Long strategy generates about 0.4% a trade, at an average time of 11min and a total returns of 0.01BTC over 20 days. Sell points are not perfect yet. It sell to early most of the time

This commit is contained in:
Gert Wohlgemuth 2018-04-23 22:11:29 -07:00
parent 57e6abc571
commit df1295c74d
4 changed files with 268 additions and 1 deletions

1
.gitignore vendored
View File

@ -6,7 +6,6 @@ config.json
.hyperopt
logfile.txt
hyperopt_trials.pickle
user_data/
freqtrade-plot.html
# Byte-compiled / optimized / DLL files

View File

@ -0,0 +1,79 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Long(IStrategy):
"""
author@: Gert Wohlgemuth
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.05,
"30": 0.06,
"20": 0.07,
"0": 0.08
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.15
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['cci'] = ta.CCI(dataframe)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=50)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['macd'] > dataframe['macdsignal']) &
(dataframe['macd'] > 0) &
(dataframe['cci'] <= 0.0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['tema'] < dataframe['close'])
),
'sell'] = 1
return dataframe

View File

@ -0,0 +1,99 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Quickie(IStrategy):
"""
author@: Gert Wohlgemuth
idea:
momentum based strategie. The main idea is that it closes trades very quickly, while avoiding excessive losses. Hence a rather moderate stop loss in this case
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.01,
"30": 0.03,
"20": 0.04,
"0": 0.05
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.3
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['cci'] = ta.CCI(dataframe)
dataframe['willr'] = ta.WILLR(dataframe)
dataframe['smaSlow'] = ta.SMA(dataframe, timeperiod=7)
dataframe['smaFast'] = ta.SMA(dataframe, timeperiod=13)
# required for graphing
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1.5)
dataframe['bb_lowerband_2'] = bollinger['lower']
dataframe['bb_middleband_2'] = bollinger['mid']
dataframe['bb_upperband_2'] = bollinger['upper']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
# we want to buy oversold assets
(dataframe['cci'] <= -50)
# some basic trend should have been established
& (dataframe['macd'] > dataframe['macdsignal'])
# which starts inside the band
& (dataframe['open'] > dataframe['bb_lowerband'])
)
,
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(dataframe['close'] >= dataframe['bb_upperband']) |
(
(dataframe['macd'] < dataframe['macdsignal']) &
(dataframe['cci'] >= 100)
)
,
'sell'] = 1
return dataframe

View File

@ -0,0 +1,90 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class ZLC(IStrategy):
"""
author@: Gert Wohlgemuth
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.01,
"30": 0.03,
"20": 0.04,
"0": 0.01
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.3
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
dataframe['cci-slow'] = ta.CCI(dataframe, timeperiod=25)
dataframe['cci-fast'] = ta.CCI(dataframe, timeperiod=50)
dataframe['expo'] = ta.EMA(dataframe, timeperiod=35)
# required for graphing
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
#don't buy on peak tops
(dataframe['close'] < dataframe['bb_middleband'])
# this is the main concept of evaluating buys
& (dataframe['cci-fast'] > 0)
& (dataframe['cci-slow'] > 0)
& (dataframe['close'] > dataframe['expo'])
)
,
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(dataframe['close'] >= dataframe['bb_upperband']) |
(
(dataframe['cci-fast'] < 0)
& (dataframe['cci-slow'] < 0)
& (dataframe['close'] < dataframe['expo'])
)
,
'sell'] = 0
return dataframe