# --- Do not remove these libs --- from freqtrade.strategy.interface import IStrategy from freqtrade.strategy import timeframe_to_minutes from pandas import DataFrame from technical.util import resample_to_interval, resampled_merge import numpy # noqa # -------------------------------- import talib.abstract as ta import freqtrade.vendor.qtpylib.indicators as qtpylib class ReinforcedSmoothScalp(IStrategy): """ this strategy is based around the idea of generating a lot of potentatils buys and make tiny profits on each trade we recommend to have at least 60 parallel trades at any time to cover non avoidable losses """ # Minimal ROI designed for the strategy. # This attribute will be overridden if the config file contains "minimal_roi" minimal_roi = { "0": 0.02 } # Optimal stoploss designed for the strategy # This attribute will be overridden if the config file contains "stoploss" # should not be below 3% loss stoploss = -0.1 # Optimal timeframe for the strategy # the shorter the better timeframe = '1m' # resample factor to establish our general trend. Basically don't buy if a trend is not given resample_factor = 5 def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: tf_res = timeframe_to_minutes(self.timeframe) * 5 df_res = resample_to_interval(dataframe, tf_res) df_res['sma'] = ta.SMA(df_res, 50, price='close') dataframe = resampled_merge(dataframe, df_res, fill_na=True) dataframe['resample_sma'] = dataframe[f'resample_{tf_res}_sma'] dataframe['ema_high'] = ta.EMA(dataframe, timeperiod=5, price='high') dataframe['ema_close'] = ta.EMA(dataframe, timeperiod=5, price='close') dataframe['ema_low'] = ta.EMA(dataframe, timeperiod=5, price='low') stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0) dataframe['fastd'] = stoch_fast['fastd'] dataframe['fastk'] = stoch_fast['fastk'] dataframe['adx'] = ta.ADX(dataframe) dataframe['cci'] = ta.CCI(dataframe, timeperiod=20) dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) dataframe['mfi'] = ta.MFI(dataframe) # required for graphing bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2) dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_upperband'] = bollinger['upper'] dataframe['bb_middleband'] = bollinger['mid'] return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ( (dataframe['open'] < dataframe['ema_low']) & (dataframe['adx'] > 30) & (dataframe['mfi'] < 30) & ( (dataframe['fastk'] < 30) & (dataframe['fastd'] < 30) & (qtpylib.crossed_above(dataframe['fastk'], dataframe['fastd'])) ) & (dataframe['resample_sma'] < dataframe['close']) ) # | # # try to get some sure things independent of resample # ((dataframe['rsi'] - dataframe['mfi']) < 10) & # (dataframe['mfi'] < 30) & # (dataframe['cci'] < -200) ), 'buy'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ( ( (dataframe['open'] >= dataframe['ema_high']) ) | ( (qtpylib.crossed_above(dataframe['fastk'], 70)) | (qtpylib.crossed_above(dataframe['fastd'], 70)) ) ) & (dataframe['cci'] > 100) ) , 'sell'] = 1 return dataframe