set cpu threads in config
This commit is contained in:
parent
57c488a6f1
commit
bf7ceba958
1
.gitignore
vendored
1
.gitignore
vendored
@ -113,3 +113,4 @@ target/
|
|||||||
!config_examples/config_full.example.json
|
!config_examples/config_full.example.json
|
||||||
!config_examples/config_kraken.example.json
|
!config_examples/config_kraken.example.json
|
||||||
!config_examples/config_freqai.example.json
|
!config_examples/config_freqai.example.json
|
||||||
|
!config_examples/config_freqai-rl.example.json
|
||||||
|
110
config_examples/config_freqai-rl.example.json
Normal file
110
config_examples/config_freqai-rl.example.json
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
{
|
||||||
|
"trading_mode": "futures",
|
||||||
|
"new_pairs_days": 30,
|
||||||
|
"margin_mode": "isolated",
|
||||||
|
"max_open_trades": 8,
|
||||||
|
"stake_currency": "USDT",
|
||||||
|
"stake_amount": 1000,
|
||||||
|
"tradable_balance_ratio": 1,
|
||||||
|
"fiat_display_currency": "USD",
|
||||||
|
"dry_run": true,
|
||||||
|
"timeframe": "5m",
|
||||||
|
"dataformat_ohlcv": "json",
|
||||||
|
"dry_run_wallet": 12000,
|
||||||
|
"cancel_open_orders_on_exit": true,
|
||||||
|
"unfilledtimeout": {
|
||||||
|
"entry": 10,
|
||||||
|
"exit": 30
|
||||||
|
},
|
||||||
|
"exchange": {
|
||||||
|
"name": "binance",
|
||||||
|
"key": "",
|
||||||
|
"secret": "",
|
||||||
|
"ccxt_config": {
|
||||||
|
"enableRateLimit": true
|
||||||
|
},
|
||||||
|
"ccxt_async_config": {
|
||||||
|
"enableRateLimit": true,
|
||||||
|
"rateLimit": 200
|
||||||
|
},
|
||||||
|
"pair_whitelist": [
|
||||||
|
"1INCH/USDT",
|
||||||
|
"AAVE/USDT"
|
||||||
|
],
|
||||||
|
"pair_blacklist": []
|
||||||
|
},
|
||||||
|
"entry_pricing": {
|
||||||
|
"price_side": "same",
|
||||||
|
"purge_old_models": true,
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1,
|
||||||
|
"price_last_balance": 0.0,
|
||||||
|
"check_depth_of_market": {
|
||||||
|
"enabled": false,
|
||||||
|
"bids_to_ask_delta": 1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"exit_pricing": {
|
||||||
|
"price_side": "other",
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1
|
||||||
|
},
|
||||||
|
"pairlists": [
|
||||||
|
{
|
||||||
|
"method": "StaticPairList"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"freqai": {
|
||||||
|
"model_save_type": "stable_baselines_ppo",
|
||||||
|
"conv_width": 10,
|
||||||
|
"follow_mode": false,
|
||||||
|
"purge_old_models": true,
|
||||||
|
"train_period_days": 10,
|
||||||
|
"backtest_period_days": 2,
|
||||||
|
"identifier": "unique-id",
|
||||||
|
"data_kitchen_thread_count": 4,
|
||||||
|
"feature_parameters": {
|
||||||
|
"include_corr_pairlist": [
|
||||||
|
"BTC/USDT",
|
||||||
|
"ETH/USDT"
|
||||||
|
],
|
||||||
|
"include_timeframes": [
|
||||||
|
"5m",
|
||||||
|
"30m"
|
||||||
|
],
|
||||||
|
"label_period_candles": 80,
|
||||||
|
"include_shifted_candles": 0,
|
||||||
|
"DI_threshold": 0,
|
||||||
|
"weight_factor": 0.9,
|
||||||
|
"principal_component_analysis": false,
|
||||||
|
"use_SVM_to_remove_outliers": false,
|
||||||
|
"svm_params": {"shuffle": true, "nu": 0.1},
|
||||||
|
"stratify_training_data": 0,
|
||||||
|
"indicator_max_period_candles": 10,
|
||||||
|
"indicator_periods_candles": [5]
|
||||||
|
},
|
||||||
|
"data_split_parameters": {
|
||||||
|
"test_size": 0.5,
|
||||||
|
"random_state": 1,
|
||||||
|
"shuffle": false
|
||||||
|
},
|
||||||
|
"model_training_parameters": {
|
||||||
|
"n_steps": 2048,
|
||||||
|
"ent_coef": 0.005,
|
||||||
|
"learning_rate": 0.000025,
|
||||||
|
"batch_size": 256,
|
||||||
|
"eval_cycles" : 5,
|
||||||
|
"train_cycles" : 15
|
||||||
|
},
|
||||||
|
"model_reward_parameters": {
|
||||||
|
"rr": 1,
|
||||||
|
"profit_aim": 0.01
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"bot_name": "RL_test",
|
||||||
|
"force_entry_enable": true,
|
||||||
|
"initial_state": "running",
|
||||||
|
"internals": {
|
||||||
|
"process_throttle_secs": 5
|
||||||
|
}
|
||||||
|
}
|
@ -56,7 +56,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
)
|
)
|
||||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||||
|
|
||||||
model = self.fit(data_dictionary, pair)
|
model = self.fit_rl(data_dictionary, pair, dk)
|
||||||
|
|
||||||
if pair not in self.dd.historic_predictions:
|
if pair not in self.dd.historic_predictions:
|
||||||
self.set_initial_historic_predictions(
|
self.set_initial_historic_predictions(
|
||||||
@ -69,7 +69,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||||
"""
|
"""
|
||||||
Agent customizations and abstract Reinforcement Learning customizations
|
Agent customizations and abstract Reinforcement Learning customizations
|
||||||
go in here. Abstract method, so this function must be overridden by
|
go in here. Abstract method, so this function must be overridden by
|
||||||
@ -164,6 +164,21 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
for return_str in dk.data['extra_returns_per_train']:
|
for return_str in dk.data['extra_returns_per_train']:
|
||||||
hist_preds_df[return_str] = 0
|
hist_preds_df[return_str] = 0
|
||||||
|
|
||||||
|
# TODO take care of this appendage. Right now it needs to be called because FreqAI enforces it.
|
||||||
|
# But FreqaiRL needs more objects passed to fit() (like DK) and we dont want to go refactor
|
||||||
|
# all the other existing fit() functions to include dk argument. For now we instantiate and
|
||||||
|
# leave it.
|
||||||
|
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||||
|
"""
|
||||||
|
Most regressors use the same function names and arguments e.g. user
|
||||||
|
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||||
|
management will be properly handled by Freqai.
|
||||||
|
:param data_dictionary: Dict = the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(Base3ActionRLEnv):
|
class MyRLEnv(Base3ActionRLEnv):
|
||||||
|
|
||||||
|
@ -471,11 +471,12 @@ class FreqaiDataDrawer:
|
|||||||
elif model_type == 'keras':
|
elif model_type == 'keras':
|
||||||
from tensorflow import keras
|
from tensorflow import keras
|
||||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||||
elif model_type == 'stable_baselines':
|
elif model_type == 'stable_baselines_ppo':
|
||||||
from stable_baselines3.ppo.ppo import PPO
|
from stable_baselines3.ppo.ppo import PPO
|
||||||
|
model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||||
|
elif model_type == 'stable_baselines_dqn':
|
||||||
from stable_baselines3 import DQN
|
from stable_baselines3 import DQN
|
||||||
#model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
model = DQN.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||||
model = DQN.load(dk.data_path / f"best_model.zip")
|
|
||||||
|
|
||||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||||
|
@ -16,7 +16,7 @@ class CatboostClassifier(BaseClassifierModel):
|
|||||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict) -> Any:
|
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||||
"""
|
"""
|
||||||
User sets up the training and test data to fit their desired model here
|
User sets up the training and test data to fit their desired model here
|
||||||
:params:
|
:params:
|
||||||
|
@ -17,7 +17,7 @@ class CatboostRegressor(BaseRegressionModel):
|
|||||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict) -> Any:
|
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||||
"""
|
"""
|
||||||
User sets up the training and test data to fit their desired model here
|
User sets up the training and test data to fit their desired model here
|
||||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
@ -9,9 +9,9 @@ import torch as th
|
|||||||
from stable_baselines3 import PPO
|
from stable_baselines3 import PPO
|
||||||
from stable_baselines3.common.callbacks import EvalCallback
|
from stable_baselines3.common.callbacks import EvalCallback
|
||||||
from stable_baselines3.common.monitor import Monitor
|
from stable_baselines3.common.monitor import Monitor
|
||||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
||||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -22,7 +22,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
User created Reinforcement Learning Model prediction model.
|
User created Reinforcement Learning Model prediction model.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||||
|
|
||||||
agent_params = self.freqai_info['model_training_parameters']
|
agent_params = self.freqai_info['model_training_parameters']
|
||||||
reward_params = self.freqai_info['model_reward_parameters']
|
reward_params = self.freqai_info['model_reward_parameters']
|
||||||
@ -44,7 +44,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
eval_env = Monitor(eval, ".")
|
eval_env = Monitor(eval, ".")
|
||||||
eval_env.reset()
|
eval_env.reset()
|
||||||
|
|
||||||
path = self.dk.data_path
|
path = dk.data_path
|
||||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||||
deterministic=True, render=False)
|
deterministic=True, render=False)
|
||||||
@ -54,7 +54,8 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
net_arch=[256, 256, 128])
|
net_arch=[256, 256, 128])
|
||||||
|
|
||||||
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
||||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025, gamma=0.9, verbose=1
|
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025,
|
||||||
|
gamma=0.9, verbose=1
|
||||||
)
|
)
|
||||||
|
|
||||||
model.learn(
|
model.learn(
|
||||||
@ -62,9 +63,11 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
callback=eval_callback
|
callback=eval_callback
|
||||||
)
|
)
|
||||||
|
|
||||||
|
best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||||
|
|
||||||
print('Training finished!')
|
print('Training finished!')
|
||||||
|
|
||||||
return model
|
return best_model
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(Base3ActionRLEnv):
|
class MyRLEnv(Base3ActionRLEnv):
|
||||||
|
@ -13,7 +13,9 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
|
|||||||
from stable_baselines3.common.utils import set_random_seed
|
from stable_baselines3.common.utils import set_random_seed
|
||||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
import gym
|
import gym
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@ -42,7 +44,7 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
|||||||
User created Reinforcement Learning Model prediction model.
|
User created Reinforcement Learning Model prediction model.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||||
|
|
||||||
agent_params = self.freqai_info['model_training_parameters']
|
agent_params = self.freqai_info['model_training_parameters']
|
||||||
reward_params = self.freqai_info['model_reward_parameters']
|
reward_params = self.freqai_info['model_reward_parameters']
|
||||||
@ -58,16 +60,15 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
|||||||
len(test_df.index))
|
len(test_df.index))
|
||||||
|
|
||||||
env_id = "train_env"
|
env_id = "train_env"
|
||||||
train_num_cpu = 6
|
num_cpu = int(dk.thread_count / 2)
|
||||||
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, price, reward_params,
|
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, price, reward_params,
|
||||||
self.CONV_WIDTH) for i in range(train_num_cpu)])
|
self.CONV_WIDTH) for i in range(train_num_cpu)])
|
||||||
|
|
||||||
eval_num_cpu = 6
|
|
||||||
eval_env_id = 'eval_env'
|
eval_env_id = 'eval_env'
|
||||||
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, price_test, reward_params,
|
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, price_test, reward_params,
|
||||||
self.CONV_WIDTH) for i in range(eval_num_cpu)])
|
self.CONV_WIDTH) for i in range(num_cpu)])
|
||||||
|
|
||||||
path = self.dk.data_path
|
path = dk.data_path
|
||||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||||
deterministic=True, render=False)
|
deterministic=True, render=False)
|
||||||
@ -85,10 +86,12 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
|||||||
callback=eval_callback
|
callback=eval_callback
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# TODO get callback working so the best model is saved. For now we save last model
|
||||||
|
# best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||||
print('Training finished!')
|
print('Training finished!')
|
||||||
eval_env.close()
|
eval_env.close()
|
||||||
|
|
||||||
return model
|
return model # best_model
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(Base3ActionRLEnv):
|
class MyRLEnv(Base3ActionRLEnv):
|
||||||
|
@ -7,9 +7,12 @@ from stable_baselines3.common.monitor import Monitor
|
|||||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||||
|
from stable_baselines3 import DQN
|
||||||
from stable_baselines3.common.buffers import ReplayBuffer
|
from stable_baselines3.common.buffers import ReplayBuffer
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@ -18,7 +21,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
|||||||
User created Reinforcement Learning Model prediction model.
|
User created Reinforcement Learning Model prediction model.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||||
|
|
||||||
agent_params = self.freqai_info['model_training_parameters']
|
agent_params = self.freqai_info['model_training_parameters']
|
||||||
reward_params = self.freqai_info['model_reward_parameters']
|
reward_params = self.freqai_info['model_reward_parameters']
|
||||||
@ -40,7 +43,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
|||||||
eval_env = Monitor(eval, ".")
|
eval_env = Monitor(eval, ".")
|
||||||
eval_env.reset()
|
eval_env.reset()
|
||||||
|
|
||||||
path = self.dk.data_path
|
path = dk.data_path
|
||||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||||
deterministic=True, render=False)
|
deterministic=True, render=False)
|
||||||
@ -63,9 +66,11 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
|||||||
callback=eval_callback
|
callback=eval_callback
|
||||||
)
|
)
|
||||||
|
|
||||||
|
best_model = DQN.load(dk.data_path / "best_model.zip")
|
||||||
|
|
||||||
print('Training finished!')
|
print('Training finished!')
|
||||||
|
|
||||||
return model
|
return best_model
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(Base3ActionRLEnv):
|
class MyRLEnv(Base3ActionRLEnv):
|
||||||
|
Loading…
Reference in New Issue
Block a user