9.2 KiB
Advanced Hyperopt
This page explains some advanced Hyperopt topics that may require higher coding skills and Python knowledge than creation of an ordinal hyperoptimization class.
Creating and using a custom loss function
To use a custom loss function class, make sure that the function hyperopt_loss_function
is defined in your custom hyperopt loss class.
For the sample below, you then need to add the command line parameter --hyperopt-loss SuperDuperHyperOptLoss
to your hyperopt call so this function is being used.
A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found in userdata/hyperopts.
from datetime import datetime
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.optimize.hyperopt import IHyperOptLoss
TARGET_TRADES = 600
EXPECTED_MAX_PROFIT = 3.0
MAX_ACCEPTED_TRADE_DURATION = 300
class SuperDuperHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Config, processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
This is the legacy algorithm (used until now in freqtrade).
Weights are distributed as follows:
* 0.4 to trade duration
* 0.25: Avoiding trade loss
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
"""
total_profit = results['profit_ratio'].sum()
trade_duration = results['trade_duration'].mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
Currently, the arguments are:
results
: DataFrame containing the resulting trades. The following columns are available in results (corresponds to the output-file of backtesting when used with--export trades
):
pair, profit_ratio, profit_abs, open_date, open_rate, fee_open, close_date, close_rate, fee_close, amount, trade_duration, is_open, exit_reason, stake_amount, min_rate, max_rate, stop_loss_ratio, stop_loss_abs
trade_count
: Amount of trades (identical tolen(results)
)min_date
: Start date of the timerange usedmin_date
: End date of the timerange usedconfig
: Config object used (Note: Not all strategy-related parameters will be updated here if they are part of a hyperopt space).processed
: Dict of Dataframes with the pair as keys containing the data used for backtesting.backtest_stats
: Backtesting statistics using the same format as the backtesting file "strategy" substructure. Available fields can be seen ingenerate_strategy_stats()
inoptimize_reports.py
.
This function needs to return a floating point number (float
). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
!!! Note This function is called once per epoch - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.
!!! Note "*args
and **kwargs
"
Please keep the arguments *args
and **kwargs
in the interface to allow us to extend this interface in the future.
Overriding pre-defined spaces
To override a pre-defined space (roi_space
, generate_roi_table
, stoploss_space
, trailing_space
), define a nested class called Hyperopt and define the required spaces as follows:
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
# Define a custom stoploss space.
def stoploss_space():
return [SKDecimal(-0.05, -0.01, decimals=3, name='stoploss')]
# Define custom ROI space
def roi_space() -> List[Dimension]:
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
SKDecimal(0.01, 0.04, decimals=3, name='roi_p1'),
SKDecimal(0.01, 0.07, decimals=3, name='roi_p2'),
SKDecimal(0.01, 0.20, decimals=3, name='roi_p3'),
]
!!! Note All overrides are optional and can be mixed/matched as necessary.
Dynamic parameters
Parameters can also be defined dynamically, but must be available to the instance once the * bot_start()
callback has been called.
class MyAwesomeStrategy(IStrategy):
def bot_start(self, **kwargs) -> None:
self.buy_adx = IntParameter(20, 30, default=30, optimize=True)
# ...
!!! Warning
Parameters created this way will not show up in the list-strategies
parameter count.
Overriding Base estimator
You can define your own estimator for Hyperopt by implementing generate_estimator()
in the Hyperopt subclass.
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
def generate_estimator(dimensions: List['Dimension'], **kwargs):
return "RF"
Possible values are either one of "GP", "RF", "ET", "GBRT" (Details can be found in the scikit-optimize documentation), or "an instance of a class that inherits from RegressorMixin
(from sklearn) and where the predict
method has an optional return_std
argument, which returns std(Y | x)
along with E[Y | x]
".
Some research will be necessary to find additional Regressors.
Example for ExtraTreesRegressor
("ET") with additional parameters:
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
def generate_estimator(dimensions: List['Dimension'], **kwargs):
from skopt.learning import ExtraTreesRegressor
# Corresponds to "ET" - but allows additional parameters.
return ExtraTreesRegressor(n_estimators=100)
The dimensions
parameter is the list of skopt.space.Dimension
objects corresponding to the parameters to be optimized. It can be used to create isotropic kernels for the skopt.learning.GaussianProcessRegressor
estimator. Here's an example:
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
def generate_estimator(dimensions: List['Dimension'], **kwargs):
from skopt.utils import cook_estimator
from skopt.learning.gaussian_process.kernels import (Matern, ConstantKernel)
kernel_bounds = (0.0001, 10000)
kernel = (
ConstantKernel(1.0, kernel_bounds) *
Matern(length_scale=np.ones(len(dimensions)), length_scale_bounds=[kernel_bounds for d in dimensions], nu=2.5)
)
kernel += (
ConstantKernel(1.0, kernel_bounds) *
Matern(length_scale=np.ones(len(dimensions)), length_scale_bounds=[kernel_bounds for d in dimensions], nu=1.5)
)
return cook_estimator("GP", space=dimensions, kernel=kernel, n_restarts_optimizer=2)
!!! Note
While custom estimators can be provided, it's up to you as User to do research on possible parameters and analyze / understand which ones should be used.
If you're unsure about this, best use one of the Defaults ("ET"
has proven to be the most versatile) without further parameters.
Space options
For the additional spaces, scikit-optimize (in combination with Freqtrade) provides the following space types:
Categorical
- Pick from a list of categories (e.g.Categorical(['a', 'b', 'c'], name="cat")
)Integer
- Pick from a range of whole numbers (e.g.Integer(1, 10, name='rsi')
)SKDecimal
- Pick from a range of decimal numbers with limited precision (e.g.SKDecimal(0.1, 0.5, decimals=3, name='adx')
). Available only with freqtrade.Real
- Pick from a range of decimal numbers with full precision (e.g.Real(0.1, 0.5, name='adx')
You can import all of these from freqtrade.optimize.space
, although Categorical
, Integer
and Real
are only aliases for their corresponding scikit-optimize Spaces. SKDecimal
is provided by freqtrade for faster optimizations.
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal, Real # noqa
!!! Hint "SKDecimal vs. Real"
We recommend to use SKDecimal
instead of the Real
space in almost all cases. While the Real space provides full accuracy (up to ~16 decimal places) - this precision is rarely needed, and leads to unnecessary long hyperopt times.
Assuming the definition of a rather small space (`SKDecimal(0.10, 0.15, decimals=2, name='xxx')`) - SKDecimal will have 5 possibilities (`[0.10, 0.11, 0.12, 0.13, 0.14, 0.15]`).
A corresponding real space `Real(0.10, 0.15 name='xxx')` on the other hand has an almost unlimited number of possibilities (`[0.10, 0.010000000001, 0.010000000002, ... 0.014999999999, 0.01500000000]`).