2018-04-24 05:11:29 +00:00
|
|
|
# --- Do not remove these libs ---
|
|
|
|
from freqtrade.strategy.interface import IStrategy
|
|
|
|
from typing import Dict, List
|
|
|
|
from hyperopt import hp
|
|
|
|
from functools import reduce
|
|
|
|
from pandas import DataFrame
|
|
|
|
# --------------------------------
|
|
|
|
|
|
|
|
import talib.abstract as ta
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
|
|
|
|
|
|
class Quickie(IStrategy):
|
|
|
|
"""
|
|
|
|
|
|
|
|
author@: Gert Wohlgemuth
|
|
|
|
|
|
|
|
idea:
|
|
|
|
momentum based strategie. The main idea is that it closes trades very quickly, while avoiding excessive losses. Hence a rather moderate stop loss in this case
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Minimal ROI designed for the strategy.
|
|
|
|
# This attribute will be overridden if the config file contains "minimal_roi"
|
|
|
|
minimal_roi = {
|
2018-04-27 02:10:51 +00:00
|
|
|
"100": 0.01,
|
2018-04-30 23:16:45 +00:00
|
|
|
"45": 0.02,
|
|
|
|
"30": 0.03,
|
2018-04-26 21:43:20 +00:00
|
|
|
"15": 0.06,
|
2018-04-27 02:12:47 +00:00
|
|
|
"10": 0.15,
|
2018-04-24 05:11:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
# Optimal stoploss designed for the strategy
|
|
|
|
# This attribute will be overridden if the config file contains "stoploss"
|
2018-04-26 21:42:43 +00:00
|
|
|
stoploss = -0.25
|
2018-04-24 05:11:29 +00:00
|
|
|
|
|
|
|
# Optimal ticker interval for the strategy
|
2018-04-25 16:09:13 +00:00
|
|
|
ticker_interval = 5
|
2018-04-24 05:11:29 +00:00
|
|
|
|
|
|
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
2018-04-27 02:10:51 +00:00
|
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
2018-04-30 23:16:45 +00:00
|
|
|
dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
|
|
|
|
dataframe['sma_50'] = ta.SMA(dataframe, timeperiod=50)
|
|
|
|
|
2018-04-26 21:42:43 +00:00
|
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
2018-04-24 05:11:29 +00:00
|
|
|
|
|
|
|
# required for graphing
|
2018-04-30 21:25:44 +00:00
|
|
|
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
|
2018-04-24 05:11:29 +00:00
|
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
|
|
|
dataframe['bb_middleband'] = bollinger['mid']
|
|
|
|
dataframe['bb_upperband'] = bollinger['upper']
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
|
|
dataframe.loc[
|
|
|
|
(
|
2018-04-30 23:16:45 +00:00
|
|
|
(
|
|
|
|
(dataframe['adx'] > 30) &
|
|
|
|
(dataframe['tema'] < dataframe['bb_middleband']) &
|
|
|
|
(dataframe['tema'] > dataframe['tema'].shift(1)) &
|
|
|
|
(dataframe['sma_200'] > dataframe['close'])
|
|
|
|
)
|
|
|
|
|
|
|
|
|
(
|
|
|
|
(dataframe['sma_200'] > dataframe['close']) &
|
|
|
|
(dataframe['sma_50'] < dataframe['sma_200'])
|
|
|
|
)
|
2018-04-26 21:42:43 +00:00
|
|
|
),
|
2018-04-24 05:11:29 +00:00
|
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
|
|
dataframe.loc[
|
2018-04-26 21:42:43 +00:00
|
|
|
(
|
|
|
|
(dataframe['adx'] > 70) &
|
|
|
|
(dataframe['tema'] > dataframe['bb_middleband']) &
|
|
|
|
(dataframe['tema'] < dataframe['tema'].shift(1))
|
|
|
|
),
|
2018-04-24 05:11:29 +00:00
|
|
|
'sell'] = 1
|
|
|
|
return dataframe
|