optimizing method
This commit is contained in:
parent
0d24aac1fb
commit
76c25d2d52
@ -22,15 +22,12 @@ class Quickie(IStrategy):
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||
minimal_roi = {
|
||||
"60": 0.01,
|
||||
"30": 0.03,
|
||||
"20": 0.04,
|
||||
"0": 0.05
|
||||
"0": 0.01
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.3
|
||||
stoploss = -0.25
|
||||
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = 5
|
||||
@ -41,11 +38,8 @@ class Quickie(IStrategy):
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
dataframe['willr'] = ta.WILLR(dataframe)
|
||||
|
||||
dataframe['smaSlow'] = ta.TEMA(dataframe, timeperiod=30)
|
||||
dataframe['smaFast'] = ta.TEMA(dataframe, timeperiod=20)
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=100)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
# required for graphing
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
@ -53,36 +47,24 @@ class Quickie(IStrategy):
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
# we want to buy oversold assets
|
||||
|
||||
# some basic trend should have been established
|
||||
(qtpylib.crossed_above(dataframe['smaFast'], dataframe['smaSlow']))
|
||||
|
||||
)
|
||||
,
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] < dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(qtpylib.crossed_above(dataframe['smaSlow'], dataframe['smaFast']))
|
||||
,
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
Loading…
Reference in New Issue
Block a user