stable/freqtrade/data/entryexitanalysis.py
2022-05-24 20:27:15 +01:00

263 lines
10 KiB
Python
Executable File

import logging
import os
from pathlib import Path
from typing import List, Optional
import joblib
import pandas as pd
from tabulate import tabulate
from freqtrade.data.btanalysis import get_latest_backtest_filename, load_backtest_data
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def _load_signal_candles(backtest_dir: Path):
if backtest_dir.is_dir():
scpf = Path(backtest_dir,
os.path.splitext(
get_latest_backtest_filename(backtest_dir))[0] + "_signals.pkl"
)
else:
scpf = Path(os.path.splitext(
get_latest_backtest_filename(backtest_dir))[0] + "_signals.pkl"
)
print(scpf)
try:
scp = open(scpf, "rb")
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
except Exception as e:
logger.error("Cannot load signal candles from pickled results: ", e)
return signal_candles
def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles):
analysed_trades_dict = {}
analysed_trades_dict[strategy_name] = {}
try:
logger.info(f"Processing {strategy_name} : {len(pairlist)} pairs")
for pair in pairlist:
if pair in signal_candles[strategy_name]:
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
pair,
trades,
signal_candles[strategy_name][pair])
except Exception:
pass
return analysed_trades_dict
def _analyze_candles_and_indicators(pair, trades, signal_candles):
buyf = signal_candles
if len(buyf) > 0:
buyf = buyf.set_index('date', drop=False)
trades_red = trades.loc[trades['pair'] == pair].copy()
trades_inds = pd.DataFrame()
if trades_red.shape[0] > 0 and buyf.shape[0] > 0:
for t, v in trades_red.open_date.items():
allinds = buyf.loc[(buyf['date'] < v)]
if allinds.shape[0] > 0:
tmp_inds = allinds.iloc[[-1]]
trades_red.loc[t, 'signal_date'] = tmp_inds['date'].values[0]
trades_red.loc[t, 'enter_reason'] = trades_red.loc[t, 'enter_tag']
tmp_inds.index.rename('signal_date', inplace=True)
trades_inds = pd.concat([trades_inds, tmp_inds])
if 'signal_date' in trades_red:
trades_red['signal_date'] = pd.to_datetime(trades_red['signal_date'], utc=True)
trades_red.set_index('signal_date', inplace=True)
try:
trades_red = pd.merge(trades_red, trades_inds, on='signal_date', how='outer')
except Exception as e:
print(e)
return trades_red
else:
return pd.DataFrame()
def _do_group_table_output(bigdf, glist):
if "0" in glist:
wins = bigdf.loc[bigdf['profit_abs'] >= 0] \
.groupby(['enter_reason']) \
.agg({'profit_abs': ['sum']})
wins.columns = ['profit_abs_wins']
loss = bigdf.loc[bigdf['profit_abs'] < 0] \
.groupby(['enter_reason']) \
.agg({'profit_abs': ['sum']})
loss.columns = ['profit_abs_loss']
new = bigdf.groupby(['enter_reason']).agg({'profit_abs': [
'count',
lambda x: sum(x > 0),
lambda x: sum(x <= 0)]})
new = pd.concat([new, wins, loss], axis=1).fillna(0)
new['profit_tot'] = new['profit_abs_wins'] - abs(new['profit_abs_loss'])
new['wl_ratio_pct'] = (new.iloc[:, 1] / new.iloc[:, 0] * 100).fillna(0)
new['avg_win'] = (new['profit_abs_wins'] / new.iloc[:, 1]).fillna(0)
new['avg_loss'] = (new['profit_abs_loss'] / new.iloc[:, 2]).fillna(0)
new.columns = ['total_num_buys', 'wins', 'losses', 'profit_abs_wins', 'profit_abs_loss',
'profit_tot', 'wl_ratio_pct', 'avg_win', 'avg_loss']
sortcols = ['total_num_buys']
_print_table(new, sortcols, show_index=True)
if "1" in glist:
new = bigdf.groupby(['enter_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['enter_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median',
'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct',
'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "2" in glist:
new = bigdf.groupby(['enter_reason', 'exit_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "3" in glist:
new = bigdf.groupby(['pair', 'enter_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['pair', 'enter_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "4" in glist:
new = bigdf.groupby(['pair', 'enter_reason', 'exit_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['pair', 'enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
def _print_results(analysed_trades, stratname, group,
enter_reason_list, exit_reason_list,
indicator_list, columns=None):
if columns is None:
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
bigdf = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
bigdf = pd.concat([bigdf, trades], ignore_index=True)
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
if group is not None:
glist = group.split(",")
_do_group_table_output(bigdf, glist)
if enter_reason_list is not None and not enter_reason_list == "all":
enter_reason_list = enter_reason_list.split(",")
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
if exit_reason_list is not None and not exit_reason_list == "all":
exit_reason_list = exit_reason_list.split(",")
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
if indicator_list is not None:
if indicator_list == "all":
print(bigdf)
else:
available_inds = []
for ind in indicator_list.split(","):
if ind in bigdf:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
print(tabulate(bigdf[ilist].sort_values(['exit_reason']),
headers='keys', tablefmt='psql', showindex=False))
else:
print(tabulate(bigdf[columns].sort_values(['pair']),
headers='keys', tablefmt='psql', showindex=False))
else:
print("\\_ No trades to show")
def _print_table(df, sortcols=None, show_index=False):
if (sortcols is not None):
data = df.sort_values(sortcols)
else:
data = df
print(
tabulate(
data,
headers='keys',
tablefmt='psql',
showindex=show_index
)
)
def process_entry_exit_reasons(backtest_dir: Path,
pairlist: List[str],
strategy_name: str,
analysis_groups: Optional[str] = "0,1,2",
enter_reason_list: Optional[str] = "all",
exit_reason_list: Optional[str] = "all",
indicator_list: Optional[str] = None):
try:
trades = load_backtest_data(backtest_dir, strategy_name)
except ValueError as e:
raise OperationalException(e) from e
if not trades.empty:
signal_candles = _load_signal_candles(backtest_dir)
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
trades, signal_candles)
_print_results(analysed_trades_dict,
strategy_name,
analysis_groups,
enter_reason_list,
exit_reason_list,
indicator_list)