118 lines
3.9 KiB
Markdown
118 lines
3.9 KiB
Markdown
# Bot Optimization
|
|
This page explains where to customize your strategies, and add new
|
|
indicators.
|
|
|
|
## Table of Contents
|
|
- [Change your strategy](#change-your-strategy)
|
|
- [Add more Indicator](#add-more-indicator)
|
|
|
|
## Change your strategy
|
|
The bot is using buy and sell strategies to buy and sell your trades.
|
|
Both are customizable.
|
|
|
|
### Buy strategy
|
|
The default buy strategy is located in the file
|
|
[freqtrade/analyze.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/analyze.py#L73-L92).
|
|
Edit the function `populate_buy_trend()` to update your buy strategy.
|
|
|
|
Sample:
|
|
```python
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['rsi'] < 35) &
|
|
(dataframe['fastd'] < 35) &
|
|
(dataframe['adx'] > 30) &
|
|
(dataframe['plus_di'] > 0.5)
|
|
) |
|
|
(
|
|
(dataframe['adx'] > 65) &
|
|
(dataframe['plus_di'] > 0.5)
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
```
|
|
|
|
### Sell strategy
|
|
The default buy strategy is located in the file
|
|
[freqtrade/analyze.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/analyze.py#L95-L115)
|
|
Edit the function `populate_sell_trend()` to update your buy strategy.
|
|
|
|
Sample:
|
|
```python
|
|
def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(
|
|
(crossed_above(dataframe['rsi'], 70)) |
|
|
(crossed_above(dataframe['fastd'], 70))
|
|
) &
|
|
(dataframe['adx'] > 10) &
|
|
(dataframe['minus_di'] > 0)
|
|
) |
|
|
(
|
|
(dataframe['adx'] > 70) &
|
|
(dataframe['minus_di'] > 0.5)
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
```
|
|
|
|
## Add more Indicator
|
|
As you have seen, buy and sell strategies need indicators. You can see
|
|
the indicators in the file
|
|
[freqtrade/analyze.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/analyze.py#L95-L115).
|
|
Of course you can add more indicators by extending the list contained in
|
|
the function `populate_indicators()`.
|
|
|
|
Sample:
|
|
```python
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
"""
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
stoch = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch['fastd']
|
|
dataframe['fastk'] = stoch['fastk']
|
|
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
dataframe['ao'] = awesome_oscillator(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
hilbert = ta.HT_SINE(dataframe)
|
|
dataframe['htsine'] = hilbert['sine']
|
|
dataframe['htleadsine'] = hilbert['leadsine']
|
|
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
return dataframe
|
|
```
|
|
|
|
|
|
## Next step
|
|
Now you have a perfect strategy you probably want to backtesting it.
|
|
Your next step is to learn [How to use the Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md).
|