade) == 1
assert 'BTC' in trade[0]['currency']
assert prec_satoshi(trade[0]['available'], 12)
assert prec_satoshi(trade[0]['balance'], 10)
assert prec_satoshi(trade[0]['pending'], 0)
assert prec_satoshi(trade[0]['est_btc'], 10)
result = rpc._rpc_balance(default_conf['fiat_display_currency'])
assert prec_satoshi(result['total'], 12)
assert prec_satoshi(result['value'], 180000)
assert 'USD' == result['symbol']
assert result['currencies'] == [{
'currency': 'BTC',
'available': 10.0,
'balance': 12.0,
'pending': 2.0,
'est_btc': 12.0,
}]
def test_rpc_start(mocker, default_conf) -> None:
"""
Test rpc_start() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, result) = rpc.rpc_start()
assert not error
assert '`Starting trader ...`' in result
result = rpc._rpc_start()
assert {'status': 'starting trader ...'} == result
assert freqtradebot.state == State.RUNNING
(error, result) = rpc.rpc_start()
assert error
assert '*Status:* `already running`' in result
result = rpc._rpc_start()
assert {'status': 'already running'} == result
assert freqtradebot.state == State.RUNNING
def test_rpc_stop(mocker, default_conf) -> None:
"""
Test rpc_stop() method
"""
patch_get_signal(mocker, (True, False))
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
freqtradebot.state = State.RUNNING
(error, result) = rpc.rpc_stop()
assert not error
assert '`Stopping trader ...`' in result
result = rpc._rpc_stop()
assert {'status': 'stopping trader ...'} == result
assert freqtradebot.state == State.STOPPED
(error, result) = rpc.rpc_stop()
assert error
assert '*Status:* `already stopped`' in result
result = rpc._rpc_stop()
assert {'status': 'already stopped'} == result
assert freqtradebot.state == State.STOPPED
def test_rpc_forcesell(default_conf, ticker, mocker) -> None:
"""
Test rpc_forcesell() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
cancel_order_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=ticker,
cancel_order=cancel_order_mock,
get_order=MagicMock(
return_value={
'closed': True,
'type': 'LIMIT_BUY',
'status': 'closed',
'type': 'limit',
'side': 'buy'
}
)
),
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == '`trader is not running`'
with pytest.raises(RPCException, match=r'.*trader is not running*'):
rpc._rpc_forcesell(None)
freqtradebot.state = State.RUNNING
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == 'Invalid argument.'
with pytest.raises(RPCException, match=r'.*invalid argument*'):
rpc._rpc_forcesell(None)
(error, res) = rpc.rpc_forcesell('all')
assert not error
assert res == ''
rpc._rpc_forcesell('all')
freqtradebot.create_trade()
(error, res) = rpc.rpc_forcesell('all')
assert not error
assert res == ''
rpc._rpc_forcesell('all')
(error, res) = rpc.rpc_forcesell('1')
assert not error
assert res == ''
rpc._rpc_forcesell('1')
freqtradebot.state = State.STOPPED
(error, res) = rpc.rpc_forcesell(None)
assert error
assert res == '`trader is not running`'
with pytest.raises(RPCException, match=r'.*trader is not running*'):
rpc._rpc_forcesell(None)
(error, res) = rpc.rpc_forcesell('all')
assert error
assert res == '`trader is not running`'
with pytest.raises(RPCException, match=r'.*trader is not running*'):
rpc._rpc_forcesell('all')
freqtradebot.state = State.RUNNING
assert cancel_order_mock.call_count == 0
# make an limit-buy open trade
trade = Trade.query.filter(Trade.id == '1').first()
filled_amount = trade.amount / 2
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
'freqtrade.exchange.Exchange.get_order',
return_value={
'closed': None,
'type': 'LIMIT_BUY'
'status': 'open',
'type': 'limit',
'side': 'buy',
'filled': filled_amount
}
)
# check that the trade is called, which is done
# by ensuring exchange.cancel_order is called
(error, res) = rpc.rpc_forcesell('1')
assert not error
assert res == ''
# check that the trade is called, which is done by ensuring exchange.cancel_order is called
# and trade amount is updated
rpc._rpc_forcesell('1')
assert cancel_order_mock.call_count == 1
assert trade.amount == filled_amount
freqtradebot.create_trade()
trade = Trade.query.filter(Trade.id == '2').first()
amount = trade.amount
# make an limit-buy open trade, if there is no 'filled', don't sell it
mocker.patch(
'freqtrade.exchange.Exchange.get_order',
return_value={
'status': 'open',
'type': 'limit',
'side': 'buy',
'filled': None
}
)
# check that the trade is called, which is done by ensuring exchange.cancel_order is called
rpc._rpc_forcesell('2')
assert cancel_order_mock.call_count == 2
assert trade.amount == amount
freqtradebot.create_trade()
# make an limit-sell open trade
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
'freqtrade.exchange.Exchange.get_order',
return_value={
'closed': None,
'type': 'LIMIT_SELL'
'status': 'open',
'type': 'limit',
'side': 'sell'
}
)
(error, res) = rpc.rpc_forcesell('2')
assert not error
assert res == ''
rpc._rpc_forcesell('3')
# status quo, no exchange calls
assert cancel_order_mock.call_count == 1
assert cancel_order_mock.call_count == 2
def test_performance_handle(default_conf, ticker, limit_buy_order,
limit_sell_order, mocker) -> None:
"""
Test rpc_performance() method
"""
patch_get_signal(mocker, (True, False))
def test_performance_handle(default_conf, ticker, limit_buy_order, fee,
limit_sell_order, markets, mocker) -> None:
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
# Create some test data
@@ -506,39 +499,35 @@ def test_performance_handle(default_conf, ticker, limit_buy_order,
trade.close_date = datetime.utcnow()
trade.is_open = False
(error, res) = rpc.rpc_performance()
assert not error
res = rpc._rpc_performance()
assert len(res) == 1
assert res[0]['pair'] == 'BTC_ETH'
assert res[0]['pair'] == 'ETH/BTC'
assert res[0]['count'] == 1
assert prec_satoshi(res[0]['profit'], 6.2)
def test_rpc_count(mocker, default_conf, ticker) -> None:
"""
Test rpc_count() method
"""
patch_get_signal(mocker, (True, False))
def test_rpc_count(mocker, default_conf, ticker, fee, markets) -> None:
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.rpc.rpc_manager.Telegram', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker
get_ticker=ticker,
get_fee=fee,
get_markets=markets
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
rpc = RPC(freqtradebot)
(error, trades) = rpc.rpc_count()
trades = rpc._rpc_count()
nb_trades = len(trades)
assert not error
assert nb_trades == 0
# Create some test data
freqtradebot.create_trade()
(error, trades) = rpc.rpc_count()
trades = rpc._rpc_count()
nb_trades = len(trades)
assert not error
assert nb_trades == 1

View File

@@ -1,85 +1,45 @@
"""
Unit test file for rpc/rpc_manager.py
"""
# pragma pylint: disable=missing-docstring, C0103
import logging
from copy import deepcopy
from unittest.mock import MagicMock
from freqtrade.rpc.rpc_manager import RPCManager
from freqtrade.rpc.telegram import Telegram
from freqtrade.rpc import RPCMessageType, RPCManager
from freqtrade.tests.conftest import log_has, get_patched_freqtradebot
def test_rpc_manager_object() -> None:
"""
Test the Arguments object has the mandatory methods
:return: None
"""
assert hasattr(RPCManager, '_init')
assert hasattr(RPCManager, 'send_msg')
assert hasattr(RPCManager, 'cleanup')
def test__init__(mocker, default_conf) -> None:
"""
Test __init__() method
"""
init_mock = mocker.patch('freqtrade.rpc.rpc_manager.RPCManager._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
default_conf['telegram']['enabled'] = False
rpc_manager = RPCManager(freqtradebot)
assert rpc_manager.freqtrade == freqtradebot
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert rpc_manager.registered_modules == []
assert rpc_manager.telegram is None
assert init_mock.call_count == 1
def test_init_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test _init() method with Telegram disabled
"""
caplog.set_level(logging.DEBUG)
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
rpc_manager = RPCManager(freqtradebot)
default_conf['telegram']['enabled'] = False
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.telegram ...', caplog.record_tuples)
assert rpc_manager.registered_modules == []
assert rpc_manager.telegram is None
def test_init_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test _init() method with Telegram enabled
"""
caplog.set_level(logging.DEBUG)
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.telegram ...', caplog.record_tuples)
len_modules = len(rpc_manager.registered_modules)
assert len_modules == 1
assert 'telegram' in rpc_manager.registered_modules
assert isinstance(rpc_manager.telegram, Telegram)
assert 'telegram' in [mod.name for mod in rpc_manager.registered_modules]
def test_cleanup_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test cleanup() method with Telegram disabled
"""
caplog.set_level(logging.DEBUG)
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.cleanup', MagicMock())
default_conf['telegram']['enabled'] = False
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.cleanup()
@@ -88,9 +48,6 @@ def test_cleanup_telegram_disabled(mocker, default_conf, caplog) -> None:
def test_cleanup_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test cleanup() method with Telegram enabled
"""
caplog.set_level(logging.DEBUG)
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.cleanup', MagicMock())
@@ -99,41 +56,60 @@ def test_cleanup_telegram_enabled(mocker, default_conf, caplog) -> None:
rpc_manager = RPCManager(freqtradebot)
# Check we have Telegram as a registered modules
assert 'telegram' in rpc_manager.registered_modules
assert 'telegram' in [mod.name for mod in rpc_manager.registered_modules]
rpc_manager.cleanup()
assert log_has('Cleaning up rpc.telegram ...', caplog.record_tuples)
assert 'telegram' not in rpc_manager.registered_modules
assert 'telegram' not in [mod.name for mod in rpc_manager.registered_modules]
assert telegram_mock.call_count == 1
def test_send_msg_telegram_disabled(mocker, default_conf, caplog) -> None:
"""
Test send_msg() method with Telegram disabled
"""
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
default_conf['telegram']['enabled'] = False
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
freqtradebot = get_patched_freqtradebot(mocker, conf)
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.send_msg('test')
rpc_manager.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': 'test'
})
assert log_has('test', caplog.record_tuples)
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog.record_tuples)
assert telegram_mock.call_count == 0
def test_send_msg_telegram_enabled(mocker, default_conf, caplog) -> None:
"""
Test send_msg() method with Telegram disabled
"""
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg', MagicMock())
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
rpc_manager = RPCManager(freqtradebot)
rpc_manager.send_msg('test')
rpc_manager.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': 'test'
})
assert log_has('test', caplog.record_tuples)
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog.record_tuples)
assert telegram_mock.call_count == 1
def test_init_webhook_disabled(mocker, default_conf, caplog) -> None:
caplog.set_level(logging.DEBUG)
default_conf['telegram']['enabled'] = False
default_conf['webhook'] = {'enabled': False}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.webhook ...', caplog.record_tuples)
assert rpc_manager.registered_modules == []
def test_init_webhook_enabled(mocker, default_conf, caplog) -> None:
caplog.set_level(logging.DEBUG)
default_conf['telegram']['enabled'] = False
default_conf['webhook'] = {'enabled': True, 'url': "https://DEADBEEF.com"}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.webhook ...', caplog.record_tuples)
assert len(rpc_manager.registered_modules) == 1
assert 'webhook' in [mod.name for mod in rpc_manager.registered_modules]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,166 @@
# pragma pylint: disable=missing-docstring, C0103, protected-access
from unittest.mock import MagicMock
import pytest
from requests import RequestException
from freqtrade.rpc import RPCMessageType
from freqtrade.rpc.webhook import Webhook
from freqtrade.tests.conftest import get_patched_freqtradebot, log_has
def get_webhook_dict() -> dict:
return {
"enabled": True,
"url": "https://maker.ifttt.com/trigger/freqtrade_test/with/key/c764udvJ5jfSlswVRukZZ2/",
"webhookbuy": {
"value1": "Buying {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhooksell": {
"value1": "Selling {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
},
"webhookstatus": {
"value1": "Status: {status}",
"value2": "",
"value3": ""
}
}
def test__init__(mocker, default_conf):
default_conf['webhook'] = {'enabled': True, 'url': "https://DEADBEEF.com"}
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
assert webhook._config == default_conf
def test_send_msg(default_conf, mocker):
default_conf["webhook"] = get_webhook_dict()
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
msg = {
'type': RPCMessageType.BUY_NOTIFICATION,
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'market_url': "http://mockedurl/ETH_BTC",
'limit': 0.005,
'stake_amount': 0.8,
'stake_amount_fiat': 500,
'stake_currency': 'BTC',
'fiat_currency': 'EUR'
}
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
webhook.send_msg(msg=msg)
assert msg_mock.call_count == 1
assert (msg_mock.call_args[0][0]["value1"] ==
default_conf["webhook"]["webhookbuy"]["value1"].format(**msg))
assert (msg_mock.call_args[0][0]["value2"] ==
default_conf["webhook"]["webhookbuy"]["value2"].format(**msg))
assert (msg_mock.call_args[0][0]["value3"] ==
default_conf["webhook"]["webhookbuy"]["value3"].format(**msg))
# Test sell
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
msg = {
'type': RPCMessageType.SELL_NOTIFICATION,
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'gain': "profit",
'market_url': "http://mockedurl/ETH_BTC",
'limit': 0.005,
'amount': 0.8,
'open_rate': 0.004,
'current_rate': 0.005,
'profit_amount': 0.001,
'profit_percent': 0.20,
'stake_currency': 'BTC',
}
webhook.send_msg(msg=msg)
assert msg_mock.call_count == 1
assert (msg_mock.call_args[0][0]["value1"] ==
default_conf["webhook"]["webhooksell"]["value1"].format(**msg))
assert (msg_mock.call_args[0][0]["value2"] ==
default_conf["webhook"]["webhooksell"]["value2"].format(**msg))
assert (msg_mock.call_args[0][0]["value3"] ==
default_conf["webhook"]["webhooksell"]["value3"].format(**msg))
# Test notification
msg = {
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': 'Unfilled sell order for BTC cancelled due to timeout'
}
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
webhook.send_msg(msg)
assert msg_mock.call_count == 1
assert (msg_mock.call_args[0][0]["value1"] ==
default_conf["webhook"]["webhookstatus"]["value1"].format(**msg))
assert (msg_mock.call_args[0][0]["value2"] ==
default_conf["webhook"]["webhookstatus"]["value2"].format(**msg))
assert (msg_mock.call_args[0][0]["value3"] ==
default_conf["webhook"]["webhookstatus"]["value3"].format(**msg))
def test_exception_send_msg(default_conf, mocker, caplog):
default_conf["webhook"] = get_webhook_dict()
default_conf["webhook"]["webhookbuy"] = None
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
webhook.send_msg({'type': RPCMessageType.BUY_NOTIFICATION})
assert log_has(f"Message type {RPCMessageType.BUY_NOTIFICATION} not configured for webhooks",
caplog.record_tuples)
default_conf["webhook"] = get_webhook_dict()
default_conf["webhook"]["webhookbuy"]["value1"] = "{DEADBEEF:8f}"
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
msg = {
'type': RPCMessageType.BUY_NOTIFICATION,
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'market_url': "http://mockedurl/ETH_BTC",
'limit': 0.005,
'stake_amount': 0.8,
'stake_amount_fiat': 500,
'stake_currency': 'BTC',
'fiat_currency': 'EUR'
}
webhook.send_msg(msg)
assert log_has("Problem calling Webhook. Please check your webhook configuration. "
"Exception: 'DEADBEEF'", caplog.record_tuples)
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
msg = {
'type': 'DEADBEEF',
'status': 'whatever'
}
with pytest.raises(NotImplementedError):
webhook.send_msg(msg)
def test__send_msg(default_conf, mocker, caplog):
default_conf["webhook"] = get_webhook_dict()
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
msg = {'value1': 'DEADBEEF',
'value2': 'ALIVEBEEF',
'value3': 'FREQTRADE'}
post = MagicMock()
mocker.patch("freqtrade.rpc.webhook.post", post)
webhook._send_msg(msg)
assert post.call_count == 1
assert post.call_args[1] == {'data': msg}
assert post.call_args[0] == (default_conf['webhook']['url'], )
post = MagicMock(side_effect=RequestException)
mocker.patch("freqtrade.rpc.webhook.post", post)
webhook._send_msg(msg)
assert log_has('Could not call webhook url. Exception: ', caplog.record_tuples)

View File

@@ -0,0 +1,235 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa
# This class is a sample. Feel free to customize it.
class TestStrategyLegacy(IStrategy):
"""
This is a test strategy using the legacy function headers, which will be
removed in a future update.
Please do not use this as a template, but refer to user_data/strategy/TestStrategy.py
for a uptodate version of this template.
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
"""
# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# ROC
dataframe['roc'] = ta.ROC(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
"""
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
"""
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1))
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
),
'sell'] = 1
return dataframe

View File

@@ -3,14 +3,14 @@ import json
import pytest
from pandas import DataFrame
from freqtrade.analyze import Analyze
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.strategy.default_strategy import DefaultStrategy
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:
return Analyze.parse_ticker_dataframe(json.load(data_file))
with open('freqtrade/tests/testdata/ETH_BTC-1m.json') as data_file:
return parse_ticker_dataframe(json.load(data_file))
def test_default_strategy_structure():
@@ -23,12 +23,13 @@ def test_default_strategy_structure():
def test_default_strategy(result):
strategy = DefaultStrategy()
strategy = DefaultStrategy({})
metadata = {'pair': 'ETH/BTC'}
assert type(strategy.minimal_roi) is dict
assert type(strategy.stoploss) is float
assert type(strategy.ticker_interval) is int
indicators = strategy.populate_indicators(result)
assert type(strategy.ticker_interval) is str
indicators = strategy.populate_indicators(result, metadata)
assert type(indicators) is DataFrame
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
assert type(strategy.populate_sell_trend(indicators)) is DataFrame
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame

View File

@@ -0,0 +1,107 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from unittest.mock import MagicMock
import arrow
from pandas import DataFrame
from freqtrade.arguments import TimeRange
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.tests.conftest import get_patched_exchange, log_has
from freqtrade.strategy.default_strategy import DefaultStrategy
# Avoid to reinit the same object again and again
_STRATEGY = DefaultStrategy(config={})
def test_returns_latest_buy_signal(mocker, default_conf):
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', MagicMock()) == (True, False)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', MagicMock()) == (False, True)
def test_returns_latest_sell_signal(mocker, default_conf):
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', MagicMock()) == (False, True)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', MagicMock()) == (True, False)
def test_get_signal_empty(default_conf, mocker, caplog):
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
None)
assert log_has('Empty ticker history for pair foo', caplog.record_tuples)
def test_get_signal_exception_valueerror(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
side_effect=ValueError('xyz')
)
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'], 1)
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog.record_tuples)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame([])
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'], 1)
assert log_has('Empty dataframe for pair xyz', caplog.record_tuples)
def test_get_signal_old_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
# default_conf defines a 5m interval. we check interval * 2 + 5m
# this is necessary as the last candle is removed (partial candles) by default
oldtime = arrow.utcnow().shift(minutes=-16)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
return_value=DataFrame(ticks)
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'], 1)
assert log_has(
'Outdated history for pair xyz. Last tick is 16 minutes old',
caplog.record_tuples
)
def test_get_signal_handles_exceptions(mocker, default_conf):
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=MagicMock())
exchange = get_patched_exchange(mocker, default_conf)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
side_effect=Exception('invalid ticker history ')
)
assert _STRATEGY.get_signal(exchange, 'ETH/BTC', '5m') == (False, False)
def test_tickerdata_to_dataframe(default_conf) -> None:
strategy = DefaultStrategy(default_conf)
timerange = TimeRange(None, 'line', 0, -100)
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': tick}
data = strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 99 # partial candle was removed

View File

@@ -1,41 +1,88 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
import logging
import os
from base64 import urlsafe_b64encode
from os import path
import warnings
import pytest
from pandas import DataFrame
from freqtrade.strategy import import_strategy
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.resolver import StrategyResolver
def test_import_strategy(caplog):
caplog.set_level(logging.DEBUG)
default_config = {}
strategy = DefaultStrategy(default_config)
strategy.some_method = lambda *args, **kwargs: 42
assert strategy.__module__ == 'freqtrade.strategy.default_strategy'
assert strategy.some_method() == 42
imported_strategy = import_strategy(strategy, default_config)
assert dir(strategy) == dir(imported_strategy)
assert imported_strategy.__module__ == 'freqtrade.strategy'
assert imported_strategy.some_method() == 42
assert (
'freqtrade.strategy',
logging.DEBUG,
'Imported strategy freqtrade.strategy.default_strategy.DefaultStrategy '
'as freqtrade.strategy.DefaultStrategy',
) in caplog.record_tuples
def test_search_strategy():
default_location = os.path.join(os.path.dirname(
os.path.realpath(__file__)), '..', '..', 'strategy'
default_config = {}
default_location = path.join(path.dirname(
path.realpath(__file__)), '..', '..', 'strategy'
)
assert isinstance(
StrategyResolver._search_strategy(default_location, 'DefaultStrategy'), IStrategy
StrategyResolver._search_strategy(
default_location,
config=default_config,
strategy_name='DefaultStrategy'
),
IStrategy
)
assert StrategyResolver._search_strategy(default_location, 'NotFoundStrategy') is None
assert StrategyResolver._search_strategy(
default_location,
config=default_config,
strategy_name='NotFoundStrategy'
) is None
def test_load_strategy(result):
resolver = StrategyResolver({'strategy': 'TestStrategy'})
metadata = {'pair': 'ETH/BTC'}
assert 'adx' in resolver.strategy.advise_indicators(result, metadata=metadata)
def test_load_strategy_byte64(result):
with open("freqtrade/tests/strategy/test_strategy.py", "r") as file:
encoded_string = urlsafe_b64encode(file.read().encode("utf-8")).decode("utf-8")
resolver = StrategyResolver({'strategy': 'TestStrategy:{}'.format(encoded_string)})
assert 'adx' in resolver.strategy.advise_indicators(result, 'ETH/BTC')
def test_load_strategy_invalid_directory(result, caplog):
resolver = StrategyResolver()
resolver._load_strategy('TestStrategy')
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
extra_dir = path.join('some', 'path')
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
assert (
'freqtrade.strategy.resolver',
logging.WARNING,
'Path "{}" does not exist'.format(extra_dir),
) in caplog.record_tuples
def test_load_strategy_custom_directory(result):
resolver = StrategyResolver()
extra_dir = os.path.join('some', 'path')
with pytest.raises(
FileNotFoundError,
match=r".*No such file or directory: '{}'".format(extra_dir)):
resolver._load_strategy('TestStrategy', extra_dir)
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_not_found_strategy():
@@ -43,27 +90,30 @@ def test_load_not_found_strategy():
with pytest.raises(ImportError,
match=r'Impossible to load Strategy \'NotFoundStrategy\'.'
r' This class does not exist or contains Python code errors'):
strategy._load_strategy('NotFoundStrategy')
strategy._load_strategy(strategy_name='NotFoundStrategy', config={})
def test_strategy(result):
resolver = StrategyResolver({'strategy': 'DefaultStrategy'})
config = {'strategy': 'DefaultStrategy'}
assert hasattr(resolver.strategy, 'minimal_roi')
resolver = StrategyResolver(config)
metadata = {'pair': 'ETH/BTC'}
assert resolver.strategy.minimal_roi[0] == 0.04
assert config["minimal_roi"]['0'] == 0.04
assert hasattr(resolver.strategy, 'stoploss')
assert resolver.strategy.stoploss == -0.10
assert config['stoploss'] == -0.10
assert hasattr(resolver.strategy, 'populate_indicators')
assert 'adx' in resolver.strategy.populate_indicators(result)
assert resolver.strategy.ticker_interval == '5m'
assert config['ticker_interval'] == '5m'
assert hasattr(resolver.strategy, 'populate_buy_trend')
dataframe = resolver.strategy.populate_buy_trend(resolver.strategy.populate_indicators(result))
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
assert 'adx' in df_indicators
dataframe = resolver.strategy.advise_buy(df_indicators, metadata=metadata)
assert 'buy' in dataframe.columns
assert hasattr(resolver.strategy, 'populate_sell_trend')
dataframe = resolver.strategy.populate_sell_trend(resolver.strategy.populate_indicators(result))
dataframe = resolver.strategy.advise_sell(df_indicators, metadata=metadata)
assert 'sell' in dataframe.columns
@@ -77,7 +127,6 @@ def test_strategy_override_minimal_roi(caplog):
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'minimal_roi')
assert resolver.strategy.minimal_roi[0] == 0.5
assert ('freqtrade.strategy.resolver',
logging.INFO,
@@ -93,7 +142,6 @@ def test_strategy_override_stoploss(caplog):
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'stoploss')
assert resolver.strategy.stoploss == -0.5
assert ('freqtrade.strategy.resolver',
logging.INFO,
@@ -110,9 +158,64 @@ def test_strategy_override_ticker_interval(caplog):
}
resolver = StrategyResolver(config)
assert hasattr(resolver.strategy, 'ticker_interval')
assert resolver.strategy.ticker_interval == 60
assert ('freqtrade.strategy.resolver',
logging.INFO,
'Override strategy \'ticker_interval\' with value in config file: 60.'
) in caplog.record_tuples
def test_deprecate_populate_indicators(result):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
indicators = resolver.strategy.advise_indicators(result, 'ETH/BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_buy(indicators, 'ETH/BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_sell(indicators, 'ETH_BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
def test_call_deprecated_function(result, monkeypatch):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
metadata = {'pair': 'ETH/BTC'}
# Make sure we are using a legacy function
assert resolver.strategy._populate_fun_len == 2
assert resolver.strategy._buy_fun_len == 2
assert resolver.strategy._sell_fun_len == 2
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
assert type(indicator_df) is DataFrame
assert 'adx' in indicator_df.columns
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
assert type(buydf) is DataFrame
assert 'buy' in buydf.columns
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
assert type(selldf) is DataFrame
assert 'sell' in selldf

View File

@@ -1,5 +1,7 @@
# pragma pylint: disable=missing-docstring,C0103,protected-access
from unittest.mock import MagicMock
import freqtrade.tests.conftest as tt # test tools
# whitelist, blacklist, filtering, all of that will
@@ -9,121 +11,61 @@ import freqtrade.tests.conftest as tt # test tools
def whitelist_conf():
config = tt.default_conf()
config['stake_currency'] = 'BTC'
config['exchange']['pair_whitelist'] = [
'BTC_ETH',
'BTC_TKN',
'BTC_TRST',
'BTC_SWT',
'BTC_BCC'
'ETH/BTC',
'TKN/BTC',
'TRST/BTC',
'SWT/BTC',
'BCC/BTC'
]
config['exchange']['pair_blacklist'] = [
'BTC_BLK'
'BLK/BTC'
]
return config
def get_market_summaries():
return [{
'MarketName': 'BTC-TKN',
'High': 0.00000919,
'Low': 0.00000820,
'Volume': 74339.61396015,
'Last': 0.00000820,
'BaseVolume': 1664,
'TimeStamp': '2014-07-09T07:19:30.15',
'Bid': 0.00000820,
'Ask': 0.00000831,
'OpenBuyOrders': 15,
'OpenSellOrders': 15,
'PrevDay': 0.00000821,
'Created': '2014-03-20T06:00:00',
'DisplayMarketName': ''
}, {
'MarketName': 'BTC-ETH',
'High': 0.00000072,
'Low': 0.00000001,
'Volume': 166340678.42280999,
'Last': 0.00000005,
'BaseVolume': 42,
'TimeStamp': '2014-07-09T07:21:40.51',
'Bid': 0.00000004,
'Ask': 0.00000005,
'OpenBuyOrders': 18,
'OpenSellOrders': 18,
'PrevDay': 0.00000002,
'Created': '2014-05-30T07:57:49.637',
'DisplayMarketName': ''
}, {
'MarketName': 'BTC-BLK',
'High': 0.00000072,
'Low': 0.00000001,
'Volume': 166340678.42280999,
'Last': 0.00000005,
'BaseVolume': 3,
'TimeStamp': '2014-07-09T07:21:40.51',
'Bid': 0.00000004,
'Ask': 0.00000005,
'OpenBuyOrders': 18,
'OpenSellOrders': 18,
'PrevDay': 0.00000002,
'Created': '2014-05-30T07:57:49.637',
'DisplayMarketName': ''
}]
def get_health():
return [{'Currency': 'ETH', 'IsActive': True},
{'Currency': 'TKN', 'IsActive': True},
{'Currency': 'BLK', 'IsActive': True}]
def get_health_empty():
return []
def test_refresh_market_pair_not_in_whitelist(mocker):
def test_refresh_market_pair_not_in_whitelist(mocker, markets):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health)
mocker.patch('freqtrade.exchange.Exchange.get_markets', markets)
refreshedwhitelist = freqtradebot._refresh_whitelist(
conf['exchange']['pair_whitelist'] + ['BTC_XXX']
conf['exchange']['pair_whitelist'] + ['XXX/BTC']
)
# List ordered by BaseVolume
whitelist = ['BTC_ETH', 'BTC_TKN']
whitelist = ['ETH/BTC', 'TKN/BTC']
# Ensure all except those in whitelist are removed
assert whitelist == refreshedwhitelist
def test_refresh_whitelist(mocker):
def test_refresh_whitelist(mocker, markets):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health)
mocker.patch('freqtrade.exchange.Exchange.get_markets', markets)
refreshedwhitelist = freqtradebot._refresh_whitelist(conf['exchange']['pair_whitelist'])
# List ordered by BaseVolume
whitelist = ['BTC_ETH', 'BTC_TKN']
whitelist = ['ETH/BTC', 'TKN/BTC']
# Ensure all except those in whitelist are removed
assert whitelist == refreshedwhitelist
def test_refresh_whitelist_dynamic(mocker):
def test_refresh_whitelist_dynamic(mocker, markets, tickers):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
get_wallet_health=get_health,
get_market_summaries=get_market_summaries
'freqtrade.exchange.Exchange',
get_markets=markets,
get_tickers=tickers,
exchange_has=MagicMock(return_value=True)
)
# argument: use the whitelist dynamically by exchange-volume
whitelist = ['BTC_TKN', 'BTC_ETH']
whitelist = ['ETH/BTC', 'TKN/BTC']
refreshedwhitelist = freqtradebot._refresh_whitelist(
freqtradebot._gen_pair_whitelist(conf['stake_currency'])
@@ -132,10 +74,10 @@ def test_refresh_whitelist_dynamic(mocker):
assert whitelist == refreshedwhitelist
def test_refresh_whitelist_dynamic_empty(mocker):
def test_refresh_whitelist_dynamic_empty(mocker, markets_empty):
conf = whitelist_conf()
freqtradebot = tt.get_patched_freqtradebot(mocker, conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_wallet_health', get_health_empty)
mocker.patch('freqtrade.exchange.Exchange.get_markets', markets_empty)
# argument: use the whitelist dynamically by exchange-volume
whitelist = []

View File

@@ -1,194 +0,0 @@
# pragma pylint: disable=missing-docstring, C0103
"""
Unit test file for analyse.py
"""
import datetime
import logging
from unittest.mock import MagicMock
import arrow
from pandas import DataFrame
from freqtrade.analyze import Analyze, SignalType
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.tests.conftest import log_has
# Avoid to reinit the same object again and again
_ANALYZE = Analyze({'strategy': 'DefaultStrategy'})
def test_signaltype_object() -> None:
"""
Test the SignalType object has the mandatory Constants
:return: None
"""
assert hasattr(SignalType, 'BUY')
assert hasattr(SignalType, 'SELL')
def test_analyze_object() -> None:
"""
Test the Analyze object has the mandatory methods
:return: None
"""
assert hasattr(Analyze, 'parse_ticker_dataframe')
assert hasattr(Analyze, 'populate_indicators')
assert hasattr(Analyze, 'populate_buy_trend')
assert hasattr(Analyze, 'populate_sell_trend')
assert hasattr(Analyze, 'analyze_ticker')
assert hasattr(Analyze, 'get_signal')
assert hasattr(Analyze, 'should_sell')
assert hasattr(Analyze, 'min_roi_reached')
def test_dataframe_correct_length(result):
dataframe = Analyze.parse_ticker_dataframe(result)
assert len(result.index) == len(dataframe.index)
def test_dataframe_correct_columns(result):
assert result.columns.tolist() == \
['date', 'close', 'high', 'low', 'open', 'volume']
def test_populates_buy_trend(result):
# Load the default strategy for the unit test, because this logic is done in main.py
dataframe = _ANALYZE.populate_buy_trend(_ANALYZE.populate_indicators(result))
assert 'buy' in dataframe.columns
def test_populates_sell_trend(result):
# Load the default strategy for the unit test, because this logic is done in main.py
dataframe = _ANALYZE.populate_sell_trend(_ANALYZE.populate_indicators(result))
assert 'sell' in dataframe.columns
def test_returns_latest_buy_signal(mocker):
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (True, False)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, True)
def test_returns_latest_sell_signal(mocker):
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, True)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (True, False)
def test_get_signal_empty(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=None)
assert (False, False) == _ANALYZE.get_signal('foo', int(default_conf['ticker_interval']))
assert log_has('Empty ticker history for pair foo', caplog.record_tuples)
def test_get_signal_exception_valueerror(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
side_effect=ValueError('xyz')
)
)
assert (False, False) == _ANALYZE.get_signal('foo', int(default_conf['ticker_interval']))
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog.record_tuples)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame([])
)
)
assert (False, False) == _ANALYZE.get_signal('xyz', int(default_conf['ticker_interval']))
assert log_has('Empty dataframe for pair xyz', caplog.record_tuples)
def test_get_signal_old_dataframe(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=1)
# FIX: The get_signal function has hardcoded 10, which we must inturn hardcode
oldtime = arrow.utcnow() - datetime.timedelta(minutes=11)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
return_value=DataFrame(ticks)
)
)
assert (False, False) == _ANALYZE.get_signal('xyz', int(default_conf['ticker_interval']))
assert log_has(
'Outdated history for pair xyz. Last tick is 11 minutes old',
caplog.record_tuples
)
def test_get_signal_handles_exceptions(mocker):
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch.multiple(
'freqtrade.analyze.Analyze',
analyze_ticker=MagicMock(
side_effect=Exception('invalid ticker history ')
)
)
assert _ANALYZE.get_signal('BTC-ETH', 5) == (False, False)
def test_parse_ticker_dataframe(ticker_history, ticker_history_without_bv):
columns = ['date', 'close', 'high', 'low', 'open', 'volume']
# Test file with BV data
dataframe = Analyze.parse_ticker_dataframe(ticker_history)
assert dataframe.columns.tolist() == columns
# Test file without BV data
dataframe = Analyze.parse_ticker_dataframe(ticker_history_without_bv)
assert dataframe.columns.tolist() == columns
def test_tickerdata_to_dataframe(default_conf) -> None:
"""
Test Analyze.tickerdata_to_dataframe() method
"""
analyze = Analyze(default_conf)
timerange = ((None, 'line'), None, -100)
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange)
tickerlist = {'BTC_UNITEST': tick}
data = analyze.tickerdata_to_dataframe(tickerlist)
assert len(data['BTC_UNITEST']) == 100

View File

@@ -1,26 +1,10 @@
# pragma pylint: disable=missing-docstring, C0103
"""
Unit test file for arguments.py
"""
import argparse
import logging
import pytest
from freqtrade.arguments import Arguments
def test_arguments_object() -> None:
"""
Test the Arguments object has the mandatory methods
:return: None
"""
assert hasattr(Arguments, 'get_parsed_arg')
assert hasattr(Arguments, 'parse_args')
assert hasattr(Arguments, 'parse_timerange')
assert hasattr(Arguments, 'scripts_options')
from freqtrade.arguments import Arguments, TimeRange
# Parse common command-line-arguments. Used for all tools
@@ -28,14 +12,13 @@ def test_parse_args_none() -> None:
arguments = Arguments([], '')
assert isinstance(arguments, Arguments)
assert isinstance(arguments.parser, argparse.ArgumentParser)
assert isinstance(arguments.parser, argparse.ArgumentParser)
def test_parse_args_defaults() -> None:
args = Arguments([], '').get_parsed_arg()
assert args.config == 'config.json'
assert args.dynamic_whitelist is None
assert args.loglevel == logging.INFO
assert args.loglevel == 0
def test_parse_args_config() -> None:
@@ -46,19 +29,24 @@ def test_parse_args_config() -> None:
assert args.config == '/dev/null'
def test_parse_args_db_url() -> None:
args = Arguments(['--db-url', 'sqlite:///test.sqlite'], '').get_parsed_arg()
assert args.db_url == 'sqlite:///test.sqlite'
def test_parse_args_verbose() -> None:
args = Arguments(['-v'], '').get_parsed_arg()
assert args.loglevel == logging.DEBUG
assert args.loglevel == 1
args = Arguments(['--verbose'], '').get_parsed_arg()
assert args.loglevel == logging.DEBUG
assert args.loglevel == 1
def test_scripts_options() -> None:
arguments = Arguments(['-p', 'BTC_ETH'], '')
arguments = Arguments(['-p', 'ETH/BTC'], '')
arguments.scripts_options()
args = arguments.get_parsed_arg()
assert args.pair == 'BTC_ETH'
assert args.pair == 'ETH/BTC'
def test_parse_args_version() -> None:
@@ -107,8 +95,25 @@ def test_parse_args_dynamic_whitelist_invalid_values() -> None:
def test_parse_timerange_incorrect() -> None:
assert ((None, 'line'), None, -200) == Arguments.parse_timerange('-200')
assert (('line', None), 200, None) == Arguments.parse_timerange('200-')
assert TimeRange(None, 'line', 0, -200) == Arguments.parse_timerange('-200')
assert TimeRange('line', None, 200, 0) == Arguments.parse_timerange('200-')
assert TimeRange('index', 'index', 200, 500) == Arguments.parse_timerange('200-500')
assert TimeRange('date', None, 1274486400, 0) == Arguments.parse_timerange('20100522-')
assert TimeRange(None, 'date', 0, 1274486400) == Arguments.parse_timerange('-20100522')
timerange = Arguments.parse_timerange('20100522-20150730')
assert timerange == TimeRange('date', 'date', 1274486400, 1438214400)
# Added test for unix timestamp - BTC genesis date
assert TimeRange('date', None, 1231006505, 0) == Arguments.parse_timerange('1231006505-')
assert TimeRange(None, 'date', 0, 1233360000) == Arguments.parse_timerange('-1233360000')
timerange = Arguments.parse_timerange('1231006505-1233360000')
assert TimeRange('date', 'date', 1231006505, 1233360000) == timerange
# TODO: Find solution for the following case (passing timestamp in ms)
timerange = Arguments.parse_timerange('1231006505000-1233360000000')
assert TimeRange('date', 'date', 1231006505, 1233360000) != timerange
with pytest.raises(Exception, match=r'Incorrect syntax.*'):
Arguments.parse_timerange('-')
@@ -126,16 +131,22 @@ def test_parse_args_backtesting_custom() -> None:
'-c', 'test_conf.json',
'backtesting',
'--live',
'--ticker-interval', '1',
'--refresh-pairs-cached']
'--ticker-interval', '1m',
'--refresh-pairs-cached',
'--strategy-list',
'DefaultStrategy',
'TestStrategy'
]
call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == 'test_conf.json'
assert call_args.live is True
assert call_args.loglevel == logging.INFO
assert call_args.loglevel == 0
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval == 1
assert call_args.ticker_interval == '1m'
assert call_args.refresh_pairs is True
assert type(call_args.strategy_list) is list
assert len(call_args.strategy_list) == 2
def test_parse_args_hyperopt_custom() -> None:
@@ -148,7 +159,23 @@ def test_parse_args_hyperopt_custom() -> None:
call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == 'test_conf.json'
assert call_args.epochs == 20
assert call_args.loglevel == logging.INFO
assert call_args.loglevel == 0
assert call_args.subparser == 'hyperopt'
assert call_args.spaces == ['buy']
assert call_args.func is not None
def test_testdata_dl_options() -> None:
args = [
'--pairs-file', 'file_with_pairs',
'--export', 'export/folder',
'--days', '30',
'--exchange', 'binance'
]
arguments = Arguments(args, '')
arguments.testdata_dl_options()
args = arguments.parse_args()
assert args.pairs_file == 'file_with_pairs'
assert args.export == 'export/folder'
assert args.days == 30
assert args.exchange == 'binance'

View File

@@ -1,66 +1,51 @@
# pragma pylint: disable=protected-access, invalid-name
# pragma pylint: disable=missing-docstring, protected-access, invalid-name
"""
Unit test file for configuration.py
"""
import json
from copy import deepcopy
from argparse import Namespace
import logging
from unittest.mock import MagicMock
import pytest
from jsonschema import ValidationError
from jsonschema import validate, ValidationError
from freqtrade import constants
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.configuration import Configuration, set_loggers
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
from freqtrade.tests.conftest import log_has
def test_configuration_object() -> None:
"""
Test the Constants object has the mandatory Constants
"""
assert hasattr(Configuration, 'load_config')
assert hasattr(Configuration, '_load_config_file')
assert hasattr(Configuration, '_validate_config')
assert hasattr(Configuration, '_load_common_config')
assert hasattr(Configuration, '_load_backtesting_config')
assert hasattr(Configuration, '_load_hyperopt_config')
assert hasattr(Configuration, 'get_config')
def test_load_config_invalid_pair(default_conf, mocker) -> None:
"""
Test the configuration validator with an invalid PAIR format
"""
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'].append('BTC-ETH')
def test_load_config_invalid_pair(default_conf) -> None:
default_conf['exchange']['pair_whitelist'].append('ETH-BTC')
with pytest.raises(ValidationError, match=r'.*does not match.*'):
configuration = Configuration([])
configuration._validate_config(conf)
configuration = Configuration(Namespace())
configuration._validate_config(default_conf)
def test_load_config_missing_attributes(default_conf, mocker) -> None:
"""
Test the configuration validator with a missing attribute
"""
conf = deepcopy(default_conf)
conf.pop('exchange')
def test_load_config_missing_attributes(default_conf) -> None:
default_conf.pop('exchange')
with pytest.raises(ValidationError, match=r'.*\'exchange\' is a required property.*'):
configuration = Configuration([])
configuration._validate_config(conf)
configuration = Configuration(Namespace())
configuration._validate_config(default_conf)
def test_load_config_incorrect_stake_amount(default_conf) -> None:
default_conf['stake_amount'] = 'fake'
with pytest.raises(ValidationError, match=r'.*\'fake\' does not match \'unlimited\'.*'):
configuration = Configuration(Namespace())
configuration._validate_config(default_conf)
def test_load_config_file(default_conf, mocker, caplog) -> None:
"""
Test Configuration._load_config_file() method
"""
file_mock = mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
configuration = Configuration([])
configuration = Configuration(Namespace())
validated_conf = configuration._load_config_file('somefile')
assert file_mock.call_count == 1
assert validated_conf.items() >= default_conf.items()
@@ -68,28 +53,29 @@ def test_load_config_file(default_conf, mocker, caplog) -> None:
assert log_has('Validating configuration ...', caplog.record_tuples)
def test_load_config_file_exception(mocker, caplog) -> None:
"""
Test Configuration._load_config_file() method
"""
def test_load_config_max_open_trades_zero(default_conf, mocker, caplog) -> None:
default_conf['max_open_trades'] = 0
file_mock = mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
Configuration(Namespace())._load_config_file('somefile')
assert file_mock.call_count == 1
assert log_has('Validating configuration ...', caplog.record_tuples)
def test_load_config_file_exception(mocker) -> None:
mocker.patch(
'freqtrade.configuration.open',
MagicMock(side_effect=FileNotFoundError('File not found'))
)
configuration = Configuration([])
configuration = Configuration(Namespace())
with pytest.raises(SystemExit):
with pytest.raises(OperationalException, match=r'.*Config file "somefile" not found!*'):
configuration._load_config_file('somefile')
assert log_has(
'Config file "somefile" not found. Please create your config file',
caplog.record_tuples
)
def test_load_config(default_conf, mocker) -> None:
"""
Test Configuration.load_config() without any cli params
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
@@ -101,45 +87,72 @@ def test_load_config(default_conf, mocker) -> None:
assert validated_conf.get('strategy') == 'DefaultStrategy'
assert validated_conf.get('strategy_path') is None
assert 'dynamic_whitelist' not in validated_conf
assert 'dry_run_db' not in validated_conf
def test_load_config_with_params(default_conf, mocker) -> None:
"""
Test Configuration.load_config() with cli params used
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--strategy-path', '/some/path',
'--dry-run-db',
'--db-url', 'sqlite:///someurl',
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('dynamic_whitelist') == 10
assert validated_conf.get('strategy') == 'TestStrategy'
assert validated_conf.get('strategy_path') == '/some/path'
assert validated_conf.get('dry_run_db') is True
assert validated_conf.get('db_url') == 'sqlite:///someurl'
conf = default_conf.copy()
conf["dry_run"] = False
del conf["db_url"]
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(conf)
))
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--strategy-path', '/some/path'
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('db_url') == DEFAULT_DB_PROD_URL
# Test dry=run with ProdURL
conf = default_conf.copy()
conf["dry_run"] = True
conf["db_url"] = DEFAULT_DB_PROD_URL
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(conf)
))
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--strategy-path', '/some/path'
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('db_url') == DEFAULT_DB_DRYRUN_URL
def test_load_custom_strategy(default_conf, mocker) -> None:
"""
Test Configuration.load_config() without any cli params
"""
custom_conf = deepcopy(default_conf)
custom_conf.update({
default_conf.update({
'strategy': 'CustomStrategy',
'strategy_path': '/tmp/strategies',
})
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(custom_conf)
read_data=json.dumps(default_conf)
))
args = Arguments([], '').get_parsed_arg()
@@ -151,19 +164,15 @@ def test_load_custom_strategy(default_conf, mocker) -> None:
def test_show_info(default_conf, mocker, caplog) -> None:
"""
Test Configuration.show_info()
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--dry-run-db'
'--db-url', 'sqlite:///tmp/testdb',
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
configuration.get_config()
@@ -174,41 +183,21 @@ def test_show_info(default_conf, mocker, caplog) -> None:
'(not applicable with Backtesting and Hyperopt)',
caplog.record_tuples
)
assert log_has(
'Parameter --dry-run-db detected ...',
caplog.record_tuples
)
assert log_has(
'Dry_run will use the DB file: "tradesv3.dry_run.sqlite"',
caplog.record_tuples
)
# Test the Dry run condition
configuration.config.update({'dry_run': False})
configuration._load_common_config(configuration.config)
assert log_has(
'Dry run is disabled. (--dry_run_db ignored)',
caplog.record_tuples
)
assert log_has('Using DB: "sqlite:///tmp/testdb"', caplog.record_tuples)
assert log_has('Dry run is enabled', caplog.record_tuples)
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@@ -219,7 +208,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@@ -228,8 +217,8 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation' not in config
assert not log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
@@ -239,27 +228,25 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1',
'--ticker-interval', '1m',
'--live',
'--realistic-simulation',
'--enable-position-stacking',
'--disable-max-market-positions',
'--refresh-pairs-cached',
'--timerange', ':100',
'--export', '/bar/foo'
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@@ -270,22 +257,25 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1 ...',
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'realistic_simulation'in config
assert log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
assert log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
assert 'position_stacking'in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert 'refresh_pairs'in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
@@ -302,7 +292,7 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
)
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
@@ -310,14 +300,63 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
read_data=json.dumps(default_conf)
))
args = [
'hyperopt',
'--epochs', '10',
'--use-mongodb',
'--spaces', 'all',
arglist = [
'--config', 'config.json',
'backtesting',
'--ticker-interval', '1m',
'--export', '/bar/foo',
'--strategy-list',
'DefaultStrategy',
'TestStrategy'
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert 'strategy_list' in config
assert log_has('Using strategy list of 2 Strategies', caplog.record_tuples)
assert 'position_stacking' not in config
assert 'use_max_market_positions' not in config
assert 'timerange' not in config
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
arglist = [
'hyperopt',
'--epochs', '10',
'--spaces', 'all',
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@@ -327,10 +366,85 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
assert log_has('Parameter --epochs detected ...', caplog.record_tuples)
assert log_has('Will run Hyperopt with for 10 epochs ...', caplog.record_tuples)
assert 'mongodb' in config
assert config['mongodb'] is True
assert log_has('Parameter --use-mongodb detected ...', caplog.record_tuples)
assert 'spaces' in config
assert config['spaces'] == ['all']
assert log_has('Parameter -s/--spaces detected: [\'all\']', caplog.record_tuples)
def test_check_exchange(default_conf) -> None:
configuration = Configuration(Namespace())
# Test a valid exchange
default_conf.get('exchange').update({'name': 'BITTREX'})
assert configuration.check_exchange(default_conf)
# Test a valid exchange
default_conf.get('exchange').update({'name': 'binance'})
assert configuration.check_exchange(default_conf)
# Test a invalid exchange
default_conf.get('exchange').update({'name': 'unknown_exchange'})
configuration.config = default_conf
with pytest.raises(
OperationalException,
match=r'.*Exchange "unknown_exchange" not supported.*'
):
configuration.check_exchange(default_conf)
def test_cli_verbose_with_params(default_conf, mocker, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)))
# Prevent setting loggers
mocker.patch('freqtrade.configuration.set_loggers', MagicMock)
arglist = ['-vvv']
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
assert validated_conf.get('verbosity') == 3
assert log_has('Verbosity set to 3', caplog.record_tuples)
def test_set_loggers() -> None:
# Reset Logging to Debug, otherwise this fails randomly as it's set globally
logging.getLogger('requests').setLevel(logging.DEBUG)
logging.getLogger("urllib3").setLevel(logging.DEBUG)
logging.getLogger('ccxt.base.exchange').setLevel(logging.DEBUG)
logging.getLogger('telegram').setLevel(logging.DEBUG)
previous_value1 = logging.getLogger('requests').level
previous_value2 = logging.getLogger('ccxt.base.exchange').level
previous_value3 = logging.getLogger('telegram').level
set_loggers()
value1 = logging.getLogger('requests').level
assert previous_value1 is not value1
assert value1 is logging.INFO
value2 = logging.getLogger('ccxt.base.exchange').level
assert previous_value2 is not value2
assert value2 is logging.INFO
value3 = logging.getLogger('telegram').level
assert previous_value3 is not value3
assert value3 is logging.INFO
set_loggers(log_level=2)
assert logging.getLogger('requests').level is logging.DEBUG
assert logging.getLogger('ccxt.base.exchange').level is logging.INFO
assert logging.getLogger('telegram').level is logging.INFO
set_loggers(log_level=3)
assert logging.getLogger('requests').level is logging.DEBUG
assert logging.getLogger('ccxt.base.exchange').level is logging.DEBUG
assert logging.getLogger('telegram').level is logging.INFO
def test_validate_default_conf(default_conf) -> None:
validate(default_conf, constants.CONF_SCHEMA)

View File

@@ -1,25 +0,0 @@
"""
Unit test file for constants.py
"""
from freqtrade import constants
def test_constant_object() -> None:
"""
Test the Constants object has the mandatory Constants
"""
assert hasattr(constants, 'CONF_SCHEMA')
assert hasattr(constants, 'DYNAMIC_WHITELIST')
assert hasattr(constants, 'PROCESS_THROTTLE_SECS')
assert hasattr(constants, 'TICKER_INTERVAL')
assert hasattr(constants, 'HYPEROPT_EPOCH')
assert hasattr(constants, 'RETRY_TIMEOUT')
assert hasattr(constants, 'DEFAULT_STRATEGY')
def test_conf_schema() -> None:
"""
Test the CONF_SCHEMA is from the right type
"""
assert isinstance(constants.CONF_SCHEMA, dict)

View File

@@ -2,33 +2,31 @@
import pandas
from freqtrade.analyze import Analyze
from freqtrade.optimize import load_data
from freqtrade.strategy.resolver import StrategyResolver
_pairs = ['BTC_ETH']
_pairs = ['ETH/BTC']
def load_dataframe_pair(pairs):
ld = load_data(None, ticker_interval=5, pairs=pairs)
def load_dataframe_pair(pairs, strategy):
ld = load_data(None, ticker_interval='5m', pairs=pairs)
assert isinstance(ld, dict)
assert isinstance(pairs[0], str)
dataframe = ld[pairs[0]]
analyze = Analyze({'strategy': 'DefaultStrategy'})
dataframe = analyze.analyze_ticker(dataframe)
dataframe = strategy.analyze_ticker(dataframe, {'pair': pairs[0]})
return dataframe
def test_dataframe_load():
StrategyResolver({'strategy': 'DefaultStrategy'})
dataframe = load_dataframe_pair(_pairs)
strategy = StrategyResolver({'strategy': 'DefaultStrategy'}).strategy
dataframe = load_dataframe_pair(_pairs, strategy)
assert isinstance(dataframe, pandas.core.frame.DataFrame)
def test_dataframe_columns_exists():
StrategyResolver({'strategy': 'DefaultStrategy'})
dataframe = load_dataframe_pair(_pairs)
strategy = StrategyResolver({'strategy': 'DefaultStrategy'}).strategy
dataframe = load_dataframe_pair(_pairs, strategy)
assert 'high' in dataframe.columns
assert 'low' in dataframe.columns
assert 'close' in dataframe.columns

View File

@@ -5,8 +5,10 @@ import time
from unittest.mock import MagicMock
import pytest
from requests.exceptions import RequestException
from freqtrade.fiat_convert import CryptoFiat, CryptoToFiatConverter
from freqtrade.tests.conftest import log_has, patch_coinmarketcap
def test_pair_convertion_object():
@@ -37,7 +39,8 @@ def test_pair_convertion_object():
assert pair_convertion.price == 30000.123
def test_fiat_convert_is_supported():
def test_fiat_convert_is_supported(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert._is_supported_fiat(fiat='USD') is True
assert fiat_convert._is_supported_fiat(fiat='usd') is True
@@ -45,7 +48,9 @@ def test_fiat_convert_is_supported():
assert fiat_convert._is_supported_fiat(fiat='ABC') is False
def test_fiat_convert_add_pair():
def test_fiat_convert_add_pair(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
pair_len = len(fiat_convert._pairs)
@@ -67,18 +72,14 @@ def test_fiat_convert_add_pair():
def test_fiat_convert_find_price(mocker):
api_mock = MagicMock(return_value={
'price_usd': 12345.0,
'price_eur': 13000.2
})
mocker.patch('freqtrade.fiat_convert.Market.ticker', api_mock)
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
with pytest.raises(ValueError, match=r'The fiat ABC is not supported.'):
fiat_convert._find_price(crypto_symbol='BTC', fiat_symbol='ABC')
with pytest.raises(ValueError, match=r'The crypto symbol XRP is not supported.'):
fiat_convert.get_price(crypto_symbol='XRP', fiat_symbol='USD')
assert fiat_convert.get_price(crypto_symbol='XRP', fiat_symbol='USD') == 0.0
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=12345.0)
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='USD') == 12345.0
@@ -88,12 +89,17 @@ def test_fiat_convert_find_price(mocker):
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='EUR') == 13000.2
def test_fiat_convert_unsupported_crypto(mocker, caplog):
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._cryptomap', return_value=[])
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert._find_price(crypto_symbol='CRYPTO_123', fiat_symbol='EUR') == 0.0
assert log_has('unsupported crypto-symbol CRYPTO_123 - returning 0.0', caplog.record_tuples)
def test_fiat_convert_get_price(mocker):
api_mock = MagicMock(return_value={
'price_usd': 28000.0,
'price_eur': 15000.0
})
mocker.patch('freqtrade.fiat_convert.Market.ticker', api_mock)
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=28000.0)
fiat_convert = CryptoToFiatConverter()
@@ -124,12 +130,92 @@ def test_fiat_convert_get_price(mocker):
assert fiat_convert._pairs[0]._expiration is not expiration
def test_fiat_convert_without_network():
def test_fiat_convert_same_currencies(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert.get_price(crypto_symbol='USD', fiat_symbol='USD') == 1.0
def test_fiat_convert_two_FIAT(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert.get_price(crypto_symbol='USD', fiat_symbol='EUR') == 0.0
def test_loadcryptomap(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert len(fiat_convert._cryptomap) == 2
assert fiat_convert._cryptomap["BTC"] == "1"
def test_fiat_init_network_exception(mocker):
# Because CryptoToFiatConverter is a Singleton we reset the listings
listmock = MagicMock(side_effect=RequestException)
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
listings=listmock,
)
# with pytest.raises(RequestEsxception):
fiat_convert = CryptoToFiatConverter()
fiat_convert._cryptomap = {}
fiat_convert._load_cryptomap()
length_cryptomap = len(fiat_convert._cryptomap)
assert length_cryptomap == 0
def test_fiat_convert_without_network(mocker):
# Because CryptoToFiatConverter is a Singleton we reset the value of _coinmarketcap
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
cmc_temp = CryptoToFiatConverter._coinmarketcap
CryptoToFiatConverter._coinmarketcap = None
assert fiat_convert._coinmarketcap is None
assert fiat_convert._find_price(crypto_symbol='BTC', fiat_symbol='USD') == 0.0
CryptoToFiatConverter._coinmarketcap = cmc_temp
def test_fiat_invalid_response(mocker, caplog):
# Because CryptoToFiatConverter is a Singleton we reset the listings
listmock = MagicMock(return_value="{'novalidjson':DEADBEEFf}")
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
listings=listmock,
)
# with pytest.raises(RequestEsxception):
fiat_convert = CryptoToFiatConverter()
fiat_convert._cryptomap = {}
fiat_convert._load_cryptomap()
length_cryptomap = len(fiat_convert._cryptomap)
assert length_cryptomap == 0
assert log_has('Could not load FIAT Cryptocurrency map for the following problem: TypeError',
caplog.record_tuples)
def test_convert_amount(mocker):
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter.get_price', return_value=12345.0)
fiat_convert = CryptoToFiatConverter()
result = fiat_convert.convert_amount(
crypto_amount=1.23,
crypto_symbol="BTC",
fiat_symbol="USD"
)
assert result == 15184.35
result = fiat_convert.convert_amount(
crypto_amount=1.23,
crypto_symbol="BTC",
fiat_symbol="BTC"
)
assert result == 1.23

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,8 @@
# pragma pylint: disable=missing-docstring
import pandas as pd
from freqtrade.indicator_helpers import went_up, went_down
from freqtrade.indicator_helpers import went_down, went_up
def test_went_up():

View File

@@ -1,14 +1,16 @@
"""
Unit test file for main.py
"""
# pragma pylint: disable=missing-docstring
import logging
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from freqtrade.main import main, set_loggers
from freqtrade.tests.conftest import log_has
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.main import main, reconfigure
from freqtrade.state import State
from freqtrade.tests.conftest import log_has, patch_exchange
def test_parse_args_backtesting(mocker) -> None:
@@ -22,72 +24,148 @@ def test_parse_args_backtesting(mocker) -> None:
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.live is False
assert call_args.loglevel == 20
assert call_args.loglevel == 0
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
assert call_args.ticker_interval is None
def test_main_start_hyperopt(mocker) -> None:
"""
Test that main() can start hyperopt
"""
hyperopt_mock = mocker.patch('freqtrade.optimize.hyperopt.start', MagicMock())
main(['hyperopt'])
assert hyperopt_mock.call_count == 1
call_args = hyperopt_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.loglevel == 20
assert call_args.loglevel == 0
assert call_args.subparser == 'hyperopt'
assert call_args.func is not None
def test_set_loggers() -> None:
"""
Test set_loggers() update the logger level for third-party libraries
"""
previous_value1 = logging.getLogger('requests.packages.urllib3').level
previous_value2 = logging.getLogger('telegram').level
set_loggers()
value1 = logging.getLogger('requests.packages.urllib3').level
assert previous_value1 is not value1
assert value1 is logging.INFO
value2 = logging.getLogger('telegram').level
assert previous_value2 is not value2
assert value2 is logging.INFO
def test_main(mocker, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
"""
def test_main_fatal_exception(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(
side_effect=KeyboardInterrupt
),
clean=MagicMock(),
worker=MagicMock(side_effect=Exception),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit) as pytest_wrapped_e:
main(args)
log_has('Starting freqtrade', caplog.record_tuples)
log_has('Got SIGINT, aborting ...', caplog.record_tuples)
assert pytest_wrapped_e.type == SystemExit
assert pytest_wrapped_e.value.code == 42
# Test the BaseException case
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.worker',
MagicMock(side_effect=BaseException)
)
with pytest.raises(SystemExit):
main(args)
log_has('Got fatal exception!', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Fatal exception!', caplog.record_tuples)
def test_main_keyboard_interrupt(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=KeyboardInterrupt),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('SIGINT received, aborting ...', caplog.record_tuples)
def test_main_operational_exception(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=OperationalException('Oh snap!')),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Oh snap!', caplog.record_tuples)
def test_main_reload_conf(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(return_value=State.RELOAD_CONF),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
# Raise exception as side effect to avoid endless loop
reconfigure_mock = mocker.patch(
'freqtrade.main.reconfigure', MagicMock(side_effect=Exception)
)
with pytest.raises(SystemExit):
main(['-c', 'config.json.example'])
assert reconfigure_mock.call_count == 1
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
def test_reconfigure(mocker, default_conf) -> None:
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=OperationalException('Oh snap!')),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtrade = FreqtradeBot(default_conf)
# Renew mock to return modified data
conf = deepcopy(default_conf)
conf['stake_amount'] += 1
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: conf
)
# reconfigure should return a new instance
freqtrade2 = reconfigure(
freqtrade,
Arguments(['-c', 'config.json.example'], '').get_parsed_arg()
)
# Verify we have a new instance with the new config
assert freqtrade is not freqtrade2
assert freqtrade.config['stake_amount'] + 1 == freqtrade2.config['stake_amount']

View File

@@ -1,34 +1,23 @@
# pragma pylint: disable=missing-docstring,C0103
"""
Unit test file for misc.py
"""
import datetime
from unittest.mock import MagicMock
from freqtrade.analyze import Analyze
from freqtrade.misc import (shorten_date, datesarray_to_datetimearray,
common_datearray, file_dump_json)
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.misc import (common_datearray, datesarray_to_datetimearray,
file_dump_json, format_ms_time, shorten_date)
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.strategy.default_strategy import DefaultStrategy
def test_shorten_date() -> None:
"""
Test shorten_date() function
:return: None
"""
str_data = '1 day, 2 hours, 3 minutes, 4 seconds ago'
str_shorten_data = '1 d, 2 h, 3 min, 4 sec ago'
assert shorten_date(str_data) == str_shorten_data
def test_datesarray_to_datetimearray(ticker_history):
"""
Test datesarray_to_datetimearray() function
:return: None
"""
dataframes = Analyze.parse_ticker_dataframe(ticker_history)
dataframes = parse_ticker_dataframe(ticker_history)
dates = datesarray_to_datetimearray(dataframes['date'])
assert isinstance(dates[0], datetime.datetime)
@@ -39,33 +28,43 @@ def test_datesarray_to_datetimearray(ticker_history):
assert dates[0].minute == 50
date_len = len(dates)
assert date_len == 3
assert date_len == 2
def test_common_datearray(default_conf, mocker) -> None:
"""
Test common_datearray()
:return: None
"""
analyze = Analyze(default_conf)
tick = load_tickerdata_file(None, 'BTC_UNITEST', 1)
tickerlist = {'BTC_UNITEST': tick}
dataframes = analyze.tickerdata_to_dataframe(tickerlist)
def test_common_datearray(default_conf) -> None:
strategy = DefaultStrategy(default_conf)
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': tick}
dataframes = strategy.tickerdata_to_dataframe(tickerlist)
dates = common_datearray(dataframes)
assert dates.size == dataframes['BTC_UNITEST']['date'].size
assert dates[0] == dataframes['BTC_UNITEST']['date'][0]
assert dates[-1] == dataframes['BTC_UNITEST']['date'][-1]
assert dates.size == dataframes['UNITTEST/BTC']['date'].size
assert dates[0] == dataframes['UNITTEST/BTC']['date'][0]
assert dates[-1] == dataframes['UNITTEST/BTC']['date'][-1]
def test_file_dump_json(mocker) -> None:
"""
Test file_dump_json()
:return: None
"""
file_open = mocker.patch('freqtrade.misc.open', MagicMock())
json_dump = mocker.patch('json.dump', MagicMock())
file_dump_json('somefile', [1, 2, 3])
assert file_open.call_count == 1
assert json_dump.call_count == 1
file_open = mocker.patch('freqtrade.misc.gzip.open', MagicMock())
json_dump = mocker.patch('json.dump', MagicMock())
file_dump_json('somefile', [1, 2, 3], True)
assert file_open.call_count == 1
assert json_dump.call_count == 1
def test_format_ms_time() -> None:
# Date 2018-04-10 18:02:01
date_in_epoch_ms = 1523383321000
date = format_ms_time(date_in_epoch_ms)
assert type(date) is str
res = datetime.datetime(2018, 4, 10, 18, 2, 1, tzinfo=datetime.timezone.utc)
assert date == res.astimezone(None).strftime('%Y-%m-%dT%H:%M:%S')
res = datetime.datetime(2017, 12, 13, 8, 2, 1, tzinfo=datetime.timezone.utc)
# Date 2017-12-13 08:02:01
date_in_epoch_ms = 1513152121000
assert format_ms_time(date_in_epoch_ms) == res.astimezone(None).strftime('%Y-%m-%dT%H:%M:%S')

View File

@@ -1,11 +1,12 @@
# pragma pylint: disable=missing-docstring, C0103
import os
from unittest.mock import MagicMock
import pytest
from sqlalchemy import create_engine
from freqtrade.exchange import Exchanges
from freqtrade.persistence import Trade, init, clean_dry_run_db
from freqtrade import OperationalException, constants
from freqtrade.persistence import Trade, clean_dry_run_db, init
from freqtrade.tests.conftest import log_has
@pytest.fixture(scope='function')
@@ -13,90 +14,54 @@ def init_persistence(default_conf):
init(default_conf)
def test_init_create_session(default_conf, mocker):
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
def test_init_create_session(default_conf):
# Check if init create a session
init(default_conf)
assert hasattr(Trade, 'session')
assert 'Session' in type(Trade.session).__name__
def test_init_dry_run_db(default_conf, mocker):
default_conf.update({'dry_run_db': True})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
def test_init_custom_db_url(default_conf, mocker):
# Update path to a value other than default, but still in-memory
default_conf.update({'db_url': 'sqlite:///tmp/freqtrade2_test.sqlite'})
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
init(default_conf)
assert os.path.isfile(dry_run_db) is True
# Delete the file made for this unitest and rollback to the previous
# tradesv3.dry_run.sqlite file
# 1. Delete file from the test
if os.path.isfile(dry_run_db):
os.remove(dry_run_db)
# 2. Rollback to the initial file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tmp/freqtrade2_test.sqlite'
def test_init_dry_run_without_db(default_conf, mocker):
default_conf.update({'dry_run_db': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
def test_init_invalid_db_url(default_conf):
# Update path to a value other than default, but still in-memory
default_conf.update({'db_url': 'unknown:///some.url'})
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
init(default_conf)
assert os.path.isfile(dry_run_db) is False
# Rollback to the initial 'tradesv3.dry_run.sqlite' file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
def test_init_prod_db(default_conf, mocker):
default_conf.update({'dry_run': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
default_conf.update({'db_url': constants.DEFAULT_DB_PROD_URL})
# First, protect the existing 'tradesv3.sqlite' (Do not delete user data)
prod_db = 'tradesv3.sqlite'
prod_db_swp = prod_db + '.swp'
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
if os.path.isfile(prod_db):
os.rename(prod_db, prod_db_swp)
# Check if the new tradesv3.sqlite was created
init(default_conf)
assert os.path.isfile(prod_db) is True
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
# Delete the file made for this unitest and rollback to the previous tradesv3.sqlite file
# 1. Delete file from the test
if os.path.isfile(prod_db):
os.remove(prod_db)
def test_init_dryrun_db(default_conf, mocker):
default_conf.update({'dry_run': True})
default_conf.update({'db_url': constants.DEFAULT_DB_DRYRUN_URL})
# Rollback to the initial 'tradesv3.sqlite' file
if os.path.isfile(prod_db_swp):
os.rename(prod_db_swp, prod_db)
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
init(default_conf)
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite://'
@pytest.mark.usefixtures("init_persistence")
def test_update_with_bittrex(limit_buy_order, limit_sell_order):
def test_update_with_bittrex(limit_buy_order, limit_sell_order, fee):
"""
On this test we will buy and sell a crypto currency.
@@ -125,10 +90,11 @@ def test_update_with_bittrex(limit_buy_order, limit_sell_order):
"""
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
assert trade.open_order_id is None
assert trade.open_rate is None
@@ -151,12 +117,13 @@ def test_update_with_bittrex(limit_buy_order, limit_sell_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_open_close_trade_price(limit_buy_order, limit_sell_order):
def test_calc_open_close_trade_price(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'something'
@@ -174,12 +141,13 @@ def test_calc_open_close_trade_price(limit_buy_order, limit_sell_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_close_trade_price_exception(limit_buy_order):
def test_calc_close_trade_price_exception(limit_buy_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'something'
@@ -190,10 +158,11 @@ def test_calc_close_trade_price_exception(limit_buy_order):
@pytest.mark.usefixtures("init_persistence")
def test_update_open_order(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=1.00,
fee=0.1,
exchange=Exchanges.BITTREX,
fee_open=0.1,
fee_close=0.1,
exchange='bittrex',
)
assert trade.open_order_id is None
@@ -201,7 +170,7 @@ def test_update_open_order(limit_buy_order):
assert trade.close_profit is None
assert trade.close_date is None
limit_buy_order['closed'] = False
limit_buy_order['status'] = 'open'
trade.update(limit_buy_order)
assert trade.open_order_id is None
@@ -213,10 +182,11 @@ def test_update_open_order(limit_buy_order):
@pytest.mark.usefixtures("init_persistence")
def test_update_invalid_order(limit_buy_order):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=1.00,
fee=0.1,
exchange=Exchanges.BITTREX,
fee_open=0.1,
fee_close=0.1,
exchange='bittrex',
)
limit_buy_order['type'] = 'invalid'
with pytest.raises(ValueError, match=r'Unknown order type'):
@@ -224,12 +194,13 @@ def test_update_invalid_order(limit_buy_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_open_trade_price(limit_buy_order):
def test_calc_open_trade_price(limit_buy_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'open_trade'
trade.update(limit_buy_order) # Buy @ 0.00001099
@@ -242,12 +213,13 @@ def test_calc_open_trade_price(limit_buy_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_close_trade_price(limit_buy_order, limit_sell_order):
def test_calc_close_trade_price(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'close_trade'
trade.update(limit_buy_order) # Buy @ 0.00001099
@@ -264,12 +236,13 @@ def test_calc_close_trade_price(limit_buy_order, limit_sell_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_profit(limit_buy_order, limit_sell_order):
def test_calc_profit(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'profit_percent'
trade.update(limit_buy_order) # Buy @ 0.00001099
@@ -295,12 +268,13 @@ def test_calc_profit(limit_buy_order, limit_sell_order):
@pytest.mark.usefixtures("init_persistence")
def test_calc_profit_percent(limit_buy_order, limit_sell_order):
def test_calc_profit_percent(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
fee=0.0025,
exchange=Exchanges.BITTREX,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
)
trade.open_order_id = 'profit_percent'
trade.update(limit_buy_order) # Buy @ 0.00001099
@@ -319,40 +293,43 @@ def test_calc_profit_percent(limit_buy_order, limit_sell_order):
assert trade.calc_profit_percent(fee=0.003) == 0.0614782
def test_clean_dry_run_db(default_conf):
init(default_conf, create_engine('sqlite://'))
def test_clean_dry_run_db(default_conf, fee):
init(default_conf)
# Simulate dry_run entries
trade = Trade(
pair='BTC_ETH',
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='BITTREX',
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='BTC_ETC',
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='BITTREX',
exchange='bittrex',
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='BTC_ETC',
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee=0.0025,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='BITTREX',
exchange='bittrex',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
@@ -364,3 +341,238 @@ def test_clean_dry_run_db(default_conf):
# We have now only the prod
assert len(Trade.query.filter(Trade.open_order_id.isnot(None)).all()) == 1
def test_migrate_old(mocker, default_conf, fee):
"""
Test Database migration(starting with old pairformat)
"""
amount = 103.223
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
open_rate, stake_amount, amount, open_date)
VALUES ('BITTREX', 'BTC_ETC', 1, {fee},
0.00258580, {stake}, {amount},
'2017-11-28 12:44:24.000000')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf)
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
assert trade.fee_open == fee.return_value
assert trade.fee_close == fee.return_value
assert trade.open_rate_requested is None
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "bittrex"
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
def test_migrate_new(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
amount = 103.223
# Always create all columns apart from the last!
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
stop_loss FLOAT,
initial_stop_loss FLOAT,
max_rate FLOAT,
sell_reason VARCHAR,
strategy VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
open_rate, stake_amount, amount, open_date,
stop_loss, initial_stop_loss, max_rate)
VALUES ('binance', 'ETC/BTC', 1, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000',
0.0, 0.0, 0.0)
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# fake previous backup
engine.execute("create table trades_bak as select * from trades")
engine.execute("create table trades_bak1 as select * from trades")
# Run init to test migration
init(default_conf)
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
assert trade.fee_open == fee.return_value
assert trade.fee_close == fee.return_value
assert trade.open_rate_requested is None
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert trade.sell_reason is None
assert trade.strategy is None
assert trade.ticker_interval is None
assert log_has("trying trades_bak1", caplog.record_tuples)
assert log_has("trying trades_bak2", caplog.record_tuples)
def test_migrate_mid_state(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
amount = 103.223
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee_open FLOAT NOT NULL,
fee_close FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close,
open_rate, stake_amount, amount, open_date)
VALUES ('binance', 'ETC/BTC', 1, {fee}, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf)
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
assert trade.fee_open == fee.return_value
assert trade.fee_close == fee.return_value
assert trade.open_rate_requested is None
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert log_has("trying trades_bak0", caplog.record_tuples)
def test_adjust_stop_loss(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
trade.adjust_stop_loss(trade.open_rate, 0.05, True)
assert trade.stop_loss == 0.95
assert trade.max_rate == 1
assert trade.initial_stop_loss == 0.95
# Get percent of profit with a lowre rate
trade.adjust_stop_loss(0.96, 0.05)
assert trade.stop_loss == 0.95
assert trade.max_rate == 1
assert trade.initial_stop_loss == 0.95
# Get percent of profit with a custom rate (Higher than open rate)
trade.adjust_stop_loss(1.3, -0.1)
assert round(trade.stop_loss, 8) == 1.17
assert trade.max_rate == 1.3
assert trade.initial_stop_loss == 0.95
# current rate lower again ... should not change
trade.adjust_stop_loss(1.2, 0.1)
assert round(trade.stop_loss, 8) == 1.17
assert trade.max_rate == 1.3
assert trade.initial_stop_loss == 0.95
# current rate higher... should raise stoploss
trade.adjust_stop_loss(1.4, 0.1)
assert round(trade.stop_loss, 8) == 1.26
assert trade.max_rate == 1.4
assert trade.initial_stop_loss == 0.95
# Initial is true but stop_loss set - so doesn't do anything
trade.adjust_stop_loss(1.7, 0.1, True)
assert round(trade.stop_loss, 8) == 1.26
assert trade.max_rate == 1.4
assert trade.initial_stop_loss == 0.95

View File

@@ -1,14 +0,0 @@
"""
Unit test file for constants.py
"""
from freqtrade.state import State
def test_state_object() -> None:
"""
Test the State object has the mandatory states
:return: None
"""
assert hasattr(State, 'RUNNING')
assert hasattr(State, 'STOPPED')

View File

@@ -0,0 +1,16 @@
import talib.abstract as ta
import pandas as pd
def test_talib_bollingerbands_near_zero_values():
inputs = pd.DataFrame([
{'close': 0.00000010},
{'close': 0.00000011},
{'close': 0.00000012},
{'close': 0.00000013},
{'close': 0.00000014}
])
bollinger = ta.BBANDS(inputs, matype=0, timeperiod=2)
assert (bollinger['upperband'][3] != bollinger['middleband'][3])

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More