update hyperopt documentation
This commit is contained in:
parent
0ce08932ed
commit
a58d51ded0
279
docs/hyperopt.md
279
docs/hyperopt.md
@ -1,153 +1,109 @@
|
||||
# Hyperopt
|
||||
This page explains how to tune your strategy by finding the optimal
|
||||
parameters with Hyperopt.
|
||||
parameters, process called hyperparameter optimization. The bot uses several
|
||||
algorithms included in `scikit-optimize` package to accomplish this. The
|
||||
search will burn all your CPU cores, make your laptop sound like a fighter jet
|
||||
and still take a long time.
|
||||
|
||||
## Table of Contents
|
||||
- [Prepare your Hyperopt](#prepare-hyperopt)
|
||||
- [1. Configure your Guards and Triggers](#1-configure-your-guards-and-triggers)
|
||||
- [2. Update the hyperopt config file](#2-update-the-hyperopt-config-file)
|
||||
- [Advanced Hyperopt notions](#advanced-notions)
|
||||
- [Understand the Guards and Triggers](#understand-the-guards-and-triggers)
|
||||
- [Configure your Guards and Triggers](#configure-your-guards-and-triggers)
|
||||
- [Solving a Mystery](#solving-a-mystery)
|
||||
- [Adding New Indicators](#adding-new-indicators)
|
||||
- [Execute Hyperopt](#execute-hyperopt)
|
||||
- [Understand the hyperopts result](#understand-the-backtesting-result)
|
||||
|
||||
## Prepare Hyperopt
|
||||
Before we start digging in Hyperopt, we recommend you to take a look at
|
||||
your strategy file located into [user_data/strategies/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
|
||||
## Prepare Hyperopting
|
||||
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
|
||||
|
||||
### 1. Configure your Guards and Triggers
|
||||
### Configure your Guards and Triggers
|
||||
There are two places you need to change in your strategy file to add a
|
||||
new buy strategy for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L278-L294).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L218-L229)
|
||||
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
|
||||
|
||||
There you have two different type of indicators: 1. `guards` and 2.
|
||||
`triggers`.
|
||||
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
|
||||
1. Guards are conditions like "never buy if ADX < 10", or never buy if
|
||||
current price is over EMA10.
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like
|
||||
"buy when EMA5 crosses over EMA10" or buy when close price touches lower
|
||||
bollinger band.
|
||||
|
||||
HyperOpt will, for each eval round, pick just ONE trigger, and possibly
|
||||
multiple guards. So that the constructed strategy will be something like
|
||||
Hyperoptimization will, for each eval round, pick one trigger and possibly
|
||||
multiple guards. The constructed strategy will be something like
|
||||
"*buy exactly when close price touches lower bollinger band, BUT only if
|
||||
ADX > 10*".
|
||||
|
||||
|
||||
If you have updated the buy strategy, means change the content of
|
||||
If you have updated the buy strategy, ie. changed the contents of
|
||||
`populate_buy_trend()` method you have to update the `guards` and
|
||||
`triggers` hyperopts must used.
|
||||
`triggers` hyperopts must use.
|
||||
|
||||
As for an example if your `populate_buy_trend()` method is:
|
||||
```python
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(dataframe['rsi'] < 35) &
|
||||
(dataframe['adx'] > 65),
|
||||
'buy'] = 1
|
||||
## Solving a Mystery
|
||||
|
||||
return dataframe
|
||||
```
|
||||
Let's say you are curious: should you use MACD crossings or lower Bollinger
|
||||
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
|
||||
help with those buy decisions. If you decide to use RSI or ADX, which values
|
||||
should I use for them? So let's use hyperparameter optimization to solve this
|
||||
mystery.
|
||||
|
||||
Your hyperopt file must contain `guards` to find the right value for
|
||||
`(dataframe['adx'] > 65)` & and `(dataframe['plus_di'] > 0.5)`. That
|
||||
means you will need to enable/disable triggers.
|
||||
|
||||
In our case the `SPACE` and `populate_buy_trend` in your strategy file
|
||||
will look like:
|
||||
```python
|
||||
space = {
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
|
||||
]),
|
||||
'trigger': hp.choice('trigger', [
|
||||
{'type': 'lower_bb'},
|
||||
{'type': 'faststoch10'},
|
||||
{'type': 'ao_cross_zero'},
|
||||
{'type': 'ema5_cross_ema10'},
|
||||
{'type': 'macd_cross_signal'},
|
||||
{'type': 'sar_reversal'},
|
||||
{'type': 'stochf_cross'},
|
||||
{'type': 'ht_sine'},
|
||||
]),
|
||||
}
|
||||
|
||||
...
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': dataframe['tema'] <= dataframe['blower'],
|
||||
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
|
||||
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
|
||||
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
|
||||
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
|
||||
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
|
||||
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
|
||||
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
|
||||
}
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
### 2. Update the hyperopt config file
|
||||
Hyperopt is using a dedicated config file. Currently hyperopt
|
||||
cannot use your config file. It is also made on purpose to allow you
|
||||
testing your strategy with different configurations.
|
||||
|
||||
The Hyperopt configuration is located in
|
||||
[user_data/hyperopt_conf.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopt_conf.py).
|
||||
|
||||
|
||||
## Advanced notions
|
||||
### Understand the Guards and Triggers
|
||||
When you need to add the new guards and triggers to be hyperopt
|
||||
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
|
||||
|
||||
If it's a trigger, you add one line to the 'trigger' choice group and that's it.
|
||||
|
||||
If it's a guard, you will add a line like this:
|
||||
```
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
```
|
||||
This says, "*one of the guards is RSI, it can have two values, enabled or
|
||||
disabled. If it is enabled, try different values for it between 20 and 40*".
|
||||
|
||||
So, the part of the strategy builder using the above setting looks like
|
||||
this:
|
||||
We will start by defining a search space:
|
||||
|
||||
```
|
||||
if params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(20, 40, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal'], name='trigger')
|
||||
]
|
||||
```
|
||||
|
||||
It checks if Hyperopt wants the RSI guard to be enabled for this
|
||||
round `params['rsi']['enabled']` and if it is, then it will add a
|
||||
condition that says RSI must be smaller than the value hyperopt picked
|
||||
for this evaluation, which is given in the `params['rsi']['value']`.
|
||||
Above definition says: I have five parameters I want you to randomly combine
|
||||
to find the best combination. Two of them are integer values (`adx-value`
|
||||
and `rsi-value`) and I want you test in the range of values 20 to 40.
|
||||
Then we have three category variables. First two are either `True` or `False`.
|
||||
We use these to either enable or disable the ADX and RSI guards. The last
|
||||
one we call `trigger` and use it to decide which buy trigger we want to use.
|
||||
|
||||
That's it. Now you can add new parts of strategies to Hyperopt and it
|
||||
will try all the combinations with all different values in the search
|
||||
for best working algo.
|
||||
So let's write the buy strategy using these values:
|
||||
|
||||
```
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
### Add a new Indicators
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
```
|
||||
|
||||
Hyperopting will now call this `populate_buy_trend` as many times you ask it (`epochs`)
|
||||
with different value combinations. It will then use the given historical data and make
|
||||
buys based on the buy signals generated with the above function and based on the results
|
||||
it will end with telling you which paramter combination produced the best profits.
|
||||
|
||||
### Adding New Indicators
|
||||
If you want to test an indicator that isn't used by the bot currently,
|
||||
you need to add it to the `populate_indicators()` method in `hyperopt.py`.
|
||||
|
||||
@ -164,12 +120,12 @@ python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||
running at least several thousand evaluations.
|
||||
|
||||
### Execute hyperopt with different ticker-data source
|
||||
### Execute Hyperopt with Different Ticker-Data Source
|
||||
If you would like to hyperopt parameters using an alternate ticker data that
|
||||
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
|
||||
use data from directory `user_data/data`.
|
||||
|
||||
### Running hyperopt with smaller testset
|
||||
### Running Hyperopt with Smaller Testset
|
||||
Use the `--timeperiod` argument to change how much of the testset
|
||||
you want to use. The last N ticks/timeframes will be used.
|
||||
Example:
|
||||
@ -178,7 +134,7 @@ Example:
|
||||
python3 ./freqtrade/main.py hyperopt --timeperiod -200
|
||||
```
|
||||
|
||||
### Running hyperopt with smaller search space
|
||||
### Running Hyperopt with Smaller Search Space
|
||||
Use the `--spaces` argument to limit the search space used by hyperopt.
|
||||
Letting Hyperopt optimize everything is a huuuuge search space. Often it
|
||||
might make more sense to start by just searching for initial buy algorithm.
|
||||
@ -193,87 +149,44 @@ Legal values are:
|
||||
- `stoploss`: search for the best stoploss value
|
||||
- space-separated list of any of the above values for example `--spaces roi stoploss`
|
||||
|
||||
## Understand the hyperopts result
|
||||
Once Hyperopt is completed you can use the result to adding new buy
|
||||
signal. Given following result from hyperopt:
|
||||
```
|
||||
Best parameters:
|
||||
{
|
||||
"adx": {
|
||||
"enabled": true,
|
||||
"value": 15.0
|
||||
},
|
||||
"fastd": {
|
||||
"enabled": true,
|
||||
"value": 40.0
|
||||
},
|
||||
"green_candle": {
|
||||
"enabled": true
|
||||
},
|
||||
"mfi": {
|
||||
"enabled": false
|
||||
},
|
||||
"over_sar": {
|
||||
"enabled": false
|
||||
},
|
||||
"rsi": {
|
||||
"enabled": true,
|
||||
"value": 37.0
|
||||
},
|
||||
"trigger": {
|
||||
"type": "lower_bb"
|
||||
},
|
||||
"uptrend_long_ema": {
|
||||
"enabled": true
|
||||
},
|
||||
"uptrend_short_ema": {
|
||||
"enabled": false
|
||||
},
|
||||
"uptrend_sma": {
|
||||
"enabled": false
|
||||
}
|
||||
}
|
||||
## Understand the Hyperopts Result
|
||||
Once Hyperopt is completed you can use the result to creating a new strategy.
|
||||
Given following result from hyperopt:
|
||||
|
||||
Best Result:
|
||||
2197 trades. Avg profit 1.84%. Total profit 0.79367541 BTC. Avg duration 241.0 mins.
|
||||
```
|
||||
Best result:
|
||||
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
|
||||
with values:
|
||||
{'adx-value': 44, 'rsi-value': 29, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'bb_lower'}
|
||||
```
|
||||
|
||||
You should understand this result like:
|
||||
- You should **consider** the guard "adx" (`"adx"` is `"enabled": true`)
|
||||
and the best value is `15.0` (`"value": 15.0,`)
|
||||
- You should **consider** the guard "fastd" (`"fastd"` is `"enabled":
|
||||
true`) and the best value is `40.0` (`"value": 40.0,`)
|
||||
- You should **consider** to enable the guard "green_candle"
|
||||
(`"green_candle"` is `"enabled": true`) but this guards as no
|
||||
customizable value.
|
||||
- You should **ignore** the guard "mfi" (`"mfi"` is `"enabled": false`)
|
||||
- and so on...
|
||||
- The buy trigger that worked best was `bb_lower`.
|
||||
- You should not use ADX because `adx-enabled: False`)
|
||||
- You should **consider** using the RSI indicator (`rsi-enabled: True` and the best value is `29.0` (`rsi-value: 29.0`)
|
||||
|
||||
You have to look inside your strategy file into `buy_strategy_generator()`
|
||||
method, what those values match to.
|
||||
|
||||
So for example you had `adx:` with the `value: 15.0` so we would look
|
||||
at `adx`-block, that translates to the following code block:
|
||||
So for example you had `rsi-value: 29.0` so we would look
|
||||
at `rsi`-block, that translates to the following code block:
|
||||
```
|
||||
(dataframe['adx'] > 15.0)
|
||||
(dataframe['rsi'] < 29.0)
|
||||
```
|
||||
|
||||
Translating your whole hyperopt result to as the new buy-signal
|
||||
would be the following:
|
||||
Translating your whole hyperopt result as the new buy-signal
|
||||
would then look like:
|
||||
```
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 15.0) & # adx-value
|
||||
(dataframe['fastd'] < 40.0) & # fastd-value
|
||||
(dataframe['close'] > dataframe['open']) & # green_candle
|
||||
(dataframe['rsi'] < 37.0) & # rsi-value
|
||||
(dataframe['ema50'] > dataframe['ema100']) # uptrend_long_ema
|
||||
(dataframe['rsi'] < 29.0) & # rsi-value
|
||||
dataframe['close'] < dataframe['bb_lowerband'] # trigger
|
||||
),
|
||||
'buy'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
## Next step
|
||||
## Next Step
|
||||
Now you have a perfect bot and want to control it from Telegram. Your
|
||||
next step is to learn the [Telegram usage](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md).
|
||||
|
Loading…
Reference in New Issue
Block a user