Merge pull request #1044 from freqtrade/pair_to_strat
pair to strategy enhancement
This commit is contained in:
commit
81cf7229be
@ -39,7 +39,6 @@ A strategy file contains all the information needed to build a good strategy:
|
||||
- Sell strategy rules
|
||||
- Minimal ROI recommended
|
||||
- Stoploss recommended
|
||||
- Hyperopt parameter
|
||||
|
||||
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
|
||||
You can test it with the parameter: `--strategy TestStrategy`
|
||||
@ -61,22 +60,22 @@ file as reference.**
|
||||
|
||||
### Buy strategy
|
||||
|
||||
Edit the method `populate_buy_trend()` into your strategy file to
|
||||
update your buy strategy.
|
||||
Edit the method `populate_buy_trend()` into your strategy file to update your buy strategy.
|
||||
|
||||
Sample from `user_data/strategies/test_strategy.py`:
|
||||
|
||||
```python
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['blower']) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
@ -87,38 +86,47 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
### Sell strategy
|
||||
|
||||
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
|
||||
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
|
||||
|
||||
Sample from `user_data/strategies/test_strategy.py`:
|
||||
|
||||
```python
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['blower']) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
## Add more Indicator
|
||||
## Add more Indicators
|
||||
|
||||
As you have seen, buy and sell strategies need indicators. You can add
|
||||
more indicators by extending the list contained in
|
||||
the method `populate_indicators()` from your strategy file.
|
||||
As you have seen, buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
|
||||
|
||||
You should only add the indicators used in either `populate_buy_trend()`, `populate_sell_trend()`, or to populate another indicator, otherwise performance may suffer.
|
||||
|
||||
Sample:
|
||||
|
||||
```python
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
@ -149,6 +157,11 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
return dataframe
|
||||
```
|
||||
|
||||
### Metadata dict
|
||||
|
||||
The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `populate_indicators`) contains additional information.
|
||||
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
|
||||
|
||||
### Want more indicator examples
|
||||
|
||||
Look into the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
|
||||
|
@ -57,8 +57,8 @@ class Backtesting(object):
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.strategy.populate_buy_trend
|
||||
self.populate_sell_trend = self.strategy.populate_sell_trend
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
@ -229,8 +229,8 @@ class Backtesting(object):
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
|
@ -75,7 +75,7 @@ class Hyperopt(Backtesting):
|
||||
return arg_dict
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
@ -228,7 +228,7 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
@ -270,7 +270,7 @@ class Hyperopt(Backtesting):
|
||||
self.strategy.minimal_roi = self.generate_roi_table(params)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.populate_buy_trend = self.buy_strategy_generator(params)
|
||||
self.advise_buy = self.buy_strategy_generator(params)
|
||||
|
||||
if self.has_space('stoploss'):
|
||||
self.strategy.stoploss = params['stoploss']
|
||||
@ -351,7 +351,7 @@ class Hyperopt(Backtesting):
|
||||
)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.strategy.populate_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
self.exchange = None # type: ignore
|
||||
self.load_previous_results()
|
||||
@ -360,7 +360,7 @@ class Hyperopt(Backtesting):
|
||||
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
|
||||
|
||||
opt = self.get_optimizer(cpus)
|
||||
EVALS = max(self.total_tries//cpus, 1)
|
||||
EVALS = max(self.total_tries // cpus, 1)
|
||||
try:
|
||||
with Parallel(n_jobs=cpus) as parallel:
|
||||
for i in range(EVALS):
|
||||
|
@ -28,13 +28,16 @@ class DefaultStrategy(IStrategy):
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
@ -196,10 +199,11 @@ class DefaultStrategy(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
@ -217,10 +221,11 @@ class DefaultStrategy(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
|
@ -7,6 +7,7 @@ from abc import ABC, abstractmethod
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Dict, List, NamedTuple, Tuple
|
||||
import warnings
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
@ -57,34 +58,45 @@ class IStrategy(ABC):
|
||||
ticker_interval -> str: value of the ticker interval to use for the strategy
|
||||
"""
|
||||
|
||||
_populate_fun_len: int = 0
|
||||
_buy_fun_len: int = 0
|
||||
_sell_fun_len: int = 0
|
||||
# associated minimal roi
|
||||
minimal_roi: Dict
|
||||
|
||||
# associated stoploss
|
||||
stoploss: float
|
||||
|
||||
# associated ticker interval
|
||||
ticker_interval: str
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
|
||||
@ -94,16 +106,16 @@ class IStrategy(ABC):
|
||||
"""
|
||||
return self.__class__.__name__
|
||||
|
||||
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
|
||||
def analyze_ticker(self, ticker_history: List[Dict], metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
:return DataFrame with ticker data and indicator data
|
||||
"""
|
||||
dataframe = parse_ticker_dataframe(ticker_history)
|
||||
dataframe = self.populate_indicators(dataframe)
|
||||
dataframe = self.populate_buy_trend(dataframe)
|
||||
dataframe = self.populate_sell_trend(dataframe)
|
||||
dataframe = self.advise_indicators(dataframe, metadata)
|
||||
dataframe = self.advise_buy(dataframe, metadata)
|
||||
dataframe = self.advise_sell(dataframe, metadata)
|
||||
return dataframe
|
||||
|
||||
def get_signal(self, pair: str, interval: str, ticker_hist: List[Dict]) -> Tuple[bool, bool]:
|
||||
@ -118,7 +130,7 @@ class IStrategy(ABC):
|
||||
return False, False
|
||||
|
||||
try:
|
||||
dataframe = self.analyze_ticker(ticker_hist)
|
||||
dataframe = self.analyze_ticker(ticker_hist, {'pair': pair})
|
||||
except ValueError as error:
|
||||
logger.warning(
|
||||
'Unable to analyze ticker for pair %s: %s',
|
||||
@ -263,5 +275,50 @@ class IStrategy(ABC):
|
||||
"""
|
||||
Creates a dataframe and populates indicators for given ticker data
|
||||
"""
|
||||
return {pair: self.populate_indicators(parse_ticker_dataframe(pair_data))
|
||||
return {pair: self.advise_indicators(parse_ticker_dataframe(pair_data), {'pair': pair})
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
||||
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
This method should not be overridden.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
if self._populate_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_indicators(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_indicators(dataframe, metadata)
|
||||
|
||||
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
This method should not be overridden.
|
||||
:param dataframe: DataFrame
|
||||
:param pair: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
if self._buy_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_buy_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_buy_trend(dataframe, metadata)
|
||||
|
||||
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
This method should not be overridden.
|
||||
:param dataframe: DataFrame
|
||||
:param pair: Additional information, like the currently traded pair
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
if self._sell_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_sell_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_sell_trend(dataframe, metadata)
|
||||
|
@ -92,6 +92,13 @@ class StrategyResolver(object):
|
||||
strategy = self._search_strategy(path, strategy_name=strategy_name, config=config)
|
||||
if strategy:
|
||||
logger.info('Using resolved strategy %s from \'%s\'', strategy_name, path)
|
||||
strategy._populate_fun_len = len(
|
||||
inspect.getfullargspec(strategy.populate_indicators).args)
|
||||
strategy._buy_fun_len = len(
|
||||
inspect.getfullargspec(strategy.populate_buy_trend).args)
|
||||
strategy._sell_fun_len = len(
|
||||
inspect.getfullargspec(strategy.populate_sell_trend).args)
|
||||
|
||||
return import_strategy(strategy, config=config)
|
||||
except FileNotFoundError:
|
||||
logger.warning('Path "%s" does not exist', path)
|
||||
|
@ -146,7 +146,7 @@ def _trend(signals, buy_value, sell_value):
|
||||
return signals
|
||||
|
||||
|
||||
def _trend_alternate(dataframe=None):
|
||||
def _trend_alternate(dataframe=None, metadata=None):
|
||||
signals = dataframe
|
||||
low = signals['low']
|
||||
n = len(low)
|
||||
@ -332,8 +332,8 @@ def test_backtesting_init(mocker, default_conf) -> None:
|
||||
assert backtesting.config == default_conf
|
||||
assert backtesting.ticker_interval == '5m'
|
||||
assert callable(backtesting.tickerdata_to_dataframe)
|
||||
assert callable(backtesting.populate_buy_trend)
|
||||
assert callable(backtesting.populate_sell_trend)
|
||||
assert callable(backtesting.advise_buy)
|
||||
assert callable(backtesting.advise_sell)
|
||||
get_fee.assert_called()
|
||||
assert backtesting.fee == 0.5
|
||||
|
||||
@ -611,42 +611,42 @@ def test_backtest_ticks(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
ticks = [1, 5]
|
||||
fun = Backtesting(default_conf).populate_buy_trend
|
||||
fun = Backtesting(default_conf).advise_buy
|
||||
for _ in ticks:
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert not results.empty
|
||||
|
||||
|
||||
def test_backtest_clash_buy_sell(mocker, default_conf):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None):
|
||||
def fun(dataframe=None, pair=None):
|
||||
buy_value = 1
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
def test_backtest_only_sell(mocker, default_conf):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None):
|
||||
def fun(dataframe=None, pair=None):
|
||||
buy_value = 0
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
@ -655,8 +655,8 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = _trend_alternate # Override
|
||||
backtesting.populate_sell_trend = _trend_alternate # Override
|
||||
backtesting.advise_buy = _trend_alternate # Override
|
||||
backtesting.advise_sell = _trend_alternate # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
backtesting._store_backtest_result("test_.json", results)
|
||||
assert len(results) == 4
|
||||
|
@ -117,7 +117,7 @@ def test_log_results_if_loss_improves(init_hyperopt, capsys) -> None:
|
||||
}
|
||||
)
|
||||
out, err = capsys.readouterr()
|
||||
assert ' 1/2: foo. Loss 1.00000'in out
|
||||
assert ' 1/2: foo. Loss 1.00000' in out
|
||||
|
||||
|
||||
def test_no_log_if_loss_does_not_improve(init_hyperopt, caplog) -> None:
|
||||
@ -247,7 +247,7 @@ def test_populate_indicators(init_hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = _HYPEROPT.populate_indicators(dataframes['UNITTEST/BTC'])
|
||||
dataframe = _HYPEROPT.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'adx' in dataframe
|
||||
@ -259,7 +259,7 @@ def test_buy_strategy_generator(init_hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = _HYPEROPT.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = _HYPEROPT.populate_indicators(dataframes['UNITTEST/BTC'])
|
||||
dataframe = _HYPEROPT.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
|
||||
populate_buy_trend = _HYPEROPT.buy_strategy_generator(
|
||||
{
|
||||
@ -274,7 +274,7 @@ def test_buy_strategy_generator(init_hyperopt) -> None:
|
||||
'trigger': 'bb_lower'
|
||||
}
|
||||
)
|
||||
result = populate_buy_trend(dataframe)
|
||||
result = populate_buy_trend(dataframe, {'pair': 'UNITTEST/BTC'})
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'buy' in result
|
||||
assert 1 in result['buy']
|
||||
|
235
freqtrade/tests/strategy/legacy_strategy.py
Normal file
235
freqtrade/tests/strategy/legacy_strategy.py
Normal file
@ -0,0 +1,235 @@
|
||||
|
||||
# --- Do not remove these libs ---
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from pandas import DataFrame
|
||||
# --------------------------------
|
||||
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
import numpy # noqa
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class TestStrategyLegacy(IStrategy):
|
||||
"""
|
||||
This is a test strategy using the legacy function headers, which will be
|
||||
removed in a future update.
|
||||
Please do not use this as a template, but refer to user_data/strategy/TestStrategy.py
|
||||
for a uptodate version of this template.
|
||||
|
||||
"""
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||
minimal_roi = {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.10
|
||||
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
"""
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# ROC
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
"""
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
"""
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
|
||||
# SAR Parabol
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
"""
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
@ -25,10 +25,11 @@ def test_default_strategy_structure():
|
||||
def test_default_strategy(result):
|
||||
strategy = DefaultStrategy({})
|
||||
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert type(strategy.minimal_roi) is dict
|
||||
assert type(strategy.stoploss) is float
|
||||
assert type(strategy.ticker_interval) is str
|
||||
indicators = strategy.populate_indicators(result)
|
||||
indicators = strategy.populate_indicators(result, metadata)
|
||||
assert type(indicators) is DataFrame
|
||||
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
|
||||
assert type(strategy.populate_sell_trend(indicators)) is DataFrame
|
||||
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
|
||||
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame
|
||||
|
@ -1,8 +1,10 @@
|
||||
# pragma pylint: disable=missing-docstring, protected-access, C0103
|
||||
import logging
|
||||
import os
|
||||
from os import path
|
||||
import warnings
|
||||
|
||||
import pytest
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.strategy import import_strategy
|
||||
from freqtrade.strategy.default_strategy import DefaultStrategy
|
||||
@ -37,8 +39,8 @@ def test_import_strategy(caplog):
|
||||
|
||||
def test_search_strategy():
|
||||
default_config = {}
|
||||
default_location = os.path.join(os.path.dirname(
|
||||
os.path.realpath(__file__)), '..', '..', 'strategy'
|
||||
default_location = path.join(path.dirname(
|
||||
path.realpath(__file__)), '..', '..', 'strategy'
|
||||
)
|
||||
assert isinstance(
|
||||
StrategyResolver._search_strategy(
|
||||
@ -57,12 +59,13 @@ def test_search_strategy():
|
||||
|
||||
def test_load_strategy(result):
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategy'})
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert 'adx' in resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
|
||||
|
||||
def test_load_strategy_invalid_directory(result, caplog):
|
||||
resolver = StrategyResolver()
|
||||
extra_dir = os.path.join('some', 'path')
|
||||
extra_dir = path.join('some', 'path')
|
||||
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
|
||||
|
||||
assert (
|
||||
@ -70,7 +73,8 @@ def test_load_strategy_invalid_directory(result, caplog):
|
||||
logging.WARNING,
|
||||
'Path "{}" does not exist'.format(extra_dir),
|
||||
) in caplog.record_tuples
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
|
||||
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
|
||||
|
||||
|
||||
def test_load_not_found_strategy():
|
||||
@ -85,7 +89,7 @@ def test_strategy(result):
|
||||
config = {'strategy': 'DefaultStrategy'}
|
||||
|
||||
resolver = StrategyResolver(config)
|
||||
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert resolver.strategy.minimal_roi[0] == 0.04
|
||||
assert config["minimal_roi"]['0'] == 0.04
|
||||
|
||||
@ -95,12 +99,13 @@ def test_strategy(result):
|
||||
assert resolver.strategy.ticker_interval == '5m'
|
||||
assert config['ticker_interval'] == '5m'
|
||||
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
assert 'adx' in df_indicators
|
||||
|
||||
dataframe = resolver.strategy.populate_buy_trend(resolver.strategy.populate_indicators(result))
|
||||
dataframe = resolver.strategy.advise_buy(df_indicators, metadata=metadata)
|
||||
assert 'buy' in dataframe.columns
|
||||
|
||||
dataframe = resolver.strategy.populate_sell_trend(resolver.strategy.populate_indicators(result))
|
||||
dataframe = resolver.strategy.advise_sell(df_indicators, metadata=metadata)
|
||||
assert 'sell' in dataframe.columns
|
||||
|
||||
|
||||
@ -150,3 +155,59 @@ def test_strategy_override_ticker_interval(caplog):
|
||||
logging.INFO,
|
||||
'Override strategy \'ticker_interval\' with value in config file: 60.'
|
||||
) in caplog.record_tuples
|
||||
|
||||
|
||||
def test_deprecate_populate_indicators(result):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
'strategy_path': default_location})
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
indicators = resolver.strategy.advise_indicators(result, 'ETH/BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
resolver.strategy.advise_buy(indicators, 'ETH/BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
resolver.strategy.advise_sell(indicators, 'ETH_BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
|
||||
def test_call_deprecated_function(result, monkeypatch):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
'strategy_path': default_location})
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
|
||||
# Make sure we are using a legacy function
|
||||
assert resolver.strategy._populate_fun_len == 2
|
||||
assert resolver.strategy._buy_fun_len == 2
|
||||
assert resolver.strategy._sell_fun_len == 2
|
||||
|
||||
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
assert type(indicator_df) is DataFrame
|
||||
assert 'adx' in indicator_df.columns
|
||||
|
||||
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
|
||||
assert type(buydf) is DataFrame
|
||||
assert 'buy' in buydf.columns
|
||||
|
||||
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
|
||||
assert type(selldf) is DataFrame
|
||||
assert 'sell' in selldf
|
||||
|
@ -14,7 +14,7 @@ def load_dataframe_pair(pairs, strategy):
|
||||
assert isinstance(pairs[0], str)
|
||||
dataframe = ld[pairs[0]]
|
||||
|
||||
dataframe = strategy.analyze_ticker(dataframe)
|
||||
dataframe = strategy.analyze_ticker(dataframe, pairs[0])
|
||||
return dataframe
|
||||
|
||||
|
||||
|
@ -159,8 +159,8 @@ def plot_analyzed_dataframe(args: Namespace) -> None:
|
||||
dataframes = strategy.tickerdata_to_dataframe(tickers)
|
||||
|
||||
dataframe = dataframes[pair]
|
||||
dataframe = strategy.populate_buy_trend(dataframe)
|
||||
dataframe = strategy.populate_sell_trend(dataframe)
|
||||
dataframe = strategy.advise_buy(dataframe, {'pair': pair})
|
||||
dataframe = strategy.advise_sell(dataframe, {'pair': pair})
|
||||
|
||||
if len(dataframe.index) > args.plot_limit:
|
||||
logger.warning('Ticker contained more than %s candles as defined '
|
||||
|
@ -18,6 +18,7 @@ class TestStrategy(IStrategy):
|
||||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
|
||||
|
||||
You can:
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your strategy
|
||||
- Add any lib you need to build your strategy
|
||||
@ -44,13 +45,16 @@ class TestStrategy(IStrategy):
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
@ -211,10 +215,11 @@ class TestStrategy(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
@ -227,10 +232,11 @@ class TestStrategy(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
|
Loading…
Reference in New Issue
Block a user