stable/freqtrade-strategies-master/user_data/strategies/berlinguyinca/ReinforcedSmoothScalp.py

103 lines
4.1 KiB
Python

# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy import timeframe_to_minutes
from pandas import DataFrame
from technical.util import resample_to_interval, resampled_merge
import numpy # noqa
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class ReinforcedSmoothScalp(IStrategy):
"""
this strategy is based around the idea of generating a lot of potentatils buys and make tiny profits on each trade
we recommend to have at least 60 parallel trades at any time to cover non avoidable losses
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"0": 0.02
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
# should not be below 3% loss
stoploss = -0.1
# Optimal timeframe for the strategy
# the shorter the better
timeframe = '1m'
# resample factor to establish our general trend. Basically don't buy if a trend is not given
resample_factor = 5
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
tf_res = timeframe_to_minutes(self.timeframe) * 5
df_res = resample_to_interval(dataframe, tf_res)
df_res['sma'] = ta.SMA(df_res, 50, price='close')
dataframe = resampled_merge(dataframe, df_res, fill_na=True)
dataframe['resample_sma'] = dataframe[f'resample_{tf_res}_sma']
dataframe['ema_high'] = ta.EMA(dataframe, timeperiod=5, price='high')
dataframe['ema_close'] = ta.EMA(dataframe, timeperiod=5, price='close')
dataframe['ema_low'] = ta.EMA(dataframe, timeperiod=5, price='low')
stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe['adx'] = ta.ADX(dataframe)
dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
dataframe['mfi'] = ta.MFI(dataframe)
# required for graphing
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['bb_middleband'] = bollinger['mid']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(
(dataframe['open'] < dataframe['ema_low']) &
(dataframe['adx'] > 30) &
(dataframe['mfi'] < 30) &
(
(dataframe['fastk'] < 30) &
(dataframe['fastd'] < 30) &
(qtpylib.crossed_above(dataframe['fastk'], dataframe['fastd']))
) &
(dataframe['resample_sma'] < dataframe['close'])
)
# |
# # try to get some sure things independent of resample
# ((dataframe['rsi'] - dataframe['mfi']) < 10) &
# (dataframe['mfi'] < 30) &
# (dataframe['cci'] < -200)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(
(
(dataframe['open'] >= dataframe['ema_high'])
) |
(
(qtpylib.crossed_above(dataframe['fastk'], 70)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
)
) & (dataframe['cci'] > 100)
)
,
'sell'] = 1
return dataframe