test done
This commit is contained in:
parent
91e57f64d4
commit
d08b0918ad
@ -390,6 +390,7 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
|
||||
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date, high_val, low_val
|
||||
|
||||
# TODO : is supposed to work only with long positions
|
||||
def calculate_trades_mdd(data: dict, trades: pd.DataFrame) -> float :
|
||||
"""
|
||||
Calculate Trades MDD (Max DrawDown) :
|
||||
@ -409,57 +410,55 @@ def calculate_trades_mdd(data: dict, trades: pd.DataFrame) -> float :
|
||||
|
||||
trades_mdd_pair_list = []
|
||||
|
||||
for pair, df in data.items():
|
||||
if df is None:
|
||||
break
|
||||
for pair, df in data.items():
|
||||
if isinstance(df, pd.DataFrame):
|
||||
# Gather the opening and closing trade dates into one Dates DataFrame
|
||||
open_close_trades = trades.loc[trades['pair']==pair][["open_date","close_date"]]
|
||||
open_close_trades = pd.concat(
|
||||
[open_close_trades.rename(columns={'open_date':'date'})[['date']],
|
||||
open_close_trades.rename(columns={'close_date':'date'})[['date']]]
|
||||
).sort_values(by='date')
|
||||
|
||||
# Mark the dates and join it to the current candle dataframe.
|
||||
# This allow to determine the open and close trade dates in the current
|
||||
# candle dataframe.
|
||||
open_close_trades['open_close_mark'] = 1
|
||||
data_join = df.set_index('date').join(open_close_trades.set_index('date'))
|
||||
del open_close_trades
|
||||
|
||||
# Gather the opening and closing trade dates into one Dates DataFrame
|
||||
open_close_trades = trades.loc[trades['pair']==pair][["open_date","close_date"]]
|
||||
open_close_trades = pd.concat(
|
||||
[open_close_trades.rename(columns={'open_date':'date'})[['date']],
|
||||
open_close_trades.rename(columns={'close_date':'date'})[['date']]]
|
||||
).sort_values(by='date')
|
||||
|
||||
# Mark the dates and join it to the current candle dataframe.
|
||||
# This allow to determine the open and close trade dates in the current
|
||||
# candle dataframe.
|
||||
open_close_trades['open_close_mark'] = 1
|
||||
data_join = df.set_index('date').join(open_close_trades.set_index('date'))
|
||||
del open_close_trades
|
||||
# Gather, mark and join only the opening trade dates into the current candle
|
||||
# dataframe.
|
||||
# This allow to classify trades using the cumsum and split by classes
|
||||
# with groupby in order to process a cummax on each trades independantly.
|
||||
open_trades = trades.loc[trades['pair']==pair][["open_date"]]
|
||||
open_trades = open_trades.rename(columns={'open_date':'date'})
|
||||
open_trades['open_mark'] = 1
|
||||
data_join = data_join.join(open_trades.set_index('date'))
|
||||
del open_trades
|
||||
|
||||
# Gather, mark and join only the opening trade dates into the current candle
|
||||
# dataframe.
|
||||
# This allow to classify trades using the cumsum and split by classes
|
||||
# with groupby in order to process a cummax on each trades independantly.
|
||||
open_trades = trades.loc[trades['pair']==pair][["open_date"]]
|
||||
open_trades = open_trades.rename(columns={'open_date':'date'})
|
||||
open_trades['open_mark'] = 1
|
||||
data_join = data_join.join(open_trades.set_index('date'))
|
||||
del open_trades
|
||||
# Set all unmarked date to 0
|
||||
data_join[["open_close_mark",'open_mark']] = data_join[
|
||||
["open_close_mark",'open_mark']].fillna(0).astype(int)
|
||||
|
||||
# Set all unmarked date to 0
|
||||
data_join[["open_close_mark",'open_mark']] = data_join[
|
||||
["open_close_mark",'open_mark']].fillna(0).astype(int)
|
||||
# Mark with one all dates between an opening date trades and a closing date trades.
|
||||
data_join['is_in_trade'] = data_join.open_close_mark.cumsum()&1 # &1 <=> %2
|
||||
data_join.loc[data_join['open_close_mark'] == 1, 'is_in_trade'] = 1
|
||||
|
||||
# Perform a cummax in each trades independtly
|
||||
data_join['close_cummax'] = 0
|
||||
data_join['close_cummax'] = data_join.groupby(
|
||||
data_join['open_mark'].cumsum()
|
||||
)['close'].cummax()
|
||||
data_join.loc[data_join['is_in_trade'] == 0, 'close_cummax'] = 0
|
||||
|
||||
# Mark with one all dates between an opening date trades and a closing date trades.
|
||||
data_join['is_in_trade'] = data_join.open_close_mark.cumsum()&1 # &1 <=> %2
|
||||
data_join.loc[data_join['open_close_mark'] == 1, 'is_in_trade'] = 1
|
||||
|
||||
# Perform a cummax in each trades independtly
|
||||
data_join['close_cummax'] = 0
|
||||
data_join['close_cummax'] = data_join.groupby(
|
||||
data_join['open_mark'].cumsum()
|
||||
)['close'].cummax()
|
||||
data_join.loc[data_join['is_in_trade'] == 0, 'close_cummax'] = 0
|
||||
# Compute the drawdown at each time of each trades
|
||||
data_join = data_join.rename(columns={'open_mark':'drawdown'})
|
||||
data_join.loc[data_join['is_in_trade'] == 1, 'drawdown'] = \
|
||||
(data_join['close_cummax'] - data_join['close']) \
|
||||
/ data_join['close_cummax']
|
||||
|
||||
# Compute the drawdown at each time of each trades
|
||||
data_join = data_join.rename(columns={'open_mark':'drawdown'})
|
||||
data_join.loc[data_join['is_in_trade'] == 1, 'drawdown'] = \
|
||||
(data_join['close_cummax'] - data_join['close']) \
|
||||
/ data_join['close_cummax']
|
||||
|
||||
mdd_pair = data_join['drawdown'].max()
|
||||
trades_mdd_pair_list.append(mdd_pair)
|
||||
mdd_pair = data_join['drawdown'].max()
|
||||
trades_mdd_pair_list.append(mdd_pair)
|
||||
|
||||
if trades_mdd_pair_list == []:
|
||||
raise ValueError("All dataframe in candle data are None")
|
||||
|
@ -1,7 +1,7 @@
|
||||
from math import isclose
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
from pandas import DataFrame, DateOffset, Timestamp, to_datetime
|
||||
@ -10,7 +10,7 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, BT_DATA_COLUMNS_MID, BT_DATA_COLUMNS_OLD,
|
||||
analyze_trade_parallelism, calculate_csum,
|
||||
calculate_market_change, calculate_max_drawdown,
|
||||
calculate_market_change, calculate_max_drawdown, calculate_trades_mdd,
|
||||
combine_dataframes_with_mean, create_cum_profit,
|
||||
extract_trades_of_period, get_latest_backtest_filename,
|
||||
get_latest_hyperopt_file, load_backtest_data, load_trades,
|
||||
@ -332,3 +332,15 @@ def test_calculate_max_drawdown2():
|
||||
df = DataFrame(zip(values[:5], dates[:5]), columns=['profit', 'open_date'])
|
||||
with pytest.raises(ValueError, match='No losing trade, therefore no drawdown.'):
|
||||
calculate_max_drawdown(df, date_col='open_date', value_col='profit')
|
||||
|
||||
def test_calculate_trades_mdd(testdatadir):
|
||||
backtest_file = testdatadir / "backtest-result_test.json"
|
||||
trades = load_backtest_data(backtest_file)
|
||||
pairlist = set(trades["pair"])
|
||||
|
||||
with pytest.raises(ValueError, match='All dataframe in candle data are None'):
|
||||
calculate_trades_mdd({"BTC/BUSD" : None}, trades)
|
||||
|
||||
data = load_data(datadir=testdatadir, pairs=pairlist, timeframe='5m')
|
||||
trades_mdd = calculate_trades_mdd(data, trades)
|
||||
assert np.round(trades_mdd, 6) == 0.138943
|
Loading…
Reference in New Issue
Block a user