set cpu threads in config
This commit is contained in:
@@ -56,7 +56,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary, pair)
|
||||
model = self.fit_rl(data_dictionary, pair, dk)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
@@ -69,7 +69,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
return model
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
"""
|
||||
Agent customizations and abstract Reinforcement Learning customizations
|
||||
go in here. Abstract method, so this function must be overridden by
|
||||
@@ -164,6 +164,21 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
# TODO take care of this appendage. Right now it needs to be called because FreqAI enforces it.
|
||||
# But FreqaiRL needs more objects passed to fit() (like DK) and we dont want to go refactor
|
||||
# all the other existing fit() functions to include dk argument. For now we instantiate and
|
||||
# leave it.
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
management will be properly handled by Freqai.
|
||||
:param data_dictionary: Dict = the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
return
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
||||
|
@@ -471,11 +471,12 @@ class FreqaiDataDrawer:
|
||||
elif model_type == 'keras':
|
||||
from tensorflow import keras
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
elif model_type == 'stable_baselines':
|
||||
elif model_type == 'stable_baselines_ppo':
|
||||
from stable_baselines3.ppo.ppo import PPO
|
||||
model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
elif model_type == 'stable_baselines_dqn':
|
||||
from stable_baselines3 import DQN
|
||||
#model = PPO.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
model = DQN.load(dk.data_path / f"best_model.zip")
|
||||
model = DQN.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
@@ -16,7 +16,7 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
|
@@ -17,7 +17,7 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = '') -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
|
@@ -9,9 +9,9 @@ import torch as th
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -22,7 +22,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@@ -44,7 +44,7 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@@ -54,7 +54,8 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025, gamma=0.9, verbose=1
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025,
|
||||
gamma=0.9, verbose=1
|
||||
)
|
||||
|
||||
model.learn(
|
||||
@@ -62,9 +63,11 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
return best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
@@ -13,7 +13,9 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines3.common.utils import set_random_seed
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
import gym
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -42,7 +44,7 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@@ -58,16 +60,15 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
len(test_df.index))
|
||||
|
||||
env_id = "train_env"
|
||||
train_num_cpu = 6
|
||||
num_cpu = int(dk.thread_count / 2)
|
||||
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, price, reward_params,
|
||||
self.CONV_WIDTH) for i in range(train_num_cpu)])
|
||||
|
||||
eval_num_cpu = 6
|
||||
eval_env_id = 'eval_env'
|
||||
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, price_test, reward_params,
|
||||
self.CONV_WIDTH) for i in range(eval_num_cpu)])
|
||||
self.CONV_WIDTH) for i in range(num_cpu)])
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@@ -85,10 +86,12 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
# TODO get callback working so the best model is saved. For now we save last model
|
||||
# best_model = PPO.load(dk.data_path / "best_model.zip")
|
||||
print('Training finished!')
|
||||
eval_env.close()
|
||||
|
||||
return model
|
||||
return model # best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
@@ -7,9 +7,12 @@ from stable_baselines3.common.monitor import Monitor
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||
from stable_baselines3 import DQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -18,7 +21,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen):
|
||||
|
||||
agent_params = self.freqai_info['model_training_parameters']
|
||||
reward_params = self.freqai_info['model_reward_parameters']
|
||||
@@ -40,7 +43,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = self.dk.data_path
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
@@ -63,9 +66,11 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
best_model = DQN.load(dk.data_path / "best_model.zip")
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
return model
|
||||
return best_model
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
Reference in New Issue
Block a user