stable/freqtrade/optimize/hyperopt.py

285 lines
9.2 KiB
Python
Raw Normal View History

# pragma pylint: disable=missing-docstring,W0212,W0603
2017-11-25 00:22:36 +00:00
import json
import logging
import os
import pickle
import signal
import sys
from math import exp
from operator import itemgetter
from typing import Dict, Any
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, space_eval, tpe
from hyperopt.mongoexp import MongoTrials
from pandas import DataFrame
# Monkey patch config
from freqtrade import main # noqa; noqa
from freqtrade import exchange, misc, optimize
2017-11-17 16:54:31 +00:00
from freqtrade.exchange import Bittrex
from freqtrade.misc import load_config
from freqtrade.optimize import backtesting
from freqtrade.optimize.backtesting import backtest
2018-01-15 08:35:11 +00:00
from freqtrade.strategy.strategy import Strategy
2018-01-18 07:10:48 +00:00
from user_data.hyperopt_conf import hyperopt_optimize_conf
2017-11-25 02:28:52 +00:00
# Remove noisy log messages
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
2017-12-01 22:21:46 +00:00
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
2017-11-25 02:28:52 +00:00
logger = logging.getLogger(__name__)
2018-01-26 09:48:34 +00:00
# set TARGET_TRADES to suit your number concurrent trades so its realistic to the number of days
TARGET_TRADES = 600
TOTAL_TRIES = 0
2017-11-25 00:12:44 +00:00
_CURRENT_TRIES = 0
CURRENT_BEST_LOSS = 100
2017-12-01 22:21:46 +00:00
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
MAX_ACCEPTED_TRADE_DURATION = 300
# this is expexted avg profit * expected trade count
# for example 3.5%, 1100 trades, EXPECTED_MAX_PROFIT = 3.85
# check that the reported Σ% values do not exceed this!
EXPECTED_MAX_PROFIT = 3.0
# Configuration and data used by hyperopt
PROCESSED = None # optimize.preprocess(optimize.load_data())
2017-12-21 07:31:26 +00:00
OPTIMIZE_CONFIG = hyperopt_optimize_conf()
# Hyperopt Trials
TRIALS_FILE = os.path.join('user_data', 'hyperopt_trials.pickle')
TRIALS = Trials()
main._CONF = OPTIMIZE_CONFIG
def save_trials(trials, trials_path=TRIALS_FILE):
2018-01-10 09:50:00 +00:00
"""Save hyperopt trials to file"""
logger.info('Saving Trials to \'{}\''.format(trials_path))
pickle.dump(trials, open(trials_path, 'wb'))
def read_trials(trials_path=TRIALS_FILE):
2018-01-10 09:50:00 +00:00
"""Read hyperopt trials file"""
logger.info('Reading Trials from \'{}\''.format(trials_path))
trials = pickle.load(open(trials_path, 'rb'))
os.remove(trials_path)
return trials
2018-01-06 13:53:22 +00:00
def log_trials_result(trials):
vals = json.dumps(trials.best_trial['misc']['vals'], indent=4)
2018-01-06 13:53:22 +00:00
results = trials.best_trial['result']['result']
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
def log_results(results):
""" log results if it is better than any previous evaluation """
global CURRENT_BEST_LOSS
if results['loss'] < CURRENT_BEST_LOSS:
CURRENT_BEST_LOSS = results['loss']
2018-01-14 11:09:39 +00:00
logger.info('{:5d}/{}: {}. Loss {:.5f}'.format(
results['current_tries'],
results['total_tries'],
2018-01-14 11:09:39 +00:00
results['result'],
results['loss']))
else:
print('.', end='')
sys.stdout.flush()
2017-12-16 02:39:47 +00:00
def calculate_loss(total_profit: float, trade_count: int, trade_duration: float):
2017-12-26 08:08:10 +00:00
""" objective function, returns smaller number for more optimal results """
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
2017-12-26 08:08:10 +00:00
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
2018-01-28 08:46:22 +00:00
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
return trade_loss + profit_loss + duration_loss
2017-12-26 08:08:10 +00:00
def generate_roi_table(params) -> Dict[int, float]:
2018-01-25 08:45:53 +00:00
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
2018-01-25 08:45:53 +00:00
return roi_table
2018-02-09 18:59:06 +00:00
def has_space(spaces, space):
if space in spaces or 'all' in spaces:
return True
return False
2018-02-28 12:09:43 +00:00
def hyperopt_space(selected_spaces: str, strategy) -> Dict[str, Any]:
2018-02-09 18:59:06 +00:00
spaces = {}
if has_space(selected_spaces, 'buy'):
2018-02-28 12:09:43 +00:00
spaces = {**spaces, **strategy.indicator_space()}
2018-02-09 18:59:06 +00:00
if has_space(selected_spaces, 'roi'):
2018-02-28 12:09:43 +00:00
spaces = {**spaces, **strategy.roi_space()}
2018-02-09 18:59:06 +00:00
if has_space(selected_spaces, 'stoploss'):
2018-02-28 12:09:43 +00:00
spaces = {**spaces, **strategy.stoploss_space()}
2018-02-09 18:59:06 +00:00
return spaces
2018-02-28 12:09:43 +00:00
def generate_optimizer(args, strategy):
def optimizer(params):
global _CURRENT_TRIES
2017-11-25 00:12:44 +00:00
if has_space(args.spaces, 'roi'):
strategy.minimal_roi = generate_roi_table(params)
2018-01-25 08:45:53 +00:00
if has_space(args.spaces, 'buy'):
2018-02-28 12:09:43 +00:00
backtesting.populate_buy_trend = strategy.buy_strategy_generator(params)
2018-02-09 18:59:06 +00:00
if has_space(args.spaces, 'stoploss'):
strategy.stoploss = params['stoploss']
results = backtest({'stake_amount': OPTIMIZE_CONFIG['stake_amount'],
'processed': PROCESSED,
'realistic': args.realistic_simulation,
})
result_explanation = format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.duration.mean()
if trade_count == 0 or trade_duration > MAX_ACCEPTED_TRADE_DURATION:
print('.', end='')
return {
'status': STATUS_FAIL,
'loss': float('inf')
}
loss = calculate_loss(total_profit, trade_count, trade_duration)
2017-12-26 08:08:10 +00:00
_CURRENT_TRIES += 1
log_results({
'loss': loss,
'current_tries': _CURRENT_TRIES,
'total_tries': TOTAL_TRIES,
'result': result_explanation,
})
return {
'loss': loss,
'status': STATUS_OK,
'result': result_explanation,
}
return optimizer
def format_results(results: DataFrame):
return ('{:6d} trades. Avg profit {: 5.2f}%. '
2018-01-14 11:10:25 +00:00
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
2018-01-14 11:10:25 +00:00
results.profit_percent.sum(),
results.duration.mean(),
2018-01-14 11:10:25 +00:00
)
2018-01-18 05:50:12 +00:00
def start(args):
2018-01-15 08:35:11 +00:00
global TOTAL_TRIES, PROCESSED, TRIALS, _CURRENT_TRIES
2017-11-25 00:12:44 +00:00
TOTAL_TRIES = args.epochs
2017-11-17 16:54:31 +00:00
exchange._API = Bittrex({'key': '', 'secret': ''})
2017-10-30 23:36:35 +00:00
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='\n%(message)s',
)
logger.info('Using config: %s ...', args.config)
config = load_config(args.config)
pairs = config['exchange']['pair_whitelist']
2018-01-15 08:35:11 +00:00
2018-01-30 06:53:28 +00:00
# If -i/--ticker-interval is use we override the configuration parameter
# (that will override the strategy configuration)
if args.ticker_interval:
config.update({'ticker_interval': args.ticker_interval})
2018-01-15 08:35:11 +00:00
# init the strategy to use
config.update({'strategy': args.strategy})
strategy = Strategy()
strategy.init(config)
2018-01-15 21:25:02 +00:00
timerange = misc.parse_timerange(args.timerange)
data = optimize.load_data(args.datadir, pairs=pairs,
2018-01-30 06:53:28 +00:00
ticker_interval=strategy.ticker_interval,
2018-01-15 21:25:02 +00:00
timerange=timerange)
2018-02-12 05:01:51 +00:00
if has_space(args.spaces, 'buy'):
2018-02-28 12:09:43 +00:00
optimize.populate_indicators = strategy.populate_indicators
2018-01-15 21:25:02 +00:00
PROCESSED = optimize.tickerdata_to_dataframe(data)
if args.mongodb:
2017-11-25 02:28:52 +00:00
logger.info('Using mongodb ...')
logger.info('Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!')
db_name = 'freqtrade_hyperopt'
TRIALS = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name), exp_key='exp1')
else:
logger.info('Preparing Trials..')
signal.signal(signal.SIGINT, signal_handler)
# read trials file if we have one
if os.path.exists(TRIALS_FILE):
TRIALS = read_trials()
_CURRENT_TRIES = len(TRIALS.results)
TOTAL_TRIES = TOTAL_TRIES + _CURRENT_TRIES
logger.info(
'Continuing with trials. Current: {}, Total: {}'
.format(_CURRENT_TRIES, TOTAL_TRIES))
2018-01-08 01:45:31 +00:00
try:
best_parameters = fmin(
2018-02-28 12:09:43 +00:00
fn=generate_optimizer(args, strategy),
space=hyperopt_space(args.spaces, strategy),
2018-01-08 01:45:31 +00:00
algo=tpe.suggest,
max_evals=TOTAL_TRIES,
trials=TRIALS
2018-01-08 01:45:31 +00:00
)
results = sorted(TRIALS.results, key=itemgetter('loss'))
2018-01-08 01:45:31 +00:00
best_result = results[0]['result']
except ValueError:
best_parameters = {}
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
'try with more epochs (param: -e).'
# Improve best parameter logging display
2018-01-08 01:45:31 +00:00
if best_parameters:
2018-01-15 08:35:11 +00:00
best_parameters = space_eval(
2018-02-28 12:09:43 +00:00
hyperopt_space(args.spaces, strategy),
2018-01-15 08:35:11 +00:00
best_parameters
)
2018-01-08 01:45:31 +00:00
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
2018-01-25 08:45:53 +00:00
if 'roi_t1' in best_parameters:
logger.info('ROI table:\n%s', generate_roi_table(best_parameters))
2018-01-08 01:45:31 +00:00
logger.info('Best Result:\n%s', best_result)
# Store trials result to file to resume next time
save_trials(TRIALS)
def signal_handler(sig, frame):
2018-01-10 09:50:00 +00:00
"""Hyperopt SIGINT handler"""
logger.info('Hyperopt received {}'.format(signal.Signals(sig).name))
save_trials(TRIALS)
2018-01-06 13:53:22 +00:00
log_trials_result(TRIALS)
sys.exit(0)