import logging import os from pathlib import Path from typing import List, Optional import joblib import pandas as pd from tabulate import tabulate from freqtrade.data.btanalysis import get_latest_backtest_filename, load_backtest_data from freqtrade.exceptions import OperationalException logger = logging.getLogger(__name__) def _load_signal_candles(backtest_dir: Path): if backtest_dir.is_dir(): scpf = Path(backtest_dir, os.path.splitext( get_latest_backtest_filename(backtest_dir))[0] + "_signals.pkl" ) else: scpf = Path(os.path.splitext( get_latest_backtest_filename(backtest_dir))[0] + "_signals.pkl" ) print(scpf) try: scp = open(scpf, "rb") signal_candles = joblib.load(scp) logger.info(f"Loaded signal candles: {str(scpf)}") except Exception as e: logger.error("Cannot load signal candles from pickled results: ", e) return signal_candles def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles): analysed_trades_dict = {} analysed_trades_dict[strategy_name] = {} try: logger.info(f"Processing {strategy_name} : {len(pairlist)} pairs") for pair in pairlist: if pair in signal_candles[strategy_name]: analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators( pair, trades, signal_candles[strategy_name][pair]) except Exception: pass return analysed_trades_dict def _analyze_candles_and_indicators(pair, trades, signal_candles): buyf = signal_candles if len(buyf) > 0: buyf = buyf.set_index('date', drop=False) trades_red = trades.loc[trades['pair'] == pair].copy() trades_inds = pd.DataFrame() if trades_red.shape[0] > 0 and buyf.shape[0] > 0: for t, v in trades_red.open_date.items(): allinds = buyf.loc[(buyf['date'] < v)] if allinds.shape[0] > 0: tmp_inds = allinds.iloc[[-1]] trades_red.loc[t, 'signal_date'] = tmp_inds['date'].values[0] trades_red.loc[t, 'enter_reason'] = trades_red.loc[t, 'enter_tag'] tmp_inds.index.rename('signal_date', inplace=True) trades_inds = pd.concat([trades_inds, tmp_inds]) if 'signal_date' in trades_red: trades_red['signal_date'] = pd.to_datetime(trades_red['signal_date'], utc=True) trades_red.set_index('signal_date', inplace=True) try: trades_red = pd.merge(trades_red, trades_inds, on='signal_date', how='outer') except Exception as e: print(e) return trades_red else: return pd.DataFrame() def _do_group_table_output(bigdf, glist): if "0" in glist: wins = bigdf.loc[bigdf['profit_abs'] >= 0] \ .groupby(['enter_reason']) \ .agg({'profit_abs': ['sum']}) wins.columns = ['profit_abs_wins'] loss = bigdf.loc[bigdf['profit_abs'] < 0] \ .groupby(['enter_reason']) \ .agg({'profit_abs': ['sum']}) loss.columns = ['profit_abs_loss'] new = bigdf.groupby(['enter_reason']).agg({'profit_abs': [ 'count', lambda x: sum(x > 0), lambda x: sum(x <= 0)]}) new = pd.concat([new, wins, loss], axis=1).fillna(0) new['profit_tot'] = new['profit_abs_wins'] - abs(new['profit_abs_loss']) new['wl_ratio_pct'] = (new.iloc[:, 1] / new.iloc[:, 0] * 100).fillna(0) new['avg_win'] = (new['profit_abs_wins'] / new.iloc[:, 1]).fillna(0) new['avg_loss'] = (new['profit_abs_loss'] / new.iloc[:, 2]).fillna(0) new.columns = ['total_num_buys', 'wins', 'losses', 'profit_abs_wins', 'profit_abs_loss', 'profit_tot', 'wl_ratio_pct', 'avg_win', 'avg_loss'] sortcols = ['total_num_buys'] _print_table(new, sortcols, show_index=True) if "1" in glist: new = bigdf.groupby(['enter_reason']) \ .agg({'profit_abs': ['count', 'sum', 'median', 'mean'], 'profit_ratio': ['sum', 'median', 'mean']} ).reset_index() new.columns = ['enter_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median', 'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct', 'total_profit_pct'] sortcols = ['profit_abs_sum', 'enter_reason'] new['median_profit_pct'] = new['median_profit_pct'] * 100 new['mean_profit_pct'] = new['mean_profit_pct'] * 100 new['total_profit_pct'] = new['total_profit_pct'] * 100 _print_table(new, sortcols) if "2" in glist: new = bigdf.groupby(['enter_reason', 'exit_reason']) \ .agg({'profit_abs': ['count', 'sum', 'median', 'mean'], 'profit_ratio': ['sum', 'median', 'mean']} ).reset_index() new.columns = ['enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median', 'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct', 'total_profit_pct'] sortcols = ['profit_abs_sum', 'enter_reason'] new['median_profit_pct'] = new['median_profit_pct'] * 100 new['mean_profit_pct'] = new['mean_profit_pct'] * 100 new['total_profit_pct'] = new['total_profit_pct'] * 100 _print_table(new, sortcols) if "3" in glist: new = bigdf.groupby(['pair', 'enter_reason']) \ .agg({'profit_abs': ['count', 'sum', 'median', 'mean'], 'profit_ratio': ['sum', 'median', 'mean']} ).reset_index() new.columns = ['pair', 'enter_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median', 'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct', 'total_profit_pct'] sortcols = ['profit_abs_sum', 'enter_reason'] new['median_profit_pct'] = new['median_profit_pct'] * 100 new['mean_profit_pct'] = new['mean_profit_pct'] * 100 new['total_profit_pct'] = new['total_profit_pct'] * 100 _print_table(new, sortcols) if "4" in glist: new = bigdf.groupby(['pair', 'enter_reason', 'exit_reason']) \ .agg({'profit_abs': ['count', 'sum', 'median', 'mean'], 'profit_ratio': ['sum', 'median', 'mean']} ).reset_index() new.columns = ['pair', 'enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median', 'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct', 'total_profit_pct'] sortcols = ['profit_abs_sum', 'enter_reason'] new['median_profit_pct'] = new['median_profit_pct'] * 100 new['mean_profit_pct'] = new['mean_profit_pct'] * 100 new['total_profit_pct'] = new['total_profit_pct'] * 100 _print_table(new, sortcols) def _print_results(analysed_trades, stratname, group, enter_reason_list, exit_reason_list, indicator_list, columns=None): if columns is None: columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason'] bigdf = pd.DataFrame() for pair, trades in analysed_trades[stratname].items(): bigdf = pd.concat([bigdf, trades], ignore_index=True) if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns): if group is not None: glist = group.split(",") _do_group_table_output(bigdf, glist) if enter_reason_list is not None and not enter_reason_list == "all": enter_reason_list = enter_reason_list.split(",") bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))] if exit_reason_list is not None and not exit_reason_list == "all": exit_reason_list = exit_reason_list.split(",") bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))] if indicator_list is not None: if indicator_list == "all": print(bigdf) else: available_inds = [] for ind in indicator_list.split(","): if ind in bigdf: available_inds.append(ind) ilist = ["pair", "enter_reason", "exit_reason"] + available_inds print(tabulate(bigdf[ilist].sort_values(['exit_reason']), headers='keys', tablefmt='psql', showindex=False)) else: print(tabulate(bigdf[columns].sort_values(['pair']), headers='keys', tablefmt='psql', showindex=False)) else: print("\\_ No trades to show") def _print_table(df, sortcols=None, show_index=False): if (sortcols is not None): data = df.sort_values(sortcols) else: data = df print( tabulate( data, headers='keys', tablefmt='psql', showindex=show_index ) ) def process_entry_exit_reasons(backtest_dir: Path, pairlist: List[str], strategy_name: str, analysis_groups: Optional[str] = "0,1,2", enter_reason_list: Optional[str] = "all", exit_reason_list: Optional[str] = "all", indicator_list: Optional[str] = None): try: trades = load_backtest_data(backtest_dir, strategy_name) except ValueError as e: raise OperationalException(e) from e if not trades.empty: signal_candles = _load_signal_candles(backtest_dir) analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles) _print_results(analysed_trades_dict, strategy_name, analysis_groups, enter_reason_list, exit_reason_list, indicator_list)