stable/tests/data/test_btanalysis.py
2021-12-13 10:15:34 +01:00

346 lines
14 KiB
Python

from math import isclose
from pathlib import Path
from unittest.mock import MagicMock
import numpy as np
import pytest
from arrow import Arrow
from pandas import DataFrame, DateOffset, Timestamp, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, BT_DATA_COLUMNS_MID, BT_DATA_COLUMNS_OLD,
analyze_trade_parallelism, calculate_csum,
calculate_market_change, calculate_max_drawdown, calculate_trades_mdd,
combine_dataframes_with_mean, create_cum_profit,
extract_trades_of_period, get_latest_backtest_filename,
get_latest_hyperopt_file, load_backtest_data, load_trades,
load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history
from tests.conftest import create_mock_trades
from tests.conftest_trades import MOCK_TRADE_COUNT
def test_get_latest_backtest_filename(testdatadir, mocker):
with pytest.raises(ValueError, match=r"Directory .* does not exist\."):
get_latest_backtest_filename(testdatadir / 'does_not_exist')
with pytest.raises(ValueError,
match=r"Directory .* does not seem to contain .*"):
get_latest_backtest_filename(testdatadir.parent)
res = get_latest_backtest_filename(testdatadir)
assert res == 'backtest-result_new.json'
res = get_latest_backtest_filename(str(testdatadir))
assert res == 'backtest-result_new.json'
mocker.patch("freqtrade.data.btanalysis.json_load", return_value={})
with pytest.raises(ValueError, match=r"Invalid '.last_result.json' format."):
get_latest_backtest_filename(testdatadir)
def test_get_latest_hyperopt_file(testdatadir, mocker):
res = get_latest_hyperopt_file(testdatadir / 'does_not_exist', 'testfile.pickle')
assert res == testdatadir / 'does_not_exist/testfile.pickle'
res = get_latest_hyperopt_file(testdatadir.parent)
assert res == testdatadir.parent / "hyperopt_results.pickle"
res = get_latest_hyperopt_file(str(testdatadir.parent))
assert res == testdatadir.parent / "hyperopt_results.pickle"
def test_load_backtest_data_old_format(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert list(bt_data.columns) == BT_DATA_COLUMNS_OLD + ['profit_abs', 'profit_ratio']
assert len(bt_data) == 179
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename))
assert bt_data.equals(bt_data2)
with pytest.raises(ValueError, match=r"File .* does not exist\."):
load_backtest_data(str("filename") + "nofile")
def test_load_backtest_data_new_format(testdatadir):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
assert len(bt_data) == 179
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename))
assert bt_data.equals(bt_data2)
# Test loading from folder (must yield same result)
bt_data3 = load_backtest_data(testdatadir)
assert bt_data.equals(bt_data3)
with pytest.raises(ValueError, match=r"File .* does not exist\."):
load_backtest_data(str("filename") + "nofile")
with pytest.raises(ValueError, match=r"Unknown dataformat."):
load_backtest_data(testdatadir / LAST_BT_RESULT_FN)
def test_load_backtest_data_multi(testdatadir):
filename = testdatadir / "backtest-result_multistrat.json"
for strategy in ('StrategyTestV2', 'TestStrategy'):
bt_data = load_backtest_data(filename, strategy=strategy)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
assert len(bt_data) == 179
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename), strategy=strategy)
assert bt_data.equals(bt_data2)
with pytest.raises(ValueError, match=r"Strategy XYZ not available in the backtest result\."):
load_backtest_data(filename, strategy='XYZ')
with pytest.raises(ValueError, match=r"Detected backtest result with more than one strategy.*"):
load_backtest_data(filename)
@pytest.mark.usefixtures("init_persistence")
def test_load_trades_from_db(default_conf, fee, mocker):
create_mock_trades(fee)
# remove init so it does not init again
init_mock = mocker.patch('freqtrade.data.btanalysis.init_db', MagicMock())
trades = load_trades_from_db(db_url=default_conf['db_url'])
assert init_mock.call_count == 1
assert len(trades) == MOCK_TRADE_COUNT
assert isinstance(trades, DataFrame)
assert "pair" in trades.columns
assert "open_date" in trades.columns
assert "profit_ratio" in trades.columns
for col in BT_DATA_COLUMNS:
if col not in ['index', 'open_at_end']:
assert col in trades.columns
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='StrategyTestV2')
assert len(trades) == 4
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='NoneStrategy')
assert len(trades) == 0
def test_extract_trades_of_period(testdatadir):
pair = "UNITTEST/BTC"
# 2018-11-14 06:07:00
timerange = TimeRange('date', None, 1510639620, 0)
data = load_pair_history(pair=pair, timeframe='1m',
datadir=testdatadir, timerange=timerange)
trades = DataFrame(
{'pair': [pair, pair, pair, pair],
'profit_ratio': [0.0, 0.1, -0.2, -0.5],
'profit_abs': [0.0, 1, -2, -5],
'open_date': to_datetime([Arrow(2017, 11, 13, 15, 40, 0).datetime,
Arrow(2017, 11, 14, 9, 41, 0).datetime,
Arrow(2017, 11, 14, 14, 20, 0).datetime,
Arrow(2017, 11, 15, 3, 40, 0).datetime,
], utc=True
),
'close_date': to_datetime([Arrow(2017, 11, 13, 16, 40, 0).datetime,
Arrow(2017, 11, 14, 10, 41, 0).datetime,
Arrow(2017, 11, 14, 15, 25, 0).datetime,
Arrow(2017, 11, 15, 3, 55, 0).datetime,
], utc=True)
})
trades1 = extract_trades_of_period(data, trades)
# First and last trade are dropped as they are out of range
assert len(trades1) == 2
assert trades1.iloc[0].open_date == Arrow(2017, 11, 14, 9, 41, 0).datetime
assert trades1.iloc[0].close_date == Arrow(2017, 11, 14, 10, 41, 0).datetime
assert trades1.iloc[-1].open_date == Arrow(2017, 11, 14, 14, 20, 0).datetime
assert trades1.iloc[-1].close_date == Arrow(2017, 11, 14, 15, 25, 0).datetime
def test_analyze_trade_parallelism(default_conf, mocker, testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
res = analyze_trade_parallelism(bt_data, "5m")
assert isinstance(res, DataFrame)
assert 'open_trades' in res.columns
assert res['open_trades'].max() == 3
assert res['open_trades'].min() == 0
def test_load_trades(default_conf, mocker):
db_mock = mocker.patch("freqtrade.data.btanalysis.load_trades_from_db", MagicMock())
bt_mock = mocker.patch("freqtrade.data.btanalysis.load_backtest_data", MagicMock())
load_trades("DB",
db_url=default_conf.get('db_url'),
exportfilename=default_conf.get('exportfilename'),
no_trades=False,
strategy="StrategyTestV2",
)
assert db_mock.call_count == 1
assert bt_mock.call_count == 0
db_mock.reset_mock()
bt_mock.reset_mock()
default_conf['exportfilename'] = Path("testfile.json")
load_trades("file",
db_url=default_conf.get('db_url'),
exportfilename=default_conf.get('exportfilename'),
)
assert db_mock.call_count == 0
assert bt_mock.call_count == 1
db_mock.reset_mock()
bt_mock.reset_mock()
default_conf['exportfilename'] = "testfile.json"
load_trades("file",
db_url=default_conf.get('db_url'),
exportfilename=default_conf.get('exportfilename'),
no_trades=True
)
assert db_mock.call_count == 0
assert bt_mock.call_count == 0
def test_calculate_market_change(testdatadir):
pairs = ["ETH/BTC", "ADA/BTC"]
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
result = calculate_market_change(data)
assert isinstance(result, float)
assert pytest.approx(result) == 0.00955514
def test_combine_dataframes_with_mean(testdatadir):
pairs = ["ETH/BTC", "ADA/BTC"]
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
df = combine_dataframes_with_mean(data)
assert isinstance(df, DataFrame)
assert "ETH/BTC" in df.columns
assert "ADA/BTC" in df.columns
assert "mean" in df.columns
def test_create_cum_profit(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
df = load_pair_history(pair="TRX/BTC", timeframe='5m',
datadir=testdatadir, timerange=timerange)
cum_profits = create_cum_profit(df.set_index('date'),
bt_data[bt_data["pair"] == 'TRX/BTC'],
"cum_profits", timeframe="5m")
assert "cum_profits" in cum_profits.columns
assert cum_profits.iloc[0]['cum_profits'] == 0
assert isclose(cum_profits.iloc[-1]['cum_profits'], 8.723007518796964e-06)
def test_create_cum_profit1(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
# Move close-time to "off" the candle, to make sure the logic still works
bt_data.loc[:, 'close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20)
timerange = TimeRange.parse_timerange("20180110-20180112")
df = load_pair_history(pair="TRX/BTC", timeframe='5m',
datadir=testdatadir, timerange=timerange)
cum_profits = create_cum_profit(df.set_index('date'),
bt_data[bt_data["pair"] == 'TRX/BTC'],
"cum_profits", timeframe="5m")
assert "cum_profits" in cum_profits.columns
assert cum_profits.iloc[0]['cum_profits'] == 0
assert isclose(cum_profits.iloc[-1]['cum_profits'], 8.723007518796964e-06)
with pytest.raises(ValueError, match='Trade dataframe empty.'):
create_cum_profit(df.set_index('date'), bt_data[bt_data["pair"] == 'NOTAPAIR'],
"cum_profits", timeframe="5m")
def test_calculate_max_drawdown(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
drawdown, hdate, lowdate, hval, lval = calculate_max_drawdown(bt_data)
assert isinstance(drawdown, float)
assert pytest.approx(drawdown) == 0.21142322
assert isinstance(hdate, Timestamp)
assert isinstance(lowdate, Timestamp)
assert isinstance(hval, float)
assert isinstance(lval, float)
assert hdate == Timestamp('2018-01-24 14:25:00', tz='UTC')
assert lowdate == Timestamp('2018-01-30 04:45:00', tz='UTC')
with pytest.raises(ValueError, match='Trade dataframe empty.'):
drawdown, hdate, lowdate, hval, lval = calculate_max_drawdown(DataFrame())
def test_calculate_csum(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
csum_min, csum_max = calculate_csum(bt_data)
assert isinstance(csum_min, float)
assert isinstance(csum_max, float)
assert csum_min < 0.01
assert csum_max > 0.02
csum_min1, csum_max1 = calculate_csum(bt_data, 5)
assert csum_min1 == csum_min + 5
assert csum_max1 == csum_max + 5
with pytest.raises(ValueError, match='Trade dataframe empty.'):
csum_min, csum_max = calculate_csum(DataFrame())
def test_calculate_max_drawdown2():
values = [0.011580, 0.010048, 0.011340, 0.012161, 0.010416, 0.010009, 0.020024,
-0.024662, -0.022350, 0.020496, -0.029859, -0.030511, 0.010041, 0.010872,
-0.025782, 0.010400, 0.012374, 0.012467, 0.114741, 0.010303, 0.010088,
-0.033961, 0.010680, 0.010886, -0.029274, 0.011178, 0.010693, 0.010711]
dates = [Arrow(2020, 1, 1).shift(days=i) for i in range(len(values))]
df = DataFrame(zip(values, dates), columns=['profit', 'open_date'])
# sort by profit and reset index
df = df.sort_values('profit').reset_index(drop=True)
df1 = df.copy()
drawdown, hdate, ldate, hval, lval = calculate_max_drawdown(
df, date_col='open_date', value_col='profit')
# Ensure df has not been altered.
assert df.equals(df1)
assert isinstance(drawdown, float)
# High must be before low
assert hdate < ldate
# High value must be higher than low value
assert hval > lval
assert drawdown == 0.091755
df = DataFrame(zip(values[:5], dates[:5]), columns=['profit', 'open_date'])
with pytest.raises(ValueError, match='No losing trade, therefore no drawdown.'):
calculate_max_drawdown(df, date_col='open_date', value_col='profit')
def test_calculate_trades_mdd(testdatadir):
backtest_file = testdatadir / "backtest-result_test.json"
trades = load_backtest_data(backtest_file)
pairlist = set(trades["pair"])
with pytest.raises(ValueError, match='All dataframe in candle data are None'):
calculate_trades_mdd({"BTC/BUSD" : None}, trades)
data = load_data(datadir=testdatadir, pairs=pairlist, timeframe='5m')
trades_mdd = calculate_trades_mdd(data, trades)
assert np.round(trades_mdd, 6) == 0.138943