stable/docs/bot-optimization.md
2018-01-02 23:59:14 -08:00

3.9 KiB

Bot Optimization

This page explains where to customize your strategies, and add new indicators.

Table of Contents

Change your strategy

The bot is using buy and sell strategies to buy and sell your trades. Both are customizable.

Buy strategy

The default buy strategy is located in the file freqtrade/analyze.py. Edit the function populate_buy_trend() to update your buy strategy.

Sample:

def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
    """
    Based on TA indicators, populates the buy signal for the given dataframe
    :param dataframe: DataFrame
    :return: DataFrame with buy column
    """
    dataframe.loc[
        (
            (dataframe['rsi'] < 35) &
            (dataframe['fastd'] < 35) &
            (dataframe['adx'] > 30) &
            (dataframe['plus_di'] > 0.5)
        ) |
        (
            (dataframe['adx'] > 65) &
            (dataframe['plus_di'] > 0.5)
        ),
        'buy'] = 1

    return dataframe

Sell strategy

The default buy strategy is located in the file freqtrade/analyze.py Edit the function populate_sell_trend() to update your buy strategy.

Sample:

def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
    """
    Based on TA indicators, populates the sell signal for the given dataframe
    :param dataframe: DataFrame
    :return: DataFrame with buy column
    """
    dataframe.loc[
        (
            (
                (crossed_above(dataframe['rsi'], 70)) |
                (crossed_above(dataframe['fastd'], 70))
            ) &
            (dataframe['adx'] > 10) &
            (dataframe['minus_di'] > 0)
        ) |
        (
            (dataframe['adx'] > 70) &
            (dataframe['minus_di'] > 0.5)
        ),
        'sell'] = 1
    return dataframe

Add more Indicator

As you have seen, buy and sell strategies need indicators. You can see the indicators in the file freqtrade/analyze.py. Of course you can add more indicators by extending the list contained in the function populate_indicators().

Sample:

def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['rsi'] = ta.RSI(dataframe)
    dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
    dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
    dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
    dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
    dataframe['ao'] = awesome_oscillator(dataframe)
    macd = ta.MACD(dataframe)
    dataframe['macd'] = macd['macd']
    dataframe['macdsignal'] = macd['macdsignal']
    dataframe['macdhist'] = macd['macdhist']
    hilbert = ta.HT_SINE(dataframe)
    dataframe['htsine'] = hilbert['sine']
    dataframe['htleadsine'] = hilbert['leadsine']
    dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
    dataframe['plus_di'] = ta.PLUS_DI(dataframe)
    dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
    dataframe['minus_di'] = ta.MINUS_DI(dataframe)
    return dataframe

Next step

Now you have a perfect strategy you probably want to backtesting it. Your next step is to learn How to use the Backtesting.