146 lines
5.3 KiB
Markdown
146 lines
5.3 KiB
Markdown
# Bot Optimization
|
|
This page explains where to customize your strategies, and add new
|
|
indicators.
|
|
|
|
## Table of Contents
|
|
- [Install a custom strategy file](#install-a-custom-strategy-file)
|
|
- [Customize your strategy](#change-your-strategy)
|
|
- [Add more Indicator](#add-more-indicator)
|
|
- [Where is the default strategy](#where-is-the-default-strategy)
|
|
|
|
Since the version `0.16.0` the bot allows using custom strategy file.
|
|
|
|
## Install a custom strategy file
|
|
This is very simple. Copy paste your strategy file into the folder
|
|
`user_data/strategies`.
|
|
|
|
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`:
|
|
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py`
|
|
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
|
|
|
|
```bash
|
|
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
|
```
|
|
|
|
## Change your strategy
|
|
The bot includes a default strategy file. However, we recommend you to
|
|
use your own file to not have to lose your parameters every time the default
|
|
strategy file will be updated on Github. Put your custom strategy file
|
|
into the folder `user_data/strategies`.
|
|
|
|
A strategy file contains all the information needed to build a good strategy:
|
|
- Buy strategy rules
|
|
- Sell strategy rules
|
|
- Minimal ROI recommended
|
|
- Stoploss recommended
|
|
- Hyperopt parameter
|
|
|
|
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
|
|
You can test it with the parameter: `--strategy TestStrategy`
|
|
|
|
```bash
|
|
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
|
```
|
|
|
|
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
|
|
file as reference.**
|
|
|
|
### Buy strategy
|
|
Edit the method `populate_buy_trend()` into your strategy file to
|
|
update your buy strategy.
|
|
|
|
Sample from `user_data/strategies/test_strategy.py`:
|
|
```python
|
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['adx'] > 30) &
|
|
(dataframe['tema'] <= dataframe['blower']) &
|
|
(dataframe['tema'] > dataframe['tema'].shift(1))
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
```
|
|
|
|
### Sell strategy
|
|
Edit the method `populate_sell_trend()` into your strategy file to
|
|
update your sell strategy.
|
|
|
|
Sample from `user_data/strategies/test_strategy.py`:
|
|
```python
|
|
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['adx'] > 70) &
|
|
(dataframe['tema'] > dataframe['blower']) &
|
|
(dataframe['tema'] < dataframe['tema'].shift(1))
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
```
|
|
|
|
## Add more Indicator
|
|
As you have seen, buy and sell strategies need indicators. You can add
|
|
more indicators by extending the list contained in
|
|
the method `populate_indicators()` from your strategy file.
|
|
|
|
Sample:
|
|
```python
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
"""
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
stoch = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch['fastd']
|
|
dataframe['fastk'] = stoch['fastk']
|
|
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
dataframe['ao'] = awesome_oscillator(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
hilbert = ta.HT_SINE(dataframe)
|
|
dataframe['htsine'] = hilbert['sine']
|
|
dataframe['htleadsine'] = hilbert['leadsine']
|
|
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
return dataframe
|
|
```
|
|
|
|
**Want more indicators example?**
|
|
Look into the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
|
|
Then uncomment indicators you need.
|
|
|
|
|
|
### Where is the default strategy?
|
|
The default buy strategy is located in the file
|
|
[freqtrade/default_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
|
|
|
|
|
|
## Next step
|
|
Now you have a perfect strategy you probably want to backtesting it.
|
|
Your next step is to learn [How to use the Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md).
|